This application is a divisional application of co-pending application Ser. No. 09/959,964, filed Jan. 13, 2002, and for which priority is claimed under 35 U.S.C. §120; which is the national phase under 35 U.S.C. §371 of PCT International Application No. PCT/IE00/00066 which has an International filing date of May 15, 2000, which designated the United States of America and was published in English; which claims priority to PCT/IE99/00043, filed May 14, 1999, under 35 U.S.C. §119; the entire contents of all are hereby incorporated by reference.
TECHNICAL FIELD This invention relates to the identification of target sequences for use in nucleic acid assays for the detection and identification of prokaryotic and/or eukaryotic organisms.
BACKGROUND ART The ssrA gene, which encodes a small stable high copy number RNA transcript (tmRNA), is found in all bacteria and has recently been identified in chloroplasts and diatoms. It has a dual function both as a tRNA and as an mRNA molecule and is involved in rescuing truncated mRNAs which have lost stop codons, facilitating trans-translation of truncated peptides prior to protease degradation (Keiler, K. C. et al. (1996), Science, 271, 990-993). The unique function of tmRNAs has directed researchers to analyse the relationship of the secondary structure of these molecules with their function. These studies have focussed on the conservation of the secondary structure of tmRNAs from different microorganisms, and on the evolutionary significance and functional relevance of such structural conservation. Studies were carried out by Matveeva, O et al (1998), Vol. 16, No. 13, 1374-1375 to investigate oligonucleotide binding to RNA molecules using tmRNA as a model of RNA containing secondary structure. The studies did not have as their objective the identification of sites in tmRNA with the goal of designing antisense oligonucleotide for therapeutic purposes.
The number of nucleic acid targets/probes for bacterial diagnostics is currently limited. As such, the need to identify and characterise novel DNA and RNA targets for diagnostic purposes is now seen as a priority. Target nucleic acid sequences for the development of probes can be for example, plasmids, ribosomal RNA genes, intergenic regions, genes encoding virulence factors or random genomic DNA fragments. In addition, a number of RNA molecules have been described which are used as targets for RNA-based detection for example, ribosomal RNA and RNase P.
The basis of any nucleic acid-based probe assay is the requirement for well characterised nucleic acid sequences which are present in all prokaryotes and eukaryotes under study. For reliable detection of a prokaryotic or eukaryotic organism, the nucleic acid probes used should be highly specific (i.e. not cross-react with nucleic acids from other organisms) and highly sensitive (i.e. most or all strains of the organism to be detected should react with the probe). Therefore, preferred target sequences would be present in all strains of the organism concerned. Such sequences would have significant sequence variability to allow differentiation of the species concerned from other closely related species but, on the other hand, have sufficient sequence conservation to allow the detection of all strains of the species concerned. In general, the precise identification of a nucleic acid sequence, which could form the basis of a specific nucleic acid probe assay, is tedious, difficult and uncertain. To date there are few general approaches which would facilitate the development of nucleic acid probes for a wide variety of microorganisms. The nucleic acid sequences which have been identified as potentially useful targets for probe development are, for example, rRNA genes and RNA, and the rRNA 16S/23S intergenic region.
The majority of nucleic acid probe/target assays centre on the high copy number ribosomal RNAs (rRNA) and rRNA 16S/23S spacer regions (European Patent No. 0 395 292) of the bacterial cell for the purposes of detection and identification. A number of successful commercial bacterial diagnostic kits have been marketed based on these rRNA probes/targets for the detection of a variety of microorganisms. These include a range of commercial probe kits based on the 16S rRNA gene marketed by Gen-probe Inc. San Diego Calif., and DNA probes based on the 16S/23S spacer region marketed by Innogenetics N.V. Ghent, Belgium. However, many of these diagnostic kits have limitations, including lack of sensitivity due to low copy-number target sequences and lack of specificity due to sequence identity between closely related organisms in many cases.
Nucleic acid-based methods that could be applied directly to samples to give an indication of the viability of any microbes present therein would be of enormous significance for food, industrial, environmental and medical applications.
A disadvantage of DNA-based methods is that they do not distinguish between living and dead organisms. Some studies have focussed on using rRNA and mRNA as indicators of cell viability (Sheridan, G. E. C. et al. (1998) Applied and Environmental Microbiology, 64, 1313-1318). However, these sequences are not satisfactory targets as rRNA and mRNA can be present in bacterial cells up to 48 hours after cell death.
With the advent of nucleic acid based microarray-like formatting, incorporating simultaneous monitoring of multiple nucleic acid targets, there is now a clear requirement to identify and characterise novel nucleic acid sequences for use as probes and/or target regions to detect and identify viable prokaryotic and eukaryotic cells.
DISCLOSURE OF INVENTION The invention provides use of the ssrA gene or a fragment thereof as a target region in a nucleic acid probe assay for a prokaryotic or eukaryotic organism.
Thus, the invention has application in relation to all organisms other than viruses.
No other nucleic acid probe assay has been reported which uses regions of the ssrA gene as a target region to detect and identify species of prokaryotes and eukaryotes with the attendant advantages.
According to one embodiment of the invention a fragment of the ssrA gene molecule corresponding to a region of high homology from the 5′ end of the DNA molecule can be used as a universal target region.
In an alternative embodiment of the invention a fragment of the ssrA gene molecule corresponding to a region of high homology from the 3′ end of the DNA molecule can be used as a universal target region.
In a further embodiment of the invention a fragment of the ssrA gene molecule corresponding to a region of low homology can be used as a target region in a nucleic acid probe assay to distinguish between species.
In a still further embodiment of the invention a fragment of the ssrA gene molecule corresponding to a region of low homology can be used as a target region for the generation of a genus specific probe.
As hereinafter described nucleotide sequence alignments of ssrA gene sequences from different organisms show that the 5′ and 3′ regions of these molecules demonstrate a high degree of homology and are therefore useful as universal target regions. The ssrA genes also demonstrate a more significant degree of nucleotide sequence variability between closely related organisms than any other bacterial high copy number RNA. These variable regions are ideal targets for nucleic acid assays to distinguish between species.
The invention also provides use of tmRNA, an RNA transcript of the ssrA gene, or a fragment thereof as a target region in a nucleic acid probe assay for a prokaryotic or eukaryotic organism.
According to one embodiment of this aspect of the invention a fragment of a tmRNA molecule corresponding to a region of high homology from the 5′ end of the tmRNA molecule can be used as a universal target region.
Alternatively, a fragment of a tmRNA molecule corresponding to a region of high homology from the 3′ end of the tmRNA molecule can be used as a universal target region.
According to a further embodiment of this aspect of the invention a fragment of a tmRNA molecule corresponding to a region of low homology can be used as a target region in a nucleic acid probe assay to distinguish between species.
According to a still further embodiment a fragment of a tmRNA molecule corresponding to a region of low homology can be used as a target region for the generation of a genus specific probe.
The nucleic acid probe (DNA or RNA) in accordance with the invention typically consists of at least 10 nucleotides of the ssrA gene and/or tmRNA transcript or their complementary sequence and is used in a nucleic acid probe hybridisation assay for a prokaryotic or eukaryotic organism. Probe hybridisation to its complementary sequence is typically revealed by labelling the nucleic acid probe with a radioactive or non-radioactive (e.g. colorimetric or fluorimetric) label.
In preferred embodiments said ssrA gene fragment or said tmRNA fragment can be used as the basis of a primer to be used in an amplification procedure.
Universal oligonucleotide primers directed to the 5′ and 3′ regions of either the ssrA gene or the tmRNA sequence can be used in accordance with the invention to amplify the ssrA gene or its encoding tmRNA from a wide variety of bacteria, facilitating amplification of a wide range of organisms simultaneously, whilst also enabling specific nucleic acid probe hybridisation and detection.
Preferably, the product of the amplification procedure is used as a target region in a nucleic probe assay.
Further, preferably, a cDNA transcript of a tmRNA molecule is used as a probe in a nucleic acid hybridisation assay.
Such assays can be carried out in vitro or in situ.
The target region as defined herein can be used as the basis of an assay for distinguishing between living and dead prokaryotic or eukaryotic organisms.
In contrast to rRNA and mRNA which can be present in bacterial cells following cell death, tmRNA is rapidly degraded in dead organisms. Thus, tmRNA can be a useful target for distinguishing between living and dead prokaryotic or eukaryotic organisms either directly by nucleic acid probe hybridisation to isolated bacterial RNA, or by combined RNA amplification and nucleic acid probe hybridisation to the amplified product.
Preferably, the target region is used in a multiple probe format for broad scale detection and/or identification of prokaryotic or eukaryotic organisms.
An ssrA gene probe or a tmRNA transcript probe in accordance with the invention can be linked to a microarray gene chip system for the broad scale high throughput detection and identification of prokaryotic or eukaryotic organisms.
A target region in accordance with the invention can also be used as a probe in an assay to detect prokaryotic or eukaryotic organisms in a sample of matter.
Such a sample of matter can include biological samples such as samples of tissue from the respiratory tract, the uro-genital tract or the gastrointestinal tract, or body fluids such as blood and blood fractions, sputum or cerebrospinal fluid.
An assay in accordance with the invention can also be carried out on food samples, environmental samples including air, water, marine and soil samples, and plant and animal derived samples.
According to the invention a fragment of the ssrA gene or the tmRNA transcript can also be used in an assay to obtain a DNA profile of a prokaryotic or eukaryotic organism and, thereby, distinguish between strains of the same species.
Nucleic acid sequence alignments have shown that sequence variation occurs in the ssrA gene and the tmRNA transcript within individual species. This intra-species sequence variation can be used to distinguish between strains of the same species for epidemiology, tracing of infectious agents for example, in outbreaks, or for population studies.
Other applications of the invention include the use of the ssrA gene, the tmRNA transcript or a DNA sequence complementary thereto, or a fragment thereof, to design an agent directed against infectious prokaryotic or eukaryotic organisms for therapeutic purposes.
Such agents can include antisense mRNA or oligonucleotides, ribozymes, and antagonistic peptides and are suitable for use in any kind of medical condition.
Thus, the invention can be used for the detection of viable organisms only in biological samples using the tmRNA target. Thus, during and following any anti-infectious agent drug treatment, the tmRNA target can be used to monitor the efficacy of the therapy on those specific infectious agents (e.g. antimicrobial and/or anti-parasitic treatments).
In one embodiment, the target region is used to monitor the efficacy of drug therapies against infectious agents.
In another embodiment, the target region is used to monitor the viability and level of health-promoting organisms in the gastrointestinal tract.
This aspect of the invention relates, for example, to the introduction into the gut flora of health-promoting (probiotic) organisms contained in for example yoghurt or other food to improve health. There is an interest and need to continuously monitor the presence and levels of these organisms to ensure their continued function in promoting health. The tmRNA region can be used as a target to detect viable organisms, for example in faeces, so as to monitor the presence of the health promoting organisms.
In a further embodiment, the assay is used for the quantification of prokaryotic or eukaryotic organisms.
When using probe hybridisation and/or in vitro amplification to detect organisms in a sample it is possible to determine the number of organisms present, based on the signal intensity. Real-time methods of in vitro amplification can also be used to enable the quantification of organisms in a sample. Thus, the ability to quantify the number of organisms in a sample can be important in clinical situations for treatment purposes, for example for antibiotic or other treatments or for monitoring treatment efficacy.
A still further application of the invention is the use of a database of ssrA gene sequences to identify a prokaryotic or eukaryotic organism.
