PORTABLE CUTTING DEVICE WITH ON-BOARD DEBRIS COLLECTION
A portable cutting device having a cutting tool for cutting a material. The cutting device includes a motor driving the cutting tool and a shroud at least partially enclosing the cutting tool. The shroud defines a debris accumulation chamber for gathering debris created by the cutting tool cutting the material. An impeller is operatively coupled to the motor and driven by the motor to create suction pressure to draw the debris out of the debris accumulation chamber and into a collection bag.
This application claims priority to and all benefits of U.S. Provisional Application No. 61/172,607, filed Apr. 24, 2009, entitled “PORTABLE CUTTING DEVICE WITH ON-BOARD DEBRIS COLLECTION,” the complete disclosure of which is hereby incorporated by reference. The complete disclosure of U.S. application Ser. No. 10/939,440, filed Sep. 14, 2004, entitled “SELF-CONTAINED VACUUM SAW,” now U.S. Pat. No. 7,328,512, is also hereby incorporated by reference.
FIELD OF THE INVENTIONThe present invention relates to a portable cutting device for cutting a material such as wood, drywall, concrete, roof tiles, slate, etc, which creates debris. More specifically the present invention relates to the portable cutting device having an on-board debris collection system.
BACKGROUND OF THE INVENTIONPortable cutting devices are well known in the art of carpentry and construction. Such devices include portable circular saws, concrete saws, routers, and the like. When using these devices to cut through materials such as wood, drywall, concrete, roof tiles, slate, etc., cutting debris is created, e.g., saw dust, concrete dust and larger particles. In most cases, protective gear is needed to avoid health hazards associated with this debris. Additionally, the debris accumulates in the area in which the cutting device is being used making clean-up time consuming and difficult. Accordingly, there is a need for portable cutting devices with debris collection systems to collect the dust and larger particles.
Prior art portable cutting devices have been developed to include debris collection systems. These systems typically include a housing defining a debris accumulation chamber and a collection port on the housing for connecting to a vacuum source. The vacuum source draws the debris through the collection port into a collection area. The vacuum source is off-board, meaning that the vacuum source is separate from the cutting device. As a result, when transporting the cutting device between work sites, a vacuum source must be made available at each of the work sites.
SUMMARY OF THE INVENTION AND ADVANTAGESA portable cutting device having a cutting tool for cutting a material is provided. The cutting device includes a motor driving the cutting tool and a protective housing at least partially enclosing the cutting tool. The protective housing defines a debris accumulation chamber for gathering debris created by the cutting tool. An impeller is operatively coupled to the motor and driven by the motor to create suction pressure to draw the debris out of the debris accumulation chamber and into a collection bag. A vacuum housing protects the impeller and the collection bag is coupled to the vacuum housing. The impeller and collection bag form part of an on-board debris collection system thereby eliminating the need for a separate off-board vacuum source and debris collection area.
The present invention provides a cutting device that includes a material cutting blade, a shroud which at least partially encloses the blade and relative to which the blade is supported for relative movement, a debris accumulation chamber within the shroud in fluid communication with the blade and into which material debris generated by the blade during cutting is received, a source of vacuum in fluid communication with the debris accumulation chamber, a pressure equalization chamber in fluid communication with the source of vacuum, and a plurality of vacuum conduits extending between the debris accumulation chamber and the pressure equalizing chamber, each conduit having an inlet and an outlet, the debris accumulation chamber having an opening into a conduit inlet, the pressure equalization chamber having an opening into a conduit outlet. Airflow induced by the source of vacuum is drawn from the conduit inlets to the conduit outlets, material debris received in the debris accumulation chamber carried by the induced airflow toward the vacuum source and the pressure equalization chamber.
Certain embodiments of the cutting device include a vacuum housing having an exhaust port from which the induced airflow and material debris carried thereby exits the vacuum housing.
In certain embodiments of the cutting device, the source of vacuum is contained in the vacuum housing, and the induced airflow and material debris carried thereby may be expelled from the exhaust port under a pressure greater than the pressure in the pressure equalization chamber.
