METHOD AND APPARATUS TO COLLECT OBJECT IDENTIFICATION DATA DURING OPERATION OF A VEHICLE AND ANALYSIS OF SUCH DATA
System and method for collecting object identification data from a plurality of objects that interact with a vehicle during operation of the vehicle, where the vehicle interacts with specific objects at specific geographical positions. An identification sensor is coupled to a geographical position sensor, and whenever an object is identified a record is generated, the record including the identification of the object, the position of the vehicle when the interaction between the object and the vehicle occurs, and the time of the interaction. Exemplary objects include passengers, containers, and documents. Exemplary interactions include loading/unloading an object from the vehicle, boarding a passenger, unloading a passenger, transferring a bulk material from the vehicle into a specific container, and/or transferring a bulk material from a specific container to the vehicle. The record may also include additional data about a parameter of the object (such as the object's weight, volume, or temperature).
Latest Zonar Systems, Inc. Patents:
- System and method for obtaining competitive pricing for vehicle services
- System and method for obtaining competitive pricing for vehicle services
- Event based GPS tracking
- Method and apparatus for remote vehicle diagnosis
- Virtual trainer for in vehicle driver coaching and to collect metrics to improve driver performance
This application is a continuation-in-part of prior co-pending application Ser. No. 12/724,232, filed on Mar. 15, 2010, which itself is a continuation-in-part of prior co-pending application Ser. No. 11/675,502, filed on Feb. 15, 2007 and issued as U.S. Pat. No. 7,680,595 on Mar. 16, 2010, the benefit of the filing dates of which are hereby claimed under 35 U.S.C. §120. Prior co-pending application Ser. No. 11/675,502 itself is a continuation-in-part of prior co-pending application Ser. No. 11/425,222, filed on Jun. 20, 2006, and issued as U.S. Pat. No. 7,564,375 on Jul. 21, 2009, the benefit of the filing date of which is hereby claimed under 35 U.S.C. §120.
BACKGROUNDAs the cost of sensors, communications systems and navigational systems has dropped, operators of commercial and fleet vehicles now have the ability to collect a tremendous amount of data about the vehicles that they operate, including geographical position data collected during the operation of the vehicle.
Vehicle fleet operators often operate vehicles along predefined and generally invariant routes. For example, buses frequently operate on predefined routes, according to a predefined time schedule (for example, along a route that is geographically, as well as temporally defined). Migrating route data from one software platform to another software platform can be a tedious task.
It would be desirable to provide such fleet operators with additional tools for moving data between different software platforms, and for collecting and analyzing data (such as Global Positioning System (GPS) data, as well as other route related data) collected from vehicles traversing a predefined route.
SUMMARYOne concept disclosed herein is the collection of object identification data during the operation of a vehicle, where the vehicle interacts with the object at a definable geographical position. An identification sensor is coupled to a geographical position sensor, and whenever an object is identified a record is generated, the record including the identification of the object, the position of the vehicle when the interaction between the object and the vehicle occurs, and the time of the interaction. Exemplary (but not limiting) objects that are identified include passengers, containers (such as pallets, packages, boxes, envelopes), and documents. Many different types of interactions are possible, including, but not limited to, loading an object (such as a parcel, document, or container) into the vehicle, unloading an object (such as a parcel, document, or container) from the vehicle, boarding a passenger (the object) onto the vehicle, unloading a passenger (once again, the passenger being the object) from the vehicle, transferring a bulk material (such as a solid, liquid or compressed gas) from the vehicle into a specific container (the container being the object), and/or transferring a bulk material (such as a solid, liquid or compressed gas) from a specific container (the container being the object) to the vehicle. The record may also include additional data about a parameter of the object (for example, in some embodiments, it will be useful to include the object's weight in the record, or the weight/volume of a material being transferred to or from the vehicle to a specific container). Such a data record is referred to herein and in the claims that follow as object identification (ID) and location data, and/or object ID encoded position data (encoded in the sense that the object data is combined with the position data). In some embodiments, the object ID and location data is stored at the vehicle for transfer to a remote computing device at a later time, and in other embodiments, the object ID and location data is wirelessly transmitted to a remote computing device during operation of the vehicle. The term “object identification data” is intended to refer to data that identifies an object with which a vehicle interacts. For example, for a passenger, object identification data can include the passenger's name, or a passenger number (or an alphanumeric code or other type of code) that uniquely identifies an individual. For other objects, the object identification data is generally a numeric or alphanumeric code that uniquely identifies the object.
