Heat-dissipating fin
A heat-dissipating fin includes a sheety main body. The main body is provided with a high-temperature area located at each of two sides thereof, an airflow area located at a midsection thereof for an external airflow to pass through, at least one guide wall formed at the airflow area and having a front end facing the main body, and two inclined guide portions each extending rearward toward one side thereof from a front end thereof. In this way, the external airflow can be guided to the high-temperature areas of the fin to reach greater heat-dissipating efficiency.
Latest TAI-SOL ELECTRONICS CO., LTD. Patents:
1. Field of the Invention
The present invention relates generally to heat-dissipating apparatuses, and more particularly, to a heat-dissipating fin.
2. Description of the Related Art
A conventional multi-layer heat sink is composed of multiple fins stacked upon one another, having at least one heat pipe running through the fins. Each of the fins is flat on the surface thereof and provided with none of any runners. A cooling fan is mounted to one side of the fins for generating airflow and enabling the airflow to pass through the gaps between the fins to blow the heat on the fins away.
When the aforesaid heat sink is in use, the temperature distribution on the surface of each of the fins is virtually nonuniform, e.g. the temperature on each of the fins at where is close to the heat pipe is higher and lower at where is farther away from the heat pipe. However, each of the fins is not provided with any runners, when the airflow enters the gaps between the fins, the airflow fails to be effectively guided to where the temperature is higher but directly passes through the gaps. Therefore, the high-dissipating efficiency of the conventional heat sink needs improvement.
The U.S. Patent Pub. No. 2008/0017350 disclosed a heat sink having a plurality of parallel fins, each of which is provided with a plurality of protrusions for disturbing the airflow entering the gaps between the fins and further enhancing the heat-dissipating efficiency. However, such heat sink does nothing but disturbs the airflow rather than guiding the airflow up to where the temperature is higher on the fins.
SUMMARY OF THE INVENTIONThe primary objective of the present invention is to provide a heat-dissipating fin which can reach greater heat-dissipating efficiency.
The foregoing objective of the present invention is attained by the heat-dissipating fin having a sheety main body. The main body is provided with a high-temperature area located at each of two sides thereof, an airflow area located at a midsection thereof for an external airflow to pass through, at least one guide wall formed at the airflow area and having a front end facing the main body, and two inclined guide portions each extending rearward toward one side thereof from a front end thereof. In this way, the external airflow can be guided to the high-temperature areas of the fin to result in more efficient thermal dissipation.
Referring to
Referring to
Referring to
The operative manner of the second embodiment of the present invention is identical to the first embodiment. In effect, the airflow guided to the bilateral sides converge while flowing to the rear side of the guide wall 24, such that the whole airflow guidance is more efficient to reduce the noise and to help the airflow be exhausted outside from the rear side.
Referring to
The operative status of the third embodiment is similar to that of the first embodiment, having the following difference. The airflow enters the space on/beneath the main body 31 and then encounters the front guide wall 34, a first part of the airflow is guided by the inclined guide portions 342 to flow bilaterally rearward along the inclined guide portions 342, and the other second part of the airflow passes through the gap 343 of the front guide wall 34. Next, when the second part of the airflow encounters the rear guide wall 34, some of the second part of the airflow is guided by the rear guide wall 34 to flow rearward along the inclined guide portion 342 and the other of the second part of the airflow passes through the gap 343 of the rear guide wall 34 to flow to the neighborhood of the rear through hole 321, i.e. the heat pipe. The design that the gap 343 of the front guide wall 34 is larger than that of the rear guide wall 34 allows more air to flow to the rear side of the main body 31, thus facilitating efficient thermal dissipation at the rear side of the main body 31. Therefore, the airflow can likewise be guided to the corresponding high-temperature location on the heat-dissipating fin to reach more heat-dissipating efficiency.
