ADMINISTRATION OF AN ACCESS CONTROL LIST TO FEMTO CELL COVERAGE

- AT&T

A system, method, and apparatus for facilitating management of access to femto cell coverage is provided. A femto access point provides access to the femto cell coverage and a subset of services to at least one communication device included in an access control list associated with the femto access point. An access management component utilizes an access criteria to edit the access control list. The access criteria includes criteria for adding a communication device to the access control list and criteria for automatically removing the added communication device from the access control list.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Patent application Ser. No. 61/052,813 entitled “MANAGEMENT OF ACCESS TO FEMTO CELL COVERAGE” and filed on May 13, 2008. The entirety of the above-referenced application is incorporated by reference herein.

TECHNICAL FIELD

The subject innovation generally relates to wireless communications and more particularly to facilitating management of access to femto cell coverage.

BACKGROUND

Femtocells—building-based wireless access points interfaced with a wired broadband network—are generally deployed to improve indoor wireless coverage provided by a wireless network operator. Femtocells typically operate in licensed portions of the electromagnetic spectrum, and generally offer plug-and-play installation; e.g., automatic configuration of femto access point. Improved indoor coverage includes stronger signal and improved reception (e.g., voice or sound), ease of session or call initiation and session or call retention as well. Coverage of a femtocell, or femto AP, is intended to be confined within the bounds of an indoor compound, in order to mitigate interference among mobile stations covered by a macro cell and terminals covered by the femto AP. Additionally, confined coverage can reduce cross-talk among terminals serviced by disparate, neighboring femtocells as well.

Coverage improvements via femtocells also can mitigate customer attrition as long as a favorable subscriber perception regarding voice coverage and other data services with substantive delay sensitivity is attained. A positive customer experience can depend on adequate access management to femtocell service.

It can be desirable to encourage communication devices to utilize a femtocell owned/operated by a subscriber and services available via the femtocell, as it can facilitate communication of information between communication devices and respective users of those communication devices and/or can generate income for the subscriber that owns/operates the femtocell. It also can be desirable to manage access of wireless communication devices to a femtocell to facilitate efficient use of bandwidth and services associated with the femtocell. It also can be desirable to manage access of wireless communication devices to a femtocell in order to facilitate reducing unnecessary signaling between a femtocell and a communication device(s) in the coverage area of the femtocell, where the communication device(s) is not desiring or is not authorized to access the femtocell.

SUMMARY

The following presents a simplified summary of the innovation in order to provide a basic understanding of some aspects of the invention. This summary is not an extensive overview of the invention. It is intended to neither identify key or critical elements of the invention nor delineate the scope of the invention. Its sole purpose is to present some concepts of the invention in a simplified form as a prelude to the more detailed description that is presented later.

The subject innovation provides system(s) and method(s) to manage access to femtocell service through access control list(s), or “white list(s).” In an aspect, the white list(s) can be configured via a networked interface that can facilitate access management to a femtocell. A white list(s) can include a set of subscriber station(s) identifier numbers, codes or tokens, and can also include additional fields that can facilitate femtocell access management based at least in part on desired complexity.

In an aspect, the femtocell can facilitate automatically querying a subscriber station(s) (e.g., cellular phone, computer, . . . ), which is detected in a femtocell coverage area of the femtocell, to prompt the subscriber station(s) to access or request access to the femtocell and services associated therewith to facilitate populating the white list with desired subscriber stations. In an aspect, the femtocell (e.g., femto access point) can detect a subscriber station(s) that has entered a femtocell coverage area of the femtocell. The femtocell can include an access management component that can facilitate managing access to femtocell coverage and services associated therewith. The access management component can automatically generate and transmit a query to a detected subscriber station to prompt the subscriber station to access or request to access the femtocell and associated services and to be entered on the white list(s) of the femtocell. In response to the query, the subscriber station can opt in to access the femtocell and associated services, or subset thereof, and to be entered on the white list(s) on a permanent basis or temporary basis, or can opt out of accessing the femtocell and associated services.

The access management component can determine whether to grant access to the femtocell and an associated subset of services, on a temporary or permanent basis, based at least in part on slot availability of the femtocell (and white list) and other predefined access criteria, and/or a request (e.g., request to opt in to access the femtocell on a temporary basis, request to opt in to access the femtocell on a permanent basis) received from the subscriber station. The access management component can store information related to the subscriber station in the white list on a permanent or temporary basis, when the subscriber station is granted access to the femtocell and the subset of services. When granted access to the femtocell and subset of services, the subscriber station can communicate with other subscriber stations and/or can access and utilize the subset of services provided via the femtocell. When information related to the subscriber station is stored in the white list on a temporary basis, the information related to the subscriber station can be deleted from the white list when a predefined period of time (or an extension to the predefined period of time) is expired or the subscriber station is no longer detected by the femtocell (e.g., subscriber station leaves the femtocell coverage area, subscriber station is powered down). Access to the femtocell and the associated subset of services by the subscriber station can be terminated when the grant of access has expired (e.g., when granted on a temporary basis) and/or the subscriber station has left the femtocell coverage area or is powered down.

The access management component can determine whether to deny access to a femtocell and an associated subset of services on a temporary or permanent basis, based at least in part on predefined access criteria and/or a request (e.g., request to opt out of access the femtocell on a temporary basis, request to opt out of access the femtocell on a permanent basis) received from the subscriber station. The access management component can store information related to the subscriber station in a black list associated with the femtocell on a permanent or temporary basis, when the subscriber station is denied access (or refuses access) to the femtocell and the subset of services, based at least in part on the predefined access criteria or the request (e.g., request to opt out of access the femtocell on a temporary basis, request to opt out of access the femtocell on a permanent basis) received from the subscriber station. When information related to the subscriber station is stored in the black list on a temporary basis, the information related to the subscriber station can be deleted from the black list when a predefined period of time is expired or the subscriber station is no longer detected by the femtocell (e.g., subscriber station leaves the femtocell coverage area, subscriber station is powered down).

To the accomplishment of the foregoing and related ends, the invention, then, comprises the features hereinafter fully described. The following description and the annexed drawings set forth in detail certain illustrative aspects of the invention. However, these aspects are indicative of but a few of the various ways in which the principles of the invention may be employed. Other aspects, advantages and novel features of the invention will become apparent from the following detailed description of the invention when considered in conjunction with the drawings.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 a schematic deployment of a macro cell and a femtocell for wireless coverage in accordance with aspects described herein.

FIG. 2 is a block diagram of an example system that can facilitate selection of subscribers and/or subscriber stations to access coverage from a femtocell in accordance with an embodiment of the disclosed subject matter.

FIG. 3 is a block diagram of an example system that can interactively prompt communication devices to facilitate automatically populating a white list(s) associated with a femto AP and management of access of communication devices to a femto AP in accordance with an aspect of the disclosed subject matter.

FIG. 4 is a block diagram an example access management component that can facilitate management of an access control list(s) and access of subscribers and subscriber stations to a femtocell in accordance with an aspect of the disclosed subject matter.

FIG. 5 illustrates a flowchart of an example methodology for managing access of subscribers and subscriber stations to cell coverage in accordance with an aspect of the disclosed subject matter.

FIG. 6 illustrates a flowchart of an example methodology for facilitating management of access to femto cell coverage in accordance with an aspect of the disclosed subject matter.

FIG. 7 illustrates a block diagram of various sources from which an access management component may depend for facilitating management of access to femto cell coverage in accordance with an aspect of the disclosed subject matter.

FIG. 8 illustrates a flowchart of an example methodology for adding and automatically removing devices to/from an access control list in accordance with an aspect of the disclosed subject matter.

FIG. 9 depicts a flowchart of an example methodology that can temporarily store information related to a subscriber station and associated subscriber in a white list(s) to facilitate managing access of subscribers and subscriber stations to femtocell coverage in accordance with an aspect of the disclosed subject matter.

FIG. 10 is a block diagram of an example system that can facilitate sharing white list(s) and/or black list(s) among subscribers of a wireless network service in order to provide straightforward access configuration to, and activation of, a femtocell among femtocell subscribers.

FIG. 11 is a block diagram of an example system that can facilitate management of a white list(s) and a black list(s) associated with a femtocell in accordance with an aspect of the disclosed subject matter.

FIG. 12 illustrates a block diagram of an example system that can facilitate addition of subscriber(s)/subscriber station(s) to one or more white lists associated with a femtocell in accordance with an aspect of the disclosed subject matter.

FIG. 13 depicts a block diagram of an example system that can manage a defined logic relating to maintaining content(s) in a white list(s) on a white list database and a black list(s) in a black list database in accordance with an aspect of the disclosed subject matter.

FIG. 14 illustrates a block diagram of an example system that can initialize a white list(s) to femto coverage for a subscriber station with available subscriber station identifier numbers, codes or tokens available on a service account in accordance with an aspect of the disclosed subject matter.

FIG. 15 depicts a block diagram of an example system that can facilitate management of access of a femto access point by a communication device on a request from the communication device in accordance with an aspect of the disclosed subject matter.

FIG. 16 depicts a block diagram of example macro and femto wireless network environments that can exploit femto APs in accordance with various aspects of the disclosed subject matter.

FIG. 17 is a block diagram of an example femto access point that operates in accordance with aspects disclosed in the subject specification.

DETAILED DESCRIPTION

The subject innovation is now described with reference to the drawings, wherein like reference numerals are used to refer to like elements throughout. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It may be evident, however, that the present invention may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form in order to facilitate describing the present invention.

As used in this application, the terms “component,” “system,” “platform,” and the like can refer to a computer-related entity or an entity related to an operational machine with one or more specific functionalities. The entities disclosed herein can be either hardware, a combination of hardware and software, software, or software in execution. For example, a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer. By way of illustration, both an application running on a server and the server can be a component. One or more components may reside within a process and/or thread of execution and a component may be localized on one computer and/or distributed between two or more computers. Also, these components can execute from various computer readable media having various data structures stored thereon. The components may communicate via local and/or remote processes such as in accordance with a signal having one or more data packets (e.g., data from one component interacting with another component in a local system, distributed system, and/or across a network such as the Internet with other systems via the signal).

In addition, the term “or” is intended to mean an inclusive “or” rather than an exclusive “or.” That is, unless specified otherwise, or clear from context, “X employs A or B” is intended to mean any of the natural inclusive permutations. That is, if X employs A; X employs B; or X employs both A and B, then “X employs A or B” is satisfied under any of the foregoing instances. Moreover, articles “a” and “an” as used in the subject specification and annexed drawings should generally be construed to mean “one or more” unless specified otherwise or clear from context to be directed to a singular form.