Broadly speaking, position data from the vehicle is collected as the vehicle travels to the plurality of different locations, the position data identifying a specific geographical location of the vehicle at a specific point in time (thus, the vehicle position data is time indexed). Time indexed object identification data is collected as the vehicle interacts with objects at various locations visited by the vehicle. In some embodiments, the vehicle traverses a generally invariant route (such as a bus route), while in other embodiments the vehicle traverses a variable route (such as a parcel delivery vehicle). In an exemplary embodiment, the time indexing function is implemented by the geographical position sensing system. Periodically, the geographical position sensing system generates a record that documents the current time and current geographical position of the vehicle. Whenever the identification sensor identifies an object, the identification data is sent to the geographical position sensing system, which either appends the identification data to the most current record, or generates a new record that documents the identity of the object, the current time and the current geographical position, thereby generating the object ID and location data. It should thus be recognized that the set of location data collected by the geographical position sensing system during operation of the vehicle will also include object identification data at those points in time at which the vehicle interacts with an object that has been tagged in some way with a unique identifier that can be detected by the object identification sensor. Exemplary tags or tokens include optical codes (such as bar codes and other optically recognizable codes), radio frequency identification (RFID) tags, and magnetic tags/magnetic strips. It should be understood that the set of location data collected by the geographical position sensing system during operation of the vehicle (which at some time points includes only location data, and at other time points includes location data and object identification data) is collectively referred to herein as the object ID and location data. Such object ID and location data are conveyed to a remote computing device for storage/processing, either in real-time (i.e., while the vehicle is being operated, such that the vehicle requires a transmitter to convey the data to the remote computing device) or at some point after the vehicle has traversed a route and collected the different types of data (the position data and the object identification data). The term real-time is not intended to imply the data is transmitted instantaneously, rather the data is collected over a relatively short period of time (over a period of seconds or minutes), and transmitted to the remote computing device on a ongoing basis, as opposed to storing the data at the vehicle for an extended period of time (hour or days), and transmitting an extended data set to the remote computing device after the data set has been collected. Transmitting the object ID and location data at a later time, rather than in real time, is encompassed by the concepts disclosed herein, although real-time data transmission is likely to be popular with users. Note that transferring the object ID and location data at a later time can be achieved without requiring the vehicle to include a wireless transmitter (i.e., the object ID and location data can be transferred via a hardwire connection to either the remote computing device or an intermediate data collection device that is coupled to the vehicle to extract the object ID and location data, which is then conveyed to remote computing device).
With respect to the remote computing device, in a preferred but not limiting embodiment, the time indexed object ID and location data are available in a networked computing environment. In at least one embodiment, the object ID and location data are stored by a company offering data management services to its clients, and clients can access the object ID and location data for each of their vehicles.
The object ID and location data will have a number of uses. In the context of objects being passengers, the object ID and location data can be used by school bus operators to provide parents with data about when and where their children entered and exited a school bus. The object ID and location data can also be used to alert drivers when students attempt to get off the bus at some location other than their normal stop. The object ID and location data can be used to provide proof of delivery (or pick up) of parcels, documents, and other objects. Historical object ID and location data for generally invariant routes (such as refuse collection routes and school bus routes) can be used to train new drivers, where historical object ID and location data is loaded onto the vehicle before the route is traversed, and that data is used to alert the driver of what objects (such as refuse containers or students) are associated with specific geographical locations in the route.
In addition to being implemented as a method, the concepts disclosed herein can also be implemented as a non-transitory memory medium storing machine instructions that when executed by a processor implement the method, and by a system for implementing the method. In such a system, the basic elements include a vehicle that is to be operated by a vehicle operator, a position data collection unit (such as a GPS tracking device), an object identification sensor (such as a token reader), a data link (which can be integrated into the GPS unit), and a remote computing device. In general, the remote computing device can be implemented by a computing system employed by an entity operating a fleet of vehicles. Entities that operate vehicle fleets can thus use such computing systems to track and process data relating to their vehicle fleet. It should be recognized that these basic elements can be combined in many different configurations to achieve the exemplary method discussed above. Thus, the details provided herein are intended to be exemplary, and not limiting on the scope of the concepts disclosed herein.
Identification of objects can be accomplished by a using reader to scan a token attached to the object. Exemplary tokens include optical codes (such as bar codes), radio frequency identification tags (RFID), and magnetic strips. Readers can be handheld devices, or when appropriate can be attached to the vehicle. For example, RFID tags readers could be attached to the vehicle proximate a door used to load or unload the vehicle, to automatically interrogate each RFID tagged item loaded onto or unloaded from the vehicle. Generally it will be preferable to record both loading and unloading of an object, although the concepts disclosed herein encompass embodiments where data relating to only loading or unloading is collected. Where the object is a person (i.e., a passenger), the person will be issued a token to be carried with them as they enter (or exit) the vehicle. In some cases, it maybe desirable to identify a person that interacts with the vehicle even if the person is not a passenger (or is not entering or exiting the vehicle). Such a person might be tasked with delivering something to the vehicle or servicing the vehicle.
With respect to identifying passengers, a reader can be used to read a token (such as a ticket or rider pass) when a person enters or exits a vehicle. Generally it will be preferable to record both entry and exit, although the concepts disclosed herein encompass embodiments where data relating to only entry or exit is determined. In an exemplary but not limiting embodiment, a magnetic card reader is used to scan passenger cards as they enter or exit a vehicle. A particularly useful application of this type of object ID and position data tracking is to enable school bus operators to collect ridership data about students, tracking where and when students enter and exit a school bus. Such historical data can be used for training purposes whenever a driver is assigned a new route, as the historical data can be used to teach the driver which children get on and off at a particular stop. Once such historical data has been collected, if desired, the data can be used to prevent children from getting off at an incorrect stop (the token reader will automatically check the historical data, and if that child attempts to get off at a stop that is not part of the historical data for that child, an alert can be issued to the driver).
