Visible Light Radiation Patents (Class 600/476)
  • Patent number: 11460915
    Abstract: The disclosed method encompasses registering an augmented reality device such as augmented reality glasses with a tracking coordinate system associated with a position tracking system. This may be effected by different approaches, for example by using a distance measurement unit (depth sensor) of the augmented reality device to determine a position of the augmented reality device relative to an object in a medical environment such as in surgery or radiotherapy/radiosurgery. The object may additionally be tracked by the position tracking system so that on the basis of the distance measurement, a relative position between the augmented reality device and the tracking coordinate system can be determined in order to register the augmented reality device with the position tracking system. This registration allows displaying augmentation information in a desired context and/or at a desired location in the image of the medical environment captured by the augmented reality device.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: October 4, 2022
    Assignee: Brainlab AG
    Inventors: Nils Frielinghaus, Christoffer Hamilton
  • Patent number: 11457982
    Abstract: A computer assisted system is disclosed that includes an optical tracking system and one or more computing devices. The optical tracking system includes an RGB sensor and is configured to capture color images of an environment in the visible light spectrum and tracking images of fiducials in the environment in a near-infrared spectrum. The computer assisted system is configured to generate a color image of the environment using the color images, identify fiducial locations using the tracking images, generate depth maps from the color images, reconstruct three-dimensional surfaces of structures based on the depth maps, and output a display comprising the reconstructed three-dimensional surface and one or more surgical objects that are associated with the tracked fiducials. The computer assisted system can further include a monitor or a head-mounted display (HMD) configured to present augmented reality (AR) images during a procedure.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: October 4, 2022
    Assignees: Smith & Nephew, Inc., Smith & Nephew Orthopaedics AG, Smith & Nephew Asia Pacific Pte. Limited
    Inventors: Gaëtan Marti, Maurice Hälg, Ranjith Steve Sivagnanaselvam
  • Patent number: 11455726
    Abstract: Disclosed herein are methods for identifying polyps or lesions in a colon. In some variations, computer-implemented methods for polyp detection may be used in conjunction with an endoscope system to analyze the images captured by the endoscopic system, identify any polyps and/or lesions in a visual scene captured by the endoscopic system, and provide an indication to the practitioner that a polyp and/or lesion has been detected.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: September 27, 2022
    Assignee: PSIP LLC
    Inventors: Salmaan Hameed, Giau Nguyen
  • Patent number: 11445891
    Abstract: One embodiment provides a device, method, and wireless endoscope. The wireless endoscope includes a light integrated in a first portion. The wireless endoscope also includes a lens positioned proximate the light in the first portion. The light and the lens are inserted into a body. The first portion is interchangeable. The wireless endoscope also includes a connector physically securing the first portion to the second portion. The second portion is not inserted into the body. The wireless endoscope also includes a camera capturing video content received through the lens. The wireless endoscope also includes a wireless transmitter transmits the video content to a receiver associated with a displaying device.
    Type: Grant
    Filed: May 26, 2020
    Date of Patent: September 20, 2022
    Assignee: Treble Innovations, LLC
    Inventors: Ian Joseph Alexander, Brian Dean Owens
  • Patent number: 11445896
    Abstract: Methods for capturing and transmitting images by an in-vivo device comprise operating a pixel array in a superpixel readout mode to capture probe image, for example, according to a time interval. Concurrently to capturing of each probe image, the probe image is evaluated alone or in conjunction with other probe image(s), and if it is determined that no event of interest is detected by the last probe image, or by the last few probe images, the pixel array is operated in the superpixel readout mode and a subsequent probe image is captured. However, if it is determined that the last probe image, or the last few probe images, detected an event of interest, the pixel array is operated in a single pixel readout mode and a single normal image, or a series of normal image, is captured and transmitted, for example, to an external receiver.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: September 20, 2022
    Assignee: Given Imaging Ltd.
    Inventors: Ron Nadiv, Ori Hay, Moran Horesh, Dori Peleg, Stas Rozenfeld
  • Patent number: 11443431
    Abstract: The disclosed method encompasses using an augmented reality device to blend in augmentation information including for example atlas information. The atlas information may be display separately from or in addition to a patient image (planning image). In order to display the atlas information in a proper position relative to the patient image, data the two data sets are registered to one another. This registration can serve for generating a diversity of atlas-based image supplements, for example alternatively or additionally to the foregoing for displaying a segmentation of the patient image in the augmented reality image. The disclosed method is usable in a medical environment such as for surgery or radiotherapy.