Moreover, terms like “user equipment,” “mobile station,” “mobile,” “subscriber station,” “communication device,” “access terminal,” “terminal,” “handset,” and similar terminology, refer to a wireless device utilized by a subscriber or user of a wireless communication service to receive or convey data, control, voice, video, sound, gaming, or substantially any data-stream or signaling-stream. The foregoing terms are utilized interchangeably in the subject specification and related drawings. Likewise, the terms “access point,” “base station,” “Node B,” “evolved Node B,” “home Node B (HNB),” and the like, are utilized interchangeably in the subject application, and refer to a wireless network component or appliance that serves and receives data, control, voice, video, sound, gaming, or substantially any data-stream or signaling-stream from a set of subscriber stations. Data and signaling streams can be packetized or frame-based flows.

Furthermore, the terms “user,” “subscriber,” “customer,” “consumer,” “prosumer,” “agent,” and the like are employed interchangeably throughout the subject specification, unless context warrants particular distinction(s) among the terms. As utilized herein, the term “prosumer” indicate the following contractions: professional-consumer and producer-consumer.

The following abbreviations are relevant to the subject specification.

3G Third Generation

3GPP Third Generation Partnership Project

AGPS Assisted GPS

AP Access Point

ADSL Asymmetric Digital Subscriber Line

AWS Advanced Wireless Services

BRAS Broadband Remote Access Server

BTA Basic Trading Area

CN Core Network

CS Circuit-Switched

CSCF Call Session Control Function

CPE Customer Premise Equipment

CPN Customer Premise Network

DHCP Dynamic Host Configuration Protocol

DSL Digital Subscriber Line

DSLAM Digital Subscriber Line Access Multiplexer

E911 Enhanced 911

FCC Federal Communications Commission

FL Forward Link

GGSN Gateway GPRS Service Node

GPRS General Packet Radio Service

GPS Global Positioning System

GW Gateway

HAP Home Access Point

HSS Home Subscriber Server

ISDN Integrated Services Digital Network

UE User Equipment

UTRAN Universal Terrestrial Radio Access Network

IMS IP Multimedia Subsystem

IP Internet Protocol

ISP Internet Service Provider

MSA Metropolitan Statistical Areas

MSISDN Mobile Subscriber ISDN Number

MTA Major Trading Areas

NAT Network Address Translation

NTP Network Time Protocol

O&M Operation and Maintenance

PC Personal Computer

PCS Personal Communications Service

PS Packet-Switched

PSTN Public Switched Telephone Network

RAN Radio Access Network

RBS Radio Base Station

RL Reverse Link

RNC Radio Network Controller

RSA Rural Service Area

SGSN Serving GPRS Support Node

SIP Session Initiation Protocol

USSD Unstructured Supplementary Service Data

VPN Virtual Private Network

WAP Wireless Application Protocol

XDSL Asynchronous-DSL or Synchronous-DSL

Referring to the drawings, FIG. 1 illustrates a schematic wireless environment 100 (e.g., a network) in which a femtocell can exploit various aspects of the subject innovation in accordance with the disclosed subject matter. In wireless environment 100, area 105 can represent a coverage macro cell which can be served by base station 110. Macro coverage is generally intended for outdoors locations for servicing mobile wireless devices, like UE 120A, and such coverage is achieved via a wireless link 115. In an aspect, UE 120 can be a 3GPP Universal Mobile Telecommunication System (UMTS) mobile phone.

Within macro coverage cell 105, a femtocell 145, served by a femto access point 130, can be deployed. A femtocell typically can cover an area 125 that is determined, at least in part, by transmission power allocated to femto AP 130, path loss, shadowing, and so forth. Coverage area typically can be spanned by a coverage radius that ranges from 20 to 50 meters. Confined coverage area 145 is generally associated with an indoors area, or a building, which can span about 5000 sq. ft. Generally, femto AP 130 typically can service a number (e.g., a few or more) wireless devices (e.g., subscriber station 120B) within confined coverage area 145. In an aspect, femto AP 130 can integrate seamlessly with substantially any PS-based and CS-based network; for instance, femto AP 130 can integrate into an existing 3GPP Core via conventional interfaces like Iu-CS, Iu-PS, Gi, Gn. In another aspect, femto AP 130 can exploit high-speed downlink packet access in order to accomplish substantive bitrates. In yet another aspect, femto AP 130 has a LAC (location area code) and RAC (routing area code) that can be different than the underlying macro network. These LAC and RAC are used to identify subscriber station location for a variety of reasons, most notably to direct incoming voice and data traffic to appropriate paging transmitters.

As a subscriber station, e.g., UE 120A, leaves macro coverage (e.g., cell 105) and enters femto coverage (e.g., area 125), as illustrated in environment 100, UE 120A can attempt to attach to the femto AP 130 through transmission and reception of attachment signaling, effected via a FL/RL 135; in an aspect, the attachment signaling can include a Location Area Update (LAU) and/or Routing Area Update (RAU). Attachment attempts are a part of procedures to ensure mobility, so voice calls and sessions can continue even after a macro-to-femto transition or vice versa. It is to be noted that UE 120 can be employed seamlessly after either of the foregoing transitions. Femto networks are also designed to serve stationary or slow-moving traffic with reduced signaling loads compared to macro networks. A femto service provider (e.g., an entity that commercializes, deploys, and/or utilizes femto access point 130) therefore can be inclined to minimize unnecessary LAU/RAU signaling activity at substantially any opportunity to do so, and through substantially any available means. It is to be noted that substantially any mitigation of unnecessary attachment signaling/control can be advantageous for femtocell operation. Conversely, if not successful, UE 120 generally can be commanded (through a variety of communication means) to select another LAC/RAC or enter “emergency calls only” mode. It is to be appreciated that this attempt and handling process can occupy significant UE battery, and femto AP capacity and signaling resources as well.

When an attachment attempt is successful, UE 120 can be allowed on femtocell 125 and incoming voice and data traffic can be paged and routed to the subscriber station through the femto AP 130. It is to be noted also that data traffic is typically routed through a backhaul broadband wired network backbone 140 (e.g., optical fiber backbone, twisted-pair line, T1/E1 phone line, DSL, or coaxial cable). To this end, femto AP 130 can be connected to the broadband backhaul network backbone 140 via a broadband modem (not shown).

It is to be noted that as a femto AP 130 generally can rely on a backhaul network backbone 140 for routing and paging, and for packet communication, substantially any quality of service can handle heterogeneous packetized traffic. Namely, packet flows established for wireless communication devices (e.g., terminals 120A and 120B) served by femto AP 130, and for devices served through the backhaul network pipe 140. It is to be noted that to ensure a positive subscriber experience, or perception, it is desirable for femto AP 130 to maintain a high level of throughput for traffic (e.g., voice and data) utilized on a mobile device for one or more subscribers while in the presence of external, additional packetized, or broadband, traffic associated with applications (e.g., web browsing, data transfer (e.g., content upload), and the like) executed in devices within the femto coverage area (e.g., area 125 or area 145).

FIG. 2 is a block diagram of an example system 200 that can facilitate selection of subscribers and/or subscriber stations to access coverage from a femtocell in accordance with an embodiment of the disclosed subject matter. In an aspect, selection of subscribers and/or subscriber stations can enable or disable femtocell coverage for specific subscriber(s) or subscriber station(s). A means provided by example system 200 to facilitate authorizing, denying, revoking, and/or terminating access to specific subscribers, or subscriber station(s), comprises what is herein termed as a “White List(s)” (e.g., access control list(s))—an instrument that can facilitate management of access to femtocell coverage.

In example system 200, an interface component 210 can facilitate configuration, or set up, of a list(s) (e.g., white list 220, black list 222) of wireless mobile station numbers approved for coverage through femto access point 130. It is to be noted that substantially any identification token(s), label(s), or code(s) that can facilitate identifying a subscriber station can be employed to identify a subscriber station in a white list 220 or black list 222. In an aspect, a white list(s) 220 associated with femto AP 130 can include information related to subscriber stations and respectively associated subscribers that are granted respective levels of access to the femto AP 130 on a permanent or temporary basis. In another aspect, a black list(s) 222 associated with femto AP 130 can include information related to subscriber stations and respectively associated subscribers that are not granted access to the femto AP 130, where the opting out (e.g., refusal) or denial of coverage by the femto AP 130 can result in such subscriber stations being included on the black list(s) on a permanent or temporary basis.

In an aspect, the interface 210 can be networked (e.g., via a WAN, LAN, or backhaul pipe) with femto AP 130 and can convey white list(s) 220 and/or black list(s) 222 over network link(s) 225. In an aspect, interface component 210 can be a web-based, online graphic user interface (GUI), and/or other networked interfaces, which can facilitate entering or configuring a white list 220 or black list 222, can be employed, as desired, such as, for example, voice or sound commanded interface(s), touch commanded interface(s), biometric commanded interfaces(s), and the like. A communication platform 255 can facilitate reception of the white list(s) 220 and/or black list(s) 222 and can convey white list(s) 220 and/or black list(s) 222 to an access management component 235 that can exploit the white list(s) 220 and/or black list(s) 222 to facilitate managing access to coverage provided by femto AP 130 to subscriber stations and associated subscribers. White list(s) 220 and/or black list(s) 222 can be stored in the data storage 245 in the femto AP 130; and, as desired, white list(s) 220 and/or black list(s) 222 can be stored in disparate network components such as network component administered by a service operator. In addition, interface component 210 can access a subscriber database through network 230, in order to extract identification numbers, codes, tokens, or labels for subscribers/subscriber stations that can be entered in a white list 220 and/or black list 222.

In an illustrative, not-limiting aspect of the subject innovation, white list(s) 220 (or any set of numbers, codes or tokens thereon, that can comprise a set of subscriber stations (e.g., mobile phones) approved for coverage by femto AP 130) and/or black list(s) 222 (or any set of numbers, codes or tokens thereon, that can comprise a set of subscriber stations (e.g., mobile phones) not approved for coverage by femto AP 130) can be portable through accounts or billing groups associated with a set of subscribers to a service operator that can administer femto AP 130, or a macro network. As an illustration, white list(s) 220 and/or black list(s) 222 each can support up to N fields (N a positive integer; e.g., N=50) for unique mobile phone numbers (e.g., MSIDSNs), or any suitable identifying codes or tokens. The number N of fields can be determined, or configured, by a service operator based at least in part on technical aspects (e.g., network resources, quality of service consideration, macro area of coverage (e.g., MSA/RSA, . . . ) and commercial aspects (e.g., promotional considerations, mitigation of customer attrition, gains in market share, etc.) aspects of provision of coverage. As an example, N can be subscriber dependent or femto AP dependent.