Certain embodiments of the cutting device include a collection container attached to the exhaust port and into which the induced airflow and material debris carried thereby is received, material debris received in the collection container retained therein.
In certain embodiments of the cutting device, the collection container may have a wall through which the induced airflow received thereby passes. The collection container may include a porous inner container disposed within a porous outer container, the porosity of the inner container being less than the porosity of the outer container.
In certain embodiments of the cutting device, each outlet of the plurality of vacuum conduits opens individually into the pressure equalization chamber.
In certain embodiments of the cutting device, the inlets of the plurality of vacuum conduits are sequentially positioned along the path of blade travel within the shroud.
In certain embodiments of the cutting device, the blade is a circular saw blade rotatably supported within the shroud, the perimeter of the saw blade having a circumferentially distributed plurality of teeth, with the inlets of the vacuum conduits positioned at locations on the shroud that are sequentially passed by each saw blade tooth.
In certain embodiments of the cutting device, the shroud substantially surrounds an upper portion of the circular saw blade and the cutting device may include a lower blade guard connected to the shroud, the lower blade guard having movement relative to the shroud between an extended position in which it substantially surrounds the perimeter of the lower portion of the saw blade, and at least one retracted position into which it is received in the debris accumulation chamber and at least partially exposes the perimeter of the lower portion of the saw blade. The lower blade guard has a surface in which is provided at least one aperture that is moved substantially into alignment with a vacuum conduit inlet in a retracted position. In such an embodiment, material debris generated by the blade during cutting may be carried with the induced airflow into the conduit inlet from a location between the saw blade perimeter and the blade guard through the aperture substantially aligned with the conduit inlet.
Certain embodiments of the cutting device include a deck plate through which the blade extends and to which the shroud is connected, a base plate attached to the deck plate and through which the blade extends, the base plate being positioned between the deck plate and a material-engaging portion of cutting blade. The shroud and the base plate have selective cut depth and positions in which the distances from the base plate to which the material-engaging portion of cutting blade extends and the relative angle between the base plate and the material-engaging portion of cutting blade are respectively varied. In such an embodiment, the blade may be disposed in a space defined by a surrounding wall extending between the base plate and the shroud that is substantially sealed against air leakage through the wall, throughout the operating ranges of cut depth and cut angle positions.
In certain embodiments of the cutting device, substantially all of the air drawn by the vacuum source into the debris accumulation chamber is solely through an opening in the base plate through which the blade extends.
The surrounding wall of certain such embodiments includes an expandable first bellows located between the deck plate and the shroud, the first bellows being correspondingly expanded and compressed between different cut depth positions with corresponding relative movement between the deck plate and the shroud.
In certain such embodiments of the cutting device, the base plate and the deck plate are pivotably attached to each other, and the surrounding wall includes a expandable second bellows located between the deck plate and the base plate, the second bellows being correspondingly expanded and compressed between different cut angle positions with corresponding relative movement between the deck plate and the base plate.
In certain embodiments of the cutting device, the surrounding wall includes a transparent window located between the deck plate and the shroud, the cutting blade and material being cut visible to an operator through the window during cutting operations.
Other advantages of the present invention will be readily appreciated, as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
It is to be noted that the Figures are not necessarily drawn to scale. In particular, the scale of some of the elements of the Figures may be exaggerated to emphasize characteristics of the elements. It is also noted that the Figures are not necessarily drawn to the same scale. Elements shown in more than one Figure that may be similarly configured have been indicated using the same reference numerals.
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and may herein be described in detail. It should be understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the present invention as defined by the appended claims.
DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTSReferring to the Figures, wherein like numerals indicate like or corresponding parts throughout the several views, a portable cutting device for cutting a material M such as wood, drywall, concrete, roof tiles, slate, etc., is generally shown at 30. The cutting device 30 is defined as being portable because of the ability to easily move the cutting device 30 between work sites. The cutting device 30 preferably weighs less than 50 lbs, more preferably less than 35 lbs, and most preferably less than 20 lbs. The cutting device 30 is also preferably handheld, such that it can be maneuvered, lifted etc. with a single hand.