    Type: Grant
    Filed: March 22, 2017
    Date of Patent: September 13, 2022
    Assignee: Brainlab AG
    Inventors: Sven Flossmann, Samuel Kerschbaumer, Nils Frielinghaus, Christoffer Hamilton
  • Patent number: 11435233
    Abstract: In part, the invention relates to systems and methods of calibrating a plurality of frames generated with respect to a blood vessel as a result of a pullback of an intravascular imaging probe being pullback through the vessel. A calibration feature disposed in the frames that changes between a subset of the frames can be used to perform calibration. Calibration can be performed post-pullback. Various filters and image processing techniques can be used to identify one or more feature in the frames including, without limitation, a calibration feature, a guidewire, a side branch, a stent strut, a lumen of the blood vessel, and other features. The feature can be displayed using a graphic user interface.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: September 6, 2022
    Assignee: LightLab Imaging, Inc.
    Inventors: Joel M. Friedman, Amr Elbasiony
  • Patent number: 11432878
    Abstract: Systems and methods are described herein to generate a 3D surface scan of a surface profile of a patient's anatomy. The 3D surface scan may be generated by reflections of structured light off the surface profile of the anatomy. The 3D surface scan may be used during intra-operative surgical navigation by a localization system. Optionally, a pre-operative medical image may also be registered to the localization system or used to enhance the 3D surface scan.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: September 6, 2022
    Assignee: INTELLIJOINT SURGICAL INC.
    Inventors: Andre Novomir Hladio, Richard Tyler Fanson, Luke Becker, Arash Abadpour, Joseph Schipper
  • Patent number: 11435823
    Abstract: The present disclosure describes systems and methods that enable eye-tracking by steering a light signal in a high-density Lissajous pattern over a region of an eye and detecting light reflected from the eye using a non-imaging photodetector configuration. The light signal is scanned by driving each axis of a two-axis MEMS scanner with a periodic signal having a frequency that is based on the resonant frequency of that axis. By choosing periodic signals having frequencies that give rise to precession of the Lissajous pattern at a high rate, a high-density scan pattern is quickly generated, thereby enabling eye tracking with high spatial resolution and low latency.
    Type: Grant
    Filed: January 6, 2021
    Date of Patent: September 6, 2022
    Assignee: ADHAWK MICROSYSTEMS
    Inventors: Niladri Sarkar, Nino Zahirovic, Fan Yang
  • Patent number: 11432749
    Abstract: A non-contact brain blood oxygen detecting system includes a mobile terminal device. The mobile terminal device includes a control module, a transmitting module, a receiving module and a display module. The control module is connected to the transmitting module, the receiving module and the display module, respectively. The transmitting module in the mobile terminal device is configured to emit dual-wavelength near-infrared light to a detected subject. The receiving module is configured to receive a light signal after propagation fed back by the detected subject, and to perform data conversion on the received light signal to obtain a digital signal containing blood oxygen information. The control module is configured to obtain the blood oxygen information of the detected subject according to the digital signal obtained by the receiving module. The display module is configured to display the blood oxygen information obtained by the control module.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: September 6, 2022
    Assignee: INSTITUTE OF AUTOMATION, CHINESE ACADEMY OF SCIENCES
    Inventors: Tianzi Jiang, Xin Zhang, Nianming Zuo
  • Patent number: 11428948
    Abstract: A blur compensation system includes: a mirror on which light of an image from a predetermined position is incident and which reflects light of a specific wavelength such that an incidence angle and an emission angle of the light of the specific wavelength are different from each other; a mirror that is disposed at a position on which the light of an image which is reflected by the mirror is incident and reflects the light of the specific wavelength such that an incidence angle and an emission angle of the light of the specific wavelength are different from each other; and a lens that is disposed on an optical axis of the light of an image between the mirror and the mirror and changes a direction of the light of an image which is reflected by the mirror such that light of a wavelength other than the specific wavelength out of the light of an image which is reflected by the mirror is emitted in the same direction as the light of the specific wavelength from an emission position of the light of the specific wave
    Type: Grant
    Filed: December 26, 2017
    Date of Patent: August 30, 2022
    Assignees: NTT DOCOMO, INC., TOKYO INSTITUTE OF TECHNOLOGY
    Inventors: Shinji Kimura, Kazuhiko Takahashi, Yuji Aburakawa, Masahiro Yamaguchi, Tomoya Nakamura, Shunsuke Igarashi
  • Patent number: 11419501
    Abstract: A light source device configured to irradiate an object with visible light and excitation light, an imaging device including a first substrate on which a plurality of first photoelectric conversion elements configured to detect a visible light within reflected light from the object are formed, a second substrate on which a plurality of second photoelectric conversion elements configured to detect light of an infrared region within the reflected light transmitted through the first substrate are formed, and an interlayer filter configured to attenuate the light of the visible region transmitted through the first substrate, and a setting device configured to set a light emission intensity of the visible light radiated by the light source device so that first photoelectric conversion elements is able to detect the visible light and a detection value of light detected by second photoelectric conversion element become less than or equal to a predetermined value.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: August 23, 2022
    Assignee: OLYMPUS CORPORATION
    Inventor: Shuichi Kato
  • Patent number: 11412202
    Abstract: A digital loupe system is provided which can include a number of features. In one embodiment, the digital loupe system can include a stereo camera pair and a distance sensor. The system can further include a processor configured to perform a transformation to image signals from the stereo camera pair based on a distance measurement from the distance sensor and from camera calibration information. In some examples, the system can use the depth information and the calibration information to correct for parallax between the cameras to provide a multi-channel image. Ergonomic head mounting systems are also provided. In some implementations, the head mounting systems can be configurable to support the weight of a digital loupe system, including placing one or two oculars in a line of sight with an eye of a user, while improving overall ergonomics, including peripheral vision, comfort, stability, and adjustability. Methods of use are also provided.
