Moisture Sensitive Auxetic Material
An auxetic fiber and corresponding material that not only responds to an external force, but also responds to moisture. The auxetic fiber is made in part from a moisture activated shrinking filament. Even if no external force is applied to the fiber, a pseudo tensile force is created by wetting the auxetic fiber.
This application is a continuation of application Ser. No. 12/337,821 filed on Dec. 18, 2008. The entirety of application Ser. No. 12/337,821 is hereby incorporated by reference.
BACKGROUNDThis invention relates to auxetic materials, in particular, to a material comprising an array of interconnected moisture sensitive auxetic fibers.
Auxetic materials are materials that have a negative or effectively negative Poisson's ratio. In contrast to most conventional materials, auxetic materials possess the property that under a tensile load the material expands perpendicularly to the axis along which the tensile load is applied. In other words, auxetic materials expand as they are stretched. Conversely, materials are also auxetic if a compressive load applied along an axis results in a reduction in the dimension of the material along an axis perpendicular to the axis along which the compressive load is applied. Most materials exhibit a positive Poisson's ratio, this ratio being defined by the ratio of the contractile transverse strain relative to the tensile longitudinal strain.
Prior art auxetic materials are only activated by an applied external force and can essentially be divided into two categories. One category comprises honeycomb like polymeric materials, and the other category comprises materials formed by particles linked by fibrils. However, both of these categories of auxetic materials have significant drawbacks preventing commercialization on an industrial scale. In particular, there are problems in producing such auxetic materials reliably and cost-effectively using techniques which are suitable for commercialization. Recently in order to overcome above problems, a helical fiber was developed. However, the structural characteristics of all prior art auxetic materials made them unsuitable for use in devices or articles that are not exposed to an external force. Thus, what is needed is an auxectic material that not only uses a tensile force to create an auxetic effect and/or pores in the material, but uses a second catalyst for creating an auxetic effect and/or pores in the material.
SUMMARYOne aspect of the present invention is an auxetic fiber including a first component in the form of a moisture sensitive shrinkable filament, and a second component including an elastomeric material, wherein the first component is wrapped about the second component in a helical configuration. The first component is made from one or more of the following materials: modified cellulose fibers, rayon, cotton, carboxymethylated cotton, methylated cotton, ethylated cotton, hydroxyethylated cotton, sulfated cotton, sulfonated cotton, phosphate cotton, cationic cotton, amphoteric cotton, sodium acrylate-, acrylic acid-, acryInitrile- or acrylamides grafted cellose fiber and crosslinked fibers thereof, modified wool, modified silk, modified synthetic fiber, a saponified acylonitrile series of fiber, and vinilon fiber partially esterfied by maleic acid, and yarns made from one or more of the foregoing fibers.
In another aspect of the present invention there is an array of auxetic fibers including a first and a second auxetic fiber each having a first component, wherein the first component includes a moisture activated shrinkable filament, and an elastomeric second component, and wherein the first component is wrapped about the second component in a helical configuration. The second component is made from one or more of the following materials: silicone rubber, natural rubber, poly(urethane) and its derivatives, natural rubber, polyisoprene, bytyl rubber and its derivatives, polybutadiene, styrene-butadiene rubber, chloroprene rubber, polychloroprene, neoprene, baypren, ethylene propylene rubber, ethylene propylene diene rubber, epichlorohydrin rubber, polyacrylic rubber, fluorosilicone rubber, fluoroelastomers, perfluoroelastomers, polyether block amides, chlorosulfonated polyethylene, ethylene-vinyl acetate, nitrile rubber or polyamides, and nylon.
The present invention will now be described in detail with reference to embodiments illustrated in the accompanying drawings.