Referring to
The cutting tool 34 shown is a circular saw blade 34 that rotates counterclockwise, in the direction of arrow 24, to cut up through the material M. The saw blade 34 could be configured for cutting through wood, metal, concrete, roof tiles, slate, and the like. The saw blade 34, which is of a common type known to those of ordinary skill in the art, is generally circular and defines a central aperture for engaging a rotational saw shaft 116, as best shown in
Referring to
A gear plate 51 defines part of the transmission casing 35 and includes a fixed collar 206 that covers and supports the sealed bearing 204, through which extends saw shaft 116 supported thereby. The gear plate 51 includes a base 53 on which outer fixed collar 206 is disposed and from which collar 206 extends laterally outwardly. Saw blade 34 is clamped between an adjacent flange 55 and a bolt or nut 37 that engages threads formed in or on the end of the saw shaft 116 in the well-known manner, thereby rotatably fixing the saw blade 34 to the saw shaft 116.
Referring to
Referring to
The motor casing 38 defines a cylindrical outer surface 50 (see
Referring back to
A depth adjustment block 66 is fixed to the upper plate 56. The depth adjustment block 66 defines an elongated slot 68 for receiving an adjustment screw 70 therethrough. A corresponding depth adjustment bracket 72 (
Referring to
The second angle adjustment block 73 is preferably graduated with angular markings 79 such that the lower plate 58 can be pivotally adjusted relative to the upper plate 56 at a known angle therebetween. The angular markings preferably include graduations of 1 degree spanning from zero to 45 degrees. This allows the user to cut the material at a known angle. For instance, the user can cut through wood trim pieces at a 45-degree cut angle.
Referring to FIGS. 2 and 8-10, a vacuum housing 90 is coupled to the motor casing 38 and a blade shroud or upper blade enclosure 110, with bolts. The vacuum housing 90 forms part of saw casing 31 and includes a main housing portion 92, an impeller housing portion 94, and a impeller cover 97. The main housing portion 92 defines a pressure-equalizing chamber 96 (or pressure chamber 96) and the impeller housing portion 94 and impeller cover 97 together define an impeller chamber 98 (see
A plurality of through bores 101 are also defined through the main housing portion 92 are mated to holes 105 in impeller housing portion 94, which receive fasteners (not shown) to mount the main housing portion 92 to the motor casing 38 at a first end of the motor casing 38.
An impeller 100 is rotatably supported in the impeller chamber 98 on a stub shaft 135, which extends through aperture 106 of cover 97 and into gear housing 136, wherein it is rotatably supported and axially fixed relative to central hub 103 of cover 97, by a sealed bearing 104 mounted on the outward side of hub 103, within gear housing 136. The axially outward end of stub shaft 135 disposed in gear housing 136 has worm gear 336 formed thereon, which is enmeshed with worm 338 provided on the end segment 129 of flexible shaft 128, which is attached to gear housing 136. The motor 32 rotatably drives the impeller 100 through flexible shaft 128 in the direction indicated by arrow 26 to create airflow and corresponding vacuum pressure in the pressure-equalizing chamber 96. The impeller 100 can be formed of metal or plastic materials such as Lexan®, nylon, or other relatively rigid plastic materials.
Referring specifically to
Referring to
Planar wall 120 of housing portion 94 defines an aperture 126 that approximates a size of the pressure-equalizing chamber 96 such that the pressure-equalizing chamber 96 opens directly into the plurality of blades 124. The pressure-equalizing chamber 96 opens into the impeller chamber 98 in a direction generally transverse to, and preferably perpendicular to, plate 122 of impeller 100.
Referring specifically to
In the depicted embodiment, the vacuum conduits 406 are formed in multiple segments defined by casing components or other components that define the conduits. These components may be connected together by being sealably interfitted, or through the use of adhesive and/or couplers, and/or the like. The sequentially encountered sections of conduits 406 along the general direction of airflow are described as duct heads 408, tubes 410, right-hand handle passages 412, left-hand handle passages 414, mid-body passages 415, and vacuum housing passages 422. Mid-body passages 415 are defined by the cooperating semi-cylindrical surfaces 416 formed on mid-body motor casing enclosure 46 and semi-cylindrical surfaces 418 formed defined by mid-body window 420 attached to enclosure 46. Passages 422 in main housing portion 92 of vacuum housing 90 define individual outlets of vacuum conduits 406 that each open into pressure equalization chamber 96.