    Type: Grant
    Filed: April 12, 2021
    Date of Patent: August 9, 2022
    Assignee: Photonic Medical Inc.
    Inventor: Alex Hegyi
  • Patent number: 11399717
    Abstract: Hyperspectral, fluorescence, and laser mapping imaging with a minimal area image sensor are disclosed. A system includes an emitter for emitting pulses of electromagnetic radiation and an image sensor comprising a pixel array for sensing reflected electromagnetic radiation, wherein the pixel array comprises active pixels and optical black pixels. The system includes a black clamp circuit providing offset control for data generated by the pixel array. The system is such that at least a portion of the pulses of electromagnetic radiation emitted by the emitter comprises one or more of: electromagnetic radiation having a wavelength from about 513 nm to about 545 nm; electromagnetic radiation having a wavelength from about 565 nm to about 585 nm; electromagnetic radiation having a wavelength from about 900 nm to about 1000 nm; an excitation wavelength of electromagnetic radiation that causes a reagent to fluoresce; or a laser mapping pattern.
    Type: Grant
    Filed: February 17, 2021
    Date of Patent: August 2, 2022
    Inventors: Joshua D. Talbert, Donald M. Wichern
  • Patent number: 11389107
    Abstract: Embodiments relate to an apparatus for evaluating skin tightening and a method for evaluating skin tightening by using the same, the apparatus comprising: a suction device for suctioning skin by a predetermined pressure for a predetermined time; a height measurement unit for measuring the height of the skin, which is changed by the suctioning; and a skin tightening evaluation unit for evaluating the degree of skin tightening on the basis of the measured height.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: July 19, 2022
    Assignee: AMOREPACIFIC CORPORATION
    Inventors: Ji Yeon Han, Eun Joo Kim, Hae Kwang Lee
  • Patent number: 11382487
    Abstract: In various embodiments, a scope-based imaging system is introduced. An optical sensor assembly located at the tip of the scope may include the CMOS sensors, filters, and lenses/mirrors, to perform fluorescence imaging using the scope.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: July 12, 2022
    Assignee: Curadel, LLC
    Inventor: John V. Frangioni
  • Patent number: 11375918
    Abstract: Methods of characterizing the brain of a subject, comprising: (a) performing a multispectral multislice magnetic resonance scan on the brain of a subject, (b) storing image data indicative of a plurality of magnetic resonance weightings of each of a plurality of slices of the brain of the subject to provide directly acquired images, (c) processing the directly acquired images to generate a plurality of quantitative maps of the brain indicative of a plurality of qMRI parameters of the subject, (d) constructing a plurality of magnetic resonance images indicative of white matter structure from the quantitative maps, and (e) generating a spatial entropy map of the brain of the subject from the plurality of magnetic resonance images; and/or generating a myelin water map of the brain of the subject from the plurality of magnetic resonance images.