In contrast to management of access authorization via femto AP 130, it should be appreciated that configuration of white list(s) 220 (e.g., registration authorization for femto coverage) and/or black list(s) 222 through a network mechanism(s) (e.g., interface component 210) can provide at least the following advantages. It is to be noted that the following advantages are illustrative and not limiting, as other advantages associated with white list(s) 220 and/or black list(s) 222, as are realized, are intended to lay within the scope of the innovation(s) described in the subject specification. (1) Access through a networked interface (e.g., online or otherwise) can reduce provisioning lead time and provides a means for customers to update and personalize a femto AP autonomously (e.g., free of interaction with technical support entities) at substantially any time. (2) Security against devices attempting to hack into the femto AP when networked with it, and support of extensible sharing/networking of the authorization scheme. (3) Networked interface (e.g., online or otherwise) can provide a superior, rich customer experience substantially free of requirement(s) to understand/interpret femto AP programming interface or configuration nomenclature. (4) End user(s) can manage (e.g., remove select covered numbers, or add additional numbers for coverage up to an allotted amount for white list(s) associated with the user. (5) Capacity to determined Quality of Service (QoS), grade of service, or service experience, for specific authorized subscribers. (6) Capacity to check for valid wireless device numbers, codes or tokens (e.g., MSISDNs); subscriber's active numbers, codes or tokens; and numbers, codes or tokens on service accounts in good standing; such capacity can be provided through networked access to a subscriber database 260.

White list(s) 220 and black list(s) 222 can facilitate management of access to coverage by a femto AP (e.g., femto AP 130) and services associated with the femto AP. Various illustrative aspects of innovation based at least in part on a white list concept also are discussed herein. It is to be noted, notwithstanding, that variations and extensions of such illustrative aspects can be realized and are within the scope of the subject innovation.

FIG. 3 is a block diagram of an example system 300 that can interactively prompt communication devices to facilitate automatically populating a white list(s) associated with a femto AP and management of access of communication devices to a femto AP in accordance with an aspect of the disclosed subject matter. In example system 300, the femto AP 130 can scan a frequency spectrum or band in which communication devices can communicate to facilitate detecting communication devices that are in the cell coverage area (e.g., area 125) of the femto AP 130. The femto AP 130 can automatically detect a communication device(s) 310 (e.g., subscriber station(s), such as a mobile phone) that enters the cell coverage area of the femto AP 130. In an aspect, the access management component 235 can facilitate automatically generating and transmitting a query 315, which can be transmitted by the communication platform 255, to the communication device(s) 310 via FL/RL 135 to inquire as to whether the communication device(s) 310 desires to connect (e.g., wirelessly connect) to the femto AP 130 to access services associated with the femto AP 130 and be entered on a white list(s) 220 associated with the femto AP 130. Interactively prompting detected communication devices 310 to opt in to the white list(s) 220 of the femto AP 130 and accessing services associated with the femto AP 130 can facilitate automatically populating the white list(s) 220. The communication device(s) 310 can communicate a response to the prompt or query 315 to accept the invitation to opt in to the white list(s) 220 and request access to the femto AP 130 or can reject the prompt. In another aspect, a communication device(s) 310 can enter the cell coverage area of the femto AP 130 and can convey a request or query 315 to facilitate accessing coverage of femto AP 130. Such a query 315 or request can be received by communication platform 255 via a FL/RL 135. In an aspect, the query 315 can be conveyed via an online GUI, an email message, a SMS message, MMS message, a voice mail, a web prompt, USSD (or * and # codes), and the like.

In another aspect, the access management component 235 can be configured to allow or reject the request for access by the communication device(s) 310, where allowance or rejection of a request can be based at least in part on various metrics (e.g., predefined access criteria), such as security, type of communication device, profile of subscriber that operates/operated the communication device 310 that requests access, historical information regarding the communication device or associated user (e.g., abusive use of the femto AP 130 and associated services), available bandwidth, bandwidth requirements of the communication device, etc. Upon allowance of a request, the access management component 235 can query for available slots to be filled in white list(s) 220 associated with accounts served by femto AP 130, and when space is available in the white list(s) 220 for a subscriber station identifier number (e.g., MSISDN), code or token, and/or other information, the query can further probe whether access is allowed on a permanent or temporary basis (e.g., to reduce risk exposure to security problems, maintain available space on white list(s) 220 for other communication devices 310, etc.). Characteristics of femto coverage allowance can be set or pre-set through the access management component 225.

Subsequent to allowance and examination of information related to relevant white list(s) 220, access management component 235 can update white list(s) 220, which can be stored in data storage 245, to reflect the approved request for femto coverage by the femto AP 130. It is to be noted that access and update of collected subscriber identifier numbers (e.g., MSISDN), codes or token, can also be effected through network-based white list database(s). The white list(s) 220 can be updated to include desired information regarding the communication device(s) 310, where the information can include, for example, identifier numbers, codes, or token of the communication device(s) 310, type of communication device(s) 310, services that can be utilized by the communication device(s) 310, type of access granted and/or the subset services associated with the femto AP 130 for which access is granted, type of technologies (e.g., communication technologies) supported by the communication device(s), bandwidth requirements of the communication device(s) 310, bandwidth allocated to the communication device(s) 310, QoS policy associated with the communication device(s) 310, time the communication device(s) 310 is entered on the white list(s) 220, and/or historical data (e.g., usage data related to use of the femto AP 130 by the communication device(s) 310), etc.

In an aspect, when a communication device 310 is placed (e.g., stored) in the white list(s) 220 on a temporary basis, information related to the communication device 310 can remain on the white list(s) 220 until a specified condition(s) is met. The specified condition can comprise, for example, the communication device 310 temporarily remains on the white list(s) 220 for a predetermined amount of time (or a specified extended amount of time when the communication device 310 requests and is granted an extended amount of time), the communication device 310 temporarily remains on the white list(s) 220 until the communication device 310 leaves the coverage area of the femto AP 130, and/or the communication device 310 temporarily remains on the white list(s) 222 until the communication device 310 is powered down (e.g., turned off, battery discharged, or re-booted, as desired. Once a specified condition is met, the access management component 235 can facilitate updating the white list(s) 220 to delete information related to the communication device 310 from the white list(s) 220, and the updated white list(s) 220 can be stored in data storage 245.

In another aspect, the access management component 235 can grant access to a subset of services associated with the femto AP 130 to the communication device 310 that is granted access to the femto AP 130. The services contained in the subset of services can be determined based at least in part on the predefined access criteria. In an aspect, the predefined access criteria can relate to, for example, information stored in a white list(s) associated with the femto AP 130, the services available from the femto AP 130, type of communication device 310, bandwidth available to be allocated to the communication device 310, services that can be utilized by the communication device 310, historical data associated with the communication device(s) 310 in relation to the femto AP 130, QoS, type of technologies (e.g., communication technologies) supported by the communication device(s), type(s) of service(s) requested by the communication device(s), etc.

In an aspect, the services that can be associated with and/or provided via the femto AP 130 can be as desired, and can include, for example, voice services (e.g., wireless mobile phone calls), data services (e.g., messaging, Internet access, . . . ), applications, electronic gaming, and/or access to content (e.g., audio content, video content, multimedia content, . . . ). The femto AP 130 also can be connected (e.g., wired wirelessly) to electronic devices in addition to communication devices, where the electronic devices can comprise, for example, digital video recorders/players, digital music recorders/players, analog video recorders/players (with digital conversion), analog music recorders/players (with analog conversion), electronic games, televisions, set-top boxes, cameras (e.g., digital cameras), and/or a navigation system or device (e.g., global position satellite (GPS) system.

An illustrative, non-limiting advantage of example system 300 is that it can provide an enhanced end user experience with a direct, clear mechanism and thus can encourage use of the femto AP 130, and can avoid time spent on edition of white list(s) through a networked interface (e.g., interface component 210) like an online interface which can take time for the end user to have access to the Internet, and to log on in a secured interface.

In another aspect, if the request for access by the communication device(s) 310 is rejected by the access management component 235 or the communication device 310 indicates that the communication device 310 desires to opt out of accessing the femto AP 130, or if the access management component 235 determines that there is no available slot in the femto AP 130 (and associated white list(s) 220), the access management component 235 can deny access of the femto AP 130 to the communication device 310. In still another aspect, when access is denied, the communication device 310 can be placed on a black list(s) 222 associated with the femto AP 130, on a permanent (or semi-permanent) or temporary basis, for example, by the access management component 235, where the black list(s) 222 can be stored in data storage 245. For instance, if the access management component 235 receives a message from the communication device 310 that indicates the communication device 310 desires to permanently (or semi-permanently) opt out of coverage by the femto AP 130 and/or if the access management component 235 determines that the communication device 310 is not to be granted access to coverage by the femto AP 130 on a permanent basis based at least in part on predefined access criteria, the access management component 235 can facilitate updating the black list(s) 222, and storing the black list(s) 222 in data storage 245, to include information related to the communication device 310, where the communication device 310 can be listed in the black list(s) 222 on a permanent (or semi-permanent) basis.

In yet another aspect, if the communication device 310 communicates a message to the femto AP 130 that indicates that the communication device 310 is opting out of coverage by the femto AP 130 at this time, but not on a permanent basis, or if access to the femto AP 130 is denied by the access management component 235 (e.g., due to no available slot on the white list(s)), the black list(s) 222 can be updated to include information related to the communication device 310 on the black list(s) 222 on a temporary basis, for example, by the access management component 235, where the black list(s) 222 can be stored in data storage 245. In an aspect, a communication device 310 on the black list(s) 222 on a temporary basis can remain on the black list(s) 222 until a predefined black-list condition(s) is met. The predefined black-list conditions can comprise, for example, the communication device 310 temporarily remains on the black list(s) 222 for a predetermined amount of time, the communication device 310 temporarily remains on the black list(s) 222 until the communication device 310 leaves the coverage area of the femto AP 130, and/or the communication device 310 temporarily remains on the black list(s) 222 until the communication device 310 is powered down (e.g., turned off, battery discharged, or re-booted, as desired. Once a black-list condition is met, the access management component 235 can facilitate updating the black list(s) 222 to delete information related to the communication device 310 from the black list(s) 222, and the updated black list(s) 222 can be stored in data storage 245.

While on the black list(s) 222 (temporarily or permanently (or semi-permanently)), the communication device 310 is not eligible for access to or to attempt access to the femto AP 130. Employing black list(s) 222 can facilitate reducing signaling (e.g., unnecessary signaling) between communication devices and the femto AP 130, as it will be unnecessary for signaling by the femto AP 130 to a black-listed communication device with regard to the black-listed communication device accessing the femto AP 130; can facilitate reduced power consumption by the femto AP 130 and/or the black-listed communication device due in part to the reduced signaling; and can facilitate more efficient communication between the femto AP 130 and communication devices 310 in the coverage area of the femto AP 130, since unnecessary signaling can be reduced.