The vacuum conduits 406 preferably have a generally circular cross-section, but their cross-sections may instead be generally rectangular in shape or other shapes, and can vary in cross-sectional shape over their lengths. Each of the vacuum conduits 406 preferably has a cross-sectional area at the blade shroud or upper enclosure 110 that is larger than the cross-sectional area at the main housing portion 92. The cross-sectional area may taper gradually from the upper enclosure 110 to the main housing portion 92. Three vacuum conduits 406 are illustrated and include a first or leading vacuum conduit 406a, a second or center vacuum conduit 406b, and a third or trailing vacuum conduit 406c.
Referring to
The inlets to the first 406a and second 406b vacuum conduits are disposed at a front section of the upper enclosure 110. The inlet to the third vacuum conduit 406c is disposed at a rear section of the upper enclosure 110. The front section is defined as the front half of the upper enclosure 110, while the rear section is defined as the rear half of the upper enclosure 110. The first vacuum conduit 406a is preferably located at the frontmost location on the front section to collect debris at the front of the debris accumulation chamber 112. The third vacuum conduit 406c is preferably located on the rear section to collect debris at the rear of the debris accumulation chamber 112. Together the vacuum conduits 406a, 406b, 406c define separate vacuum paths for the debris.
A plurality of duct heads 408a, 408b, 408c are integrally formed with the upper enclosure 110 (or alternatively can be formed separately), and define inlets to their respective conduits 406a, 406b, 406c. The duct heads 408a, 408b, 408c each have a surrounding collar adapted to receive and sealably engage the respective upstream ends of tubes 410a, 410b, 410c. The upstream ends of tubes 410 may form an interference fit with the collars or be adhesively bonded to the collars.
Referring to back to
Outer side 152 of the upper enclosure 110 defines a semicircular opening 153 in which is disposed a side window 160 that closes the opening 153 and the outward side of debris accumulation chamber 112. The side window 160 includes a transparent section 162 formed of transparent plastic and has a semicircular outer periphery 164 in which is a circumferential distribution of holes 166. The transparent section 162 allows the user to view the saw blade 34. The outer periphery 164 interfaces and abuts the inner surface of outer side 152 along the periphery of opening 153 that is provided with holes 168 that correspondingly align with holes 166. Fasteners (not shown) extend through aligned holes 166, 168 to secure window 160 to enclosure 110. Side window 160 includes arcuate slot 170 centered abut the axis of rotation of blade 34. The slot 170 is adapted to receive shaft 172, the end of which is fixed to outer side 205 of manually retractable lower blade guard 200. The outward end of shaft 172 is provided with knob 174 which may be grasped by the operator to manually move shaft 172 along slot 170 to retract lower blade guard 200 into upper blade enclosure 110 to expose the edge of blade 34, which is desirable for making plunge cuts into the surface of material M, rather that from an edge thereof. Lower blade guard 200 may be rotatably biased into its extended position in which it shields the edge of blade 34, by a tension spring 175 operably engaged with enclosure 110 and guard 200, in a conventional manner well-known in the circular saw art.
Upper blade enclosure 110 defines bottom edge 182 and side window 160 defines bottom edge 176. Bottom edges 176 and 182 are substantially flush and lie in a plane. Referring to
More particularly, upper rim 188 of main bellows 180 may define a peripheral groove adapted to receive the bottom edges 176, 182 of side window 160 and upper enclosure 110, and lower rim 186 of main bellows 180 may similarly define a peripheral groove adapted to receive upper edge 190 of transparent blade window 192. The bottom edges 176, 182 and the upper edge 190 may be press-fitted and adhesively sealed in the respective peripheral groove of bellows 180. In one embodiment, the flexible bellows 180 has an accordion shape. In other embodiments, the flexible bellows 180 is formed of a stretchable plastic material capable of stretching greater than 100% such as polyurethane. The flexible bellows 180 is also preferably transparent.