While the above noted method is preferably implemented by a processor (such as computing device implementing machine instructions to implement the specific functions noted above), note that such a method can also be implemented using a custom circuit (such as an application specific integrated circuit).
In addition to object identification data (i.e., data that uniquely identifies the object), many different types of object data can be collected. The following types of additional object data are intended to be exemplary, rather than limiting. Time indexing can be achieved by including a time stamp with the object data as the data is collected by the object identification sensor, or the time stamp can be provided by the position sensing system, generally as discussed above.
A first type of additional object data that can be collected during operation of the vehicle is a weight of the object. An exemplary embodiment of a vehicle collecting object ID and location data that includes weight is a refuse truck. In this embodiment, each refuse container serviced by the vehicle is tagged with a token that is detected by the identification sensor as the contents of the refuse container is loaded into the vehicle. In an exemplary but not limiting embodiment, the loading arms include an identification sensor that reads a token labeling each container as the containers are manipulated by the loading arms. The loading arms are also equipped with weight sensors, that determines the weight of the refuse emptied from the container. Thus, the object ID and location data in this embodiment can be used to identify when a container was emptied, where the container was located when it was emptied, and how much refuse was removed. That data is collected automatically, and can be used to provide proof of service, and the weight function maybe used for billing purposes if the client is to be billed by weight. Recycling containers can be tracked and weighed in a similar manner. Historical data about containers and position can be used for training purposes whenever a new driver is assigned to an existing route, as the historical data can be used to teach the new driver what containers are usually serviced at a particular location.
A second type of additional object data that can be collected during operation of the vehicle is volume. An exemplary embodiment of a vehicle collecting object ID and location data that includes volume is a liquid fuel or compressed gas delivery truck. In this embodiment, each fuel or gas container serviced by the vehicle is tagged with a token that is detected by the identification sensor as the contents of the truck is offloaded into the container. In an exemplary but not limiting embodiment, the connector used to fluidly couple the vehicle to the container includes an identification sensor that reads a token labeling each container. The identification sensor is coupled to a flow sensor or tank level in the vehicle which keeps track of how much product is delivered. That volume data, as well as the container identification data, is sent to the vehicle's geographical position sensing system as the container is filled. Thus, the object ID and location data in this embodiment can be used to identify when a container was filled, where the container was located when it was filled, and how much volume of product was delivered by the vehicle. That data is collected automatically, and can be used to provide proof of service, and the volume function may be used for billing purposes if the client is to be billed by volume. It should be noted that such liquid or compressed gas deliveries can also be tracked by weight. Related embodiments utilize data input devices to enable vehicle operators to manually enter container identifications and product weights/volumes into a processor or computing device that combines the weight/volume data and container ID data with the vehicle position data to generate the object ID and location data.
A third type of additional object data that can be collected during operation of the vehicle is object temperature. An exemplary embodiment of a vehicle collecting object ID and location data that includes temperature is a produce delivery truck. In an exemplary but not limiting embodiment, the temperature of each produce container delivered by the vehicle is measured as the container is loaded or unloaded from the vehicle. That temperature data, as well as the container identification data, is sent to the vehicle's geographical position sensing system as the container is loaded or unloaded. Thus, the object ID and location data in this embodiment can be used to identify when a container was loaded and/or unloaded, where the container/vehicle was located when the container was loaded and/or unloaded, and the temperature of the container. That data is collected, and can be used to provide proof of service, and the temperature function may be used for quality assurance purposes if the client asserts that poor product quality was caused by improper temperature conditions in transit. Related embodiments simply measure the temperature of the cargo area of the vehicle, rather than measuring the temperature of each container.
This Summary has been provided to introduce a few concepts in a simplified form that are further described in detail below in the Description. However, this Summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
Various aspects and attendant advantages of one or more exemplary embodiments and modifications thereto will become more readily appreciated as the same becomes better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
Exemplary embodiments are illustrated in referenced Figures of the drawings. It is intended that the embodiments and Figures disclosed herein are to be considered illustrative rather than restrictive. Further, it should be understood that any feature of one embodiment disclosed herein can be combined with one or more features of any other embodiment that is disclosed, unless otherwise indicated.
In a block 16, location data (such as GPS data, recognizing that other location tracking systems are known, and the term GPS is intended to be exemplary of a position tracking system, and not limiting) is collected while the vehicle is in operation. The location data is time indexed, meaning that the location data being collected is the location of the vehicle at a particular point in time. While the vehicle is in operation, and when the object identification sensor detects a labeled object (as indicated by a decision block 18), the object ID data is added to the time indexed GPS data, as indicated by a block 20. In some embodiments, the object identification sensor is always enabled, and detection of labeled objects occurs automatically when the labeled object and the object identification sensor are proximate (or in the case of a magnetic card reader type sensor, when the card is swiped through the reader). In other embodiments, such as with a hand held object identification sensor, the object identification sensor must be enabled by the vehicle operator, and detection of labeled objects occurs when the vehicle operator brings the labeled object and the object identification sensor into proximity of one another.