The invention provides a variety of probes for the 5′ and 3′ homologous regions and the variable regions of the ssrA gene and tmRNA sequences, the probes being derived from these sequences or sequences complementary thereto. Representative sequences are as follows:
Actinobacillus actinomycetemcomitans ssrA
SEQ ID NO: 1
GGGGCTGATTCTGGATTCGACGGGATTAGCGAAGCCCGAAGT
GCACGTCGAGGTGCGGTAGGCCTCGTAAATAAACCGCAAAAA
AATAGTCGCAAACGACGAACAATACGCTTTAGCAGCTTAATA
ACCTGCCTTTAGCCTTCGCTCCCCAGCTTCCGCTCGTAAGACG
GGGATAAAGCGGAGTCAAACCAAAACGAGATCGTGTGGAAG
CCACCGTTTGAGGATCGAAGCATTAAATTAAATCAAAGTAGC
TTAATTGTCGCGTGTCCGTCAGCAGGATTAAGTGAATTTAAAG
ACCGGACTAAACGTGTAGTGCTAACGGCAGAGGAATTTCGGA
CGGGGGTTCAACTCCCCCCAGCTCCACCA
Actinobacillus actinomycetemcomitans tmRNA
SEQ ID NO: 2
GGGGCUGAUUCUGGAUUCGACGGGAUUAGCGAAGCCCGAAG
UGCACGUCGAGGUGCGGUAGGCCUCGUAAAUAAACCGCAAA
AAAAUAGUCGCAAACGACGAACAAUACGCUUUAGCAGCUUA
AUAACCUGCCUUUAGCCUUCGCUCCCCAGCUUCCGCUCGUA
AGACGGGGAUAAAGCGGAGUCAAACCAAAACGAGAUCGUGU
GGAAGCCACCGUUUGAGGAUCGAAGCAUUAAAUUAAAUCAA
AGUAGCUUAAUUGUCGCGUGUCCGUCAGCAGGAUUAAGUGA
AUUUAAAGACCGGACUAAACGUGUAGUGCUAACGGCAGAGG
AAUUUCGGACGGGGGUUCAACUCCCCCCAGCUCCACCA
Aeromonas salmonicida ssrA, internal partial
SEQ ID NO: 3
AAGATTCACGAAACCCAAGGTGCATGCCGAGGTGCGGTAGGC
CTCGTTAACAAACCGCAAAAAAATAGTCGCAAACGACGAAAA
CTACGCACTAGCAGCtTAATAACCTGCATAGAGCCCTTCTACC
CTAGCTTGCCTGTGTCCTAGGGAATCGGAAGGTCATCCTTCAC
AGGATCGTGTGGAAGTCCTGCTCGGGGCGGAAGCATTAAAAC
CAATCGAGCTAGTCAATTCGTGGCGTGTCTCTCCGCAGCGGGT
TGGCGAATGTAAAGAGTGACTAAGCATGTAGTACCGAGGATG
TAGTAATTTTGGACGGGG
Aeromonas salmonicida tmRNA, internal partial
SEQ ID NO: 4
AAGAUUCACGAAACCCAAGGUGCAUGCCGAGGUGCGGUAGG
CCUCGUUAACAAACCGCAAAAAAAUAGUCGCAAACGACGAA
AACUACGCACUAGCAGCUUAAUAACCUGCAUAGAGCCCUUC
UACCCUAGCUUGCCUGUGUCCUAGGGAAUCGGAAGGUCAUC
CUUCACAGGAUCGUGUGGAAGUCCUGCUCGGGGCGGAAGCA
UUAAAACCAAUCGAGCUAGUCAAUUCGUGGCGUGUCUCUCC
GCAGCGGGUUGGCGAAUGUAAAGAGUGACUAAGCAUGUAGU
ACCGAGGAUGUAGUAAUUUUGGACGGGG
Alcaligenes eutrophus ssrA
SEQ ID NO: 5
TGGGCCGACCTGGTTTCGACGTGGTTACAAAGCAGTGAGGCA
TACCGAGGACCCGTCACCTCGTTAATCAATGGAATGCAATAA
CTGCTAACGACGAACGTTACGCACTCGCTTAATTGCGGCCGTC
CTCGCACTGGCTCGCTGACGGGCTAGGGTCGCAAGACCACGC
GAGGTATTTACGTCAGATAAGCTCCGGAAGGGTCACGAAGCC
GGGGACGAAAACCTAGTGACTCGCCGTCGTAGAGCGTGTTCG
TCCGATGCGCCGGTTAAATCAAATGACAGAACTAAGTATGTA
GAACTCTCTGTGGAGGGCTTACGGACGCGGGTTCGATTCCCGC
CGGCTCCACCA
Alcaligenes eutrophus tmRNA
SEQ ID NO: 6
UGGGCCGACCUGGUUUCGACGUGGUUACAAAGCAGUGAGGC
AUACCGAGGACCCGUCACCUCGUUAAUCAAUGGAAUGCAAU
AACUGCUAACGACGAACGUUACGCACUCGCUUAAUUGCGGC
CGUCCUCGCACUGGCUCGCUGACGGGCUAGGGUCGCAAGAC
CACGCGAGGUAUUUACGUCAGAUAAGCUCCGGAAGGGUCAC
GAAGCCGGGGACGAAAACCUAGUGACUCGCCGUCGUAGAGC
GUGUUCGUCCGAUGCGCCGGUUAAAUCAAAUGACAGAACUA
AGUAUGUAGAACUCUCUGUGGAGGGCUUACGGACGCGGGUU
CGAUUCCCGCCGGCUCCACCA
Aquifex aeolicus ssrA
SEQ ID NO: 7
GGGGGCGGAAAGGATTCGACGGGGACAGGCGGTCCCCGAGG
AGCAGGCCGGGTGGCTCCCGTAACAGCCGCTAAAACAGCTCC
CGAAGCTGAACTCGCTCTCGCTGCCTAATTAAACGGCAGCGC
GTCCCCGGTAGGTTTGCGGGTGGCCTACCGGAGGGCGTCAGA
GACACCCGCTCGGGCTACTCGGTCGCACGGGGCTGAGTAGCT
GACACCTAACCCGTGCTACCCTCGGGGAGCTTGCCCGTGGGC
GACCCGAGGGGAAATCCTGAACACGGGCTAAGCCTGTAGAGC
CTCGGATGTGGCCGCCGTCCTCGGACGCGGGTTCGATTCCCGC
CGCCTCCACCA
Aquifex aeolicus tmRNA
SEQ ID NO: 8
GGGGGCGGAAAGGAUUCGACGGGGACAGGCGGUCCCCGAGG
AGCAGGCCGGGUGGCUCCCGUAACAGCCGCUAAAACAGCUC
CCGAAGCUGAACUCGCUCUCGCUGCCUAAUUAAACGGCAGC
GCGUCCCCGGUAGGUUUGCGGGUGGCCUACCGGAGGGCGUC
AGAGACACCCGCUCGGGCUACUCGGUCGCACGGGGCUGAGU
AGCUGACACCUAACCCGUGCUACCCUCGGGGAGCUUGCCCG
UGGGCGACCCGAGGGGAAAUCCUGAACACGGGCUAAGCCUG
UAGAGCCUCGGAUGUGGCCGCCGUCCUCGGACGCGGGUUCG
AUUCCCGCCGCCUCCACCA
Bacillus megaterium ssrA, internal partial
SEQ ID NO: 9
AGGGTAGTTCGAGCTTAGGTTGCGAGTCGAGGAGATGGCCTC
GTTAAAACATCAACGCCAATAATAACTGGCAAATCTAACAAT
AACTTCGCTTTAGCTGCATAATAGTAGCTTAGCGTTCCTCCCT
CCATCGCCCATGTGGTAGGGTAAGGGACTCACTTTAAGTGGG
CTACGCCGGAGTTCGCCGTCTGAGGACGAAGGAAGAGAATAA
TCAGACTAGCGACTGGGACGCCTGTTGGTAGGCAGAACAGCT
CGCGAATGATCAATATGCCAACTACACTCGTAGACGCTTAAGT
GGCCATATTTCTGGACGTGG
Bacillus megaterium tmRNA, internal partial
SEQ ID NO: 10
AGGGUAGUUCGAGCUUAGGUUGCGAGUCGAGGAGAUGGCCU
CGUUAAAACAUCAACGCCAAUAAUAACUGGCAAAUCUAACA
AUAACUUCGCUUUAGCUGCAUAAUAGUAGCUUAGCGUUCCU
CCCUCCAUCGCCCAUGUGGUAGGGUAAGGGACUCACUUUAA
GUGGGCUACGCCGGAGUUCGCCGUCUGAGGACGAAGGAAGA
GAAUAAUCAGACUAGCGACUGGGACGCCUGUUGGUAGGCAG
AACAGCUCGCGAAUGAUCAAUAUGCCAACUACACUCGUAGA
CGCUUAAGUGGCCAUAUUUCUGGACGUGG
Bacillus subtilis ssrA
SEQ ID NO: 11
GGGGACGTTACGGATTCGACAGGGATGGATCGAGCTTGAGCT
GCGAGCCGAGAGGCGATCTCGTAAACACGCACTTAAATATAA
CTGGCAAAACTAACAGTTTTAACCAAAACGTAGCATTAGCTG
CCTAATAAGCGCAGCGAGCTCTTCCTGACATTGCCTATGTGTC
TGTGAAGAGCACATCCAAGTAGGCTACGCTTGCGTTCCCGTCT
GAGAACGTAAGAAGAGATGAACAGACTAGCTCTCGGAAGGCC
CGCCCGCAGGCAAGAAGATGAGTGAAACCATAAATATGCAGG
CTACGCTCGTAGACGCTTAAGTAATCGATGTTTCTGGACGTGG
GTTCGACTCCCACCGTCTCCACCA
Bacillus subtilis tmRNA
SEQ ID NO: 12
GGGGACGUUACGGAUUCGACAGGGAUGGAUCGAGCUUGAGC
UGCGAGCCGAGAGGCGAUCUCGUAAACACGCACUUAAAUAU
AACUGGCAAAACUAACAGUUUUAACCAAAACGUAGCAUUAG
CUGCCUAAUAAGCGCAGCGAGCUCUUCCUGACAUUGCCUAU
GUGUCUGUGAAGAGCACAUCCAAGUAGGCUACGCUUGCGUU
CCCGUCUGAGAACGUAAGAAGAGAUGAACAGACUAGCUCUC
GGAAGGCCCGCCCGCAGGCAAGAAGAUGAGUGAAACCAUAA
AUAUGCAGGCUACGCUCGUAGACGCUUAAGUAAUCGAUGUU
UCUGGACGUGGGUUCGACUCCCACCGUCUCCACCA
Bordetella pertussis ssrA
SEQ ID NO: 13
GGGGCCGATCCGGATTCGACGTGGGTCATGAAACAGCTCAGG
GCATGCCGAGCACCAGTAAGCTCGTTAATCCACTGGAACACT
ACAAACGCCAACGACGAGCGTCTCGCTCTCGCCGCTTAAGCG
GTGAGCCGCTGCACTGATCTGTCCTTGGGTCAGGCGGGGGAA
GGCAACTTCACAGGGGGCAACCCCGAACCGCAGCAGCGACAT
TCACAAGGAATCGGCCACCGCTGGGGTCACACGGCGTTGGTT
TAAATTACGTGAATCGCCCTGGTCCGGCCCGTCGATCGGCTAA
GTCCAGGGTTAAATCCAAATAGATCGACTAAGCATGTAGAAC
TGGTTGCGGAGGGCTTGCGGACGGGGGTTCAATTCCCCCCGG