Additionally, the portion of the upper surface of deck plate 56 immediately below transmission casing 35 of enclosure 110 and along the longitudinal inward edge of blade opening 62 is recessed below the adjacent portions of the deck plate upper surface. The recessed portion 218 of deck plate 56 defines a planar floor 220 that is parallel with planar bottom surface 222 of transmission casing 35, which extends between its opposed sides 196, 197. Extending the entire length of recessed portion 218 and surface 222 is rear bellows 178. Top surface 224 of rear bellows 178 is sealably attached to transmission casing bottom surface 222; bottom surface 226 of rear bellows 178 is sealably attached to floor 220. Thus, the blade-containing space between blade opening 62 in deck plate 56 and chamber 112 of upper blade enclosure 110, is substantially sealed against air leakage through its enclosing walls.
Referring back to
On the outward lateral side of blade 34, elongate, substantially planar slider plate 61 extends along the entire length of blade opening 64 in base plate 58. The opposed ends 234, 235 of slider plate 61 are pivotally attached to deck plate 56 near the upper slider plate edge 236, which slidably abuts elongate sealing flange 240 integrally formed on the deck plate and projecting upwardly and outwardly from its upper planar surface at an angle, away from blade opening 62. The opposed ends 234, 235 of slider plate 61 are closely fitted between a pair of upstanding planar sealing flanges 242, 243 located at opposite longitudinal ends of blade opening 64. The lower slider plate edge 237 is in sliding engagement along its length with the adjacent planar sealing surface 244 of base plate 58 located between its upstanding flanges 242, 243. As slider plate 61 pivots relative to deck plate 56, with relative angular movement between deck plate 56 and base plate 58 about pivot joints 60, slider plate lower edge 237 sealably slides along base plate sealing surface 244, and slider plate ends 234, 235 sealably slide along the adjacent sealing surface of their respective flanges 242, 243. The opposed ends 234, 235 of slider plate 61 may be slidably linked, for example, via pin-in-slot joints, with flanges 242, 243, to ensure sealing engagement between slider plate lower edge 237 and base plate sealing surface 244. Alternatively, slider plate 61 may be pivotably biased relative to deck plate 56, for example by a torsion spring (not shown), to ensure sealing engagement between slider plate lower edge 237 and base plate sealing surface 244. Alternatively, slider plate 61 may rely on gravity and/or the air pressure differential between its opposite planar sides during saw operation to ensure sealing engagement between slider plate lower edge 237 and base plate sealing surface 244. Thus, the blade-containing space between blade opening 64 in base plate 58 and chamber 112 of upper blade enclosure 110, is also substantially sealed against air leakage at locations below deck plate 56. The above-described sealing of the blade containing space against the influx of air leakage downstream of (i.e., above) blade opening 64 in lower plate 58 helps to maintain general sealing of the debris accumulation chamber 112 when the lower plate 58 is pivoted for angled cuts. In other words, during saw operation a working vacuum pressure is maintained in the debris accumulation chamber 112 to draw the debris out of the debris accumulation chamber 112 at all cutting angles and depths.
Referring to FIGS. 2 and 18-19, a lower blade guard 200 is pivotally mounted to the fixed collar 206 of the gear plate 51. The lower blade guard 200 includes an inner side 203 and an outer side 205. The lower blade guard 200 includes a hub 202 on the inner side 203 for supporting a sealed bearing 204. The sealed bearing 204 is disposed over the fixed collar 206 and is fixed to the fixed collar 206. The saw shaft 116 rotates within bearing 204 of the fixed collar 206. Thus, the fixed collar 206 is fixed from rotation. As a result, the lower blade guard 200 pivots about the fixed collar 206 via the sealed bearing 204. The lower blade guard 200 at least partially encloses a lower portion of the saw blade 34. The lower blade guard 200 also defines a plurality of openings 208 in the inner side 203 and part of the shoulder 210. When guard 200 is fully retracted, the openings 208, which generally correspond in size and location to the inlets to conduits 406 in the upper enclosure 110, become aligned with the duct heads 408. A bottom shoulder 210 spaces the inner side 203 from the outer side 205.