It is to be appreciated that a request for access can be effected by the femto AP 130 automatically, through an access management component (e.g., access management component 225), for example. Also, substantially any wireless communication device 310 within coverage area of femto AP 130 (e.g., area 125) can request access without intervention by a subscriber that operates femto AP 130, and who has previously entered a set of subscriber station numbers (e.g., MSISDNs), codes or tokens, via a networked interface (e.g., interface component 210). Alternatively, or in addition, a request for access can be prompted by a device utilized by a subscriber that operates the femto AP. Once a request is granted, a secure tunnel can be established from the device/client through the femtocell's IP connection or the default of the Radio Access Network if the IP connection is not available. Secure layers including utilizing the femtocell's VPN and/or USSD would ensure that the transaction is in fact secure.

As a non-limiting example, a temporary visitor or employee (e.g., a babysitter) who is coming over to a location served by a femto access point (e.g., femto AP 130) for a limited period of time, can be provided with coverage via the femto AP by a subscriber that operates the femtocell so the employee can perform, at least in part, his/her work activities (e.g., provide updates on behavior of children) through utilization of the femto access point. In case the subscriber fails to know identifier numbers, codes or tokens for devices the employee can utilize, and the subscriber is not interested in going through the process of requesting and entering the numbers, codes or tokens via a networked interface to allow coverage for the limited period of time that the employee performs work, the employee (e.g., babysitter) can convey a request (e.g., query 815) to the femto AP to facilitate allowing the employee to request femto access directly from the employee's communication device when in range of the femto AP.

FIG. 4 depicts a block diagram of an example access management component 235 that can facilitate management of an access control list(s) and access of subscribers and subscriber stations to a femtocell in accordance with an aspect of the disclosed subject matter. As illustrated, access management component 235 can include memory component 402, processor component 404, user receiver component 406, femto receiver component 408, network receiver component 410, slot component 412, status component 414, and timer component 416. A brief description of each component is provided below.

In an aspect, memory component 402 stores various data objects and/or files utilized by access management component 235 to facilitate adding/removing communication devices to/from an access control list(s). For instance, memory component 402 can store an algorithm for modeling a desired access criteria for providing femto cell coverage. In an embodiment, because such an algorithm can model a first criteria for adding devices to an access control list(s) and a second criteria for removing devices from an access control list(s), memory component 402 can be configured to store these models separately. Similarly, because an algorithm can model criteria for adding/removing devices to/from a white list(s) different than adding/removing devices to/from a black list(s), memory component 402 can also be configured to store these models separately.

In another aspect, access management component 235 can comprise processor component 404 for executing a stored access criteria algorithm so as to manage a white list(s) 220 (e.g., an access control list(s)) and/or a black list(s) 222 associated with femto AP 130. The processor component 402 can utilize any of a plurality of types of data to execute the access criteria algorithm. For instance, such data can include data associated with a communication device(s) (e.g., 310) that is or has been within the coverage area of the femto AP 130. Other data can include diagnostic data associated with the usage or status of the femto cell coverage and/or macro network. The received data can then be utilized to generate, configure, and/or update a white list(s) 220 and/or black list(s) 222 together with data already contained in a white list(s) and/or black list(s), the access criteria, and/or other information.

In another aspect, access management component 235 can include a user receiver component 406. Within such embodiment, user receiver component 406 can be utilized to receive any of a plurality of types of data from a device attempting to obtain femto cell coverage. For instance, in one embodiment, user receiver component 406 can be configured to scan a frequency spectrum in which communication devices can occupy and communicate to facilitate detecting communication devices 310 that enter the cell coverage area (e.g., area 125) of the femto AP 130. Within such embodiment, user receiver component 406 can be further configured to facilitate identifying a particular communication device 310 based at least in part on detected or received data from the particular communication device 310. Such data can include any of a plurality of types of data including a security key (e.g., a password, MSISDN, etc.), service type (e.g., voice, data, etc.), and/or type of service provider.

In another aspect, access management component 235 can further include femto receiver component 408 and/or network receiver component 410. Within such embodiment, femto receiver component 408 and network receiver component 410 can be utilized to receive the aforementioned diagnostic data associated with the usage or status of the femto cell coverage area and macro network, respectively. Such data can include any of a plurality of types of diagnostic data including bandwidth usage of all devices within the femto coverage area and/or available bandwidth in the macro network.

In still another aspect, the access management component 235 can include a slot component 412 that can facilitate managing slots associated with the femto AP 130 (e.g., slot(s) in the white list(s) 220 and/or correspondingly in the femto AP 130) and determining availability of a slot associated with a femto AP 130 when a communication device desires to access the femto AP 130 and services associated therewith.

Access management component 235 can also include a status component 414 that can facilitate determining whether a communication device 310 is to be stored in a white list(s) 220 or black list(s) 222 on a temporary basis or a permanent basis. The status component 414 also can facilitate monitoring or tracking the status of a communication device 310 that is accessing the femto AP 130 and/or associated services, and/or can monitor other components associated with the access management component 235 or femto AP 130. For example, the status component 414 can monitor whether a communication device 310, which is temporarily on the white list(s) 220, is still active in the cell coverage area of the femto AP 130. If the communication device 310 is no longer active in the cell coverage area (e.g., communication device 310 has left the cell coverage area, communication device 310 is turned off, . . . ), the status component 414 can determine that the communication device 310 is to be removed from the white list(s) 220, and the configuration component 402 can update the white list(s) 220 to delete information related to the communication device 310 from the white list(s) 220.

In yet another aspect, the access management component 235 can contain a timer component 416 that can be utilized to facilitate tracking the time that a particular communication device 310 has been on a white list(s) 220 or a black list(s) 222 associated with the femto AP 130. The timer component 416 can comprise a desired number of timers that can be employed with regard to respective communication devices 310 in the cell coverage area and temporarily on a white list(s) 220 or black list(s) 222 to facilitate tracking the respective amounts of time that each of those communication devices 310 have been listed in the respective white list(s) 220 or black list(s) 222, and/or have been accessing the femto AP 130 and/or an associated subset of services (e.g., for communication device(s) 310 temporarily on the white list(s) 220).

In view of the example systems described herein, example methodologies that can be implemented in accordance with the disclosed subject matter can be better appreciated with reference to flowcharts in FIGS. 5-9. For purposes of simplicity of explanation, example methodologies disclosed herein are presented and described as a series of acts; however, it is to be understood and appreciated that the claimed subject matter is not limited by the order of acts, as some acts may occur in different orders and/or concurrently with other acts from that shown and described herein. For example, a methodology disclosed herein could alternatively be represented as a series of interrelated states or events, such as in a state diagram. Moreover, interaction diagram(s) may represent methodologies in accordance with the disclosed subject matter when disparate entities enact disparate portions of the methodologies. Furthermore, not all illustrated acts may be required to implement a methodology in accordance with the subject specification. It should be further appreciated that the methodologies disclosed throughout the subject specification are capable of being stored on an article of manufacture to facilitate transporting and transferring such methodologies to computers for execution by a processor or for storage in a memory.

FIG. 5 presents a flowchart of an example methodology 500 for managing access of subscribers and subscriber stations to cell (e.g., femtocell) coverage in accordance with an aspect of the disclosed subject matter. At 510, a white list(s) (e.g., access control list(s)) associated with a femtocell can be configured. In an aspect, configuration of the white list(s) (e.g., 220) can be performed via a networked interface, interactively or automatically based at least in part on operation conditions of the femtocell. The configuration of the white list(s) can relate to, for example, initial provisioning of the femtocell, capturing of wireless communication devices (e.g., 310), responding to request for access by a communication device, updating extant access control lists, and so forth. At 520, access to cell (e.g., femtocell) coverage can be granted at least in part according to the configured white list(s). In another aspect, the configured white list(s) can possess an associated profile that can facilitate controlling logic for utilization of the white list(s), via a set of parameters that can determine conditions of access to the femto AP 130 and associated subset of services, type of access to the femto AP 130 and associated subset of services, subset of services available to a particular communication device or associated user of communication device, etc.

FIG. 6 illustrates a flowchart of an exemplary methodology 600 for facilitating management of access to femto cell coverage in accordance with an aspect of the disclosed subject matter. At 610, process 600 begins with an access control list being stored in a memory component. In an embodiment, the stored access control list can include a list of devices that are permanently/temporarily granted access (i.e., devices on a white list) and/or a list of devices that are permanently/temporarily denied access (i.e., devices on a black list). Within such embodiment, it should be appreciated that the listing of a communication device (i.e., white list or black list) and temporal status of such a listing (i.e., permanent or temporary) can dynamically vary depending on the status of the access criteria at a given time. It should be further appreciated that a plurality of access control lists can be generated so as to separately list any combination of temporary and/or permanently listed communication devices on a white list and/or black list. For instance, in one aspect, communication devices having temporary access (e.g., visitors to an office) can be listed on a first list so as to segregate these devices from devices having permanent access (e.g., an owner of the femto cell system) on a second list.

Next, at act 620, a communication device is added to the access control list according to a first set of criteria, and subsequently removed automatically at act 630 according to a second set of criteria. Here, each of the first and second criteria can be utilized to configure an access management component to add/remove communication devices to/from an access control list according to any of a plurality of factors. In an embodiment, such an algorithm can, for example, include linking either of the first or second criteria to a timing component.

Several non-limiting embodiments in which a timer component is utilized to add/remove devices from an access control list can be contemplated. In one embodiment, for instance, it may be desirable to temporarily add a device to the list and simply remove the device after a predetermined amount of time has elapsed (e.g., hotel guests). Such an embodiment can thus include a “removal criteria” that removes the device from the list according to data received from the timer component.

In another embodiment, however, it can be desirable to also link the “add criteria” to a timer component. For instance, parents may wish to provide cyclical access to femto coverage to their kids in the form of a daily curfew. Within such embodiment, the parents can, for example, configure the “add criteria” so that devices are only added during non-curfew hours.

For some embodiments, it should be appreciated that the add/remove criteria can further require receiving data from any of a plurality of other sources. For instance, as illustrated in FIG. 7, access criteria 702 can dictate that access management component 235 add/remove devices to/from an access control list according to data related to any combination of user characteristics 704, femto coverage characteristics 704, and/or network characteristics 706.

In one aspect, user characteristics 704 includes data specific to the communication device attempting to obtain temporary access to femto coverage. For instance, in one embodiment, access criteria 702 can allow a device to be temporarily added to the access control list if a correct password is received via user characteristics 704. In another embodiment, access criteria 702 can further/instead require that user characteristics 704 include device-specific data definitively identifying a particular device (e.g., an MSISDN, code or token, and/or other information). Also, because costs associated with providing femto coverage can vary depending on the particular service carrier of the device, access criteria 702 can further/instead require that user characteristics 704 includes confirmation that the device is linked to a desired service carrier. Similarly, because of costs, access criteria 702 can further/instead limit access to a particular type of service (e.g., granting voice access, but denying data access to a babysitter).

