Jet-drilling and completion process
A method of drilling a slim hole and inserting a slotted liner into such hole drilled in an underground reservoir using jet-drilling. The method enables jet-drilling to be effective in unconsolidated subterranean formations, such as some petroleum reservoirs. The method enables fluid injection or production to be undertaken on individual jet-drilled holes or on groups of holes drilled laterally at different vertical intervals in a vertical well within an underground formation.
Latest IOR Canada Ltd. Patents:
- Intermittent fracture flooding process
- Multi-flow pipe and pipe couplings therefor for use in fracture flow hydrocarbon recovery processes
- Method for producing oil from induced fractures using a single wellbore and multiple-channel tubing
- INTERMITTENT FRACTURE FLOODING PROCESS
- MULTI-FLOW PIPE AND PIPE COUPLINGS THEREFOR FOR USE IN FRACTURE FLOW HYDROCARBON RECOVERY PROCESSES
Priority is claimed from U.S. Provisional Application 61/272,547 filed Oct. 5, 2009 entitled “Jet-Drilling And Completion Process” listing Conrad Ayasse as inventor. Such provisional application is incorporated herein by reference.
FIELD OF THE INVENTIONThe invention relates to a method for recovering hydrocarbons from a well bore, and more particularly to a method for drilling lateral recovery bores in a vertical well using jet-drilling.
BACKGROUNDJet-drilling is an established rock drilling method. Lateral holes ranging in diameter from about 0.5 inches to 3 inches or more are drilled out laterally from a vertical wellbore and can extend horizontally for up to 100 meters or more into the formation. For petroleum recovery, these holes provide reservoir fluid flow channels and can increase petroleum recovery rates from a reservoir or they can be used to improve fluid infectivity into a formation as in a water disposal well. Jet-drilled holes are left as ‘open holes’ which means that there is no liner placed in the hole.
Typically a coiled tubing from the surface is attached to a “shoe” and the shoe is located at the desired side-entry point in a vertical well. The shoe is a curved opening that abuts the well wall and contains a curved opening. A steel-drilling bit is lowered through the coiled tubing from the surface and is sufficiently flexible the make the sharp 90° bend at the shoe to reach the well wall. The drilling bit is activated from the surface and drills out a hole in the steel well wall and through any outer cement that may be placed outside the wall. After the drilling bit is withdrawn, a jet-drilling nozzle is lowered inside the coiled tubing. The nozzle is attached to a slim flexible jet-fluid delivery tubing conduit that can carry a high-pressure jet-drilling liquid from the surface to the nozzle. The Jet-drilling fluid can be formation water which is delivered to the nozzle at high pressure in the range of up to approximately 15,000 psi. The fluid exits the nozzle at the tip and blasts a hole in the rock ahead of the nozzle, while also exiting backwards from the side of the nozzle to provide a forward propulsion force. This latter force pulls the entire assembly forward as the hole advances in the rock. It also washes drilling debris back to the horizontal well, where it falls to the bottom of the vertical wellbore. In some operations, the shoe can be quickly rotated and/or lowered to enable horizontal holes to be drilled horizontally in any desired direction and at low cost relative to traditional large-diameter horizontal well drilling.
In a consolidated rock the jet-drilled holes are stable and permanent. However, in an un-consolidated rock the hole can collapse and be of little use, so a way is needed to stabilize jet-drilled holes in un-consolidated rock formations.
SUMMARY OF THE INVENTIONThe present invention solves the problem of borehole collapse in unconsolidated formations.
The method of the present invention provides for Jet-drilled boreholes in un-consolidated subterranean formation which are stabilized and remain permanently open by using the forward drive energy of a jet nozzle to drag a perforated liner into the borehole while the borehole is being drilled.
At the completion of the jet drilling the jet-drilling nozzle and jet-fluid delivery tubing can be left in the borehole, or the tubing can be detached from the nozzle and recovered at the surface. The perforated liner may extend to the surface or be severed inside the vertical well. The liner perforation dimensions are chosen to enable exclusion of formation solids while permitting entry of formation fluids.