This lower blade guard 200 rotates further into the upper enclosure 110 as the saw blade 34 cuts through the material M in a conventional manner. Referring to
Referring back to
In one embodiment, shown in
During operation, the motor 32 drives the main drive shaft 36 (and flexible shaft end segment 102). Referring to
Referring to
The saw blade 34 preferably has a plurality of teeth arranged circumferentially about a perimeter of the saw blade 34. Each of the teeth includes a flat section protruding radially outwardly from the main body of the saw blade 34 that has a width that generally approximates the width of the main body and is usually integrally formed with the main body out of a metallic material such as steel or composites thereof. In some embodiments, the saw blade 34 may be 10 inches or less in diameter, preferably between 6 inches and 10 inches, and more preferably between 6 inches and 8 inches. The width of the saw blade 34 is 3 mm or less, more preferably 1.5 mm or less, and most preferably between about 0.2 mm and 2.0 mm. Other embodiments may have varying sizes depending on the particular application or material to be cut.
Each of the teeth has a kerf face that defines the kerf formed by the saw blade 34 during cutting. The blade's kerf face can take on many different shapes depending on the particular cutting application. In some embodiments, the kerf is 2 mm or more, while in other embodiments, the kerf is 2 mm or less. In one particular embodiment, the kerf is about 2 mm. In some embodiments carbide tips define the blade's kerf face, with the carbide tip fixed to the flat section in a conventional manner, such as by welding, adhesive, etc. A gullet is defined between the teeth. The gullet for a saw blade of about 10 inches in diameter or less is preferably less than 1 inch, more preferably less than 0.75 inches, and most preferably between 0.25 inches and 0.75 inches. For larger diameter saw blades, the gullet may be deeper.
Each of the teeth may also include an embossed portion on opposing sides of the flat section that preferably extends from the carbide tip onto the main body of the saw blade 34. The height of the two embossed portions and width of the flat section in total preferably equal or are less than the kerf width of the teeth, more preferably less than about 95% of the kerf width of the teeth. The maximum height of each of the embossed portions in one embodiment may be 1 mm or less, more preferably 0.5 mm or less, and most preferably between 0.1 mm and 0.5 mm. In different applications, the height may differ.
The dimensions of the various elements can be varied according to the uses and designs of the cutting device 30. For example, the debris accumulation chamber 112 may be from 0.5 inches to 10 inches in width. In some embodiments, the upper enclosure 110, blade window 132, side window 160, and bellows 180 may be unitary and formed in one-piece of plastic. The motor casing 38, vacuum housing 90, and upper enclosure 110 could also be formed in one-piece and could be formed of metal, plastic, or any combinations thereof. Additionally, the vacuum conduits 406 (also referred to as debris carrying ducts 406) could be integrated into a single duct (not shown) partitioned into separate paths to accomplish the same objectives as the present invention.
As additional enhancements, lighting could be provided inside the debris accumulation chamber 112. Referring to
While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes can be made and equivalents can be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications can be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment(s) disclosed herein, but that the invention will include all embodiments falling within the scope of the appended claims.
Claims
1. A cutting device comprising:
- a material cutting blade;
- a shroud which at least partially encloses the blade and relative to which the blade is supported for relative movement;
- a debris accumulation chamber within the shroud in fluid communication with the blade and into which material debris generated by the blade during cutting is received;
- a source of vacuum in fluid communication with the debris accumulation chamber;
- a pressure equalization chamber in fluid communication with the source of vacuum;
- a plurality of vacuum conduits extending between the debris accumulation chamber and the pressure equalizing chamber, each conduit having an inlet and an outlet, the debris accumulation chamber having an opening into a conduit inlet, the pressure equalization chamber having an opening into a conduit outlet;
- wherein airflow induced by the source of vacuum is drawn from the conduit inlets to the conduit outlets, material debris received in the debris accumulation chamber carried by the induced airflow toward the vacuum source and the pressure equalization chamber.