    Type: Grant
    Filed: November 25, 2020
    Date of Patent: July 5, 2022
    Assignees: Boston Medical Center Corporation, Trustees of Boston University
    Inventors: Hernan Jara, Ryan McNaughton
  • Patent number: 11369268
    Abstract: A brain-function image data augmentation method includes: a step of providing a target database including a plurality of image-data information; a step of, based on a plurality of image-data expected information in an expectation-value database, calculating a ratio of the plurality of image-data expected information with respect to different ages; a step of, based on the plurality of image-data information and the ratio, obtaining image-data ratio information with respect to an estimated age; a step of establishing a relationship for each pair of the image-data information and the image-data expected information; a step of, based on the relationship, the ratio and the image-data information, calculating an estimated image-data information with respect to the estimated age; and, a step of combining linearly the estimated image-data information and the image-data ratio information so as to generate an augmented image-data information with respect to the estimated age.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: June 28, 2022
    Assignee: INSTITUTE OF NUCLEAR ENERGY RESEARCH, ATOMIC ENERGY COUNCIL, EXECUTIVE YUAN, R.O.C
    Inventors: Fan-Pin Tseng, Yu-Ching Ni, Wen-Bin Lin
  • Patent number: 11367200
    Abstract: A method for determining the image position of a marker point (3) in an image of an image sequence including the method steps of: setting (S2) a marker point in a first image (1) of the image sequence, determining (S4) a transformation at least between corresponding portions of the first image (1) and a second image (4) of the image sequence, transforming (S5) at least the portion of the first image (1) or the portion of the second image (4) on the basis of the transformation determined, localizing (S6) the marker point (3) in the transformed portion of the image (4?), and mapping (S7) the localized marker point into the second image (4) on the basis of the determined transformation.
    Type: Grant
    Filed: June 17, 2020
    Date of Patent: June 21, 2022
    Assignee: Scholly Fiberoptic GmbH
    Inventors: Michael Kronenthaler, Frank Hassenpflug
  • Patent number: 11357569
    Abstract: Described herein is a system including a catheter, an optical circuit, a pulsed field ablation energy source, and a processing device. The catheter includes a proximal section, a distal section, and a shaft coupled between the proximal section and the distal section. The optical circuit is configured to transport light at least partially from the proximal section to the distal section and back. The pulsed field ablation energy source is coupled to the catheter and configured to transmit pulsed electrical signals to a tissue sample. The processing device is configured to analyze one or more optical signals received from the optical circuit to determine changes in polarization or phase retardation of light reflected or scattered by the tissue sample, and determine changes in a birefringence of the tissue sample based on the changes in polarization or phase retardation.
    Type: Grant
    Filed: January 13, 2021
    Date of Patent: June 14, 2022
    Assignee: Medlumics S.L.
    Inventors: Jorge Jimenez, David Herranz, James Greene, Michael Nagy, Tyler Panian, Juan Sancho, Matthieu Duperron
  • Patent number: 11357478
    Abstract: A mechanical vibration source for a shear wave elastography system has a contact surface shaped to provide a point source of mechanical energy when striking a target surface of a medium. This point source usefully mitigates high frequency components and other artifacts in an induced shear wave. Other techniques may be used in combination with this mechanical energy source to improve shear wave elastography and facilitate miniaturization for deployment, e.g., within a handheld imaging device.
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: June 14, 2022
    Assignee: Massachusetts Institute of Technology
    Inventors: Heng Yang, Brian W. Anthony, Felix Jan van de Donk
  • Patent number: 11350861
    Abstract: A method and system for measuring oxygen levels and various blood constituents utilizing a sensor having one or more light sources, and one or more light detectors is disclosed. The system is capable of using data collected by the one or more detectors from a non-monochromatic light source to provide accurate information during motion events occurring with an extremity the sensor. The system is also capable of detecting and providing an alert if the sensor is not properly placed on a patient or becomes disengaged therefrom.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: June 7, 2022
    Assignee: Medtor, Inc.
    Inventor: Thomas Dietiker
  • Patent number: 11356651
    Abstract: The present invention relates to a head mount system for providing a surgery support image, the system including: a head mount body wearable on a user's head; a near-infrared camera installed on the head mount body and capturing near-infrared light; a near-infrared image projection unit installed on the head mount body and projecting a near-infrared image; a near-infrared image processing unit receiving a captured image taken by the near-infrared camera, generating the near-infrared image, and transmitting the near-infrared image to the near-infrared image projection unit; and a transparent optic system installed on the head mount body to be positioned in front of user's eyes when the head mount body is worn on the user's head, transmitting visible light to enable a user to see a user's front, reflecting the near-infrared light coming from the user's front to the near-infrared camera to allow the near-infrared camera to capture the near-infrared light.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: June 7, 2022
    Assignee: Korea University Research and Business Foundation
    Inventors: Beop-Min Kim, Yong-Guk Kang, Ki-Hyeok Kwon
  • Patent number: 11348227
    Abstract: Methods and systems for analyzing images are disclosed. An example method may comprise inputting one or more of a first image or a second image into a fully convolutional network, and determining an updated fully convolutional network by optimizing a similarity metric associated with spatially transforming the first image to match the second image. The one or more values of the fully convolutional network may be adjusted to optimize the similarity metric. The method may comprise registering one or more of the first image or the second image based on the updated fully convolutional network.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: May 31, 2022
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Yong Fan, Hongming Li
  • Patent number: 11338101
    Abstract: An oxygen supply device supplying a user with an oxygen gas for inhalation acquires information of the user on percutaneous arterial oxygen saturation (SpO2) using a sensor unit, and calculates, from SpO2, the first moving average value and the second moving average value calculated over a time span longer than the first moving average in a control unit. The control unit calculates a Dip frequency during predetermined time from the SpO2 information, and when the calculated frequency is equal to or larger than the first threshold, the control unit switches the control from the control based on the first moving average value of SpO2 to the control based on the second moving average value.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: May 24, 2022
    Assignee: Teijin Pharma Limited
    Inventors: Ryo Koizumi, Sadayoshi Matsumoto
  • Patent number: 11330973
    Abstract: An endoscopic system includes a single-use portion and a multiple-use portion. The two portions can be mated and un-mated. The single-use portion includes an elongated cannula that has a bendable section near its distal end providing a “steerable” distal tip. The imaging system includes at least two separate cameras and two separate light sources. The camera and light sources are configured to simultaneously image a target object. By employing different illuminations, different filters and manipulating the spectral responses, different characteristics of the target object can be captured. According to some embodiments, a system processor can coordinate the cameras, the light sources and combine the resulting images to display to an operator an enhanced combined image the object.