Access criteria 702 can further depend on data related to femto coverage characteristics 704 and network characteristics 706. Here, it should be appreciated that data related to femto characteristics 704 can include any diagnostic data related to the status and/or available resources of the femto coverage. Similarly, network characteristics 706 can include any diagnostic data related to the status and/or available resources of the macro network linked to the femto coverage (e.g., a wired broadband network). Such data can, for example, include total available bandwidth (either within the femto coverage or within the macro network), wherein access criteria 702 can add devices only if the available bandwidth is below a predetermined threshold and/or remove devices if the available bandwidth exceeds another predetermined threshold.

FIG. 8 illustrates a flowchart of an exemplary methodology 800 for adding and automatically removing devices to/from a white list in accordance with an aspect of the disclosed subject matter. At act 802, the process begins with an access management component receiving data indicating that a particular device is within the cell coverage area of a femto access point. Such data can be received by, for example, monitoring a frequency spectrum in which communication devices can occupy so as to detect communication devices that enter the femto cell coverage area (e.g., area 125) of a femto AP.

Once a communication device is detected, process 800 proceeds to act 804 where the access management component determines whether “permanent” access should be granted to the device. Here, it should be appreciated that such permanent access can be granted either because the device is already listed as having permanent access or because the device is eligible to be listed as having permanent access. For instance, in one embodiment, the access management component can receive identification data from the communication device and compare this data to devices already listed on the white list. In another embodiment, although a device is not currently listed, the access management component can be configured to receive particular data from the device/user (e.g., a password) that causes the device to be permanently listed on the white list. If permanently listed on the white list, the device is granted access at act 805, otherwise process 800 proceeds to act 806.

At act 806, a determination is made as to whether to grant temporary access to the device. Here, the determination is made as a function of access criteria 702, which can depend on any of a plurality of factors including any combination of the aforementioned factors discussed above. For instance, a hotel guest can be given a temporary access key to obtain femto cell coverage. Within such scenario, access criteria 702 can cause the access key to expire after the hotel guest has checked out. In a similar scenario, attendees of a conference can be granted a temporary access key that can expire once the conference has ended. If it is determined that temporary access should not be granted because the criteria for “adding” a device to the white list has not been met, access is denied at act 807. Otherwise, process 800 proceeds to act 808 where the device is added to the white list and subsequently granted temporary access at act 810.

At act 812, a determination is then made as to whether the temporarily added device should be removed from the white list. Here, the determination is again made as a function of access criteria 702, which can also depend on any of a plurality of factors including any combination of the aforementioned factors discussed above. For instance, bandwidth limitations either in the femto cell coverage and/or macro network can cause a “removal” criteria to be met. If the removal criteria is indeed met, the device is removed from the access control list at act 813 and access to femto cell coverage is subsequently denied at act 807. Otherwise, process 800 loops back to act 810 where the device continues to receive temporary access.

FIG. 9 depicts a flowchart of an example methodology 900 that can temporarily store information related to a subscriber station and associated subscriber in a white list(s) (e.g., access control list(s)) to facilitate managing access of subscribers and subscriber stations (e.g., communication devices 310) to femtocell coverage in accordance with an aspect of the disclosed subject matter. Methodology 900 begins at 902 where a white list(s) can be updated to include information related to the communication device and/or associated user. In an aspect, the access management component 235 can facilitate updating the white list(s) 220 to store information (e.g., identification information, account information, communication device information, user information, etc.) related to the communication device and/or associated user in the white list(s) 222, which can be stored in data storage 245.

At 904, the communication device can be granted access to a subset of services associated with the femto AP 130. In an aspect, the access management component 235 can facilitate granting access to a subset of services associated with the femto AP 130 to the communication device based at least in part on the white list(s) 220, the user of the communication device, the type of communication device, available bandwidth of the femto AP 130, and/or other desired access criteria. For example, an owner or operator of the femto AP 130 can desire to limit access of a communication device of the owner/operator's child to a specified subset of services that is suitable for children. The user of the communication device can utilize the subset of services associated with the femto AP 130 to which access has been granted.

At 906, a timer can be started. In an aspect, the access management component 235 can employ a timer component 412 that can employ a timer(s) that can be utilized to facilitate tracking the amount of time that the communication device has been stored in the white list(s) 220 and/or accessing the subset of services. At 908, a determination can be made regarding whether additional time is to be granted to the communication device to access the subset of services and to remain on the white list(s). In an aspect, the access management component 235 can facilitate communicating a message to the communication device to inquire whether the user of the communication device desires additional time for the communication device to access the subset of services (and remain on the white list(s) 220). The access management component 235 can determine whether to grant the communication device additional time to access the subset of services (and remain on the white list(s) 220) based at least in part on the response to the inquiry received from the communication device and/or other desired access criteria.

If, at 908, it is determined that additional time is granted to enable access the subset of services by the communication device (and for the communication device to remain on the white list(s) 220), methodology 900 can return to reference numeral 906, where the timer (e.g., of timer component 412) can be started (e.g., re-started), and methodology 900 can proceed from that point. In an aspect, the amount of additional time granted to the communication device can be the same or different as the initial amount of time granted to the communication device, as desired.

If, at 908, it is determined that additional time is not granted to the communication device with regard to accessing the subset of services (and remaining on the white list(s) 220), at 910, time related to granting of access to the communication device (and storing information related to the communication device and associated user on the white list(s) 220) can expire. In an aspect, the access management component 235 can receive an indication from the timer component 412 that the amount of time granted to the communication device to access the subset of services associated with the femto AP 130 and to be stored on the white list(s) 220 associated with the femto AP 130 has expired.

At 912, access to the subset of services by the communication device can be terminated. In an aspect, the access management component 235 can facilitate terminating access to the subset of services associated with the femto AP 130 by the communication device. At this point, the communication device will no longer be able to utilize the subset of services. At 914, information related to the communication device and associated user can be deleted from the white list(s). In an aspect, the access management component 235 can facilitate deleting information related to the communication device and its user from the white list(s) 220. In another aspect, when information related to the communication device 310 is stored in a white list(s) 220 on a temporary basis, the access management component 235 can facilitate deleting information related to the communication device 310 from the white list(s) 220 when another specified condition is met, where the specified condition can comprise, for example, the communication device 310 leaves the cell coverage area of the femto AP 130, the communication device is powered down or re-booted, and/or the communication device 310 is otherwise not detected to be in the cell coverage area of the femto AP 130. Maintenance of the white list(s) 220 to remove information related to communication devices that are temporarily stored on the white list(s) 220 can facilitate efficient communication between the femto AP 130 and communication devices in the cell coverage area.

FIG. 10 is a block diagram of an example system 1000 that can facilitate sharing white list(s) (e.g., access control list(s)) and/or black list(s) among subscribers of a wireless network service in order to provide straightforward access configuration to, and activation of, a femtocell (e.g., femto AP 130) among femtocell subscribers. Subscribers can belong to disparate or same service accounts with either a macro service provider or femto provider, or both. For example, subscribers that share white list(s) 1020 and/or black list(s) 1022 can pertain to a group or family associated with a single service account. In example system 1000, subscriber A 1010 who belongs to account K can convey white list(s) 1020 and/or black list(s) 1022 over network 1030, via a wired or wireless link 1025, to subscriber B 1030 who belongs to account J. Subscriber A 1010 can hide or eliminate specific subscriber station numbers from white list(s) 1020 and/or black list(s) 1022 he/she/it grants to other subscribers. It should be appreciated that the granting of subscriber station numbers, codes or tokens can substantially reduce the amount of time to configure, or set up a white list(s) 1020 and/or black list(s) 1022, as opposed to manually re-entering multiple numbers, codes, or tokens (e.g., up to 50 numbers, codes or tokens) across multiple femtocells.

A security component 1040, or authorization layer, can facilitate ensuring that unauthorized mobile subscriber numbers, codes or tokens, respectively associated with communication devices (e.g., 310) are not provided when not approved by end users. Such approval can be determined via a specified privacy policy associated with the end user, or subscriber, which can be stored in a subscriber database 1050; the specified privacy policy can be configured/updated through various means, such as, for example, web-based interfaces, call center, text-message center, etc. Security component 1040 can ensure privacy integrity when white list(s) 1020 and/or black list(s) 1022 are shared among subscribers of different accounts (e.g., J≠K). In an illustrative aspect, security component 1040 can solicit subscribers outside a “white-list share” (or “black-list share”) originating account to grant the authority for their subscriber station identifier number, code or token to be shared through white list(s) 1020 (or black list(s) 1022). To the latter end, security component 1040 can resort to various mechanisms that can include, but are not limited to including, a short message service (SMS) communication, a multimedia message service (MMS) communication, email, voice mail, web pop up, etc. Alternatively, or in addition, security component 1040 can mitigate security mechanism(s) complexity through validation via subscriber account information (e.g., stored in subscriber database 1050) in order to grant automatic access to a white list(s) 1020 and/or black list(s) 1022 within groups or families underneath a single service account, without additional security verification.

FIG. 11 is a block diagram of an example system 1100 that can facilitate management of a white list(s) (e.g., an access control list(s)) and a black list(s) associated with a femtocell (e.g., femto AP 130) in accordance with an aspect of the disclosed subject matter. System 1100 can comprise a white list management component 1110 that can access a subscriber database 1120 which can be maintained by a service operator for femto and macro cells, and a data storage 1130 that retains a set of white lists 1140 associated with serviced subscribers, to associate white-listed subscribers across disparate white lists. Such association can lead to genesis of white-lists trees. In an aspect, the white list management component 1110 can implement mechanisms to facilitate mitigating exponential data growth and efficient storage of white-list trees like data-compression (e.g., wavelet, efficient tree representation, and so on), distributed data warehouses, and so forth.

In another aspect, system 1100 can comprise a black list management component 1115 can access a subscriber database 1120 which can be maintained by a service operator for femto and macro cells, and a data storage 1130 that can retain a set of black lists 1145 associated with serviced subscribers, to associate black-listed subscribers across disparate black lists. Such association can lead to genesis of black-lists trees. In an aspect, the black list management component 1115 can implement mechanisms to facilitate mitigating exponential data growth and efficient storage of black-list trees like data-compression (e.g., wavelet, efficient tree representation, and so on), distributed data warehouses, etc.