CTCCACCA
Bordetella pertussis tmRNA
SEQ ID NO: 14
GGGGCCGAUCCGGAUUCGACGUGGGUCAUGAAACAGCUCAG
GGCAUGCCGAGCACCAGUAAGCUCGUUAAUCCACUGGAACA
CUACAAACGCCAACGACGAGCGUCUCGCUCUCGCCGCUUAA
GCGGUGAGCCGCUGCACUGAUCUGUCCUUGGGUCAGGCGGG
GGAAGGCAACUUCACAGGGGGCAACCCCGAACCGCAGCAGC
GACAUUCACAAGGAAUCGGCCACCGCUGGGGUCACACGGCG
UUGGUUUAAAUUACGUGAAUCGCCCUGGUCCGGCCCGUCGA
UCGGCUAAGUCCAGGGUUAAAUCCAAAUAGAUCGACUAAGC
AUGUAGAACUGGUUGCGGAGGGCUUGCGGACGGGGGUUCAA
UUCCCCCCGGCUCCACCA
Borrelia burgdorferi ssrA
SEQ ID NO: 15
GGGGATGTTTTGGATTTGACTGAAAATGTTAATATTGTAAGTT
GCAGGCAGAGGGAATCTCTTAAAACTTCTAAAATAAATGCAA
AAAATAATAACTTTACAAGCTCAAATCTTGTAATGGCTGCTTA
AGTTAGCAGAGGGTTTTGTTGAATTTGGCTTTGAGGTTCACTT
ATACTCTTTTCGACATCAAAGCTTGCTTAAAAATGTTTTCAAG
TTGATTTTTAGGGACTTTTATACTTGAGAGCAATTTGGTGGTTT
GCTAGTATTTCCAAACCATATTGCTTAATAAAATACTAGATAA
GCTTGTAGAAGCTTATAGTATTATTTTTAGGACGCGGGTTCAA
TTCCCGCCATCTCCACCA
Borrelia burgdorferi tmRNA
SEQ ID NO: 16
GGGGAUGUUUUGGAUUUGACUGAAAAUGUUAAUAUUGUAA
GUUGCAGGCAGAGGGAAUCUCUUAAAACUUCUAAAAUAAAU
GCAAAAAAUAAUAACUUUACAAGCUCAAAUCUUGUAAUGGC
UGCUUAAGUUAGCAGAGGGUUUUGUUGAAUUUGGCUUUGA
GGUUCACUUAUACUCUUUUCGACAUCAAAGCUUGCUUAAAA
AUGUUUUCAAGUUGAUUUUUAGGGACUUUUAUACUUGAGA
GCAAUUUGGUGGUUUGCUAGUAUUUCCAAACCAUAUUGCUU
AAUAAAAUACUAGAUAAGCUUGUAGAAGCUUAUAGUAUUA
UUUUUAGGACGCGGGUUCAAUUCCCGCCAUCUCCACCA
Campylobacter jejuni ssrA
SEQ ID NO: 17
GGGAGCGACTTGGCTTCGACAGGAGTAAGTCTGCTTAGATGG
CATGTCGCTTTGGGCAAAGCGTAAAAAGCCCAAATAAAATTA
AACGCAAACAACGTTAAATTCGCTCCTGCTTACGCTAAAGCTG
CGTAAGTTCAGTTGAGCCTGAAATTTAAGTCATACTATCTAGC
TTAATTTTCGGTCATTTTTGATAGTGTAGCCTTGCGTTTGACAA
GCGTTGAGGTGAAATAAAGTCTTAGCCTTGCTTTTGAGTTTTG
GAAGATGAGCGAAGTAGGGTGAAGTAGTCATCTTTGCTAAGC
ATGTAGAGGTCTTTGTGGGATTATTTTTGGACAGGGGTTCGAT
TCCCCTCGCTTCCACCA
Campylobacter jejuni tmRNA
SEQ ID NO: 18
GGGAGCGACUUGGCUUCGACAGGAGUAAGUCUGCUUAGAUG
GCAUGUCGCUUUGGGCAAAGCGUAAAAAGCCCAAAUAAAAU
UAAACGCAAACAACGUUAAAUUCGCUCCUGCUUACGCUAAA
GCUGCGUAAGUUCAGUUGAGCCUGAAAUUUAAGUCAUACUA
UCUAGCUUAAUUUUCGGUCAUUUUUGAUAGUGUAGCCUUGC
GUUUGACAAGCGUUGAGGUGAAAUAAAGUCUUAGCCUUGCU
UUUGAGUUUUGGAAGAUGAGCGAAGUAGGGUGAAGUAGUC
AUCUUUGCUAAGCAUGUAGAGGUCUUUGUGGGAUUAUUUU
UGGACAGGGGUUCGAUUCCCCUCGCUUCCACCA
Chlamydia trachomatis (D/UW-3/CX) ssrA
SEQ ID NO: 19
GGGGGTGTAAAGGTTTCGACTTAGAAATGAAGCGTTAATTGC
ATGCGGAGGGCGTTGGCTGGCCTCCTAAAAAGCCGACAAAAC
AATAAATGCCGAACCTAAGGCTGAATGCGAAATTATCAGCTT
CGCTGATCTCGAAGATCTAAGAGTAGCTGCTTAATTAGCAAA
GTTGTTACCTAAATACGGGTGACCCGGTGTTCGCGAGCTCCAC
CAGAGGTTTTCGAAACACCGTCATGTATCTGGTTAGAACTTAG
GTCCTTTAATTCTCGAGGAAATGAGTTTGAAATTTAATGAGAG
TCGTTAGTCTCTATAGGGGTTTCTAGCTGAGGAGACATAACGT
ATAGTACCTAGGAACTAAGCATGTAGAGGTTAGCGGGGAGTT
TACTAAGGACGAGAGTTCGACTCTCTCCACCTCCACCA
Chlamydia trachomatis (D/UW-3/CX) tmRNA
SEQ ID NO: 20
GGGGGUGUAAAGGUUUCGACUUAGAAAUGAAGCGUUAAUU
GCAUGCGGAGGGCGUUGGCUGGCCUCCUAAAAAGCCGACAA
AACAAUAAAUGCCGAACCUAAGGCUGAAUGCGAAAUUAUCA
GCUUCGCUGAUCUCGAAGAUCUAAGAGUAGCUGCUUAAUUA
GCAAAGUUGUUACCUAAAUACGGGUGACCCGGUGUUCGCGA
GCUCCACCAGAGGUUUUCGAAACACCGUCAUGUAUCUGGUU
AGAACUUAGGUCCUUUAAUUCUCGAGGAAAUGAGUUUGAAA
UUUAAUGAGAGUCGUUAGUCUCUAUAGGGGUUUCUAGCUGA
GGAGACAUAACGUAUAGUACCUAGGAACUAAGCAUGUAGAG
GUUAGCGGGGAGUUUACUAAGGACGAGAGUUCGACUCUCUC
CACCUCCACCA
Chlamydia trachomatis (mouse pneumonitis) ssrA
SEQ ID NO: 21
GGGGGTGTAAAGGTTTCGACTTAGAAATGAAGCGTTAATTGC
ATGCGGAGGGCGTTGGCTGGCCTCCTAAAAAGCCGACAAAAC
AATAAATGCCGAACCTAAGGCTGAATGCGAAATTATCAGCTT
CGCTGATCTTAATGATCTAAGAGTTGCTGCTTAATTAGCAAAG
TTGTTACCTAAGTACTGGTAACCCGGTGTTCGCGAGCTCCACC
AGAGGTTTTCGAAACGCCGTCATTTATCTGGTTAGAATTAGGG
CCTTTTAACTCTCAAGGGAACTAATTTGAATTTTAATGAGAGT
CGTTGGTCTCTATAGAGGTTTCTAGCTGAGGAGATATAACGTA
AAATATTCTAGAAACTAAGCATGTAGAGGTTAGCGGGGAGTT
TACTAAGGACGAGAGTTCGAATCTCTCCACCTCCACCA
Chlamydia trachomatis (mouse pneumonitis) tmRNA
SEQ ID NO: 22
GGGGGUGUAAAGGUUUCGACUUAGAAAUGAAGCGUUAAUU
GCAUGCGGAGGGCGUUGGCUGGCCUCCUAAAAAGCCGACAA
AACAAUAAAUGCCGAACCUAAGGCUGAAUGCGAAAUUAUCA
GCUUCGCUGAUCUUAAUGAUCUAAGAGUUGCUGCUUAAUUA
GCAAAGUUGUUACCUAAGUACUGGUAACCCGGUGUUCGCGA
GCUCCACCAGAGGUUUUCGAAACGCCGUCAUUUAUCUGGUU
AGAAUUAGGGCCUUUUAACUCUCAAGGGAACUAAUUUGAAU
UUUAAUGAGAGUCGUUGGUCUCUAUAGAGGUUUCUAGCUGA
GGAGAUAUAACGUAAAAUAUUCUAGAAACUAAGCAUGUAG
AGGUUAGCGGGGAGUUUACUAAGGACGAGAGUUCGAAUCUC
UCCACCUCCACCA
Chlorobium tepidum ssrA
SEQ ID NO: 23
GGGGATGACAGGCTATCGACAGGATAGGTGTGAGATGTCGTT
GCACTCCGAGTTTCAGCATGGACGGACTCGTTAAACAAGTCTA
TGTACCAATAGATGCAGACGATTATTCGTATGCAATGGCTGCC
TGATTAGCACAAGTTAATTCAGAAGCCATCGTCCTGCGGTGAA
TGCGCTTACTCTGAAGCCGCCGGATGGCATAACCCGCGCTTGA
GCCTACGGGTTCGCGCAAGTAAGCTCCGTACATTCATGCCCGA
GGGGGTGTGCGGGTAACCAATCGGGATAAGGGGACGAACGCT
GCTGGCGGTGTAATCGGACCACGAAAAACCAACCACCAGAGA
TGAGTGTGGTAACTGCATCGAGCAGTGTCCTGGACGCGGGTTC
AAGTCCCGCCATCTCCACCA
Chlorobium tepidum tmRNA
SEQ ID NO: 24
GGGGAUGACAGGCUAUCGACAGGAUAGGUGUGAGAUGUCGU
UGCACUCCGAGUUUCAGCAUGGACGGACUCGUUAAACAAGU
CUAUGUACCAAUAGAUGCAGACGAUUAUUCGUAUGCAAUGG
CUGCCUGAUUAGCACAAGUUAAUUCAGAAGCCAUCGUCCUG
CGGUGAAUGCGCUUACUCUGAAGCCGCCGGAUGGCAUAACC
CGCGCUUGAGCCUACGGGUUCGCGCAAGUAAGCUCCGUACA
UUCAUGCCCGAGGGGGUGUGCGGGUAACCAAUCGGGAUAAG
GGGACGAACGCUGCUGGCGGUGUAAUCGGACCACGAAAAAC
CAACCACCAGAGAUGAGUGUGGUAACUGCAUCGAGCAGUGU
CCUGGACGCGGGUUCAAGUCCCGCCAUCUCCACCA
Cyanophora paradoxa (alga) cyanelle ssrA
SEQ ID NO: 25
GGGGCTGTTTAGGTTTCGACGTTTTTTTCTAATTATGTTTGTTA
AGCAAGTCGAGGATTTGTTCTATCTCGAAAATCAAGAACTCTC
AAAATTTAAACGCAACTAATATTGTACGTTTTAACCGTAAAGC
AGCTTTCGCTGTTTAATAATTACTTTTAATTTAAAAACCTAATT
TTTTTAGGAATTTATTTATTTATTGTTTATCCTGCTTAATGAAT
TAAAAAAAGCTATACTTGTGAATAAACGCATAATTTAAAAAA
ACGGACGTGGGTTCAAATCCCACCAGCTCCACCA
Cyanophora paradoxa (alga) cyanelle tmRNA
SEQ ID NO: 26
GGGGCUGUUUAGGUUUCGACGUUUUUUUCUAAUUAUGUUU
GUUAAGCAAGUCGAGGAUUUGUUCUAUCUCGAAAAUCAAGA
ACUCUCAAAAUUUAAACGCAACUAAUAUUGUACGUUUUAAC