Referring once again to
In general, analysis of the object ID encoded position data will be carried out by a remote computing device. The remote computing device in at least one embodiment comprises a computing system controlled or accessed by the fleet operator. The remote computing device can be operating in a networked environment, and in some cases, may be operated by a third party under contract with the fleet operator to perform such services.
Also included in processing unit 254 are a random access memory (RAM) 256 and non-volatile memory 260, which can include read only memory (ROM) and may include some form of memory storage, such as a hard drive, optical disk (and drive), etc. These memory devices are bi-directionally coupled to CPU 258. Such storage devices are well known in the art. Machine instructions and data are temporarily loaded into RAM 256 from non-volatile memory 260. Also stored in the non-volatile memory are an operating system software and ancillary software. While not separately shown, it will be understood that a generally conventional power supply will be included to provide electrical power at voltage and current levels appropriate to energize computing system 250.
Input device 252 can be any device or mechanism that facilitates user input into the operating environment, including, but not limited to, one or more of a mouse or other pointing device, a keyboard, a microphone, a modem, or other input device. In general, the input device will be used to initially configure computing system 250, to achieve the desired processing (i.e., analysis of the object ID encoded position data). Configuration of computing system 250 to achieve the desired processing includes the steps of loading appropriate processing software into non-volatile memory 260, and launching the processing application (e.g., loading the processing software into RAM 256 for execution by the CPU) so that the processing application is ready for use. Output device 262 generally includes any device that produces output information, but will most typically comprise a monitor or computer display designed for human visual perception of output. Use of a conventional computer keyboard for input device 252 and a computer display for output device 262 should be considered as exemplary, rather than as limiting on the scope of this system. Data link 264 is configured to enable object ID encoded position data to be input into computing system 250 for subsequent analysis. Those of ordinary skill in the art will readily recognize that many types of data links can be implemented, including, but not limited to, universal serial bus (USB) ports, parallel ports, serial ports, inputs configured to couple with portable memory storage devices, FireWire ports, infrared data ports, wireless data communication such as Wi-Fi and Bluetooth™, network connections via Ethernet ports, and other connections that employ the Internet.
It should be recognized that processors can be implemented as general purpose processors, where the functions implemented by the processor are changeable or customizable using machine instructions (i.e., software). Processors can also be implemented as customized hardware circuits, where the functions implemented are fixed by the design of the circuit (such processors are sometimes referred to as application specific integrated circuits). The flexibility of software controlled processors often results in software based processors being selected over hardware based processors, although it should be understood that the concepts disclosed herein can be implemented using both software based processors and hardware based processors.
As discussed above, the expected interaction can encompass different interactions between the vehicle and a labeled object, including but not limited to, picking up a passenger (where the passenger is the labeled object, or rather carries with them a token that can be read by the identification sensor and thereby uniquely identifies them), dropping off a passenger (where the passenger is the labeled object, or rather carries with them a token that can be read by the identification sensor and thereby uniquely identifies them), picking up an object (such as a parcel, package, container, letter, or document), delivering an object (such as a parcel, package, container, letter, or document), and servicing an object (such as a container or piece of equipment) disposed at the specified location. In particular, servicing an object includes, but is not limited to, removing refuse from a labeled container, removing recyclables from a labeled container, removing refuse from a container at a location that is labeled (i.e., the token is attached to a location where the container is disposed, as opposed to being attached to the container itself), removing recyclables from a container at a location that is labeled (i.e., the token is attached to a location where the container is disposed, as opposed to being attached to the container itself), transferring a bulk material (such as a solid material, a liquid, or a compressed gas) to a labeled container, transferring a bulk material (such as a solid material, a liquid, or a compressed gas) to a container at a location that is labeled (i.e., the token is attached to a location where the container is disposed, as opposed to being attached to the container itself), transferring a bulk solid material to a location that is labeled (i.e., the token is attached to a location, and there is no container, the bulk solid material simply being delivered to the location), and having the vehicle operator perform a service call on a piece of equipment or a structure at the specified location, where either or both the object being serviced or the location is labeled with a token. Those of ordinary skill in the art will recognize that the servicing of structures and/or equipment encompasses services performed by skilled tradesmen, including, but not limited to, plumbers, electricians, carpenters, technicians specializing in servicing specific types of equipment (including but not limited to computers, heating and ventilation equipment, construction equipment, and vehicles), and technicians responsible for other types of repair and maintenance functions.
In an exemplary, but not limiting embodiment, display 46 is used to inform the vehicle operator that the vehicle is approaching or has arrived at a location where an interaction between the vehicle and a labeled object (or labeled location, as noted above) is expected. The display will minimally identify the object, and in some embodiments can be used to provide more detailed information about the interaction. For example, where the interaction is a service call, details about the specific service required may be provided (i.e., replace a faulty component in a piece of equipment, or perform a specific type of scheduled maintenance on a piece of equipment, such services being exemplary and not limiting).
