Integrated Circuit Arrangement
An integrated circuit arrangement has a signal input 20 and a signal output 60, a signal processing unit 100 which is connected to the signal input 20 and to the signal output 60, a noise source 50 for generating a noise signal, and a noise line 55 which connects the noise source 50 to the signal input 20.
Latest Infineon Technologies AG Patents:
- Semiconductor device arrangement with compressible adhesive
- Real-time chirp signal frequency linearity measurement
- Accelerating processor based artificial neural network computation
- Power semiconductor device
- Power semiconductor module, power electronic assembly including one or more power semiconductor modules, and power conversion control circuit for a power semiconductor module
This application is a Continuation of U.S. patent application Ser. No. 11/680,869 filed on Mar. 1, 2007 that claims priority from German Patent Application No. DE 10 2007 007 357.9, which was filed on Feb. 14, 2007, which is incorporated herein by reference in its entirety.
TECHNICAL FIELDElectronic components and chips are tested during production or following production. Automatic test apparatuses (automatic test equipment, ATE) may be used, for example, to subject chips or electronic components to marginal tests, parameter tests or functional tests.
BACKGROUNDIn this context, measurements of the noise behavior of integrated circuits are very important since integrated circuits are generally exposed to various noise signals during operation. Therefore, against the background of continually increasing quality demands of consumers, cost-effective test methods which make it possible to characterize the noise behavior of integrated circuits in a simple and accurate manner are desirable.
SUMMARYAccording to an embodiment, an integrated circuit arrangement may have a signal input and a signal output, a signal processing unit which is connected to the signal input and to the signal output, a noise source for generating a noise signal, and a noise line which connects the noise source to the signal input.
Embodiments will be described below with reference to exemplary embodiments which are shown in the appended figures. However, the invention is not restricted to the specifically described exemplary embodiments but rather may be modified and varied in a suitable manner. It is within the scope of the invention to combine individual features and combinations of features of one exemplary embodiment with features and combinations of features of another exemplary embodiment.
According to another embodiment, a method for testing an integrated circuit arrangement having a signal processing unit, which is connected to a signal input and to a signal output, a noise source and a first interruption unit, may comprises the following steps:
a) the integrated circuit arrangement is provided and is contact-connected to a measuring device at the signal output;
b) the output signal from the signal processing unit is measured at the signal output with respect to a noise signal having a first noise level; and
c) the output signal from the signal processing unit is measured at the signal output with respect to a noise signal having a second noise level.
According to another embodiment, a method for testing an integrated circuit arrangement having a signal processing unit, which is connected to a signal input and to a signal output, a noise source and a first interruption unit, may comprise the following steps:
a) the integrated circuit arrangement is provided with the interruption unit in a first state in which the signal flow of the noise signal from the noise source to the signal processing unit is allowed, and is contact-connected to a measuring device at the signal output;
b) the output signal from the signal processing unit is measured at the signal output with respect to the noise signal; and
c) after the measurement has been concluded, the first interruption unit is changed to a second state in which the signal flow of the noise signal from the noise source to the signal processing unit is interrupted.
As a result of the use of a noise source which is integrated in the chip of the circuit arrangement, the embodiment has the advantage that it is possible to characterize the noise behavior of the integrated circuit arrangement with a considerably lower degree of complexity.
In order to simplify understanding of the description, identical reference numbers are used below when identical elements which are used together in the figures are involved. Elements in one embodiment may also be used in another embodiment without this being individually mentioned in each case.
The integrated circuit arrangement also has a noise source 50 for generating a noise signal, said noise source being connected to the signal input 20 by means of a noise line 55. In this case, the signal input 20 comprises the connection pad 21 and the input signal line 22, and the signal output 60 comprises the connection pad 61 and the output signal line 62.
Hence, the practice of carrying out noise measurements on integrated circuits, for example “Microwave Monolithic Integrated Circuits”, so-called MMICs can be performed. In general, noise measurements on integrated circuits, in particular radio-frequency characterization of MMICs, are very costly since the measuring tips used in this case are very expensive and additionally have only a limited service life. It is also difficult to reproduce noise measurements, in particular RF measurements, for example in the mm wavelength range (for example at 77 GHz), since mechanical tolerances may frequently pass into the wavelength range of the test signals.
As a result of the use of a noise source which is integrated in the chip of the circuit arrangement, the embodiment has the advantage that it is possible to characterize the integrated circuit arrangement with a considerably lower degree of complexity. If a noise measurement is carried out using a noise source which is accommodated on the chip to be tested, the measuring tip which was usually used to apply the noise signal to the integrated circuit arrangement from the outside can be omitted.
In this case, the internal noise source serves the same purpose as an external noise source. The reproducibility of the noise source on the chip is very good. In addition, process control measurements (PCM) which take place anyway can be used to predict the characteristics of the noise source in a relatively accurate manner by means of correlation to the PCM measurements.
The integrated circuit arrangement also has a noise source 50 for generating a noise signal and a first interruption unit 80 which, in a first state, allows the signal flow of the noise signal from the noise source 50 to the signal processing unit 100 and, in a second state, interrupts the signal flow of the noise signal from the noise source 50 to the signal processing unit 100.