The first component 12 may be a moisture sensitive filament that shrinks (e.g. becomes shorter) when wetted with water, urine, or other water-based liquids. Suitable materials for the first component 12 are liquid shrinkable filaments made from film, fiber, threads, foamed bodies, or the like. Those materials capable of shrinking by 10% or more, or particularly 20% or more when exposed to an aqueous liquid are desirable. Materials such as this include modified cellulose fibers (e.g. cotton and rayon) such as carboxymethylated cotton methylated cotton, ethylated cotton, hydroxyethylated cotton, sulfated cotton, sulfonated cotton, phosphate cotton, cationic cotton, amphoteric cotton, sodium acrylate-, acrylic acid-, acryInitrile- or acrylamides grafted cellose fiber and crosslinked fiber thereof; wool or silk modified in the same manner as above; modified synthetic fiber, such as partially saponified acylonitrile series of fiber and vinilon fiber which is partially esterfied by maleic acid; and yarns made from these fibers. A desirable material for the first component is a yarn or filament available from Nitivy Company, Japan (SOLVRON Yarn—SHC Grade). This water shrinkable component is a polyvinyl alcohol filament.
Suitable materials for the second component 14 include siloxane, silicone rubber, natural rubber, poly(urethane) and its derivatives, natural rubber, polyisoprene, bytyl rubber and its derivatives, polybutadiene, styrene-butadiene rubber, chloroprene rubber, polychloroprene, neoprene, baypren, ethylene propylene rubber, ethylene propylene diene rubber, epichlorohydrin rubber, polyacrylic rubber, fluorosilicone rubber, fluoroelastomers, perfluoroelastomers, polyether block amides, chlorosulfonated polyethylene, ethylene-vinyl acetate, nitrile rubber or polyamides such as nylon and the like. The material is preferably capable of deformation without fracture. The second component may be an elastic fiber, rod or hollow tube, particularly consisting of a material with an intermediate or a low modulus of elasticity. It should be noted that it is possible for the second component 14 to be formed from a material of relatively high modulus of elasticity, such as nylon, provided it is used in combination with a first component formed from a material of higher modulus of elasticity.
The first component 12 and/or second component 14 may be formed from a continuous material. Preferably, the first component 12 and/or second component 14 are elongate. The first component 12 and/or second component 14 may be at least a hundred times as long as their maximum cross-sectional dimension.
Advantageously, at least one of the first component 12 and the second component 14 is helically wrapped around the other component. The wrapping of the first component 12 around the second component 14 may be in the form of a helix that may have a constant pitch along the second component 14. The pitch may be between zero degrees and ninety degrees relative to the axis.
It will become apparent to the skilled reader that, with a given auxetic fiber of this type, at some applied strains both the first and second components may be helically wrapped around the other component, but at other (higher) applied strains the first component may substantially straighten so as to no longer be helically wrapped around the second component. In principle, the second component might be substantially straight at low applied strain.
The first component may have a diameter that is between 0.01 and 1 times the diameter of the second component. The first component may have a cross-sectional area that is between 0.001 and 1 times the cross-sectional area of the second component.
The configuration shown in
The present invention may utilize this phenomenon to control pore size in porous materials fabricated from auxetic fibers.
Referring still to
It is contemplated that the second component 14 could be wrapped around the first component. It is further contemplated that the second component may be in the form of a helix wrapped about a straight first component 12. Also, the pitch of the first component 12 helix may be the same as the pitch of the second component 14 helix.
The auxetic fibers and the material made therefrom have a negative Poisson's ratio. Fibers and/or materials having a Poisson's ratio of between 0 and 35 are preferred. The Poisson's ratio of a fiber is in part dependent on the pitch of the first component. A steep pitch gives rise to a relatively low auxetic effect over a relatively large strain range whereas a shallow pitch gives rise to a relatively large auxetic effect over a relatively narrow strain range.
By varying the applied tensile load to the filter material, it is possible to utilize a single filter which is capable of providing a variety of pore sizes. Thus, a single filter can be used in a number of different applications. The invention is not limited to the embodiments and examples provided above. Rather, a wide range of applications can be envisaged in which the pore size of a porous material of the type provided by the invention is controlled for an advantageous purpose. For example, breathable fabrics might be provided having a plurality of pores which open up when a wearer of the fabric undertakes an energetic activity that causes moisture to be released in the form of sweat, thereby causing the pores 62 to open.