CGUAAAGCAGCUUUCGCUGUUUAAUAAUUACUUUUAAUUUA
AAAACCUAAUUUUUUUAGGAAUUUAUUUAUUUAUUGUUUA
UCCUGCUUAAUGAAUUAAAAAAAGCUAUACUUGUGAAUAAA
CGCAUAAUUUAAAAAAACGGACGUGGGUUCAAAUCCCACCA
GCUCCACCA
Clostridium acetobutylicum ssrA, 3′ partial
SEQ ID NO: 27
AATCTGGCGTCGAGAGCGGGGAAACGAGCCTTACAAAGCTTT
GAGTAAGGAACGGAATTTATGAAGCTACTGAAGTGAAAAGCT
TGTTTGTAGGCGTTTCATGGAGGGAATGTTAAAATACAAACTG
CACTCGGAGATGCTTAATGAAACCATTTTCGGACAGGGGTTCG
ATTCCCCTCGCCTCCACCA
Clostridium acetobutylicum tmRNA,
3′ partial
SEQ ID NO: 28
AAUCUGGCGUCGAGAGCGGGGAAACGAGCCUUACAAAGCUU
UGAGUAAGGAACGGAAUUUAUGAAGCUACUGAAGUGAAAA
GCUUGUUUGUAGGCGUUUCAUGGAGGGAAUGUUAAAAUAC
AAACUGCACUCGGAGAUGCUUAAUGAAACCAUUUUCGGACA
GGGGUUCGAUUCCCCUCGCCUCCACCA
Deinococcus radiodurans ssrA
SEQ ID NO: 29
GGGGGTGACCCGGTTTCGACAGGGGAACTGAAGGTGATGTTG
CGTGTCGAGGTGCCGTTGGCCTCGTAAACAAACGGCAAAGCC
ATTTAACTGGCAACCAGAACTACGCTCTCGCTGCTTAAGTGAG
ATGACGACCGTGCAGCCCGGCCTTTGGCGTCGCGGAAGTCAC
TAAAAAAGAAGGCTAGCCCAGGCGATTCTCCATAGCCGACGG
CGAAACTTTATGGAGCTACGGCCTGCGAGAACCTGCCCACTG
GTGAGCGCCGGCCCGACAATCAAACAGTGGGATACACACGTA
GACGCACGCTGGACGGACCTTTGGACGGCGGTTCGACTCCGC
CCACCTCCACCA
Deinococcus radiodurans tmRNA
SEQ ID NO: 30
GGGGGUGACCCGGUUUCGACAGGGGAACUGAAGGUGAUGUU
GCGUGUCGAGGUGCCGUUGGCCUCGUAAACAAACGGCAAAG
CCAUUUAACUGGCAACCAGAACUACGCUCUCGCUGCUUAAG
UGAGAUGACGACCGUGCAGCCCGGCCUUUGGCGUCGCGGAA
GUCACUAAAAAAGAAGGCUAGCCCAGGCGAUUCUCCAUAGC
CGACGGCGAAACUUUAUGGAGCUACGGCCUGCGAGAACCUG
CCCACUGGUGAGCGCCGGCCCGACAAUCAAACAGUGGGAUA
CACACGUAGACGCACGCUGGACGGACCUUUGGACGGCGGUU
CGACUCCGCCCACCUCCACCA
Desulfovibrio desulfuricans ssrA, internal partial
SEQ ID NO: 31
GGGACTGGAACCGTAGCGGCAGGTCGAGGCGCCGCTGGCCTC
GTAAAAAGCGGCACAAAAGTAATTGCCAACAACGATTACGAC
TACGCTTACGCTGCCTAATAACAGCGAGGCAATGACCGTTTAA
CGGTCGCGCCGATCAGGGCCATGCCTGATAACCCTGATTGGC
GACACTTATCAGGCTGGCGAAAACCGGCTCTCGCCGGGGTTTT
TCGCGAGGAGTTTACCGGCGGGATTGCTGCGTTGTGCCTGGTC
AGGGGCCAACAGCGCGGTGAAATACATACTTGACCTAAACCT
GTAATGCTTCGTGTGGAATGTTCTCGGACGGGG
Desulfovibrio desulfuricans tmRNA,
internal partial
SEQ ID NO: 32
GGGACUGGAACCGUAGCGGCAGGUCGAGGCGCCGCUGGCCU
CGUAAAAAGCGGCACAAAAGUAAUUGCCAACAACGAUUACG
ACUACGCUUACGCUGCCUAAUAACAGCGAGGCAAUGACCGU
UUAACGGUCGCGCCGAUCAGGGCCAUGCCUGAUAACCCUGA
UUGGCGACACUUAUCAGGCUGGCGAAAACCGGCUCUCGCCG
GGGUUUUUCGCGAGGAGUUUACCGGCGGGAUUGCUGCGUUG
UGCCUGGUCAGGGGCCAACAGCGCGGUGAAAUACAUACUUG
ACCUAAACCUGUAAUGCUUCGUGUGGAAUGUUCUCGGACGG
GG
Dichelobacter nodosus ssrA, 3′ partial
SEQ ID NO: 33
CTCGAGGTGCATGTCGAGAATGAGAGAATCTCGTTAAATACTT
TCAAAACTTATAGTTGCAAACGACGACAACTACGCTTTAGCG
GCTTAATTCCCGCTTTCGCTTACCTAGATTTGTCTGTGGGTTTA
CCGTAAGCGACATTAACACAGAATCGCTGGTTAACGCGTCCG
CTGTTAATCGGTTAAATTAAGCGGAATCGCTTGTAAAATGCCT
GAGCGTTGGCTGTTTATGAGTTAAACCTAATTAACTGCTCTAA
ACATGTAGTACCAAAAGTTAAGGATTCGCGGACGGGGGTTCA
AATCCCCCCGCCTCCACCA
Dichelobacter nodosus tmRNA, 3′ partial
SEQ ID NO: 34
CUCGAGGUGCAUGUCGAGAAUGAGAGAAUCUCGUUAAAUAC
UUUCAAAACUUAUAGUUGCAAACGACGACAACUACGCUUUA
GCGGCUUAAUUCCCGCUUUCGCUUACCUAGAUUUGUCUGUG
GGUUUACCGUAAGCGACAUUAACACAGAAUCGCUGGUUAAC
GCGUCCGCUGUUAAUCGGUUAAAUUAAGCGGAAUCGCUUGU
AAAAUGCCUGAGCGUUGGCUGUUUAUGAGUUAAACCUAAUU
AACUGCUCUAAACAUGUAGUACCAAAAGUUAAGGAUUCGCG
GACGGGGGUUCAAAUCCCCCCGCCUCCACCA
Enterococcus faecalis ssrA
SEQ ID NO: 35
GGGGGCGTTACGGATTCGACAGGCATAGTTGAGCTTGAATTG
CGTTTCGTAGGTTACGGCTACGTTAAAACGTTACAGTTAAATA
TAACTGCTAAAAACGAAAACAATTCTTTCGCTTTAGCTGCCTA
AAAACCAGCTAGCGAAGATCCTCCCGGCATCGCCCATGTGCT
CGGGTCAGGGTCCTAATCGAAGTGGGATACGCTAAATTTTTCC
GTCTGTAAAATTTAGAGGAGCTTACCAGACTAGCAATACAGA
ATGCCTGTCACTCGGCACGCTGTAAAGCGAACCTTTAAATGAG
TGTCTATGAACGTAGAGATTTAAGTGGCAATATGTTTGGACGC
GGGTTCGACTCCCGCCGTCTCCACCA
Enterococcus faecalis tmRNA
SEQ ID NO: 36
GGGGGCGUUACGGAUUCGACAGGCAUAGUUGAGCUUGAAUU
GCGUUUCGUAGGUUACGGCUACGUUAAAACGUUACAGUUAA
AUAUAACUGCUAAAAACGAAAACAAUUCUUUCGCUUUAGCU
GCCUAAAAACCAGCUAGCGAAGAUCCUCCCGGCAUCGCCCA
UGUGCUCGGGUCAGGGUCCUAAUCGAAGUGGGAUACGCUAA
AUUUUUCCGUCUGUAAAAUUUAGAGGAGCUUACCAGACUAG
CAAUACAGAAUGCCUGUCACUCGGCACGCUGUAAAGCGAAC
CUUUAAAUGAGUGUCUAUGAACGUAGAGAUUUAAGUGGCA
AUAUGUUUGGACGCGGGUUCGACUCCCGCCGUCUCCACCA
Escherichia coli ssrA
SEQ ID NO: 37
GGGGCTGATTCTGGATTCGACGGGATTTGCGAAACCCAAGGT
GCATGCCGAGGGGCGGTTGGCCTCGTAAAAAGCCGCAAAAAA
TAGTCGCAAACGACGAAAACTACGCTTTAGCAGCTTAATAAC
CTGCTTAGAGCCCTCTCTCCCTAGCCTCCGCTCTTAGGACGGG
GATCAAGAGAGGTCAAACCCAAAAGAGATCGCGTGGAAGCCC
TGCCTGGGGTTGAAGCGTTAAAACTTAATCAGGCTAGTTTGTT
AGTGGCGTGTCCGTCCGCAGCTGGCAAGCGAATGTAAAGACT
GACTAAGCATGTAGTACCGAGGATGTAGGAATTTCGGACGCG
GGTTCAACTCCCGCCAGCTCCACCA
Escherichia coli tmRNA
SEQ ID NO: 38
GGGGCUGAUUCUGGAUUCGACGGGAUUUGCGAAACCCAAGG
UGCAUGCCGAGGGGCGGUUGGCCUCGUAAAAAGCCGCAAAA
AAUAGUCGCAAACGACGAAAACUACGCUUUAGCAGCUUAAU
AACCUGCUUAGAGCCCUCUCUCCCUAGCCUCCGCUCUUAGG
ACGGGGAUCAAGAGAGGUCAAACCCAAAAGAGAUCGCGUGG
AAGCCCUGCCUGGGGUUGAAGCGUUAAAACUUAAUCAGGCU
AGUUUGUUAGUGGCGUGUCCGUCCGCAGCUGGCAAGCGAAU
GUAAAGACUGACUAAGCAUGUAGUACCGAGGAUGUAGGAAU
UUCGGACGCGGGUUCAACUCCCGCCAGCUCCACCA
Haemophilus influenzae ssrA
SEQ ID NO: 39
GGGGCTGATTCTGGATTCGACGGGATTAGCGAAGCCCAAGGT
GCACGTCGAGGTGCGGTAGGCCTCGTAAATAAACCGCAAAAA
AATAGTCGCAAACGACGAACAATACGCTTTAGCAGCTTAATA
ACCTGCATTTAGCCTTCGCGCTCCAGCTTCCGCTCGTAAGACG
GGGATAACGCGGAGTCAAACCAAAACGAGATCGTGTGGAAGC
CACCGTTTGAGGATCGAAGCACTAAATTGAATCAAACTAGCTT
AAGTTTAGCGTGTCTGTCCGCATGCTTAAGTGAAATTAAAGAC
GAGACTAAACGTGTAGTACTGAAGGTAGAGTAATTTCGGACG
GGGGTTCAACTCCCCCCAGCTCCACCA
Haemophilus influenzae tmRNA
SEQ ID NO: 40
GGGGCUGAUUCUGGAUUCGACGGGAUUAGCGAAGCCCAAGG
UGCACGUCGAGGUGCGGUAGGCCUCGUAAAUAAACCGCAAA
AAAAUAGUCGCAAACGACGAACAAUACGCUUUAGCAGCUUA
AUAACCUGCAUUUAGCCUUCGCGCUCCAGCUUCCGCUCGUA
AGACGGGGAUAACGCGGAGUCAAACCAAAACGAGAUCGUGU
GGAAGCCACCGUUUGAGGAUCGAAGCACUAAAUUGAAUCAA
ACUAGCUUAAGUUUAGCGUGUCUGUCCGCAUGCUUAAGUGA
AAUUAAAGACGAGACUAAACGUGUAGUACUGAAGGUAGAG