The following method for measuring noise can be carried out using the integrated circuit arrangement shown in
Then, in step b), the output signal from the signal processing unit is measured at the signal output with respect to the noise signal, and, in a step c), after the measurement has been concluded, the first interruption unit is changed to a second state in which the signal flow of the noise signal from the noise source to the signal processing unit is interrupted.
Using the interruption unit makes it possible to isolate the noise source from the signal processing unit after measurement has been carried out, thus largely preventing the integrated noise source from influencing subsequent operation of the signal processing unit. The noise source thus does not interfere with subsequent operation of the signal processing unit.
According to one preferred embodiment, the interruption unit has a switching element, a fuse and/or an antifuse. In this case, it is preferred for the transition between the first and second states of the interruption unit to be able to be implemented by means of an electrical current. Alternatively, the transition between the first and second states of the interruption unit can be implemented by means of a laser beam. Depending on the application, it may be preferred in this case for the first interruption unit to be changed to the second state in an irreversible manner.
If recurrent tests are intended to be allowed during operation of the signal processing unit in a system, it is preferred for the first interruption unit to be changed to the second state in a reversible manner.
The noise source 50 also has a control input 51 which can be used to control the noise source for the purpose of generating at least two different noise levels. Accordingly, the following method for measuring noise can also be carried out using the integrated circuit arrangement shown in
Then, in step b), the output signal from the signal processing unit is measured at the signal output with respect to a noise signal having a first noise level, and, in a step c), the output signal from the signal processing unit is measured at the signal output with respect to a noise signal having a second noise level.
For example, only the noise source 50 is thus activated and the noise power is measured at the output. The noise source 50 is then deactivated (switched off but not yet disconnected) and the noise power is measured again at the output. Finally, after a successful test, the noise source 50 can be disconnected by the interruption unit 80.
According to this preferred embodiment, the measurement is carried out using at least two different noise levels. If, for example, the noise source is connected between two different ENRs via a control input 51, two different noise levels are established at the IF output in the case of a mixer, for example. The noise properties of the signal processing unit 100 can be accurately determined on the basis of said noise levels.
In this case, the integrated noise source 50 behaves, on the input side, like an external calibrated noise source, which is pulsed, and provides two defined and different noise levels (ENRs) when switched on and switched off. On the output side, a so-called “Noise Figure Meter” can then be used to measure the change in the noise level for these two different input noise levels, from which the noise properties of the test object (DUT) can be derived. In the case of radio-frequency measurements, the measurement object need only be contact-connected to an RF measuring tip at a signal input LO in this case.
The integrated circuit arrangement also has a noise source 50 for generating a noise signal and a first interruption unit 80 which, in a first state, allows the signal flow of the noise signal from the noise source 50 to the signal processing unit 100 and, in a second state, interrupts the signal flow of the noise signal from the noise source 50 to the signal processing unit 100.
In this case, the signal input 20 has a connection pad 21 and an input signal line 22 and the interruption unit 80 is arranged in the immediate vicinity of the connection pad 21. As can be seen from the enlarged view in
If recurrent tests are intended to be allowed during operation of the signal processing unit in a system, it is preferred for a switching element 82 for the interruption unit 80 to be provided instead of a fuse 81. In this case, the switching element 82 is preferably likewise arranged in the vicinity of the connection pad 21 (
If the resistor 52 is heated by the heating unit 53, a corresponding noise signal is transmitted to the signal processing unit 100 by means of the noise line 55 and the noise behavior of said signal processing unit can be determined.
In this case,
The local signal source 150 is connected to the signal processing unit 100 by means of a transmission line 150. Therefore, it is possible to dispense with applying signals to the signal inputs 120, 130 when measuring noise in this embodiment.
The embodiment shown in
According to one preferred embodiment, the interruption unit has a switching element, a fuse and/or an antifuse. In this case, it is preferred for the transition between the first and second states of the interruption unit to be able to be implemented by means of an electrical current. Alternatively, the transition between the first and second states of the interruption unit can be implemented by means of a laser beam. Depending on the application, it may be preferred in this case for the second interruption unit to be changed to the second state in an irreversible manner.
If recurrent tests are intended to be allowed during operation of the signal processing unit in a system, it is preferred for the second interruption unit to be changed to the second state in a reversible manner.
Using the second interruption unit 180 makes it possible to isolate the signal source 150 from the signal processing unit 100 after measurement has been carried out, thus largely preventing the integrated signal source from influencing subsequent operation of the signal processing unit. The signal source thus does not interfere with subsequent operation of the signal processing unit.
If the embodiment shown in
In the case of a 77 GHz direct conversion mixer, as is used in automotive radar front ends, for example, the input-side noise source provides two defined noise levels. The on-chip local oscillator is activated and provides a 77 GHz signal which is used by the mixer to down-convert the RF noise spectrum into a signal around DC at the IF output. After a successful test, the noise source and the local oscillator are disconnected from the mixer by the interruption units and do not impair the actual function of the mixer.