The fiber material of the present invention could be used not only for face masks, but for garments where it is desirable to control humidity. Such garments include diapers, incontinence pants, or protective suits. Furthermore, the material could be used as a component in water diapers (e.g. HUGGIES® LITTLE SWIMMERS® Swim Pants) to enhance water drainage. Yet another use includes the release of actives as the pores enlarge. For example, if an auxetic fiber is used as a dental floss that contains a healthy ingredient for gums, the floss will release that ingredient during use because it is activated by saliva.
In a further embodiment, the auxetic fibers could be placed into an array that is used for wetness detection. If the auxetic material is layered over an indicator material having a contrasting color or shade, the indicator material will be seen through the auxetic material once it has been wetted and pores have then formed. This application may be useful for wetness detection in a diaper or training pant. Many other uses are possible.
While particular embodiments of the present invention have been illustrated or described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. Further, it should be apparent that all combinations of such embodiments and features are possible and can result in preferred executions of the invention. Therefore, the appended claims are intended to cover all such changes and modifications that are within the scope of the invention.
Claims
1. An auxetic fiber comprising:
- a first component comprising a moisture sensitive shrinkable filament;
- a second component comprising an elastomeric material, wherein the first component is wrapped about the second component in a helical configuration, and wherein the first component is selected from the group consisting of: modified cellulose fibers, rayon, cotton, carboxymethylated cotton, methylated cotton, ethylated cotton, hydroxyethylated cotton, sulfated cotton, sulfonated cotton, phosphate cotton, cationic cotton, amphoteric cotton, sodium acrylate-, acrylic acid-, acryInitrile- or acrylamides grafted cellose fiber and crosslinked fibers thereof, modified wool, modified silk, modified synthetic fiber, a saponified acylonitrile series of fiber, vinilon fiber partially esterfied by maleic acid, yarns made from one or more of the foregoing fibers, and combinations thereof.
2. The auxetic fiber according to claim 1 wherein the second component is straight when in a dry state.
3. The auxetic fiber according to claim 1 wherein the first component has a cross-sectional area that is between 0.001 and 1 times the cross-sectional area of the second component.
4. The auxetic fiber according to claim 1 wherein the first component comprises polyvinyl alcohol.
5. An array of auxetic fibers comprising:
- a first and a second auxetic fiber each comprising a first component, wherein the first component comprises a moisture activated shrinkable filament, and an elastomeric second component, and wherein the first component is wrapped about the second component in a helical configuration, and wherein the second component is selected from the group consisting of: siloxane, silicone rubber, natural rubber, poly(urethane) and its derivatives, natural rubber, polyisoprene, bytyl rubber and its derivatives, polybutadiene, styrene-butadiene rubber, chloroprene rubber, polychloroprene, neoprene, baypren, ethylene propylene rubber, ethylene propylene diene rubber, epichlorohydrin rubber, polyacrylic rubber, fluorosilicone rubber, fluoroelastomers, perfluoroelastomers, polyether block amides, chlorosulfonated polyethylene, ethylene-vinyl acetate, nitrile rubber or polyamides, nylon and combinations thereof.
6. The array of claim 5 wherein the first and second auxetic fibers are of opposite handedness.
7. The array of claim 5 wherein the second component comprises polyvinyl alcohol.
8. The array of claim 5 wherein the second component is straight when in a dry state.
9. The array of claim 5 wherein the first auxetic fiber and the second auxetic fiber have first component helices that are in phase.
10. The array of claim 5 comprising a woven structure.
Type: Application
Filed: Oct 28, 2010
Publication Date: Feb 17, 2011
Inventors: WanDuk Lee (Seoul), SangSoo Lee (Yongin-si), CholWoh Koh (Suwon-si), Jin Heo (Yongln-si)
Application Number: 12/914,035
International Classification: B32B 5/02 (20060101); D03D 15/00 (20060101); D02G 3/26 (20060101);