A dashed block 50 around GPS 42, processor 44, and display 46 is intended to indicate that in some embodiments, those three elements will be combined into a single device. It should be recognized that the concepts disclosed herein encompass the use of individual devices to implement each of GPS 42, processor 44, and display 46, as well embodiments where the functions of one or more of GPS 42, processor 44, and display 46 (and memory 48) are implemented by a common device.
Referring once again to
Referring to
As noted above, the concepts disclosed herein also encompass bus 52 being configured to implement the method of
If the bus configured to implement the method of
Referring to
If desired, a temperature sensor 69 can be included in the cargo area of the delivery truck, to measure the ambient temperature of the cargo area. The temperature measurement represents additional object data, that will be combined with the object ID and the time and GPS data, to generate the object ID encoded position data. The temperature sensor, if present, is configured to communicate its data to the GPS unit, or the processor responsible for combining the object ID data, the temperature data, and the GPS data together to generate the time indexed object ID encoded position data. The temperature data may be important for temperature sensitive cargo, and collecting such data and combining it with the object ID encoded position data will enable the delivery service to prove to the shipper that the cargo was maintained in the correct temperature controlled environment during transit. In a related embodiment, the temperature sensor can be incorporated into the object, and the temperature data can be manually entered into the GPS unit/processor during delivery, or acquired using a hand held sensor that logically communicates that data to the GPS unit/processor for incorporation into the object ID encoded position data.
In an exemplary embodiment, once the loading or unloading of cargo has occurred, the object ID encoded position data can be conveyed to the remote computing device of
As noted above, the concepts disclosed herein also encompass delivery truck 60 being configured to implement the method of
If delivery truck 60 is configured to implement the method of
As noted above, when the method of
Where the refuse truck is configured to implement the method of
Referring to
In an exemplary embodiment, once the container has been emptied, the object ID encoded position data can be conveyed to the remote computing device of
As noted above, the concepts disclosed herein also encompass refuse truck 74 being configured to implement the method of
If refuse truck 74 is configured to implement the method of
Where the tanker truck is configured to implement the method of
Referring to
If desired, a volume delivery sensor 104 can be included on the tanker truck, to measure the volume of bulk material being delivered. The volume measurement represents additional object data, that will be combined with the object ID and the time and GPS data, to generate the object ID encoded position data. Referring to
In an exemplary embodiment, once the storage tank has been filled, the object ID encoded position data can be conveyed to the remote computing device of
As noted above, the concepts disclosed herein also encompass tanker truck 90 being configured to implement the method of
If tanker truck 90 is configured to implement the method of
With respect to any of the embodiments of
After the operator has used portable ID sensor 110 to identify each labeled object, the operator can transmit the object ID data that have been collected to the vehicle GPS or the processor that will combine the object ID data with the GPS data to generate the object ID encoded position data, using a data link 118 (in an exemplary embodiment the data link employs an RF transmission, though hardwired and other wireless type data links can be used).
As noted above, the tokens that are affixed to the objects to be identified can be of several different types, depending upon the type of sensor 114 that is included on portable ID sensor 110. In a preferred form of one of the concepts disclosed herein, the token that is preferably employed is an RFID tag that is attached with a fastener or an appropriate adhesive to the object (or is carried by a passenger, or is attached to a location proximate the object, generally as discussed above). One type of RFID tag that is suitable for this purpose is the WORLDTAG™ token that is sold by Sokymat Corporation. This tag is excited by an RF transmission from portable ID sensor 110 via an antenna in sensor 114. In response to the excitation energy received, the RFID tag modifies the RF energy that is received from the antenna in sensor 114 in a manner that specifically identifies the component associated with the RFID tag, and the modified signal is detected by sensor 46.
An alternative type of token that can also be used in one of the concepts disclosed herein is an IBUTTON™ computer chip, which is armored in a stainless steel housing and is readily affixed to an object or location. The IBUTTON chip is programmed with JAVA™ instructions to provide a recognition signal when interrogated by a signal received from a nearby transmitter, such as from an antenna in sensor 114. The signal produced by the IBUTTON chip is received by sensor 114, which determines the type of component associated with a token. This type of token is less desirable since it is more expensive, although the program instructions that it executes can provide greater functionality.
Yet another type of token that might be used is an optical bar code in which a sequence of lines of varying width or other optical patterns encode light reflected from the bar code tag. The encoded reflected light is received by sensor 114, which is then read by an optical detector. Bar code technology is well understood by those of ordinary skill in the art and readily adapted for identifying a particular type of component and location of the component on a vehicle or other system or apparatus. One drawback to the use of a bar code tag as a token is that the bar code can be covered with dirt or grime that must be cleaned before the sequence of bar code lines or other pattern can be properly read. If the bar code is applied to a plasticized adhesive strip, it can readily be mounted to any surface and then easily cleaned with a rag or other appropriate material.