In still another aspect, the white list management component 1110 can deploy a white-list tree in accordance to the following illustrative, non-limiting scenario. (i) User 1 adds User 2 to his/her white list (e.g., 1140). (ii) User 2 adds User 3 to his/her white list (e.g., 1140). (iii) User 1 and User 3 can be associated through the respective white lists. (iv) User 1 and User 3 can match User 4 extant on each other's white lists. (v) User 1 and User 3 can associate User 5 that is on User 4's white list. White list management component 1110 can effect associations and manage generated white-list tree(s). It should be appreciated that substantially any association, hierarchical or non-hierarchical, or deployment of white lists 1140 can be implemented by the white list management component 1110 through information stored in subscriber database 1120 and data storage 1030. It is to be appreciated and understood that the black list management component 1115 similarly can deploy a black-list tree in accordance with the above illustrative, non-limiting scenario.

An illustrative, non-limiting, advantage of structured, hierarchical generation of white lists to subscribers (e.g., subscriber A 1010) is that more subscribers can have access to femtocells (e.g., femto APs 130) to gain coverage enhancement, or have access to added value through unlimited usage on any femtocell or unique services available via a set of femtocells.

In addition, example system 1100 can track subscriber station identifier numbers (e.g., MSISDNs), codes or tokens, associated with white list(s) on record with a femto service provider. White list management component 1110 can validate white list(s) 1140, stored in data storage 1130, against current accounts and associated subscriber station identifier numbers (e.g., MSISDNs), codes, or tokens, for a service provider. In particular, when a subscriber, or end user, cancels an account with a service provider, white list(s) 1140 can be updated according to information retrieved from subscriber database 1120, or substantially any other database available to a service provider that contains information on service subscribers. In addition, when an end user changes their mobile or subscriber station number, code or token, (e.g., after relocation to a new area code, or the like) substantially all white list(s) 1140 that the mobile or subscriber station number, code or token is associated with can automatically be updated by the white list management component 1110.

An illustrative advantage of such automatic update of white list(s) 1140 is ease of use for end users to maintain current white list(s) 1140 without a need to keep track of each subscriber station number, code or token associated with the white list(s) 1140. In addition, updated white list(s) 1140 can maintain the value proposition of the femtocells for end users and service operator by a seamless move of traffic off of the macro network (e.g., a WAN) to femto network(s).

In accordance with an embodiment, the white list management component 1110 can facilitate distinguishing between communication devices (and associated users) that are temporarily on a white list 1140 of a subscriber as compared to communication devices (and associated users) that are permanently on the white list 1140 of the subscriber when a white list 1140, or subset thereof, of one subscriber is added to a white list 1140 of another subscriber. For instance, the white list management component 1110 can facilitate selecting or associating subscribers that are permanently on a white list 1140 of one subscriber, but not selecting or associating subscribers that are temporarily on the white list 1140 of the one subscriber, and adding a subset of the white list of the one subscriber (e.g., the selected or associated subscribers that are permanently on the white list) to the white list 1140 of the other subscriber. It is to be appreciated and understood that the black list management component 1115 similarly can select a desired subset of subscribers on one black list 1145 of one subscriber (e.g., selecting subscribers that are permanently on a black list of the one subscriber, but not subscribers that are temporarily on the black list of the one subscriber) and adding the subset of subscribers to the black list 1145 of another subscriber when in accordance with the embodiment.

FIG. 12 is a block diagram of an example system 1200 that can facilitate addition of subscriber(s)/subscriber station(s) to one or more white lists associated with a femtocell (e.g., femto AP 130) in accordance with an aspect of the disclosed subject matter. In example system 1200, a network management component 1210 can include a white list management component 1210 which can be coupled to a subscriber database 1225, a data storage 1235, and a communication platform 1215. The white list management component 1210 can data-mine subscriber database 1225 and white list(s) 1245, which can reside in data storage 1235, to drive addition of new subscribers to a white list to request reciprocal adding. In an aspect, once a subscriber 1260 in account K is identified for reciprocal addition at a time the subscriber 1260 configures his/her femto AP (e.g., 130), a white list (WL) configuration request 1255 can be conveyed (e.g., via a wired or wireless link through communication platform 1215) to the subscriber. Such configuration request can indicate that a disparate subscriber has subscriber 1260 white-listed and can prompt subscriber 1260 to include in his/her white list the disparate subscriber.

An illustrative scenario is the following: User 1 adds User 2 to his/her white list. Once User 2 configures/activates his/her femtocell, a setup process (e.g., implemented through a web-based online GUI) can prompt User 2 to add User 1. It is to be noted that the white list management component 1210 can exploit information in subscriber database 1225 and data storage 1235 to inform User 2 of substantially all subscriber station numbers, codes or tokens that he/she can automatically add to his/her white list on a reciprocity basis; namely, User 2 can be prompted to add in the white list(s) of User 2 those subscribers that have previously added him/her to their white list(s). In an aspect, the white list configuration request 1255 can be effected through one or more of various interfaces, such as an online GUI; a real time prompt/alert delivered via SMS, MMS, email, instant message; etc.

FIG. 13 is a block diagram of an example system 1300 that can manage a defined logic relating to maintaining content(s) (e.g., MSISDNs) in a white list(s) (e.g., access control list(s)) on a white list database and a black list(s) in a black list database in accordance with an aspect of the disclosed subject matter. In an aspect, the access management component 235, which can comprise a white list management component 1310, can develop a white list profile(s) 1320 that can apply logic and parameters that can facilitate controlling, or managing, content, such as subscriber station numbers (e.g., MSISDNs), codes or tokens, in a white list(s) 1330. White list profile(s) 1320 and white list(s) 1330 can be stored in data storage 245; it should be appreciated that while data storage 245 is illustrated to reside within femto AP 130, such storage can reside in a network management component (e.g., component 1210).

In another aspect, white list profile parameters that can facilitate controlling utilization logic of white list(s) content can include, without being limited to including: (i) temporary access, e.g., full access for a specific time interval, such as a specified number of days, hours, or minutes; (ii) access only within a window of time in a day (e.g., voice and data allowed from 9:00 a.m.-6:00 p.m., or voice allowed after 9:00 p.m.) which can facilitate billing schemes already established by an operator/service provider); and/or (iii) access to specific applications, such as scheduler, calendar(s), news streaming, authoring tools, gaming, video and music, etc.

In still another aspect, logic within white list profile(s) can implement parameters to determine how long access to femto coverage is granted. For instance, when a timer associated with temporary access of a subscriber station (e.g., communication device) expires, a query 1345 can be conveyed (e.g., through a wired or wireless link 1335) to either a subscriber that operates a device associated with the managed MSISDN in order to request renewed access, or to a subscriber that operates femto AP 130. The message request, e.g., query 1345, can ask the owner if an extension of time is to be granted or not. When a request is not granted by a subscriber that operates femto AP 130 or there is no reply, e.g., acknowledgement 1345, from the subscriber, access to femto coverage can expire and information, such as the MSISDN (or substantially any identifier code or token), associated with the subscriber station can be deleted from a corresponding white list(s) within data storage 245. Conversely, a positive response, e.g., acknowledgement 1345, can allow access to continue for the subscriber station based at least in part on parameters extant in white list profile(s) or newly defined parameters. It is to be noted that query 1345 can be conveyed via an online GUI, an email message, a SMS message, MMS message, a voice mail, a web prompt, and the like.

In yet another aspect, the access management component 235 can comprise a black list management component 1312 and can develop a black list profile(s) 1322 that can apply logic and parameters that can facilitate controlling, or managing, content, such as subscriber station numbers (e.g., MSISDNs), codes or tokens, in a black list(s) 1332. The black list profile(s) 1322 and black list(s) 1332 can be stored in data storage 245.

In an aspect, black list profile parameters that can facilitate controlling utilization logic of block list(s) content can include, without being limited to including: temporary denial of access of the femto AP by the subscriber station until a black-list condition(s) is met, where the black-list condition(s) can comprise information related to the subscriber station (e.g., 310) temporarily remains on the black list(s) 1332 for a predetermined amount of time, information related to the subscriber station temporarily remains on the black list(s) 1332 until the subscriber station 310 leaves the coverage area of the femto AP, and/or information related to the subscriber station temporarily remains on the black list(s) 1332 until the subscriber station is powered down (e.g., turned off, battery discharged, . . . ) or re-booted; and/or permanent (or semi-permanent) denial of access of the femto AP by the subscriber station. When a black-list condition(s) is met, denial of access to femto coverage can expire and information, such as the MSISDN (or substantially any identifier code or token), associated with the subscriber station can be deleted from a corresponding black list(s) within data storage 245.

FIG. 14 is a block diagram of an example system 1400 that can initialize a white list(s) (e.g., access control list(s)) to femto coverage for a subscriber station with available subscriber station identifier numbers, codes or tokens available on a service account in accordance with an aspect of the disclosed subject matter. In example system 1400, a subscriber 1410 who can utilize account device(s) 1415, can provision femto AP 130 and associate the account device(s) 1415 with a service account via a networked interface component 210 (e.g., an online account management system) which can look up into substantially all subscriber station(s) identifier numbers (e.g., MSISDNs), codes or tokens associated with the service account, and can automatically populate white list(s) 220 with the extracted subscriber station(s) numbers, codes or tokens. Subscriber 1410, via interface component 210, can remove or add subscriber station(s) numbers (e.g., MSISDNs), codes or tokens extant in a pre-populated white list(s) 220; additional edits can be performed as well, based at least in part on the complexity of white list(s) 220. In an aspect, to pre-set white list(s) 220, the networked interface component 210 can access information stored in subscriber database 260 through network 230, which can include information technology systems of a service provider. White list(s) 220 can be conveyed through network 230 to femto AP 130; a communication platform 255 can receive white list(s) 220 and access management component 235 can store the white list(s) 220 in data storage 245.

Illustrative advantages provided by example system 1400 can include (a) reduced femtocell provisioning lead time, and (b) immediate utilization of a femtocell with mobile numbers that belong to a same service account, whether subscribers of such numbers subscribe to the femtocell or a feature application, or code, that delivers a femtocell service.

FIG. 15 is a block diagram of an example system 1500 that can facilitate management of access of a femto AP by a communication device on a request from the communication device in accordance with an aspect of the disclosed subject matter. In example system 1500, communication device(s) 1510 (e.g., subscriber station(s), such as a mobile phone) can convey a request or query 1515 to facilitate accessing coverage of femto AP 130. The query 1515 can be conveyed via an online GUI, an email message, a SMS message, MMS message, a voice mail, a web prompt, USSD (or * and # codes), and the like. Such request 1515 can be received by communication platform 255, and access management component 235 can be configured to allow or reject the request; allowance or rejection of a request can be based at least in part on various metrics, such as security, type of communication device, profile of subscriber that operates/operated the communication device 1510 that requests access, etc. Upon allowance of a request, the access management component 235 can query for available slots to be filled in white list(s) 220 associated with accounts served by femto AP 130, and when space is available for a subscriber station identifier number (e.g., MSISDN), code or token, the query can further probe whether access is allowed on a permanent or temporary basis (e.g., to reduce risk exposure to security problems, maintain available space on white list(s) 220 for other communication devices 1510, etc.). Characteristics of femto coverage allowance can be set or pre-set through the access management component 225. Subsequent to allowance and examination of information related to relevant white list(s) 220, access management component 235 can update white list(s) 220, stored in data storage 245, to reflect the approved request for femto coverage by the femto AP 130. It is to be noted that access and update of collected subscriber identifier numbers (e.g., MSISDN), codes or token, can also be effected through network-based white list database(s). Information (e.g., wireless device numbers, codes or tokens (e.g., MSISDNs); subscriber's active numbers, codes or tokens; and numbers, codes or tokens on service accounts in good standing, . . . ) related to communication devices 310 can be provided through networked access to a subscriber database 260.