UAAUUUCGGACGGGGGUUCAACUCCCCCCAGCUCCACCA
Helicobacter pylori (ATCC 43504) ssrA,
internal partial
SEQ ID NO: 41
AGATTTCTTGTCGCGCAGATAGCATGCCAAGCGCTGCTTGTAA
AACAGCAACAAAAATAACTGTAAACAACACAGATTACGCTCC
AGCTTACGCTAAAGCTGCGTGAGTTAATCTCCTTTTGGAGCTG
GACTGATTAGAATTTCTAGCGTTTTAATCGCTCCATAACCTTA
AGCTAGACGCTTTTAAAAGGTGGTTCGCCTTTTAAACTAAGAA
ACAAGAACTCTTGAAACTATCTTAAGGTTTTAGAAAGTTGGAC
CAGAGCTAGTTTTAAGGCTAAAAACTAACCAATTTTCTAAGCA
TTGTAGAAGTTTGTGTTTAGGGCAAGATTTTTGGACTGGG
Helicobacter pylori (ATCC 43504) tmRNA,
internal partial
SEQ ID NO: 42
AGAUUUCUUGUCGCGCAGAUAGCAUGCCAAGCGCUGCUUGU
AAAACAGCAACAAAAAUAACUGUAAACAACACAGAUUACGC
UCCAGCUUACGCUAAAGCUGCGUGAGUUAAUCUCCUUUUGG
AGCUGGACUGAUUAGAAUUUCUAGCGUUUUAAUCGCUCCAU
AACCUUAAGCUAGACGCUUUUAAAAGGUGGUUCGCCUUUUA
AACUAAGAAACAAGAACUCUUGAAACUAUCUUAAGGUUUUA
GAAAGUUGGACCAGAGCUAGUUUUAAGGCUAAAAACUAACC
AAUUUUCUAAGCAUUGUAGAAGUUUGUGUUUAGGGCAAGA
UUUUUGGACUGGG
Helicobacter pylori (strain 26695) ssrA
SEQ ID NO: 43
GGGGCTGACTTGGATTTCGACAGATTTCTTGTCGCACAGATAG
CATGCCAAGCGCTGCTTGTAAAACAGCAACAAAAATAACTGT
AAACAACACAGATTACGCTCCAGCTTACGCTAAAGCTGCGTG
AGTTAATCTCCTTTTGGAGCTGGACTGATTAGAATTTCTAGCG
TTTTAATCGCTCCATAACCTTAAGCTAGACGCTTTTAAAAGGT
GGTTCGCCTTTTAAACTAAGAAACAAGAACTCTTGAAACTATC
TCAAGGTTTTAGAAAGTTGGACCAGAGCTAGTTTTAAGGCTAA
AAAACCAACCAATTTTCTAAGCATTGTAGAAGTTTGTGTTTAG
GGCAAGATTTTTGGACTGGGGTTCGATTCCCCACAGCTCCACCA
Helicobacter pylori (strain 26695) tmRNA
SEQ ID NO: 44
GGGGCUGACUUGGAUUUCGACAGAUUUCUUGUCGCACAGAU
AGCAUGCCAAGCGCUGCUUGUAAAACAGCAACAAAAAUAAC
UGUAAACAACACAGAUUACGCUCCAGCUUACGCUAAAGCUG
CGUGAGUUAAUCUCCUUUUGGAGCUGGACUGAUUAGAAUUU
CUAGCGUUUUAAUCGCUCCAUAACCUUAAGCUAGACGCUUU
UAAAAGGUGGUUCGCCUUUUAAACUAAGAAACAAGAACUCU
UGAAACUAUCUCAAGGUUUUAGAAAGUUGGACCAGAGCUAG
UUUUAAGGCUAAAAAACCAACCAAUUUUCUAAGCAUUGUAG
AAGUUUGUGUUUAGGGCAAGAUUUUUGGACUGGGGUUCGA
UUCCCCACAGCUCCACCA
Klebsiella aerogenes (NCTC 9528)ssrA,
internal partial
SEQ ID NO: 45
GGGATTCGCGAAACCCAAGGTGCATGCCGAGGGGCGGTTGGC
CTCGTAAAAAGCCGCAAAAAAATAGTCGCAAACGACGAAAAC
TACGCTTTAGCAGCTTAATAACCTGCTAAGAGCCCTCTCTCCC
TAGCTTCCGCTCCTAAGACGGGGAATAAAGAGAGGTCAAACC
CAAAAGAGATCGCGTGGAAGCCCTGCCTGGGGTTGAAGCGTT
AAAACTAATCAGGCTAGTTTGTCAGTGGCGTGTCCGTCCGCAG
CTGGCCAGCGAATGTAAAGACTGGACTAAGCATGTAGTGCCG
AGGATGTAGGAATTTC
Klebsiella aerogenes (NCTC 9528) tmRNA,
internal partial
SEQ ID NO: 46
GGGAUUCGCGAAACCCAAGGUGCAUGCCGAGGGGCGGUUGG
CCUCGUAAAAAGCCGCAAAAAAAUAGUCGCAAACGACGAAA
ACUACGCUUUAGCAGCUUAAUAACCUGCUAAGAGCCCUCUC
UCCCUAGCUUCCGCUCCUAAGACGGGGAAUAAAGAGAGGUC
AAACCCAAAAGAGAUCGCGUGGAAGCCCUGCCUGGGGUUGA
AGCGUUAAAACUAAUCAGGCUAGUUUGUCAGUGGCGUGUCC
GUCCGCAGCUGGCCAGCGAAUGUAAAGACUGGACUAAGCAU
GUAGUGCCGAGGAUGUAGGAAUUUC
Lactobacillus lactis (NCTC 662)ssrA,
internal partial
SEQ ID NO: 47
AAGCACAGTTCGAGCTTGAATTGCGTTTCGTAGGTTACGTCTA
CGTTAAAACGTTACAGTTAAATATAACTGCTAAAAACGAAAA
CAACTCTTACGCTTTAGCTGCCTAAAAACAGTTAGCGTAGATC
CTCTCGGCATCGCCCATGTGCTCGAGTAAGGGTCTCAAATTTA
GTGGGATACGTTAAACTTTTCCGTCTGTAAAGTTTAAAAGAGA
TCATCAGACTAGCGATACAGAATGCCTGTCACTCGGCAAGCT
GTAAAGCGAAACCTCAAATGAGTTGACTATGAACGTAGATTT
TTAAGTGTCGATGTGTTT
Lactobacillus lactis (NCTC 662) tmRNA,
internal partial
SEQ ID NO: 48
AAGCACAGUUCGAGCUUGAAUUGCGUUUCGUAGGUUACGUC
UACGUUAAAACGUUACAGUUAAAUAUAACUGCUAAAAACGA
AAACAACUCUUACGCUUUAGCUGCCUAAAAACAGUUAGCGU
AGAUCCUCUCGGCAUCGCCCAUGUGCUCGAGUAAGGGUCUC
AAAUUUAGUGGGAUACGUUAAACUUUUCCGUCUGUAAAGUU
UAAAAGAGAUCAUCAGACUAGCGAUACAGAAUGCCUGUCAC
UCGGCAAGCUGUAAAGCGAAACCUCAAAUGAGUUGACUAUG
AACGUAGAUUUUUAAGUGUCGAUGUGUUU
Legionella pneumophila ssrA, internal partial
SEQ ID NO: 49
GTGGGTTGCAAAACCGGAAGTGCATGCCGAGAAGGAGATCTC
TCGTAAATAAGACTCAATTAAATATAAATGCAAACGATGAAA
ACTTTGCTGGTGGGGAAGCTATCGCTGCCTAATAAGCACTTTA
GTTAAACCATCACTGTGTACTGGCCAATAAACCCAGTATCCCG
TTCGACCGAGCCCGCTTATCGGTATCGAATCAACGGTCATAAG
AGATAAGCTAGCGTCCTAATCTATCCCGGGTTATGGCGCGAA
ACTCAGGGAATCGCTGTGTATCATCCTGCCCGTCGGAGGAGCC
ACAGTTAAATTCAAAAGACAAGGCTATGCATGTAGAGCTAAA
GGCAGAGGACTTGCGGACGCGG
Legionella pneumophila tmRNA, internal partial
SEQ ID NO: 50
GUGGGUUGCAAAACCGGAAGUGCAUGCCGAGAAGGAGAUCU
CUCGUAAAUAAGACUCAAUUAAAUAUAAAUGCAAACGAUGA
AAACUUUGCUGGUGGGGAAGCUAUCGCUGCCUAAUAAGCAC
UUUAGUUAAACCAUCACUGUGUACUGGCCAAUAAACCCAGU
AUCCCGUUCGACCGAGCCCGCUUAUCGGUAUCGAAUCAACG
GUCAUAAGAGAUAAGCUAGCGUCCUAAUCUAUCCCGGGUUA
UGGCGCGAAACUCAGGGAAUCGCUGUGUAUCAUCCUGCCCG
UCGGAGGAGCCACAGUUAAAUUCAAAAGACAAGGCUAUGCA
UGUAGAGCUAAAGGCAGAGGACUUGCGGACGCGG
Listeria grayi ssrA, internal partial
SEQ ID NO: 51
ACAGGGATAGGTCGAGCTTGAGTTGCGAGCCGGGGGGATCGG
CCCGTCATCAACGTCAAAGCCAATAATAACTGGCAAACAAAA
CAACAATTTAGCTTTCGCTGCCTAATAGCAGTCTGAATAGCTG
ATCCTCCGTGCATCACCCATGTGCTACGGTAAGGGTCTCACTT
TTAAGTGGGTTACGCTGGCTTATCTCCGTCTGGGGCAAACGAG
AAGAGCATAATCAGACTAGCTAGATAGAGCCCTGACGCCGGG
CAGACATCTATGCGAAATCCAAATACGGCAACTACGCTCGTA
GATGCTCAAGTGCCGATATTTCTGG
Listeria grayi tmRNA, internal partial
SEQ ID NO: 52
ACAGGGAUAGGUCGAGCUUGAGUUGCGAGCCGGGGGGAUCG
GCCCGUCAUCAACGUCAAAGCCAAUAAUAACUGGCAAACAA
AACAACAAUUUAGCUUUCGCUGCCUAAUAGCAGUCUGAAUA
GCUGAUCCUCCGUGCAUCACCCAUGUGCUACGGUAAGGGUC
UCACUUUUAAGUGGGUUACGCUGGCUUAUCUCCGUCUGGGG
CAAACGAGAAGAGCAUAAUCAGACUAGCUAGAUAGAGCCCU
GACGCCGGGCAGACAUCUAUGCGAAAUCCAAAUACGGCAAC
UACGCUCGUAGAUGCUCAAGUGCCGAUAUUUCUGG
Listeria innocua ssrA, internal partial
SEQ ID NO: 53
ACAGGGATAGTTCGAGCTTGAGTTGCGAGTCGGGGGGATCGT
CCTCGTTATCAACGTCAAAGCCAATAATAACTGGCAAAGAAA
AACAAAACCTAGCTTTCGCTGCCTAATAAGCAGTAGCATAGCT
GATCCTCCGTGCATCGCCCATGTGCTACGGTAAGGGTCTCACT
CTAAGTGGGCTACACTAGTTAATCTCCGTCTGAGGTTAAATAG
AAGAGCTTAATCAGACTAGCTGAATGGAAGCCTGTTACCGGG
CTGATGTTTATGCGAAATGCTAATACGGTGACTACGCTCGTAG
ATATTCAAGTGCCGATATTTCTGG
Listeria innocua tmRNA, internal partial
SEQ ID NO: 54
ACAGGGAUAGUUCGAGCUUGAGUUGCGAGUCGGGGGGAUCG