Accordingly, in a first broad aspect of the method of the present invention for creating a borehole extending perpendicularly outwardly from a well bore, such method comprises the steps of:
placing a shoe comprising a 90 degree curved member having an inner arcuate curved passage, to which a one end is affixed coiled tubing, against a side wall of said well bore;
inserting a drilling bit into said coiled tubing, and thereby deflecting said drilling bit via said shoe against said side wall of said well bore;
operating said drilling bit to drill through said side wall in said well bore, and thereafter removing said drilling bit;
directing a jet drill member and attached perforated liner member, in which is located a jetting fluid feed line to said jet drill member, through said coiled tubing; and
supplying a fluid under pressure to said jet drill member to drill a lateral borehole extending perpendicularly outwardly from said well bore.
In a further broad aspect of the method of the present invention of creating at least one lateral borehole extending perpendicularly outwardly from a pre-drilled vertical well bore drilled in an underground formation, such method comprises the steps of:
attaching coil tubing to one end of a 90 degree curved member, said curved member having an inner arcuate curved passage,
attaching an opposite end of said curved member against a side wall of said vertical well bore;
inserting a drilling bit into said coiled tubing and into said curved member, and deflecting said drilling bit via said arcuate curved passage against said side wall of said well bore;
operating said drilling bit to drill through said side wall in said vertical well bore, and thereafter removing said drilling bit from said curved member and said well bore;
attaching a jet drill apparatus to a perforated liner member;
locating a jetting fluid feed line co-axially within said perforated liner member, and coupling said fluid feed line to said jet drill apparatus so that said jet drill apparatus is in fluid communication therewith;
directing said jet drill apparatus and attached perforated liner member, in which said jetting fluid feed line is co-axially located, through said coiled tubing and said curved member; and
supplying a fluid under pressure to said jet drill apparatus via said jetting fluid feed line and drilling a lateral borehole extending perpendicularly outwardly from said vertical well bore.
In yet a still further broad aspect of the method of the present invention of creating at least one lateral borehole extending perpendicularly outwardly from a pre-drilled vertical well bore drilled in an underground formation, such method comprises the steps of:
attaching coil tubing to one end of a 90 degree curved member having an inner arcuate curved passage,
attaching an opposite end of said curved member against a side wall of said vertical well bore;
inserting a drilling bit into said coiled tubing and into said curved member, and deflecting said drilling bit via said arcuate curved passage against said side wall of said well bore;
operating said drilling bit to drill through said side wall in said vertical well bore, and thereafter removing said drilling bit from said curved member and said well bore;
coupling a jet drill apparatus to a jetting fluid feed line so as to be in fluid communication with each other;
locating said jetting fluid feed line co-axially within a perforated liner member, and attaching said perforated liner member to said jet drill apparatus or said jetting fluid line so that said perforated liner member moves with said jet drill jet drill apparatus; and
directing said jet drill apparatus and said perforated liner member in which said jetting fluid feed line is co-axially located, through said coiled tubing and said curved member; and
supplying a fluid under pressure to said jet drill apparatus via said jetting fluid feed line and drilling a lateral borehole extending perpendicularly outwardly from said vertical well bore.
In a refinement of each of the above methods, the method further comprising the step of detaching said jetting fluid feed line from said jet drill apparatus and removing said jetting fluid feed line from said lateral borehole.
In an alternative refinement of each of the above methods, the method further comprises the step, after the step of supplying fluid under pressure to said jet drill member, of severing said coiled tubing at said side wall of said well bore.
In a combination of refinements, the method of the present invention further comprises the steps, after the step of supplying fluid under pressure to said jet drill member and after the step of detaching said jetting fluid feed line from said jet drill member and removing said jetting fluid feed line from the lateral borehole, of severing said coiled tubing at said side wall of said well bore.