An illustrative, non-limiting advantage of example system 1500 is that it can provide an enhanced end user experience with a direct, clear mechanism and thus can encourage use of the femto AP 130, and can avoid time spent on edition of white list(s) through a networked interface (e.g., interface component 210) like an online interface which can take time for the end user to have access to the Internet, and to log on in a secured interface.

In another aspect, if the request 1515 is rejected by the access management component 235, or if there is no available slot in the white list(s) 220 and associated femto AP 130, the access management component 235 can deny access of the femto AP 130 to the communication device 1510. The communication device 1510 also can be placed on a black list(s) 222 associated with the femto AP 130, and stored in data storage 245, on a permanent (or semi-permanent) or temporary basis, for example, by the access management component 235. For instance, if the access management component 235 determines that the communication device 1510 is not to be granted access to coverage by the femto AP 130 on a permanent basis based at least in part on predefined access criteria, the access management component 235 can facilitate updating the black list(s) 222, and storing the black list(s) 222 in data storage 245, to include information related to the communication device 1510, where the communication device 1510 can be listed in the black list(s) 222 on a permanent (or semi-permanent) basis.

In yet another aspect, if access to the femto AP 130 is denied by the access management component 235 at this time (e.g., due to no available slot on the white list(s)), the black list(s) 222 can be updated to include information related to the communication device 1510 on the black list(s) 222 on a temporary basis, for example, by the access management component 235, where the black list(s) 222 can be stored in data storage 245. The communication device 1510 can remain on the black list(s) 222 until a predefined black-list condition(s) is met. The predefined black-list conditions can comprise, for example, the communication device 1510 temporarily remains on the black list(s) 222 for a predetermined amount of time, the communication device 1510 temporarily remains on the black list(s) 222 until the communication device 1510 leaves the coverage area of the femto AP 130, and/or the communication device 1510 temporarily remains on the black list(s) 222 until the communication device 1510 is powered down (e.g., turned off, battery discharged, . . . ) or re-booted, as desired. Once a black-list condition is met, the access management component 235 can facilitate updating the black list(s) 222 to delete information related to the communication device 1510 from the black list(s) 222, and the updated black list(s) 222 can be stored in data storage 245.

While on the black list(s) 222 (temporarily or permanently (or semi-permanently)), the communication device 1510 is not eligible for access to or to attempt access to the femto AP 130. Employing black list(s) 222 can facilitate reducing signaling (e.g., unnecessary signaling) between communication devices and the femto AP 130, as it will be unnecessary for signaling by the femto AP 130 to a black-listed communication device with regard to the black-listed communication device accessing the femto AP 130; can facilitate reduced power consumption by the femto AP 130 and/or the black-listed communication device due in part to the reduced signaling; and can facilitate more efficient communication between the femto AP 130 and communication devices 310 in the coverage area of the femto AP 130, since unnecessary signaling can be reduced.

It is to be appreciated that substantially any wireless communication device 1510 within coverage area of femto AP 130 (e.g., area 125) can request access without intervention by a subscriber that operates femto AP 130, and who has previously entered a set of subscriber station numbers (e.g., MSISDNs), codes or tokens, via a networked interface (e.g., interface component 210). Once a request is granted, a secure tunnel can be established from the device/client through the femtocell's IP connection or the default of the Radio Access Network if the IP connection is not available. Secure layers including utilizing the femtocell's VPN and/or USSD would ensure that the transaction is in fact secure.

To provide further context for various aspects of the subject specification, FIG. 16 and FIG. 17 illustrate, respectively, example macro and femto wireless network environments that can exploit femto APs and a block diagram of an example embodiment of a femtocell access point that can enable and exploit features or aspects of the subject innovation and that utilize aspects of the subject innovation in accordance with various aspects of the subject specification.

With respect to FIG. 16, wireless communication environment 1600 includes two wireless network platforms: (i) A macro network platform 1610 which serves, or facilitates communication with user equipment 1675 (e.g., mobile 120A) via a macro radio access network (RAN) 1670. It should be appreciated that in cellular wireless technologies (e.g., 3GPP UMTS, HSPA, 3GPP LTE, 3GPP2 UMB), macro network platform 1610 is embodied in a Core Network. (ii) A femto network platform 1680, which can provide communication with UE 1675 through a femto RAN 1690, which is linked to the femto network platform 1680 via backhaul pipe(s) 1685 (e.g., backhaul link(s) 153). It should be appreciated that macro network platform 1610 typically hands off UE 1675 to femto network platform 1610 once UE 1675 attaches (e.g., through macro-to-femto handover) to femto RAN 1690, which includes a set of deployed femto APs (e.g., femto AP 130) that can operate in accordance with aspects described herein.

It is noted that RAN includes base station(s), or access point(s), and its associated electronic circuitry and deployment site(s), in addition to a wireless radio link operated in accordance with the base station(s). Accordingly, macro RAN 1670 can comprise various coverage cells like cell 105, while femto RAN 1690 can comprise multiple femtocell access points such as femto AP 130. Deployment density in femto RAN 1690 can be substantially higher than in macro RAN 1670.

Generally, both macro and femto network platforms 1610 and 1680 include components, e.g., nodes, gateways, interfaces, servers, or platforms, that facilitate both packet-switched (PS) (e.g., internet protocol (IP), frame relay, asynchronous transfer mode (ATM)) and circuit-switched (CS) traffic (e.g., voice and data) and control generation for networked wireless communication. In an aspect of the subject innovation, macro network platform 1610 includes CS gateway node(s) 1612 which can interface CS traffic received from legacy networks like telephony network(s) 1040 (e.g., public switched telephone network (PSTN), or public land mobile network (PLMN)) or a SS7 network 1660. Circuit switched gateway 1612 can authorize and authenticate traffic (e.g., voice) arising from such networks. Additionally, CS gateway 1612 can access mobility, or roaming, data generated through SS7 network 1660; for instance, mobility data stored in a VLR, which can reside in memory 1630. Moreover, CS gateway node(s) 1612 interfaces CS-based traffic and signaling and gateway node(s) 1618. As an example, in a 3GPP UMTS network, PS gateway node(s) 1618 can be embodied in gateway GPRS support node(s) (GGSN).

In addition to receiving and processing CS-switched traffic and signaling, PS gateway node(s) 1618 can authorize and authenticate PS-based data sessions with served (e.g., through macro RAN) wireless devices. Data sessions can include traffic exchange with networks external to the macro network platform 1610, like wide area network(s) (WANs) 1650, enterprise networks (NW(s)) 1670 (e.g., enhanced 911), or service NW(s) 1680 like IP multimedia subsystem (IMS); it should be appreciated that local area network(s) (LANs), which may be a part of enterprise NW(s), can also be interfaced with macro network platform 1610 through PS gateway node(s) 1618. Packet-switched gateway node(s) 1618 generates packet data contexts when a data session is established. To that end, in an aspect, PS gateway node(s) 1618 can include a tunnel interface (e.g., tunnel termination gateway (TTG) in 3GPP UMTS network(s); not shown) which can facilitate packetized communication with disparate wireless network(s), such as Wi-Fi networks. It should be further appreciated that the packetized communication can include multiple flows that can be generated through server(s) 1614. It is to be noted that in 3GPP UMTS network(s), gateway node(s) 1018 (e.g., GGSN) and tunnel interface (e.g., TTG) comprise a packet data gateway (PDG).

Macro network platform 1610 also includes serving node(s) 1616 that convey the various packetized flows of information, or data streams, received through PS gateway node(s) 1618. As an example, in a 3GPP UMTS network, serving node(s) can be embodied in serving GPRS support node(s) (SGSN).

As indicated above, server(s) 1614 in macro network platform 1610 can execute numerous applications (e.g., location services, online gaming, wireless banking, wireless device management, . . . ) that generate multiple disparate packetized data streams or flows, and manage (e.g., schedule, queue, format . . . ) such flows. Such application(s), for example can include add-on features to standard services provided by macro network platform 1610. Data streams can be conveyed to PS gateway node(s) 1618 for authorization/authentication and initiation of a data session, and to serving node(s) 1616 for communication thereafter. Server(s) 1614 can also effect security (e.g., implement one or more firewalls) of macro network platform 1610 to ensure network's operation and data integrity in addition to authorization and authentication procedures that CS gateway node(s) 1612 and PS gateway node(s) 1618 can enact. Moreover, server(s) 1614 can provision services from external network(s), e.g., WAN 1650, or Global Positioning System (GPS) network(s), which can be a part of enterprise NW(s) 1680. It is to be noted that server(s) 1614 can include one or more processor configured to confer at least in part the functionality of macro network platform 1610. To that end, the one or more processor can execute code instructions stored in memory 1630, for example.

In example wireless environment 1600, memory 1630 stores information related to operation of macro network platform 1610. Information can include business data associated with subscribers; market plans and strategies, e.g., promotional campaigns, business partnerships; operational data for mobile devices served through macro network platform; service and privacy policies; end-user service logs for law enforcement; and so forth. Memory 1630 can also store information from at least one of telephony network(s) 1640, WAN 1650, SS7 network 1660, enterprise NW(s) 1670, or service NW(s) 1680.

Regarding femto network platform 1680, it includes a femto gateway node(s) 1684, which have substantially the same functionality as PS gateway node(s) 1618. Additionally, femto gateway node(s) 1684 can also include substantially all functionality of serving node(s) 1616. Disparate gateway node(s) 1684 can control or operate disparate sets of deployed femto APs, which can be a part of femto RAN 1690. In an aspect of the subject innovation, femto gateway node(s) 1684 can aggregate operational data received from deployed femto APs. Moreover, femto gateway node(s) 1684, can convey received attachment signaling to attachment component 1620. It should be appreciated that while attachment component is illustrated as external to gateway node(s) 1684, attachment component 1620 can be an integral part of gateway node(s) 1684.