UCCUCGUUAUCAACGUCAAAGCCAAUAAUAACUGGCAAAGA
AAAACAAAACCUAGCUUUCGCUGCCUAAUAAGCAGUAGCAU
AGCUGAUCCUCCGUGCAUCGCCCAUGUGCUACGGUAAGGGU
CUCACUCUAAGUGGGCUACACUAGUUAAUCUCCGUCUGAGG
UUAAAUAGAAGAGCUUAAUCAGACUAGCUGAAUGGAAGCCU
GUUACCGGGCUGAUGUUUAUGCGAAAUGCUAAUACGGUGAC
UACGCUCGUAGAUAUUCAAGUGCCGAUAUUUCUGG
Listeria monocytogenes (NCTC 7973)ssrA,
internal partial
SEQ ID NO: 55
ACAGGGATAGTTCGAGCTTGAGTTGCGAGTCGGGGGGATCGT
CCTCGTTATCAACGTCAAAGCCAATAATAACTGGCAAAGAAA
AACAAAACCTAGCTTTCGCTGCCTAATAAGCAGTAGCATAGCT
GATCCTCCGTGCATCGCCCATGTGCTACGGTAAGGGTCTCACT
CTAAGTGGGCTACACTAGTTAATCTCCGTCTGGGGTTAAATAG
AAGAGCTTAATCAGACTAGCTGAATGGAAGCCTGTTACCGGG
CCGATGTTTATGCGAAATGCTAATACGGTGACTACGCTCGTAG
ATATTTAAGTGCCGATATTTCTGG
Listeria monocytogenes (NCTC 7973)tmRNA,
internal partial
SEQ ID NO: 56
ACAGGGAUAGUUCGAGCUUGAGUUGCGAGUCGGGGGGAUCG
UCCUCGUUAUCAACGUCAAAGCCAAUAAUAACUGGCAAAGA
AAAACAAAACCUAGCUUUCGCUGCCUAAUAAGCAGUAGCAU
AGCUGAUCCUCCGUGCAUCGCCCAUGUGCUACGGUAAGGGU
CUCACUCUAAGUGGGCUACACUAGUUAAUCUCCGUCUGGGG
UUAAAUAGAAGAGCUUAAUCAGACUAGCUGAAUGGAAGCCU
GUUACCGGGCCGAUGUUUAUGCGAAAUGCUAAUACGGUGAC
UACGCUCGUAGAUAUUUAAGUGCCGAUAUUUCUGG
Listeria monocytogenes (NCTC 11994) ssrA,
internal partial
SEQ ID NO: 57
CAAAGCCAATAATAACTGGCAAAGAAAAACAAAACCTAGCTT
TCGCTGCCTAATAAGCAGTAGCATAGCTGATCCTCCGTGCATC
GCCCATGTGCTACGGTAAGGGTCTCACTCTAAGTGGGCTACAC
TAGTTAATCTCCGTCTGGGGTTAAATAGAAGAGCTTAATCAGA
CTAGCTGAATGGAAGCCTGTTACCGGGCCGATGTTTATGCGAA
ATGCTAATACGGTGACTACGCTCGTAGATATTT
Listeria monocytogenes (NCTC 11994) tmRNA,
internal partial
SEQ ID NO: 58
CAAAGCCAAUAAUAACUGGCAAAGAAAAACAAAACCUAGCU
UUCGCUGCCUAAUAAGCAGUAGCAUAGCUGAUCCUCCGUGC
AUCGCCCAUGUGCUACGGUAAGGGUCUCACUCUAAGUGGGC
UACACUAGUUAAUCUCCGUCUGGGGUUAAAUAGAAGAGCUU
AAUCAGACUAGCUGAAUGGAAGCCUGUUACCGGGCCGAUGU
UUAUGCGAAAUGCUAAUACGGUGACUACGCUCGUAGAUAUUU
Listeria murrayi ssrA, internal partial
SEQ ID NO: 59
ACAGGGATAGTTCGAGCTTGAGTTGCGAGTCGGGGGGATCGT
CCTCGTTATCAACGTCAAAGCCAATAATAACTGGCAAAGAAA
AACAAAACCTAGCTTTCGCTGCCTAATAAGCAGTAGCATAGCT
GATCCTCCGTGCATCGCCCATGTGCTACGGTAAGGGTCTCACT
CTAAGTGGGCTACACTAGTTAATCTCCGTCTGAGGTTAAATAG
AAGAGCTTAATGAGACTAGCTGAATGGAAGCCTGTTACCGGG
CTGATGTTTATGCGAAATGCTAATACGGTGACTACGCTCGTAG
ATATTCAAGTGCCGATATTTCTGG
Listeria murrayi tmRNA, internal partial
SEQ ID NO: 60
ACAGGGAUAGUUCGAGCUUGAGUUGCGAGUCGGGGGGAUCG
UCCUCGUUAUCAACGUCAAAGCCAAUAAUAACUGGCAAAGA
AAAACAAAACCUAGCUUUCGCUGCCUAAUAAGCAGUAGCAU
AGCUGAUCCUCCGUGCAUCGCCCAUGUGCUACGGUAAGGGU
CUCACUCUAAGUGGGCUACACUAGUUAAUCUCCGUCUGAGG
UUAAAUAGAAGAGCUUAAUGAGACUAGCUGAAUGGAAGCCU
GUUACCGGGCUGAUGUUUAUGCGAAAUGCUAAUACGGUGAC
UACGCUCGUAGAUAUUCAAGUGCCGAUAUUUCUGG
Listeria welshimeri ssrA, internal partial
SEQ ID NO: 61
ACAGGGATAGTTCGAGCTTGAGTTGCGAGTCGGGGGGATCGT
CCTCGTTATCAACGTCAAAGCCAATAATAACTGGCAAAGAAA
AACAAAACCTAGCTTTCGCTGCCTAATAAGCAGTAGCATAGCT
GATCCTCCGTGCATCGCCCATGTGCTACGGTAAGGGTCTCACT
CTAAGTGGGCTACACTGGCTAATCTCCGTCTGAGGTTAGTTGG
AAGAGCTTAATCAGACTAGCTGAATGGAAGCCTGTTACCGGG
CCGATGTTTATGCGAAATGCTAATACGGTGACTACGCTCGTAG
ATATTTAAGTGCCGATATTTCTGG
Listeria welshimeri tmRNA, internal partial
SEQ ID NO: 62
ACAGGGAUAGUUCGAGCUUGAGUUGCGAGUCGGGGGGAUCG
UCCUCGUUAUCAACGUCAAAGCCAAUAAUAACUGGCAAAGA
AAAACAAAACCUAGCUUUCGCUGCCUAAUAAGCAGUAGCAU
AGCUGAUCCUCCGUGCAUCGCCCAUGUGCUACGGUAAGGGU
CUCACUCUAAGUGGGCUACACUGGCUAAUCUCCGUCUGAGG
UUAGUUGGAAGAGCUUAAUCAGACUAGCUGAAUGGAAGCCU
GUUACCGGGCCGAUGUUUAUGCGAAAUGCUAAUACGGUGAC
UACGCUCGUAGAUAUUUAAGUGCCGAUAUUUCUGG
Marinobacter hydrocarbonoclasticus ssrA,
internal partial
SEQ ID NO: 63
GCCGGTGACGAACCCTTGGGTGCATGCCGAGATGGCAGCGAA
TCTCGTAAATCCAAAGCTGCAACGTAATAGTCGCAAACGACG
AAAACTACGCACTGGCGGCGTAAGCCGTTCCAGTCGTCCTGG
CTGAGGCGCCTATAACTCAGTAGCAACATCCCAGGACGTCAT
CGCTTATAGGCTGCTCCGTTCACCAGAGCTCACTGGTGTTCGG
CTAAGATTAAAGAGCTCGCCTCTTGCACCCTGACCTTCGGGTC
GCTTGAGGTTAAATCAATAGAAGGACACTAAGCATGTAGACC
TCAAGGCCTAGTGCTGGCGGACGCGG
Marinobacter hydrocarbonoclasticus tmRNA,
internal partial
SEQ ID NO: 64
GCCGGUGACGAACCCUUGGGUGCAUGCCGAGAUGGCAGCGA
AUCUCGUAAAUCCAAAGCUGCAACGUAAUAGUCGCAAACGA
CGAAAACUACGCACUGGCGGCGUAAGCCGUUCCAGUCGUCC
UGGCUGAGGCGCCUAUAACUCAGUAGCAACAUCCCAGGACG
UCAUCGCUUAUAGGCUGCUCCGUUCACCAGAGCUCACUGGU
GUUCGGCUAAGAUUAAAGAGCUCGCCUCUUGCACCCUGACC
UUCGGGUCGCUUGAGGUUAAAUCAAUAGAAGGACACUAAGC
AUGUAGACCUCAAGGCCUAGUGCUGGCGGACGCGG
Mycobacterium avium ssrA, internal partial
SEQ ID NO: 65
TTCGCGCATCGAATCAAGGGAAGCGTGCCGGTGCAGGCAACT
GACCACCGTAAGCGTCGTTGCAAATAGATAAGCGCCGATTCA
CATCAGCGCGACTTACCTCTCGCTGCCTAAGCGACAGCTAGTC
CGTCAGCCCGGGAACGCCCTCGACCCGGAGCCTGGCGTCAGC
TAGAGGGATCCACCGATGAGTTCGGTCGCGGGACTCATCGGG
ACACCAACAGCGACTGGGATCGTCATCCTGGCTTGTTCGCGTG
ACCAGGAGATCCGAGTAGAGGCATAGCGAACTGCGCACGGAG
AAGCCTTGAGGGAATGCCGTAGAACCCGGGTTCGATTCCCAA
Mycobacterium avium tmRNA, internal partial
SEQ ID NO: 66
UUCGCGCAUCGAAUCAAGGGAAGCGUGCCGGUGCAGGCAAC
UGACCACCGUAAGCGUCGUUGCAAAUAGAUAAGCGCCGAUU
CACAUCAGCGCGACUUACCUCUCGCUGCCUAAGCGACAGCU
AGUCCGUCAGCCCGGGAACGCCCUCGACCCGGAGCCUGGCG
UCAGCUAGAGGGAUCCACCGAUGAGUUCGGUCGCGGGACUC
AUCGGGACACCAACAGCGACUGGGAUCGUCAUCCUGGCUUG
UUCGCGUGACCAGGAGAUCCGAGUAGAGGCAUAGCGAACUG
CGCACGGAGAAGCCUUGAGGGAAUGCCGUAGAACCCGGGUU
CGAUUCCCAA
Mycobacterium bovis ssrA, internal partial
SEQ ID NO: 67
TTCGCGCATCGAATCAAGGGAAGCGTGCCGGTGCAGGCAAGA
GACCACCGTAAGCGTCGTTGCGACCAAATAAGCGCCGATTCA
CATCAGCGCGACTACGTCTCGCTGCCTAAGCGACGGCTAGTCT
GTCAGACCGGGAACGCCCTCGGCCCGGACCCTGGCATCAGCT
AGAGGGATCCACCGATGAGTCCGGTCGCGGGACTCCTCGGGA
CAACCACAGCGACTGGGATCGTCATCTCGGCTAGTTCGCGTGA
CCGGGAGATCCGAGCAGAGGCATAGCGAACTGCGCACGGAG
AAGCCTTGAGGGAATGCCGTAGG
Mycobacterium bovis tmRNA, internal partial
SEQ ID NO: 68
UUCGCGCAUCGAAUCAAGGGAAGCGUGCCGGUGCAGGCAAG
AGACCACCGUAAGCGUCGUUGCGACCAAAUAAGCGCCGAUU
CACAUCAGCGCGACUACGUCUCGCUGCCUAAGCGACGGCUA
GUCUGUCAGACCGGGAACGCCCUCGGCCCGGACCCUGGCAU