Yet another type of token usable in one of the concepts disclosed herein is a magnetic strip in which a varying magnetic flux encodes data identifying the particular component associated with the token. Such magnetic strips are often used in access cards that are read by readers mounted adjacent to doors or in an elevator that provides access to a building. However, in this aspect of the concepts disclosed herein, the magnetic flux reader comprises sensor 114. The data encoded on such a token are readily read as the portable device is brought into proximity of the varying magnetic flux encoded strip comprising the token.
As yet another alternative, an active token can be employed that conforms to the BLUETOOTH™ specification for short distance data transfer between computing devices using an RF signal.
In at least one embodiment, the interaction between the vehicle and a labeled object is an inspection of the object. The vehicle is used to convey the inspector to the labeled object. A sensor attached to the vehicle or in a handheld device is used to collect the object ID data, which is combined with the position data collected by the vehicle to generate the object ID encoded position data, which can be used to verify that the inspector was proximate the specific object at a specific time. Objects that can be labeled for inspection include, but are not limited to, buildings, bridges, utility vaults, traffic signals, traffic signs, cell phone towers, transformers, pipelines, utility poles, and construction equipment.
In at least one embodiment, the interaction between the vehicle and a labeled object does not include loading the object onto the vehicle or removing the object from the vehicle. Thus, in the claims that follow, it should be recognized that support exists for a negative claim limitation to that effect.
In at least one embodiment, the interaction between the vehicle and a labeled object involves loading or unloading the object from a cargo area in the vehicle that is not suitable for passengers. Thus, in the claims that follow, it should be recognized that support exists for a negative claim limitation to that effect.
Although the concepts disclosed herein have been described in connection with the preferred form of practicing them and modifications thereto, those of ordinary skill in the art will understand that many other modifications can be made thereto within the scope of the claims that follow. Accordingly, it is not intended that the scope of these concepts in any way be limited by the above description, but instead be determined entirely by reference to the claims that follow.
Claims
1. A method for generating object identification (ID) encoded position data from a vehicle equipped with a geographical position system, the method comprising the steps of:
- (a) collecting geographical position data from the vehicle during vehicle operation, the geographical position data being time indexed;
- (b) collecting object ID data from an object interacting with the vehicle during operation of the vehicle, the object ID data uniquely identifying the object, wherein the step of collecting object ID data from an object interacting with the vehicle during operation of the vehicle comprises at least one of the following steps: (i) automatically scanning the object as it enters a cargo area of the vehicle not suitable for passengers using an identification sensor attached to the vehicle proximate an entry into the cargo area; (ii) automatically scanning the object as it exits the cargo area of the vehicle not suitable for passengers using an identification sensor attached to the vehicle proximate an entry into the cargo area; (iii) using an identification sensor attached to a material handling component used to manipulate the object; (iv) using an identification sensor attached to a material handling component used to interact with the object; and (v) scanning the object using a handheld device including an identification sensor and a wireless data link, the handheld device being configured to wirelessly transmit object ID data to a processor disposed in the vehicle, the processor being configured to combine the object ID data with the position data; and
- (c) automatically combining the object ID data and the geographical position data together at the vehicle to produce object ID encoded position data.
2. The method of claim 1, further comprising the step of conveying the object ID encoded position data to a remote computing device.
3. The method of claim 1, further comprising the steps of:
- (a) collecting additional object data from the object during operation of the vehicle; and
- (b) including the additional object data in the object ID encoded position data such that the additional object data is also time indexed.
4. The method of claim 3, wherein the object is a container, and the step of collecting the additional object data comprises the step of collecting at least one of:
- (a) a weight of material transferred into the container from the vehicle during the interaction between the container and the vehicle;
- (b) a weight of material transferred into the vehicle from the container during the interaction between the container and the vehicle;
- (c) a volume of material transferred into the container from the vehicle during the interaction between the container and the vehicle; and
- (d) a volume of material transferred into the vehicle from the container during the interaction between the container and the vehicle.
5. The method of claim 1, further comprising the steps of:
- (a) as the vehicle is operating, comparing the current position of the vehicle with an intended destination associated with each object on the vehicle; and
- (b) whenever the current position of the vehicle corresponds to the intended destination of an object on the vehicle, alerting the driver of the vehicle that the intended destination has been reached.
6. The method of claim 1, further comprising the steps of:
- (a) as the vehicle is operating, comparing the current position of the vehicle with a predefined location where an object the vehicle is to interact with is disposed; and
- (b) whenever the current position of the vehicle corresponds with the predefined location, alerting the driver of the vehicle that the predefined location has been reached.
7. A geographical position system for use in a vehicle, the geographical position system comprising:
- (a) a housing;
- (b) a position sensing component for collecting geographical position data from the vehicle during vehicle operation, the geographical position data being time indexed;
- (c) a first data port for receiving object identification (ID) data from an object interacting with the vehicle during operation of the vehicle, the object ID data uniquely identifying the object;
- (d) a processor for combining the object ID data and the geographical position data together to produce object ID encoded position data; and
- (e) a data link for conveying the object ID encoded position data to a remote computing device.