    Type: Grant
    Filed: September 13, 2021
    Date of Patent: May 17, 2022
    Assignee: MicronVision Corp
    Inventors: Xiaolong Ouyang, Shih-Ping Wang
  • Patent number: 11317787
    Abstract: The disclosed subject matter includes devices and systems for extending the imaging capability of swept, confocally aligned planar excitation (SCAPE) microscopes to in vivo applications. In embodiments, the SCAPE microscope can be implemented as an endoscopic or laparoscopic inspection instrument.
    Type: Grant
    Filed: October 20, 2020
    Date of Patent: May 3, 2022
    Assignee: The Trustees of Columbia University in the City of New York
    Inventor: Elizabeth Marjorie Clare Hillman
  • Patent number: 11316318
    Abstract: A surgical laser system includes a pump module configured to produce pump energy within an operating wavelength, a gain medium configured to convert the pump energy into first laser energy, a non-linear crystal (NLC) configured to convert a portion of the first laser energy into second laser energy, which is a harmonic of the first laser energy, an output, and a first path diversion assembly having first and second operating modes. When the first path diversion assembly is in the first operating mode, the first laser energy is directed along the output path to the output, and the second laser energy is diverted from the output path and the output. When the first path diversion assembly is in the second operating mode, the second laser energy is directed along the output path to the output, and the first laser energy is diverted from the output path and the output.
    Type: Grant
    Filed: September 9, 2019
    Date of Patent: April 26, 2022
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Honggang Yu, Rongwei Jason Xuan, Jian James Zhang
  • Patent number: 11294062
    Abstract: Systems, methods, and devices for laser mapping and color imaging with increased dynamic range are disclosed. A system includes an emitter for emitting pulses of electromagnetic radiation and an image sensor comprising a pixel array for sensing reflected electromagnetic radiation, wherein the pixel array comprises a plurality of pixels each configurable as a short exposure pixel or a long exposure pixel. The system includes a controller comprising a processor in electrical communication with the image sensor and the emitter.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: April 5, 2022
    Inventors: Joshua D. Talbert, Donald M. Wichern
  • Patent number: 11284785
    Abstract: Controlling integral energy of a light pulse in a hyperspectral, fluorescence, and laser mapping imaging system is disclosed. A system includes an emitter for emitting pulses of electromagnetic radiation and an image sensor comprising a pixel array for sensing reflected electromagnetic radiation. The system includes an electromagnetic sensor for sensing energy emitted by the emitter. The system includes a controller configured to synchronize timing of the emitter and the image sensor. The system is such that at least a portion of the pulses of electromagnetic radiation emitted by the emitter comprises one or more of a hyperspectral emission, a fluorescence emission, or a laser mapping pattern.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: March 29, 2022
    Inventors: Joshua D. Talbert, Donald M. Wichern
  • Patent number: 11284801
    Abstract: A method to visualize, display, analyze and quantify angiography, perfusion, and the change in angiography and perfusion in real time, is provided. This method captures image data sequences from indocyanine green near infra-red fluorescence imaging used in a variety of surgical procedure applications, where angiography and perfusion are critical for intraoperative decisions.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: March 29, 2022
    Assignee: Stryker European Operations Limited
    Inventors: T. Bruce Ferguson, Jr., Cheng Chen
  • Patent number: 11282132
    Abstract: The present invention relates to frameworks and methodologies configured to enable generation and utilisation of three-dimensional body scan data. Various embodiments are described by reference to applications by which body scan data is collected, and/or subsequently utilised in the context of providing downstream functionalities, for example in the context of enabling users and/or business derive benefit from three-dimensional body scan data.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: March 22, 2022
    Assignee: mPort Ltd
    Inventors: Tsung-Yuan Wu, Dipra Ray
  • Patent number: 11278210
    Abstract: The pulse wave detecting device includes a sensor section in which two element rows consisting of a plurality of pressure detecting elements arranged in a direction B are arranged in a direction A perpendicular to the direction B, and an air bag pressing the sensor section to a body surface in a state that the direction B intersects a direction in which an artery below the body surface of a living body. An arrangement interval between the two element rows in the direction A is 5 mm or more and 15 mm or less.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: March 22, 2022
    Assignee: OMRON HEALTHCARE CO., LTD.