CAGCUAGAGGGAUCCACCGAUGAGUCCGGUCGCGGGACUCC
UCGGGACAACCACAGCGACUGGGAUCGUCAUCUCGGCUAGU
UCGCGUGACCGGGAGAUCCGAGCAGAGGCAUAGCGAACUGC
GCACGGAGAAGCCUUGAGGGAAUGCCGUAGG
Mycobacterium leprae ssrA
SEQ ID NO: 69
GGGGCTGAAAGGTTTCGACTTCGCGCATCGAATCAAGGGAAG
CGTGCCGGTGCAGGCAAGAGACCACCGTAAGCGTCGTTGCAG
CAATATAAGCGCCGATTCATATCAGCGCGACTATGCTCTCGCT
GCCTAAGCGATGGCTAGTCTGTCAGACCGGGAACGCCCTCGT
CCCGGAGCCTGGCATCAGCTAGAGGGATCTACCGATGGGTTC
GGTCGCGGGACTCGTCGGGACACCAACCGCGACTGGGATCGT
CATCCTGGCTAGTTCGCGTGATCAGGAGATCCGAGTAGAGGC
ATAGCGAACTACGCACGGAGAAGCCTTGAGGGAAATGCCGTA
GGACCCGGGTTCGATTCCCGGCAGCTCCACCA
Mycobacterium leprae tmRNA
SEQ ID NO: 70
GGGGCUGAAAGGUUUCGACUUCGCGCAUCGAAUCAAGGGAA
GCGUGCCGGUGCAGGCAAGAGACCACCGUAAGCGUCGUUGC
AGCAAUAUAAGCGCCGAUUCAUAUCAGCGCGACUAUGCUCU
CGCUGCCUAAGCGAUGGCUAGUCUGUCAGACCGGGAACGCC
CUCGUCCCGGAGCCUGGCAUCAGCUAGAGGGAUCUACCGAU
GGGUUCGGUCGCGGGACUCGUCGGGACACCAACCGCGACUG
GGAUCGUCAUCCUGGCUAGUUCGCGUGAUCAGGAGAUCCGA
GUAGAGGCAUAGCGAACUACGCACGGAGAAGCCUUGAGGGA
AAUGCCGUAGGACCCGGGUUCGAUUCCCGGCAGCUCCACCA
Mycobacterium paratuberculosis ssrA,
internal partial
SEQ ID NO: 71
TTCGCGCATCGAATCAAGGGAAGCGTGCCGGTGCAGGCAACT
GACCACCGTAAGCGTCGTTGCAAATAGATAAGCGCCGATTCA
CATCAGCGCGACTTACCTCTCGCTGCCTAAGCGACAGCTAGTC
CGTCAGCCCGGGAACGCCCTCGACCCGGAGCCTGGCGTCAGC
TAGAGGGATCCACCGATGAGTTCGGTCGCGGGACTCATCGGG
ACACCAACAGCGACTGGGATCGTCATCCTGGCTTGTTCGCGTG
ACCAGGAGATCCGAGTAGAGGCATAGCGAACTGCGCACGGAG
AAGCCTTGAGGGAATGCCGTAGAACCCGGGTTCGATTCCCAA
Mycobacterium paratuberculosis tmRNA,
internal partial
SEQ ID NO: 72
UUCGCGCAUCGAAUCAAGGGAAGCGUGCCGGUGCAGGCAAC
UGACCACCGUAAGCGUCGUUGCAAAUAGAUAAGCGCCGAUU
CACAUCAGCGCGACUUACCUCUCGCUGCCUAAGCGACAGCU
AGUCCGUCAGCCCGGGAACGCCCUCGACCCGGAGCCUGGCG
UCAGCUAGAGGGAUCCACCGAUGAGUUCGGUCGCGGGACUC
AUCGGGACACCAACAGCGACUGGGAUCGUCAUCCUGGCUUG
UUCGCGUGACCAGGAGAUCCGAGUAGAGGCAUAGCGAACUG
CGCACGGAGAAGCCUUGAGGGAAUGCCGUAGAACCCGGGUU
CGAUUCCCAA
Mycobacterium tuberculosis ssrA
SEQ ID NO: 73
GGGGCTGAACGGTTTCGACTTCGCGCATCGAATCAAGGGAAG
CGTGCCGGTGCAGGCAAGAGACCACCGTAAGCGTCGTTGCGA
CCAAATAAGCGCCGATTCACATCAGCGCGACTACGCTCTCGCT
GCCTAAGCGACGGCTAGTCTGTCAGACCGGGAACGCCCTCGG
CCCGGACCCTGGCATCAGCTAGAGGGATCCACCGATGAGTCC
GGTCGCGGGACTCCTCGGGACAACCACAGCGACTGGGATCGT
CATCTCGGCTAGTTCGCGTGACCGGGAGATCCGAGCAGAGGC
ATAGCGAACTGCGCACGGAGAAGCCTTGAGGGAATGCCGTAG
GACCCGGGTTCGATTCCCGGCAGCTCCACCA
Mycobacterium tuberculosis tmRNA
SEQ ID NO: 74
GGGGCUGAACGGUUUCGACUUCGCGCAUCGAAUCAAGGGAA
GCGUGCCGGUGCAGGCAAGAGACCACCGUAAGCGUCGUUGC
GACCAAAUAAGCGCCGAUUCACAUCAGCGCGACUACGCUCU
CGCUGCCUAAGCGACGGCUAGUCUGUCAGACCGGGAACGCC
CUCGGCCCGGACCCUGGCAUCAGCUAGAGGGAUCCACCGAU
GAGUCCGGUCGCGGGACUCCUCGGGACAACCACAGCGACUG
GGAUCGUCAUCUCGGCUAGUUCGCGUGACCGGGAGAUCCGA
GCAGAGGCAUAGCGAACUGCGCACGGAGAAGCCUUGAGGGA
AUGCCGUAGGACCCGGGUUCGAUUCCCGGCAGCUCCACCA
Mycoplasma capricolum ssrA
SEQ ID NO: 75
GGGGATGTCATGGATTTGACAGGATATCTTTAGTACATATAAG
CAGTAGTGTTGTAGACTATAAATACTACTAGGTTTAAAAAAAC
GCAAATAAAAACGAAGAAACTTTTGAAATGCCAGCATTTATG
ATGAATAATGCATCAGCTGGAGCAAACTTTATGTTTGCTTAAT
AACTACTAGTTTAGTTATAGTATTTCACGAATTATAGATATTTT
AAGCTTTATTTATAACCGTATTACCCAAGCTTAATAGAATATA
TGATTGCAATAAATATATTTGAAATCTAATTGCAAATGATATT
TAACCTTTAGTTAATTTTAGTTAAATATTTTAATTAGAAAATTA
ACTAAACTGTAGAAAGTATGTATTAATATATCTTGGACGCGAG
TTCGATTCTCGCCATCTCCACCA
Mycoplasma capricolum tmRNA
SEQ ID NO: 76
GGGGAUGUCAUGGAUUUGACAGGAUAUCUUUAGUACAUAU
AAGCAGUAGUGUUGUAGACUAUAAAUACUACUAGGUUUAA
AAAAACGCAAAUAAAAACGAAGAAACUUUUGAAAUGCCAGC
AUUUAUGAUGAAUAAUGCAUCAGCUGGAGCAAACUUUAUGU
UUGCUUAAUAACUACUAGUUUAGUUAUAGUAUUUCACGAAU
UAUAGAUAUUUUAAGCUUUAUUUAUAACCGUAUUACCCAAG
CUUAAUAGAAUAUAUGAUUGCAAUAAAUAUAUUUGAAAUC
UAAUUGCAAAUGAUAUUUAACCUUUAGUUAAUUUUAGUUA
AAUAUUUUAAUUAGAAAAUUAACUAAACUGUAGAAAGUAU
GUAUUAAUAUAUCUUGGACGCGAGUUCGAUUCUCGCCAUCU
CCACCA
Mycoplasma genitalium (ATTC 33530, #1) ssrA
SEQ ID NO: 77
GGGGATGTTTTGGGTTTGACATAATGCTGATAGACAAACAGT
AGCATTGGGGTATGCCCCTTACAGCGCTAGGTTCAATAACCGA
CAAAGAAAATAACGAAGTGTTGGTAGAACCAAATTTGATCAT
TAACCAACAAGCAAGTGTTAACTTTGCTTTTGCATAAGTAGAT
ACTAAAGCTACAGCTGGTGAATAGTCATAGTTTGCTAGCTGTC
ATAGTTTATGACTCGAGGTTAAATCGTTCAATTTAACCTTTAA
AAATAGAACTTGTTGTTTCCATGATTGTTTTGTGATCAATTGG
AAACAAGACAAAAATCCACAAAACTAAAATGTAGAAGCTGTT
TGTTGTGTCCTTTATGGAAACGGGTTCGATTCCCGTCATCTCC
ACCA
Mycoplasma genitalium (ATTC 33530, #1) tmRNA
SEQ ID NO: 78
GGGGAUGUUUUGGGUUUGACAUAAUGCUGAUAGACAAACA
GUAGCAUUGGGGUAUGCCCCUUACAGCGCUAGGUUCAAUAA
CCGACAAAGAAAAUAACGAAGUGUUGGUAGAACCAAAUUUG
AUCAUUAACCAACAAGCAAGUGUUAACUUUGCUUUUGCAUA
AGUAGAUACUAAAGCUACAGCUGGUGAAUAGUCAUAGUUUG
CUAGCUGUCAUAGUUUAUGACUCGAGGUUAAAUCGUUCAAU
UUAACCUUUAAAAAUAGAACUUGUUGUUUCCAUGAUUGUUU
UGUGAUCAAUUGGAAACAAGACAAAAAUCCACAAAACUAAA
AUGUAGAAGCUGUUUGUUGUGUCCUUUAUGGAAACGGGUUC
GAUUCCCGUCAUCUCCACCA
Mycoplasma genitalium (ATTC 33530, #2) tmRNA,
internal partial
SEQ ID NO: 79
ACATAATGCTGATAGACAAACAGTAGCATTGGGGTATGCCCC
TTACAGCGCTAGGTTCAATAACCGACAAAGAAAATAACGAAG
TGTTGGTAGATCCAAATTTGATCATTAACCAACAAGCAAGTGT
TAACTTTGCTTTTGCATAAGTAGATACTAAAGCTACAGCTGGT
GAATAGTCATAGTTTGCTAGCTGTCATAGTTTATGACTCGAGG
TTAAATCGTTCAATTTAACCTTTAAAAATAGAACTTGTTGTTTC
CATGATTGTTTTGTGATCAATTGGAAACAAGACAAAAATCCAC
AAAACTAAAATGTAGAAGCTGTTTGTTGTGTCCTTTATGGAAA
CGGGTTC
Mycoplasma genitalium (ATTC 33530, #2) tmRNA,
internal partial
SEQ ID NO: 80
ACAUAAUGCUGAUAGACAAACAGUAGCAUUGGGGUAUGCCC
CUUACAGCGCUAGGUUCAAUAACCGACAAAGAAAAUAACGA
AGUGUUGGUAGAUCCAAAUUUGAUCAUUAACCAACAAGCAA
GUGUUAACUUUGCUUUUGCAUAAGUAGAUACUAAAGCUACA
GCUGGUGAAUAGUCAUAGUUUGCUAGCUGUCAUAGUUUAUG
ACUCGAGGUUAAAUCGUUCAAUUUAACCUUUAAAAAUAGAA
CUUGUUGUUUCCAUGAUUGUUUUGUGAUCAAUUGGAAACAA
GACAAAAAUCCACAAAACUAAAAUGUAGAAGCUGUUUGUUG
UGUCCUUUAUGGAAACGGGUUC
Mycoplasma pneumophila ssrA
SEQ ID NO: 81
GGGGATGTAGAGGTTTTGACATAATGTTGAAAGGAAAACAGT