8. The system of claim 7, wherein the processor is configured to include additional object data in the object ID encoded position data such that the additional object data is also time indexed.
9. The system of claim 7, wherein the data link comprises a wireless data link, and the processor is configured to use the data link to convey the object ID encoded position data to the remote computer in real-time.
10. The system of claim 7, further comprising a memory storing a plurality of records, each record associating a uniquely labeled object with a specific location, and wherein the processor is configured to alert the driver of the vehicle whenever the vehicle arrives at a specific location associated with one of the uniquely identified objects.
11. A system for analyzing object identification (ID) encoded position data from a vehicle, the system comprising:
- (a) an object identification sensor for identifying a uniquely labeled object interacting with the vehicle during operation of the vehicle, and in response thereto generating object ID data; and
- (b) a geographical position system for use in the vehicle, the geographical position system including: (i) a position sensing component for collecting geographical position data from the vehicle during vehicle operation, the geographical position data being time indexed; (ii) a first data port for receiving object ID data from the object identification sensor during operation of the vehicle; (iii) a processor for combining the object ID data and the geographical position data together to produce object ID encoded position data; and (iv) a data link for conveying the object ID encoded position data to an external computing device.
12. The system of claim 11, further comprising a remote computing device spaced apart from the vehicle and configured to receive the object ID encoded position data via the data link, the remote computing device including a memory for storing machine instructions and a processor, the machine instructions, when implemented by a processor, enabling a user to access the object ID encoded position data for the vehicle, such that the object ID encoded position data can be analyzed to determine at least one characteristic of the interaction between the vehicle and the uniquely labeled object.
13. The system of claim 12, wherein the uniquely labeled object is a container, and the remote computing device is configured to use additional object data included in the object ID encoded position data to implement at least one of the following functions:
- (a) determine a volume of material transferred into the container from the vehicle during the interaction between the container and the vehicle;
- (b) determine a volume of material transferred into the vehicle from the container during the interaction between the container and the vehicle;
- (c) determine a weight of material transferred into the container from the vehicle during the interaction between the container and the vehicle; and
- (d) determine a weight of material transferred into the vehicle from the container during the interaction between the container and the vehicle.
14. A method for facilitating the interaction of a vehicle with a plurality of uniquely labeled objects during the operation of the vehicle, the method comprising the steps of:
- (a) providing a data set that correlates a specific geographical position with each uniquely labeled object;
- (b) determining a current geographical position of the vehicle as the vehicle is being operated; and
- (c) when the current geographical position of the vehicle corresponds to one of the specific geographical positions associated with one of the uniquely labeled objects, automatically providing an output to the operator of the vehicle, the output identifying the uniquely labeled object correlated with the vehicle's current geographical position.
15. The method of claim 14, wherein the step of automatically providing the output to the operator of the vehicle comprises at least one step selected from a group of steps consisting of:
- (a) providing the identity of a container that is to be serviced at the specific geographical position, the container being one of the uniquely labeled objects;
- (b) providing the identity of a container that is to be removed from the vehicle at the specific geographical position, the container being one of the uniquely labeled objects;
- (c) providing the identity of a container that is to be loaded onto the vehicle at the specific geographical position, the container being one of the uniquely labeled objects; and
- (d) displaying the identity of each uniquely labeled object correlated with the specific geographical position to the operator of the vehicle.
16. The method of claim 14, wherein the step of automatically providing the output to the operator of the vehicle comprises at least one step selected from a group of steps consisting of:
- (a) providing the identity of a passenger that is to be loaded onto the vehicle at the specific geographical position, the passenger being one of the uniquely labeled objects; and
- (b) providing the identity of a passenger that is to disembark from the vehicle at the specific geographical position, the passenger being one of the uniquely labeled objects.
17. A method for using object identification (ID) encoded position data from a vehicle equipped with a geographical position system and an object ID sensor to determine at least one characteristic of an interaction between a uniquely labeled object and the vehicle, the method comprising the steps of:
- (a) providing object ID encoded position data collected during operation of the vehicle, the object ID encoded position data including object ID data uniquely identifying each uniquely labeled object interacting with the vehicle during operation of the vehicle, additional object data collected with the object ID data, and geographical position data defining a relative location of the vehicle during operation of the vehicle, the object ID data and the geographical position data being time indexed; and
- (b) analyzing the object ID encoded position data using the additional object data collected with the object ID data to determine at least one element selected from a group of elements consisting of: (i) a volume of material transferred into a uniquely identifiable container from the vehicle during the interaction between that container and the vehicle; (ii) a volume of material transferred into the vehicle from the uniquely identifiable container during the interaction between that container and the vehicle; (iii) a weight of material transferred into the uniquely identifiable container from the vehicle during the interaction between that container and the vehicle; (iv) a weight of material transferred into the vehicle from the uniquely identifiable container during the interaction between that container and the vehicle; (v) a temperature of the object during the interaction between that object and the vehicle; (vi) a temperature of a cargo portion of the vehicle into which the object is deposited during the interaction between that object and the vehicle; and (vii) a temperature of a cargo portion of the vehicle from which the object is removed during the interaction between that object and the vehicle.