    Inventors: Tsuyoshi Kitagawa, Shingo Yamashita, Toshihiko Ogura, Masayuki Fukutsuka, Daizo Oka, Naomi Matsumura, Kentaro Mori, Hiroyuki Kinoshita, Masayuki Wakamiya
  • Patent number: 11278248
    Abstract: A catheter system includes a catheter body, an imaging sensor, a drive motor, a current sensor, a display, and a controller. The catheter body includes a drive shaft. The imaging sensor is fixed relative to the distal end of the driveshaft and is configured to rotate therewith. The drive motor is configured to rotate the drive shaft. The current sensor is configured to measure an amount of current drawn by the drive motor as the drive shaft is rotated. The display is configured to display one or more images obtained by the imaging sensor as the imaging sensor is rotated. The controller is configured to adjust a rotational orientation of the one or more images displayed by the display based upon the measured current.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: March 22, 2022
    Assignee: Avinger, Inc.
    Inventor: Bjarne B. Christensen
  • Patent number: 11273002
    Abstract: A display system includes an irradiator, an imager, an image generator, a projector, a display, and an adjuster. The irradiator irradiates an object with light having a wavelength in an invisible light region. The imager captures an invisible light image based on light excited by the light having the wavelength in the invisible light region, and a visible light image based on light in a visible light region, in the object. The image generator generates a projection image based on the invisible light. The projector projects the projection image onto the object with visible light. The display displays the invisible light image, the visible light image and the projection image in a superimposed manner with each other. The adjuster adjusts the projection image on the display, based on a user operation. The projector projects the projection image adjusted by the adjuster.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: March 15, 2022
    Assignee: PANASONIC CORPORATION
    Inventor: Masaaki Nakamura
  • Patent number: 11272984
    Abstract: Systems and methods are provided in which devices that are employed during a medical procedure are adaptively configured during the medical procedure, based on input or feedback that is associated with the current state, phase or context of the medical procedure. In some example embodiments, the input is obtained via the identification of one or more medical instruments present within a region of interest, and this input may be employed to determine configuration parameters for configuring the device. In other example embodiments, the input may be based on the image-based detection of a measure associated with the phase or context of the medical procedure, and this input may be employed to adaptively control the device based on the inferred context or phase of the medical procedure. In other embodiments, images from one imaging modality may be employed to adaptively switch to another imaging modality.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: March 15, 2022
    Assignee: SYNAPTIVE MEDICAL INC.
    Inventors: Cameron Piron, Michael Wood, Gal Sela, Joshua Richmond, Murugathas Yuwaraj, Stephen McFadyen, Alex Panther, Nishanthan Shanmugaratnam, William Lau, Monroe M. Thomas, Wes Hodges, Simon Alexander, David Gallop
  • Patent number: 11266308
    Abstract: Provided are a method and a device for evaluating a tear fluid to objectively evaluate and determine the severity of dry eye or the like. Color information is acquired in a predetermined region of a tear fluid interference fringe image, a numerical value representing a color diversity is calculated from the color information acquired, and the numerical value representing the color diversity thus calculated is used as an index for evaluating a tear fluid state.
    Type: Grant
    Filed: May 29, 2017
    Date of Patent: March 8, 2022
    Assignee: Kowa Company, Ltd.