Finally, in a further broad aspect of the invention, such invention comprises a method of recovering liquid hydrocarbons from an underground formation, comprising the steps of:
(i) creating a vertical well;
(ii) creating lateral boreholes extending perpendicularly outwardly from said vertical well by:
-
- (a) placing a shoe comprising a 90 degree curved member having an inner arcuate curved passage, to which at one end is affixed coiled tubing, against a side wall of said well bore;
- (b) inserting a drilling bit into said coiled tubing, and thereby deflecting said drilling bit via said shoe against said side wall of said well bore;
- (c) operating said drilling bit to drill through said side wall in said well bore, and thereafter removing said drilling bit;
- (d) directing a jet drill member and attached perforated liner member, in which is located a jetting fluid feed line to said jet drill member, through said coiled tubing; and
- (e) supplying a fluid under pressure to said jet drill member to drill a lateral borehole extending perpendicularly outwardly from said well bore;
(iii) allowing hydrocarbons to flow into said lateral boreholes; and
(iv) pumping said hydrocarbons to surface.
Further advantages and permutations will appear from the following detailed description of various non-limiting embodiments of the invention, taken together with the accompanying drawings, in which:
Similar items in each of
Interstitial space 3 within hole 10 conducts fluids to surface (not shown) when the hole 10 is stable, such as for consolidated rock, but which hole 10 will become blocked with the collapse of the hole when rock in the formation 20 is unconsolidated.
In operation, jetting fluid 4 exits the front of the nozzle 1 and blast the rock in formation 20 to create an open hole 10. Jetting fluid 5 which exits the nozzle 1 from the side of nozzle 1 creates a forward drive force that pulls nozzle 1 and the jet-fluid delivery tube 2 forward, while simultaneously flushing the drilling debris back along open interstitial space 3 to a vertical well 12 where it can fall to a sump.
Perforated liner 6 is of a design that will permit the entry of fluids, such as liquid hydrocarbons, but not solids. Such design may comprise a series of small apertures or perforations within perforated liner 6, or a combination of apertures in combination with screens (not shown). However, other designs of perforated liners 6 may be used as are known to persons of skill in the art. A fluid flow space 7 inside the perforated liner 6, for delivering produced fluids to the vertical well 12 and thence to the surface, is provided. This fluid flow space 7 is enlarged upon the (optional) detachment of jet-fluid delivery tubing 2 from jet nozzle 1 and removal of the jet-fluid delivery tubing 2 to surface at the completion of the borehole drilling and liner insertion process.
Referring to
Perforated liner 6 will be of sufficient material strength and thickness to resist collapse of unconsolidated rock in a borehole 10. For such reason liner 6 will typically be of a hard, but somewhat flexible material, such as Kevlar, to permit bending from the vertical to the horizontal. In some cases steel may need to be used in instances where it is desired that fluid flow into borehole 10 via such liner 6 for subsequent collection, particularly if borehole diameter is small and liner 6 must accordingly be as thin as possible to preserve borehole diameter and at the same time have numerous and sufficiently-sized perforations to allow ingress of fluid. However the perforations are of insufficient size and number to weaken the liner 6 to a sufficient extent that liner 6 has insufficient strength to substantially resist collapse due weight of to unconsolidated rock in formation 20.
In this regard
The method of the invention in creating a borehole in a non-consolidated rock formation 20 will now be described, with reference to
Firstly, in order to ready the vertical well 12 for the borehole drilling operation shown in
A shoe 42, which is affixed at the end of a coiled tubing 40, is placed against the steel vertical well side wall 12′ of vertical well 12 at the desired entry point. Shoe 42 is a steel device having a 90 degree curved inner arcuate passage 43, as shown in
In the operation of this invention, perforated liner 6 is attached at or nearby the jet nozzle 1 as shown in
When the jet-drilling is completed, there are several choices.
Firstly, the jet drilling assembly comprising the jet nozzle 1, jetting fluid delivery tubing 2, and perforated liner 6 can be left in the borehole 10, and the liner 4 and coiled tubing 40 can be put on production at the surface. Any borehole hole collapse will be limited by the perforated liner and fluids which enter the liner 6 and flow to the surface or to a pump placed downhole. The jetting fluid delivery tubing 2 inside liner 6 provides only minor obstruction to fluid flow in either direction since there will remain ample open fluid flow area 7 inside the liner 6.