Attachment component 1620 can facilitate macro-to-femto and femto-to-macro handover. In an aspect, NW attachment signaling 240 can be received, processed, and conveyed to a femto AP as a part of attachment procedure among a mobile station and the femto AP. Attachment component 1620 also can receive alarm(s) indication 314, and process, at least in part, such indication to generate a NW response 316 like an indication to restart femto AP; a customer service notification, which can be accomplished through communication with enterprise network(s) 1670 that provides customer service support; indication to display a malfunction indicator . . . ).

Memory 1686 can retain additional information relevant to operation of the various components of femto network platform 1680. For example operational information that can be stored in memory 1686 can comprise, but is not limited to, subscriber intelligence; contracted services; maintenance and service records; femto cell configuration (e.g., devices served through femto RAN 1690; authorized subscribers associated with one or more deployed femto APs); service policies and specifications; privacy policies; add-on features; so forth.

Server(s) 1682 have substantially the same functionality as described in connection with server(s) 1614. In an aspect, server(s) 1682 can execute multiple application(s) that provide service (e.g., voice and data) to wireless devices served through femto RAN 1690. Server(s) 1682 can also provide security features to femto network platform. In addition, server(s) 1682 can manage (e.g., schedule, queue, format . . . ) substantially all packetized flows (e.g., IP-based, frame relay-based, ATM-based) it generates in addition to data received from macro network platform 1610. Furthermore, server(s) 1682 can effect provisioning of femto cell service, and effect operations and maintenance. It is to be noted that server(s) 1682 can include one or more processors configured to provide at least in part the functionality of femto network platform 1680. To that end, the one or more processors can execute code instructions stored in memory 1686, for example.

With respect to FIG. 17, in embodiment 1700, femto AP 1710 can receive and transmit signal(s) from and to wireless devices like macro and femto access points, access terminals, wireless ports and routers, and the like, through a set of antennas 17691-1769N. It should be appreciated that while antennas 17691-1769N are a part of communication platform 255, which comprises electronic components and associated circuitry that provides for processing and manipulation of received signal(s) and signal(s) to be transmitted. In an aspect, communication platform 255 includes a receiver/transmitter 1766 that can convert signal from analog to digital upon reception, and from digital to analog upon transmission. In addition, receiver/transmitter 1766 can divide a single data stream into multiple, parallel data streams, or perform the reciprocal operation. Coupled to receiver/transmitter 1766 is a multiplexer/demultiplexer 1767 that facilitates manipulation of signal in time and frequency space. Electronic component 1767 can multiplex information (e.g., data/traffic and control/signaling) according to various multiplexing schemes such as time division multiplexing (TDM), frequency division multiplexing (FDM), orthogonal frequency division multiplexing (OFDM), code division multiplexing (CDM), space division multiplexing (SDM). In addition, mux/demux component 1767 can scramble and spread information (e.g., codes) according to substantially any code known in the art; e.g., Hadamard-Walsh codes, Baker codes, Kasami codes, polyphase codes, and so on. A modulator/demodulator 1768 is also a part of operational group 1725, and can modulate information according to multiple modulation techniques, such as frequency modulation, amplitude modulation (e.g., M-ary quadrature amplitude modulation (QAM), with M a positive integer), phase-shift keying (PSK), and the like.

Femto acces point 1710 also includes a processor 1735 configured to confer functionality, at least partially, to substantially any electronic component in the femto access point 1710. In particular, processor 1735 can facilitate access management component 235 supplying fixed differentiated QoS in accordance with aspects disclosed herein. In addition, processor 1735 can facilitate operations on data (e.g., symbols, bits, or chips) for multiplexing/demultiplexing, such as effecting direct and inverse fast Fourier transforms, selection of modulation rates, selection of data packet formats, inter-packet times, etc. A memory 1755 can store data structures, code instructions, system or device information like policies and specifications, code sequences for scrambling, spreading and pilot transmission, floor plan configuration, access point deployment and frequency plans, scheduling policies, and so on.

In embodiment 1700, processor 1734 is coupled to the memory 1755 in order to store and retrieve information necessary to operate and/or confer functionality to communication platform 255, access management component 235, and other operational aspects of femto access point 1710.

As it employed in the subject specification, the term “processor” can refer to substantially any computing processing unit or device comprising, but not limited to comprising, single-core processors; single-processors with software multithread execution capability; multi-core processors; multi-core processors with software multithread execution capability; multi-core processors with hardware multithread technology; parallel platforms; and parallel platforms with distributed shared memory. Additionally, a processor can refer to an integrated circuit, an application specific integrated circuit (ASIC), a digital signal processor (DSP), a field programmable gate array (FPGA), a programmable logic controller (PLC), a complex programmable logic device (CPLD), a discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. Processors can exploit nano-scale architectures such as, but not limited to, molecular and quantum-dot based transistors, switches and gates, in order to optimize space usage or enhance performance of user equipment. A processor may also be implemented as a combination of computing processing units.

In the subject specification, terms such as “data store,” data storage,” “database,” and substantially any other information storage component relevant to operation and functionality of a component, refer to “memory components,” or entities embodied in a “memory” or components comprising the memory. For example, information relevant to operation of various components described in the disclosed subject matter, and that can be stored in a memory, can comprise, but is not limited to comprising, subscriber information; femtocell configuration (e.g., devices served by a femto AP; access control lists, or white lists) or service policies and specifications; privacy policies; and so forth. It will be appreciated that the memory components described herein can be either volatile memory or nonvolatile memory, or can include both volatile and nonvolatile memory. By way of illustration, and not limitation, nonvolatile memory can include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable ROM (EEPROM), phase change memory (PCM), or flash memory. Volatile memory can include random access memory (RAM), which acts as external cache memory. By way of illustration and not limitation, RAM is available in many forms such as synchronous RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), Synchlink DRAM (SLDRAM), and direct Rambus RAM (DRRAM). Additionally, the disclosed memory components of systems or methods herein are intended to comprise, without being limited to comprising, these and any other suitable types of memory.

Various aspects or features described herein may be implemented as a method, apparatus, or article of manufacture using standard programming and/or engineering techniques. The term “article of manufacture” as used herein is intended to encompass a computer program accessible from any computer-readable device, carrier, or media. For example, computer readable media can include but are not limited to magnetic storage devices (e.g., hard disk, floppy disk, magnetic strips . . . optical disks (e.g., compact disk (CD), digital versatile disk (DVD), Blu-ray disc (BD), . . . ), smart cards, and flash memory devices (e.g., card, stick, key drive . . . ).

What has been described above includes examples of systems and methods that provide advantages of the subject innovation. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing the claimed subject matter, but one of ordinary skill in the art may recognize that many further combinations and permutations of the claimed subject matter are possible. Furthermore, to the extent that the terms “includes,” “has,” “possesses,” and the like are used in the detailed description, claims, appendices and drawings such terms are intended to be inclusive in a manner similar to the term “comprising” as “comprising” is interpreted when employed as a transitional word in a claim.

Claims

1. A system that facilitates management of access to femto cell coverage, comprising:

a femto access point that provides access to the femto cell coverage and a subset of services to at least one communication device included in an access control list associated with the femto access point; and
an access management component that utilizes an access criteria to edit the access control list, the access criteria including criteria for adding a communication device to the access control list and criteria for automatically removing the added communication device from the access control list.

2. The system of claim 1, the access control list configured to include a white list, the white list listing a set of communication devices for which access to the femto cell coverage and subset of services is provided.

3. The system of claim 1, the access control list configured to include a black list, the black list listing a set of communication devices for which access to the femto cell coverage and subset of services is denied.

4. The system of claim 1 further comprising a timing component, the access criteria including a time-dependent algorithm that depends on data received from the timing component.

5. The system of claim 1, the access criteria including a device-dependent algorithm that depends on received data that includes identifying characteristics of the device.

6. The system of claim 1, the access criteria including an algorithm that depends on data related to a diagnostic of the femto cell coverage.

7. The system of claim 1, the access criteria including an algorithm that depends on data related to a diagnostic of a macro network linked to the femto cell coverage.

8. The system of claim 1, the access criteria including a password-dependent algorithm that depends on a password received from a user associated with the device.

9. The system of claim 1, the access criteria including a service-dependent algorithm that depends on a type of service requested by the device.

10. A method that facilitates management of access to femto cell coverage, comprising:

storing an access control list in a memory component, the access control list associated with a femto access point, the femto access point providing access to the femto cell coverage and a subset of services to at least one communication device included in the access control list;
adding a communication device to the access control list according to a first set of criteria; and
removing the added communication device from the access control list according to a second set of criteria.

11. The method of claim 10 further comprising configuring a white list as part of the access control list, the white list configured to list a set of communication devices for which access to the femto cell coverage and subset of services is provided.

12. The method of claim 10 further comprising configuring a black list as part of the access control list, the black list configured to list a set of communication devices for which access to the femto cell coverage and subset of services is denied.

13. The method of claim 10 further comprising receiving data from a timing component, the first set of criteria including a time-dependent algorithm that depends on the data received from the timing component.

14. The method of claim 10 further comprising receiving data from a timing component, the second set of criteria including a time-dependent algorithm that depends on the data received from the timing component.

15. The method of claim 10 further comprising receiving data identifying a service carrier associated with the device, the first set of criteria including a carrier-dependent algorithm that depends on the service carrier associated with the device.

16. The method of claim 10 further comprising receiving data related to a diagnostic of a macro network linked to the femto cell coverage, the first set of criteria including an algorithm that depends on the diagnostic of the macro network.

17. The method of claim 10 further comprising receiving data related to a diagnostic of a macro network linked to the femto cell coverage, the second set of criteria including an algorithm that depends on the diagnostic of the macro network.

18. The method of claim 10 further comprising receiving data identifying a type of service requested by the device, the first set of criteria including a service-dependent algorithm that depends on the type of service requested by the device.

19. The method of claim 10 further comprising receiving data identifying a type of service requested by the device, the second set of criteria including a service-dependent algorithm that depends on the type of service requested by the device.

20. An apparatus comprising:

means for storing an access control list in a memory component, the access control list associated with a femto access point, the femto access point providing access to a femto cell coverage and a subset of services to at least one communication device included in the access control list;
means for adding a communication device to the access control list according to a first set of criteria; and
means for removing the added communication device from the access control list according to a second set of criteria.
Patent History
Publication number: 20090286544
Type: Application
Filed: Nov 21, 2008
Publication Date: Nov 19, 2009
Applicant: AT&T MOBILITY II LLC (Atlanta, GA)
Inventors: Kurt Donald Huber (Kennesaw, GA), Judson John Flynn (Decatur, GA), William Gordon Mansfield (Sugar Hill, GA)
Application Number: 12/276,120
Classifications
Current U.S. Class: Channel Allocation (455/450)
International Classification: H04W 72/00 (20090101);