    Inventor: Katsumi Yabusaki
  • Patent number: 11244452
    Abstract: A system for non-invasive hematological measurements includes a platform to receive a body portion of a user and an imaging device to acquire a set of images of a capillary bed in the body portion. For each image, a controller detects one or more capillaries in the body portion of the finger to identify a first set of capillaries by estimating one or more attributes of each capillary (e.g., structural attributes, flow attributes, imaging attributes, or combinations thereof), wherein at least one attribute of each capillary meets a predetermined criterion. The controller also identifies a second set of capillaries from the first set of capillaries such that each capillary of the second set of capillaries is visible in a predetermined number of images of the set of images.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: February 8, 2022
    Assignee: Massachusetts Institute of Technology
    Inventors: Carlos Castro-Gonzalez, Ian Butterworth, Aurelien Bourquard, Alvaro Sanchez-Ferro, Jason Tucker-Schwartz, Alberto Pablo-Trinidad, Maria J. Ledesma-Carbayo, Tom Vettenburg
  • Patent number: 11235169
    Abstract: An Illumination device (100) for photodynamic therapy is provided, the illumination device comprising at least one electromagnetic radiation emitting unit (10), the at least one electromagnetic radiation emitting unit comprising at least one electromagnetic radiation source (1), the electromagnetic radiation source being configured to generate radiation for the irradiation of a region of an irradiation object in an illumination session, wherein the irradiation object is to be arranged at a predetermined object location (300), wherein the predetermined object location is arranged at a distance relative to a radiation output area (11) of the radiation emitting unit through which the radiation generated by the at least one electromagnetic radiation source exits the radiation emitting unit during operation of the illumination device (100).
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: February 1, 2022
    Assignee: BIOFRONTERA PHARMA GMBH
    Inventors: Markus Osterloh, Ben Novak, Hermann Lübbert
  • Patent number: 11234751
    Abstract: Systems, methods, and other embodiments associated with characterizing Radio Frequency Ablation (RFA) lesions using Optical Coherence Tomography (OCT) are described. One example method includes acquiring an OCT signal from a Region Of Interest (ROI) in an ablated material. The example method may also include determining whether a lesion was formed by the ablation by analyzing optical properties of the ROI as recorded in the OCT signal.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: February 1, 2022
    Assignee: CASE WESTERN RESERVE UNIVERSITY
    Inventors: Andrew M. Rollins, Christine P. Fleming
  • Patent number: 11231779
    Abstract: A brain computer interface (BCI) module includes a flexible printed circuit assembly (FPCA) configured to conform to the head of a user. A plurality of emitters and a plurality of detectors are mounted on the FPCA. Each emitter of the plurality is configured to emit light towards the head of the user and each detector is configured to detect the emitted light. An array of ferrules is additionally mounted to the FPCA such that each ferrule of the array encases an emitter or a detector. The BCI module additionally includes a controller that is configured to receive an optical signal detected by a detector of the plurality and to encode the detected signal into a biological signal.
    Type: Grant
    Filed: August 21, 2020
    Date of Patent: January 25, 2022
    Assignee: Meta Platforms, Inc.
    Inventors: John Michael Sundberg, Frances Wing Yee Lau, E-Fann Saung, Ealgoo Kim
  • Patent number: 11224393
    Abstract: A fluoroscopy system includes a fluoroscopy device, an indicating assembly and a center control device. The fluoroscopy device includes a contoured support arm, an X-ray emitting unit, an X-ray sensor and a display unit. The contoured support arm has a first end part and a second end part opposite to the first end part. The X-ray emitting unit is located on the first end part and is configured to emit an X-ray. The X-ray sensor is located on the second end part to sense the X-ray. The display unit is electrically connected to the X-ray sensor. The indicating assembly is located near the contoured support arm and includes a plurality of light emitting units. Each of the plurality of light emitting units is rotatable and configured to emit a light plane. The center control device is electrically connected to the fluoroscopy device and the indicating assembly.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: January 18, 2022
    Inventors: Chen-Kun Liaw, Tai-Yin Wu
  • Patent number: 11215902
    Abstract: Example implementations relate to ferromagnetic covers. For instance, in an example housing can include a bezel including first opening extending through a recess included in the bezel, a first magnet and a second magnet in an internal volume of the housing, and a ferromagnetic cover disposed in the recess and magnetically coupled to the first magnet and the second magnet, where the ferromagnetic cover includes a second opening to obscure a viewing portion of the first opening with the continuous portion when the ferromagnetic cover is positioned adjacent to a first side surface of the recess.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: January 4, 2022
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Derek Kanas, Tony Moon, Chan-Woo Park
  • Patent number: 11207040
    Abstract: The invention concerns a dental imaging apparatus comprising: —a support frame, —a movable gantry that comprises two opposite arms respectively supporting an x-ray source and an x-ray sensor facing the x-ray source, —a movable patient positioning arm connected to the support frame, —two cameras positioned on the gantry arm supporting the x-ray source and on the positioning arm so as to respectively acquire side and front images of a patient's head, —a display assembly configured to simultaneously display in real time a side image and a front image of the patient's head taken by the two cameras.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: December 28, 2021