Alternatively, in a more preferred embodiment, the jetting-liquid delivery tubing 2 is detached from nozzle 1 as described above, or alternatively by a break-away device or procedure such as strong pulling on the delivery tubing 2. This will leave the liner 6 completely clear, and the shoes 42 can also be removed. Therefore the invention can be employed for fluid production from a reservoir 20 or for fluid injection as may occur in water disposal, and it may be employed in both consolidated rock or un-consolidated rock. The material of construction for the liner 6 must have sufficient strength to hold back sand from borehole collapse and sufficient flexibility to make the sharp turn from vertical to horizontal at the shoe 42. A number of materials are candidates, such as steel mentioned above, but also perforated Kevlar tubing, particularly where fluid (such as water) is being supplied to borehole 10 and not being withdrawn. In order to maintain maximum strength a favored embodiment for perforation is small holes of a size appropriate to exclude sand or other grains, but to permit fluid passage. The methodologies for determining the maximum perforation size are well known to those skilled in the art.
A preferred embodiment for maximizing the oil recovery rate at low cost is to eliminate the packers 30, 32, & 34 and tubings B′, C′ and D′ shown in
In this example, as shown in
Although the disclosure describes and illustrates preferred embodiments of the method of the present invention, it is understood that the invention is not limited to these particular embodiments. Many variations and modifications will now occur to those skilled in the art. For a full definition of the invention, reference is to be made to the appended claims.
Claims
1. A method of creating lateral boreholes extending perpendicularly outwardly from a well bore, comprising the steps of:
- placing a shoe comprising a 90 degree curved member having an inner arcuate curved passage, to which at one end is affixed coiled tubing, against a side wall of said well bore;
- inserting a drilling bit into said coiled tubing, and thereby deflecting said drilling bit via said shoe against said side wall of said well bore;
- operating said drilling bit to drill through said side wall in said well bore, and thereafter removing said drilling bit;
- directing a jet drill member and attached perforated liner member, in which is located a jetting fluid feed line to said jet drill member, through said coiled tubing; and
- supplying a fluid under pressure to said jet drill member to drill a lateral borehole extending perpendicularly outwardly from said well bore.
2. The method as claimed in claim 1 further comprising the step of detaching said jetting fluid feed line from said jet drill member and removing said jetting fluid feed line from said lateral borehole.
3. The method as claimed in claim 1 further comprising the step, after the step of supplying fluid under pressure to said jet drill member, of severing said coiled tubing at said side wall of said well bore.
4. The method as claimed in claim 1, further comprising the steps, after the step of supplying fluid under pressure to said jet drill member and after the step of detaching said jetting fluid feed line from said jet drill member and removing said jetting fluid feed line from the lateral borehole, of severing said coiled tubing at said side wall of said well bore.
5. A method of creating at least one lateral borehole extending perpendicularly outwardly from a pre-drilled vertical well bore drilled in an underground formation, comprising the steps of:
- attaching coil tubing to one end of a 90 degree curved member, said curved member having an inner arcuate curved passage,
- attaching an opposite end of said curved member against a side wall of said vertical well bore;
- inserting a drilling bit into said coiled tubing and into said curved member, and deflecting said drilling bit via said arcuate curved passage against said side wall of said well bore;
- operating said drilling bit to drill through said side wall in said vertical well bore, and thereafter removing said drilling bit from said curved member and said well bore;
- attaching a jet drill apparatus to a perforated liner member;
- locating a jetting fluid feed line co-axially within said perforated liner member, and coupling said fluid feed line to said jet drill apparatus so that said jet drill apparatus is in fluid communication therewith;
- directing said jet drill apparatus and attached perforated liner member, in which said jetting fluid feed line is co-axially located, through said coiled tubing and said curved member; and
- supplying a fluid under pressure to said jet drill apparatus via said jetting fluid feed line and drilling a lateral borehole extending perpendicularly outwardly from said vertical well bore.