Claims
1. An integrated circuit arrangement having:
- a signal input and a signal output;
- a signal processing unit which is connected to the signal input and to the signal output;
- a noise source for generating a noise signal and having a control input; and
- a noise line which connects the noise source to the signal input,
- wherein the components of the integrated circuit arrangement are integrated on a single integrated circuit chip.
2. The integrated circuit arrangement according to claim 1, comprising a first interruption unit which, in a first state, allows the signal flow of the noise signal to the signal input and, in a second state, interrupts the signal flow of the noise signal to the signal input.
3. The integrated circuit arrangement according to claim 2, wherein the interruption unit has a switching element, a fuse and/or an antifuse.
4. The integrated circuit arrangement according to claim 2, wherein the transition between the first and second states of the interruption unit is able to be implemented by means of an electrical current.
5. The integrated circuit arrangement according to claim 2, wherein the transition between the first and second states of the interruption unit is able to be implemented by means of irradiation, in particular with a laser beam.
6. The integrated circuit arrangement according to claim 2, wherein the signal input has a connection pad on the single integrated circuit chip and an input signal line, and the interruption unit is integrated on the single integrated circuit chip and is arranged in the immediate vicinity of the connection pad.
7. The integrated circuit arrangement according to claim 1, wherein the noise source has a resistor and/or an avalanche diode.
8. The integrated circuit arrangement according to claim 2, wherein the noise source has a heating unit.
9. The integrated circuit arrangement according to claim 2, wherein the noise source has an amplifier.
10. The integrated circuit arrangement according to claim 2, wherein the signal processing unit has a mixer, a demodulator and/or a filter.
11. The integrated circuit arrangement according to claim 2, wherein the circuit arrangement has a signal source which is connected to the signal processing unit by means of a signal line.
12. The integrated circuit arrangement according to claim 11, wherein the signal source is an RF oscillator, in particular a voltage-controlled RF oscillator.
13. The integrated circuit arrangement according to claim 11, comprising a second interruption unit which, in a first state, allows the signal flow to the signal processing unit and, in a second state, interrupts the signal flow to the signal processing unit.
14. The integrated circuit arrangement according to claim 2, wherein the circuit arrangement has at least two signal inputs for receiving a symmetrical input signal, said signal inputs being connected to a respective noise source by means of a respective noise line.
15. A method for testing an integrated circuit arrangement having a signal processing unit, which is connected to a signal input and to a signal output, and a noise source, wherein the components of the integrated circuit arrangement are integrated on a single integrated circuit chip, said method having the following steps:
- a) providing the integrated circuit arrangement and contact-connecting the integrated circuit arrangement to a measuring device at the signal output;
- b) measuring the output signal from the signal processing unit at the signal output with respect to a noise signal having a first noise level; and
- c) measuring the output signal from the signal processing unit at the signal output with respect to a noise signal having a second noise level that is different than the first noise level.
16. A method for testing an integrated circuit arrangement having a signal processing unit, which is connected to a signal input and to a signal output, a noise source and a first interruption unit, wherein the components of the integrated circuit arrangement are integrated on a single integrated circuit chip, said method having the following steps:
- a) providing the integrated circuit arrangement with the interruption unit in a first state in which the signal flow of the noise signal from the noise source to the signal processing unit is allowed, and contact-connected the integrated circuit arrangement to a measuring device at the signal output;
- b) measuring the output signal from the signal processing unit at the signal output with respect to the noise signal; and
- c) after the measurement has been concluded, changing the first interruption unit to a second state in which the signal flow of the noise signal from the noise source to the signal processing unit is interrupted;
- wherein the measurement is carried out with at least two different noise levels.
17. The method according to claim 16, wherein the first interruption unit is changed to a second state in an irreversible manner.
18. The method according to claim 16, wherein the first interruption unit is changed to the second state by means of irradiation, in particular with a laser.
19. The method according to claim 16, wherein the measurement is carried out while a signal is passed from a signal source of the circuit arrangement to the signal processing unit.
20. The method according to claim 19, wherein a second interruption unit is changed, after the measurement has been concluded, to a second state in which the signal flow from the signal source to the signal processing unit is interrupted.
21. The method according to claim 20, wherein the second interruption unit is changed to a second state in an irreversible manner.
22. The method according to claim 15, wherein the characteristics of the noise source is determined by means of process control measurements during the production process used.
23. An integrated circuit arrangement having: wherein the components of the integrated circuit arrangement are integrated on a single integrated circuit chip.
- a signal input and a signal output;
- a signal processing unit which is connected to the signal input and to the signal output;
- a noise source for generating a noise signal;
- a noise line which connects the noise source to the signal input; and
- a first interruption unit which, in a first state, allows the signal flow of the noise signal to the signal input and, in a second state, interrupts the signal flow of the noise signal to the signal input,
Type: Application
Filed: Jul 30, 2010
Publication Date: Dec 9, 2010
Applicant: Infineon Technologies AG (Neubiberg)
Inventor: Johann Peter Forstner (Steinhoering)
Application Number: 12/847,262
International Classification: G01R 27/28 (20060101); H03K 5/01 (20060101);