    Inventors: Stephane Varlet, Olivier Nesme, Laurent Boutte, Aude Lagardere, Stephane Alric
  • Patent number: 11202675
    Abstract: The present invention relates to a computer-implemented medical data processing method, a corresponding computer program and a corresponding system for planning an implant placement into an anatomical structure of a patient, which allows a user to modify the implant placement within a frame defined by predefined requirements that have to be fulfilled for achieving a desired medical outcome.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: December 21, 2021
    Assignee: BRAINLAB AG
    Inventors: Joerg Uhde, Thomas Drexl, Martin Koestler
  • Patent number: 11200665
    Abstract: A fundus image processing method comprising: receiving a collected fundus image; identifying the fundus image via a first neural network to generate a first feature set of the fundus image; identifying the fundus image via a second neural network to generate a second feature set of the fundus image, wherein the first feature set and the second feature set indicate different lesion attributes of the fundus image; combining the first feature set and the second feature set to obtain a combined feature set of the fundus image; and inputting the combined feature set into a classifier to obtain a classification result.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: December 14, 2021
    Assignees: SHANGHAI SIXTH PEOPLE'S HOSPITAL, SHANGHAI JIAO TONG UNIVERSITY
    Inventors: Weiping Jia, Bin Sheng, Huating Li, Ling Dai
  • Patent number: 11185225
    Abstract: An ophthalmic surgical microscope includes a beam coupler positioned along an optical path of the surgical microscope between a first eyepiece and magnifying/focusing optics, the beam coupler operable to direct the OCT imaging beam along a first portion of the optical path of the surgical microscope between the beam coupler and a patient's eye (an OCT image being generated based on a reflected portion of the OCT imaging beam). The surgical microscope additionally includes a real-time data projection unit operable to project the OCT image generated by the OCT system and a beam splitter positioned along the optical path of the surgical microscope between a second eyepiece and the magnifying/focusing optics. The beam splitter is operable to direct the projected OCT image along a second portion of the optical path of the surgical microscope between the beam splitter and the second eyepiece such that the projected OCT image is viewable through the second eyepiece.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: November 30, 2021
    Assignee: Alcon Inc.
    Inventors: Tammo Heeren, Hugang Ren, Vadim Shofman, Lingfeng Yu
  • Patent number: 11187581
    Abstract: Disclosed is an optical micro-spectrometry system including an optical microscope, a spectrometry system and an optical system adapted to direct an excitation light beam on the sample through the at least one microscope objective and to collect a Raman or PL light beam from a sample. The optical micro-spectrometry system includes an imaging system configured for acquiring a first image and a second image of the sample, by reflection or transmission of an illumination beam from a sample surface, the first image having a large field of view and the second image having a small field of view, a processing system configured for determining an area in the first image corresponding to the second image, a display system configured for displaying the first image, the second image, and a third image representing the area in overlay on the first image.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: November 30, 2021
    Assignee: HORIBA FRANCE SAS
    Inventors: Alexandre Kokota, Vasyl Shynkar, Cédric Marchessoux
  • Patent number: 11179080
    Abstract: Embodiments herein relate to systems and methods for rapidly calibrating optical medical sensors. In an embodiment, a method can include placing a reflective optical medical sensor device on or in a patient. The reflective optical medical sensor device can include one or more optical emitters; one or more optical detectors; and a measurement circuit having one or more transimpedance amplifiers (TIA). The method can include setting the TIA to a fixed gain value and then turning on the optical emitter associated with each spatially unique measurement vector and receiving reflected light with the associated optical detector for each spatially unique measurement vector at the same fixed gain value. The method can include assessing the signal-to-noise (SNR) for each spatially unique measurement vector and selecting the spatially unique measurement vector having the highest SNR. Other embodiments are also included herein.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: November 23, 2021
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: George Wilfred Duval, Gang Hu
  • Patent number: 11179574
    Abstract: A method of administering 5-aminolevulinic acid (ALA) to a patient uses an adjustable illuminator for photodynamically diagnosing or treating a surface and which includes a plurality of first panels and at least one second panel. The plurality of first panels have wider widths and the at least one second panel has a narrower width. The narrower width is less than the wider widths. The illuminator further includes a plurality of light sources, each mounted to one of the plurality of first panels or the at least one second panel and configured to irradiate the surface with substantially uniform intensity visible light. The plurality of first panels and the at least one second panel are rotatably connected. The at least one second panel is connected on each side to one of the plurality of first panels. The second panel acts as a “lighted hinge” to reduce or eliminate optical dead spaces between adjacent panels when the illuminator is bent into a certain configuration.
    Type: Grant
    Filed: September 2, 2020
    Date of Patent: November 23, 2021
    Assignee: DUSA PHARMACEUTICALS, INC.
    Inventors: Thomas Boyajian, Mark Carota, Brian Mazejka