6. The method as claimed in claim 5 further comprising the step of detaching said jetting fluid feed line from said jet drill member and removing said jetting fluid feed line from said lateral borehole.
7. The method as claimed in claim 5 further comprising the step, after the step of supplying fluid under pressure to said jet drill member, of severing said coiled tubing at said side wall of said well bore.
8. The method as claimed in claim 5, further comprising the steps, after the step of supplying fluid under pressure to said jet drill member and after the step of detaching said jetting fluid feed line from said jet drill member and removing said jetting fluid feed line from the lateral borehole, of severing said coiled tubing at said side wall of said well bore.
9. A method of creating at least one lateral borehole extending perpendicularly outwardly from a pre-drilled vertical well bore drilled in an underground formation, comprising the steps of:
- attaching coil tubing to one end of a 90 degree curved member having an inner arcuate curved passage,
- attaching an opposite end of said curved member against a side wall of said vertical well bore;
- inserting a drilling bit into said coiled tubing and into said curved member, and deflecting said drilling bit via said arcuate curved passage against said side wall of said well bore;
- operating said drilling bit to drill through said side wall in said vertical well bore, and thereafter removing said drilling bit from said curved member and said well bore;
- coupling a jet drill apparatus to a jetting fluid feed line so as to be in fluid communication therewith;
- locating said jetting fluid feed line co-axially within a perforated liner member, and attaching said perforated liner member to said jet drill apparatus or said jetting fluid line so that said perforated liner member moves with said jet drill jet drill apparatus; and
- directing said jet drill apparatus and said perforated liner member in which said jetting fluid feed line is co-axially located, through said coiled tubing and said curved member; and
- supplying a fluid under pressure to said jet drill apparatus via said jetting fluid feed line and drilling a lateral borehole extending perpendicularly outwardly from said vertical well bore.
10. The method as claimed in claim 9 further comprising the step of detaching said jetting fluid feed line from said jet drill apparatus and removing said jetting fluid feed line from said lateral borehole.
11. The method as claimed in claim 10 further comprising the step, after the step of supplying fluid under pressure to said jet drill apparatus, of severing said coiled tubing at said side wall of said well bore.
12. The method as claimed in claim 10, further comprising the steps, after the step of supplying fluid under pressure to said jet drill member and after the step of detaching said jetting fluid feed line from said jet drill apparatus and removing said jetting fluid feed line from the lateral borehole, of severing said coiled tubing at said side wall of said well bore.
13. A method of recovering liquid hydrocarbons from an underground formation, comprising the steps of:
- (i) creating a vertical well;
- (ii) creating lateral boreholes extending perpendicularly outwardly from said vertical well by: (a) placing a shoe comprising a 90 degree curved member having an inner arcuate curved passage, to which at one end is affixed coiled tubing, against a side wall of said well bore; (b) inserting a drilling bit into said coiled tubing, and thereby deflecting said drilling bit via said shoe against said side wall of said well bore; (c) operating said drilling bit to drill through said side wall in said well bore, and thereafter removing said drilling bit; (d) directing a jet drill member and attached perforated liner member, in which is located a jetting fluid feed line to said jet drill member, through said coiled tubing; (e) supplying a fluid under pressure to said jet drill member to drill a lateral borehole extending perpendicularly outwardly from said well bore; and (f) repeating the process to create a number of boreholes extending radially and horizontally outwardly from said vertical well;
- (iii) allowing hydrocarbons to flow into said lateral boreholes; and
- (iv) pumping said hydrocarbons to surface.
Type: Application
Filed: Oct 4, 2010
Publication Date: Apr 7, 2011
Applicant: IOR Canada Ltd. (Calgary)
Inventor: Conrad Ayasse (Calgary)
Application Number: 12/923,682
International Classification: E21B 43/00 (20060101); E21B 7/18 (20060101);