2. The cutting device of claim 1, further comprising a vacuum housing having an exhaust port from which the induced airflow and material debris carried thereby exits the vacuum housing.
3. The cutting device of claim 2, wherein the source of vacuum is contained in the vacuum housing, and the induced airflow and material debris carried thereby is expelled from the exhaust port under a pressure greater than the pressure in the pressure equalization chamber.
4. The cutting device of claim 2, further comprising a collection container attached to the exhaust port and into which the induced airflow and material debris carried thereby is received, material debris received in the collection container retained therein.
5. The cutting device of claim 4, wherein the collection container is a collection container having a wall through which the induced airflow received thereby passes.
6. The cutting device of claim 5, wherein the collection container includes a porous inner container disposed within a porous outer container, the porosity of the inner container being less than the porosity of the outer container.
7. The cutting device of claim 1, wherein each outlet of the plurality of vacuum conduits opens individually into the pressure equalization chamber.
8. The cutting device of claim 1, wherein the inlets of the plurality of vacuum conduits are sequentially positioned along the path of blade travel within the shroud.
9. The cutting device of claim 8, wherein the blade is a circular saw blade rotatably supported within the shroud, the perimeter of the saw blade having a circumferentially distributed plurality of teeth, the inlets of the vacuum conduits positioned at locations on the shroud that are sequentially passed by each saw blade tooth.
10. The cutting device of claim 9, wherein the shroud substantially surrounds an upper portion of the circular saw blade and further comprising:
- a lower blade guard connected to the shroud, the lower blade guard having movement relative to the shroud between an extended position in which it substantially surrounds the perimeter of the lower portion of the saw blade, and at least one retracted position into which it is received in the debris accumulation chamber and at least partially exposes the perimeter of the lower portion of the saw blade, the lower blade guard having a surface in which is provided at least one aperture that is moved substantially into alignment with a vacuum conduit inlet in a retracted position; and
- wherein material debris generated by the blade during cutting is carried with the induced airflow into the conduit inlet from a location between the saw blade perimeter and the blade guard through the aperture substantially aligned with the conduit inlet.
11. The cutting device of claim 1, further comprising:
- a deck plate through which the blade extends and to which the shroud is connected;
- a base plate attached to the deck plate and through which the blade extends, the base plate being positioned between the deck plate and a material-engaging portion of cutting blade;
- the shroud and the base plate having selective cut depth positions in which the distances from the base plate to which the material-engaging portion of cutting blade extends are varied;
- the shroud and the base plate having selective cut angle positions in which the relative angle between the base plate and the material-engaging portion of cutting blade is varied;
- wherein the blade is disposed in a space defined by a surrounding wall extending between the base plate and the shroud that is substantially sealed against air leakage through the wall, throughout the operating ranges of cut depth and cut angle positions.
12. The cutting device of claim 11, wherein substantially all of the air drawn by the vacuum source into the debris accumulation chamber substantially solely through an opening in the base plate through which the blade extends.
13. The cutting device of claim 11, wherein the surrounding wall includes a expandable first bellows located between the deck plate and the shroud, the first bellows being correspondingly expanded and compressed between different cut depth positions with corresponding relative movement between the deck plate and the shroud.
14. The cutting device of claim 11, wherein the base plate and the deck plate are pivotably attached to each other, and the surrounding wall includes a expandable second bellows located between the deck plate and the base plate, the second bellows being correspondingly expanded and compressed between different cut angle positions with corresponding relative movement between the deck plate and the base plate.
15. The cutting device of claim 11, wherein the surrounding wall includes a transparent window located between the deck plate and the shroud, the cutting blade and material being cut visible to an operator through the window during cutting operations.
Type: Application
Filed: Apr 26, 2010
Publication Date: Oct 28, 2010
Inventor: Charles B. Martin (Washington, IL)
Application Number: 12/767,687
International Classification: B27G 3/00 (20060101); B27B 9/00 (20060101); B27G 19/04 (20060101);