Referring to
The main body 41 includes three guide walls 44 arranged in tandem and located at the airflow area 48. The rearmost guide wall 44 is not provided with any gap, and the other two guide walls 44 each are provided with a gap 443 formed at a front end thereof. The gap of the rear guide wall 44 is larger than that of the front guide wall 44.
The operative status of the fourth embodiment is similar to the third embodiment, having the following difference. The rearmost guide wall 44 does not have any gap, such that the airflow is directly guided bilaterally rearward along the rear most guide wall 4 to flow out of the main body 41 while flowing to the rearmost guide wall. Therefore, the airflow can likewise be guided to the corresponding high-temperature location on the heat-dissipating fin to bring more efficient thermal dissipation.
Referring to
Each of two thermally conductive plates 57 is connected with one of the two sides of the main body 51 for connection with a heat-generating element (not shown) and with at least one heat pipe 91. The heat generated by the heat-generating element can be conducted to the two sides of the main body 51, enabling the maximum temperature to be located in the neighborhood that the main body 51 contacts the two thermally conductive plates 57, i.e. the maximum temperature happens within the high-temperature area 52. The guide wall 54 guides the airflow to the high-temperature areas 52 located at the two sides of the main body 51 to reach more heat-dissipating efficiency. Therefore, the airflow can likewise be guided to the corresponding high-temperature location on the heat-dissipating fin to bring more efficient thermal dissipation.
In conclusion, when the airflow enters, the present invention can guide the airflow to the high-temperature areas on the heat-dissipating fin in such a way that the airflow takes more heat out to reach more heat-dissipating efficiency.
Although the present invention has been described with respect to specific preferred embodiments thereof, it is no way limited to the details of the illustrated structures but changes and modifications may be made within the scope of the appended claims.
Claims
1. A heat-dissipating fin comprising a sheety main body having two high-temperature areas, each of which is located at one of two sides thereof, said main body having an airflow area located at a midsection thereof for airflow to pass through, said main body having at least one guide wall located at said airflow area and having a front end facing a front side of said main body, said at least one guide wall having two inclined guide portions extending bilaterally rearward from the front end thereof.
2. The heat-dissipating fin as defined in claim 1, wherein said main body comprises convexity formed at a center thereof; said guide wall is located in front of said convexity.
3. The heat-dissipating fin as defined in claim 2, wherein said convexity is in the form of water drip.
4. The heat-dissipating fin as defined in claim 1, wherein each of said two inclined guide portions comprises a distal end spaced from one of two lateral edges of said main body.
5. The heat-dissipating fin as defined in claim 1, wherein said at least one guide wall comprises a gap formed at a front end thereof.
6. The heat-dissipating fin as defined in claim 1, wherein said main body comprises at least two of said guide walls arranged in tandem, each of said at least two guide walls having a gap formed at a front end thereof, the gap of said anterior guide wall being larger than that of said posterior guide wall, said main body having a rear through hole running through a rear side thereof and located at the rear most guide wall.
7. The heat-dissipating fin as defined in claim 1, wherein said main body comprises at least two of said guide walls arranged in tandem, each of said at least two guide walls having a gap formed at a front end thereof, the gap of said anterior guide wall being larger than that of said posterior guide wall.
8. The heat-dissipating fin as defined in claim 1, wherein each of said two high-temperature areas comprises at least one through hole provided for a heat pipe to pass through.
9. The heat-dissipating fin as defined in claim 8, wherein said main body comprises a peripheral sidewall extending vertically outward from an external edge of each of said through holes.
10. The heat-dissipating fin as defined in claim 1 further comprising a thermally conductive plate, wherein said thermally conductive plate is connected with at least one of the two sides of said main body.
Type: Application
Filed: Mar 4, 2009
Publication Date: Jun 17, 2010
Applicant: TAI-SOL ELECTRONICS CO., LTD. (TAIPEI CITY)
Inventors: Yue-Ping Dai (Jiangsu), Meng Hung Ko (Taipei County), Jun Chen (Sichuan)
Application Number: 12/379,900
International Classification: F28D 15/00 (20060101);