18. A method for generating object identification (ID) encoded position data from a vehicle equipped with a geographical position system, the method comprising the steps of:
- (a) collecting geographical position data from the vehicle during vehicle operation, the geographical position data being time indexed;
- (b) collecting object ID data from an object interacting with the vehicle during operation of the vehicle, the object ID data uniquely identifying the object, wherein the interaction between the object and the vehicle does not include loading the object onto the vehicle or removing the object from the vehicle; and
- (c) automatically combining the object ID data and the geographical position data together at the vehicle to produce object ID encoded position data.
19. A method for generating object identification (ID) encoded position data from a vehicle equipped with a geographical position system, the method comprising the steps of:
- (a) collecting geographical position data from the vehicle during vehicle operation, the geographical position data being time indexed;
- (b) collecting object ID data from an object interacting with the vehicle during operation of the vehicle, the object ID data uniquely identifying the object, wherein the interaction between the object and the vehicle comprises at least one interaction selected from a group of interactions consisting of: (i) a first interaction wherein a material is transferred from the vehicle into a container separate from the vehicle at a specific location, wherein the container remains at the specific location after the vehicle departs; (ii) a second interaction wherein a material is transferred from a container to the vehicle, the container being disposed at a specific location and being separate from the vehicle, wherein the container remains at the specific location after the vehicle departs; and (iii) a third interaction wherein an inspection of the object is performed at a specific location, the object being separate from the vehicle, wherein the object that was inspected remains at the specific location after the vehicle departs; and
- (c) automatically combining the object ID data and the geographical position data together at the vehicle to produce object ID encoded position data.
20. A method for training an operator of a vehicle that interacts with a plurality of uniquely labeled objects during the operation of the vehicle, the method comprising the steps of:
- (a) providing a data set that correlates a specific geographical position with each uniquely labeled object;
- (b) determining a current geographical position of the vehicle as the vehicle is being operated; and
- (c) when the current geographical position of the vehicle corresponds to one of the specific geographical positions associated with one of the uniquely labeled objects, automatically providing an output to the operator of the vehicle, the output identifying the uniquely labeled object correlated with the vehicle's current geographical position and the interaction required.
21. The method of claim 20, wherein the step of automatically providing the output to the operator of the vehicle comprises at least one step selected from a group of steps consisting of:
- (a) providing the identity of an object that is to be serviced at the specific geographical position, that object being one of the uniquely labeled objects;
- (b) providing the identity of a container that is to be removed from the vehicle at the specific geographical position, the container being one of the uniquely labeled objects;
- (c) providing the identity of a container that is to be loaded onto the vehicle at the specific geographical position, the container being one of the uniquely labeled objects;
- (d) displaying the identity of each uniquely labeled object correlated with the specific geographical position to the operator of the vehicle; and
- (e) providing the identity of an object that is to be inspected at the specific geographical position, that object being one of the uniquely labeled objects.
22. The method of claim 20, wherein the step of automatically providing the output to the operator of the vehicle comprises at least one step selected from a group of steps consisting of:
- (a) providing the identity of a passenger that is to be loaded onto the vehicle at the specific geographical position, the passenger being one of the uniquely labeled objects; and
- (b) providing the identity of a passenger that is to disembark from the vehicle at the specific geographical position, the passenger being one of the uniquely labeled objects.
23. A method for generating object identification (ID) encoded position data from a vehicle equipped with a geographical position system, the method comprising the steps of:
- (a) providing a position sensing component for collecting geographical position data from the vehicle during vehicle operation, the geographical position data being time indexed, the position sensing component comprising: (i) a position sensor configured to generate geographical position data during operation of the vehicle; (ii) a first data port for receiving object identification (ID) data from an object interacting with the vehicle during operation of the vehicle, the object ID data uniquely identifying the object; (iii) a processor for combining the object ID data and the geographical position data together to produce object ID encoded position data; and (iv) a data link for conveying the object ID encoded position data to a remote computing device;
- (b) collecting geographical position data from the vehicle during vehicle operation, the geographical position data being time indexed;
- (c) collecting object ID data from an object interacting with the vehicle during operation of the vehicle, the object ID data uniquely identifying the object;
- (d) introducing the object ID data into the position sensing component using the first data port; and
- (e) using the processor in the position sensing component to automatically combining the object ID data and the geographical position data together to produce object ID encoded position data.
24. The method of claim 23, wherein the first data port comprises a wireless data port.
Type: Application
Filed: Nov 9, 2010
Publication Date: Mar 24, 2011
Applicant: Zonar Systems, Inc. (Seattle, WA)
Inventors: Charles Michael McQuade (Issaquah, WA), Brett Brinton (Seattle, WA)
Application Number: 12/942,874
International Classification: G08G 1/123 (20060101); G06F 17/00 (20060101);