TGCAGTGGGGTATGCCCCTTACAGCTCTAGGTATAATAACCGA
CAAAAATAACGACGAAGTTTTGGTAGATCCAATGTTGATCGCT
AACCAACAAGCAAGTATCAACTACGCTTTCGCTTAGAACATA
CTAAAGCTACACGAATTGAATCGCCATAGTTTGGTTCGTGTCA
CAGTTTATGGCTCGGGGTTAACTGGTTCAACTTAATCCTTAAA
TTATGAACTTATCGTTTACTTGTTTGTCTTATGATCTAAAGTAA
GCGAGACATTAAAACATAAGACTAAACTGTAGAAGCTGTTTT
ACCAATCCTTTATGGAAACGGGTTCGATTCCCGTCATCTCCAC
CA
Mycoplasma pneumophila tmRNA
SEQ ID NO: 82
GGGGAUGUAGAGGUUUUGACAUAAUGUUGAAAGGAAAACA
GUUGCAGUGGGGUAUGCCCCUUACAGCUCUAGGUAUAAUAA
CCGACAAAAAUAACGACGAAGUUUUGGUAGAUCCAAUGUUG
AUCGCUAACCAACAAGCAAGUAUCAACUACGCUUUCGCUUA
GAACAUACUAAAGCUACACGAAUUGAAUCGCCAUAGUUUGG
UUCGUGUCACAGUUUAUGGCUCGGGGUUAACUGGUUCAACU
UAAUCCUUAAAUUAUGAACUUAUCGUUUACUUGUUUGUCUU
AUGAUCUAAAGUAAGCGAGACAUUAAAACAUAAGACUAAAC
UGUAGAAGCUGUUUUACCAAUCCUUUAUGGAAACGGGUUCG
AUUCCCGUCAUCUCCACCA
Neisseria gonorrhoeae (ATCC 19424) ssrA,
internal partial
SEQ ID NO: 83
GGGGGTTGCGAAGCAGATGCGGGCATACCGGGGTCTCAGATT
CCCGTAAAACACTGAATTCAAATAGTCGCAAACGACGAAACT
TACGCTTTAGCCGCTTAAGGCTAGCCGTTGCAGCAGTCGGTCA
ATGGGCTGTGTGGCGAAAGCCACCGCAACGTCATCTTACATTG
ACTGGTTTCCAGCCGGGTTACTTGGCAGGAAATAAGACTTAA
GGTAACTGGTTTCCAAAAGGCCTGTTGGTCGGCATGATGGAA
ATAAGATTTTCAAATAGACACAACTAAGTATGTAGAACGCTTT
GTAGAGGACTTTCGGACGGG
Neisseria gonorrhoeae (ATCC 19424) tmRNA,
internal partial
SEQ ID NO: 84
GGGGGUUGCGAAGCAGAUGCGGGCAUACCGGGGUCUCAGAU
UCCCGUAAAACACUGAAUUCAAAUAGUCGCAAACGACGAAA
CUUACGCUUUAGCCGCUUAAGGCUAGCCGUUGCAGCAGUCG
GUCAAUGGGCUGUGUGGCGAAAGCCACCGCAACGUCAUCUU
ACAUUGACUGGUUUCCAGCCGGGUUACUUGGCAGGAAAUAA
GACUUAAGGUAACUGGUUUCCAAAAGGCCUGUUGGUCGGCA
UGAUGGAAAUAAGAUUUUCAAAUAGACACAACUAAGUAUG
UAGAACGCUUUGUAGAGGACUUUCGGACGGGG
Neisseria gonorrhoeae (FA 1090) ssrA
SEQ ID NO: 85
GGGGGCGACCTTGGTTTCGACGGGGGTTGCGAAGCAGATGCG
GGCATACCGGGGTCTCAGATTCCCGTAAAACACTGAATTCAA
ATAGTCGCAAACGACGAAACTTACGCTTTAGCCGCTTAAGGCT
AGCCGTTGCAGCAGTCGGTCAATGGGCTGTGTGGTGAAAGCC
ACCGCAACGTCATCTTACATTGACTGGTTTCCAGCCGGGTTAC
TTGGCAGGAAATAAGACTTAAGGTAACTGGTTTCCAAAAGGC
CTGTTGGTCGGCATGATGGAAATAAGATTTTCAAATAGACAC
AACTAAGTATGTAGAACGCTTTGTAGAGGACTTTCGGACGGG
GGTTCGATTCCCCCCGCCTCCACCA
Neisseria gonorrhoeae (FA 1090) tmRNA
SEQ ID NO: 86
GGGGGCGACCUUGGUUUCGACGGGGGUUGCGAAGCAGAUGC
GGGCAUACCGGGGUCUCAGAUUCCCGUAAAACACUGAAUUC
AAAUAGUCGCAAACGACGAAACUUACGCUUUAGCCGCUUAA
GGCUAGCCGUUGCAGCAGUCGGUCAAUGGGCUGUGUGGUGA
AAGCCACCGCAACGUCAUCUUACAUUGACUGGUUUCCAGCC
GGGUUACUUGGCAGGAAAUAAGACUUAAGGUAACUGGUUUC
CAAAAGGCCUGUUGGUCGGCAUGAUGGAAAUAAGAUUUUCA
AAUAGACACAACUAAGUAUGUAGAACGCUUUGUAGAGGACU
UUCGGACGGGGGUUCGAUUCCCCCCGCCUCCACCA
Neisseria meningitidis ssrA
SEQ ID NO: 87
GGGGGCGACCTTGGTTTCGACGGGGGTTGCGAAGCAGATGCG
GGCATACCGGGGTCTCAGATTCCCGTAAAACACTGAATTCAA
ATAGTCGCAAACGACGAAACTTACGCTTTAGCCGCTTAAGGCT
AGCCGTTGCAGCAGTCGGTCAATGGGCTGTGTGGCGAAAGCC
ACCGCAACGTCATCTTACATTGACTGGTTTCCTGCCGGGTTAT
TTGGCAGGAAATGAGATTTAAGGTAACTGGTTTCCAAAAGGC
CTGTTGGTCGGCATGATGGAAATAAGATTTTCAAATAGACAC
AACTAAGTATGTAGAACGCTTTGTAGAGGACTTTCGGACGGG
GGTTCGATTCCCCCCGCCTCCACCA
Neisseria meningitidis tmRNA
SEQ ID NO: 88
GGGGGCGACCUUGGUUUCGACGGGGGUUGCGAAGCAGAUGC
GGGCAUACCGGGGUCUCAGAUUCCCGUAAAACACUGAAUUC
AAAUAGUCGCAAACGACGAAACUUACGCUUUAGCCGCUUAA
GGCUAGCCGUUGCAGCAGUCGGUCAAUGGGCUGUGUGGCGA
AAGCCACCGCAACGUCAUCUUACAUUGACUGGUUUCCUGCC
GGGUUAUUUGGCAGGAAAUGAGAUUUAAGGUAACUGGUUU
CCAAAAGGCCUGUUGGUCGGCAUGAUGGAAAUAAGAUUUUC
AAAUAGACACAACUAAGUAUGUAGAACGCUUUGUAGAGGAC
UUUCGGACGGGGGUUCGAUUCCCCCCGCCUCCACCA
Nostoc muscorum PCC7120 ssrA
SEQ ID NO: 89
GGGTCCGTCGGTTTCGACAGGTTGGCGAACGCTACTCTGTGAT
TCAGGTCGAGAGTGAGTCTCCTCTGCAAATCAAGGCTCAAAA
CAAAAGTAAATGCGAATAACATCGTTAAATTTGCTCGTAAGG
ACGCTCTAGTAGCTGCCTAAATAGCCTCTTTCAGGTTCGAGCG
TCTTCGGTTTGACTCCGTTAAGGACTGAAGACCAACCCCCAAC
GGATGCTCTAGCAATGTTCTCTGGTTGGCTTGCTAGCTAAGAT
TTAATCAGAGCATCCTACGTTCGGGATAATGAACGATTCCCGC
CTTGAGGGTCAGAAAGGCTAAACCTGTGAATGAGCGGGGGGT
CAATACCCAATTTGGACAGCAGTTCGACTCTGCTCGATCCACCA
Nostoc muscorum PCC7120 tmRNA
SEQ ID NO: 90
GGGUCCGUCGGUUUCGACAGGUUGGCGAACGCUACUCUGUG
AUUCAGGUCGAGAGUGAGUCUCCUCUGCAAAUCAAGGCUCA
AAACAAAAGUAAAUGCGAAUAACAUCGUUAAAUUUGCUCGU
AAGGACGCUCUAGUAGCUGCCUAAAUAGCCUCUUUCAGGUU
CGAGCGUCUUCGGUUUGACUCCGUUAAGGACUGAAGACCAA
CCCCCAACGGAUGCUCUAGCAAUGUUCUCUGGUUGGCUUGC
UAGCUAAGAUUUAAUCAGAGCAUCCUACGUUCGGGAUAAUG
AACGAUUCCCGCCUUGAGGGUCAGAAAGGCUAAACCUGUGA
AUGAGCGGGGGGUCAAUACCCAAUUUGGACAGCAGUUCGAC
UCUGCUCGAUCCACCA
Odontella sinensis (diatom) chloroplast ssrA
SEQ ID NO: 91
GGGGCTGACTTGGTTTCGACATTTAAAAATTGTTACAGTATGA
TGCAGGTCGAAGTTTCTAATCTTCGTAAAAAAAGAGAAATTTA
TAATAAATGCTAATAATTTAATTTCTTCTGTGTTTAAAAGTTTA
TCAACTAAGCAAAATAGTTTAAATTTAAGTTTTGCTGTTTAAG
TTTTATGCACATTTAATGATCTAGTAAATAACTTTGTTCGCTAT
AATTTATATTTATAACTAGACTTTTGTCTTTTTTATAGTTTAGA
ATAACTTTATCATTTCAAACCTCGTTCCATCTAGTTGAACTAA
ACCTGTGAACGAATACTATAATAAAATTTTTAGATGGACGTGG
GTTCGACTCCCATCAGCTCCACCA
Odontella sinensis (diatom) chloroplast tmRNA
SEQ ID NO: 92
GGGGCUGACUUGGUUUCGACAUUUAAAAAUUGUUACAGUAU
GAUGCAGGUCGAAGUUUCUAAUCUUCGUAAAAAAAGAGAAA
UUUAUAAUAAAUGCUAAUAAUUUAAUUUCUUCUGUGUUUA
AAAGUUUAUCAACUAAGCAAAAUAGUUUAAAUUUAAGUUU
UGCUGUUUAAGUUUUAUGCACAUUUAAUGAUCUAGUAAAU
AACUUUGUUCGCUAUAAUUUAUAUUUAUAACUAGACUUUUG
UCUUUUUUAUAGUUUAGAAUAACUUUAUCAUUUCAAACCUC
GUUCCAUCUAGUUGAACUAAACCUGUGAACGAAUACUAUAA
UAAAAUUUUUAGAUGGACGUGGGUUCGACUCCCAUCAGCUC
CACCA
Porphyra purpureum (red alga) chloroplast ssrA
SEQ ID NO: 93
GGGGCTGCAAGGTTTCTACATTGTGAAAAAACAAATATATGA
AAGTAAAACGAGCTCATTATTAGAGCTTTTAGTTAAATAAATG
CAGAAAATAATATTATTGCTTTTTCTCGAAAATTAGCTGTTGC
ATAAATAGTCTCAATTTTTGTAATTCGAAGTGATAGACTCTTA
TACACTACGAATATTCTGTTAGAGTTGCTCTTAATAAAAGAAA
AGTAAAAAAATACAAATTCTTATGTTTTTTACCTGAATTGATT
CAATTTAAGGTTAGTATTTTTTGATTTTTACAATGGACGTGGG
TTCAAGTCCCACCAGCTCCACCA
Porphyra purpureum (red alga) chloroplast tmRNA
SEQ ID NO: 94
GGGGCUGCAAGGUUUCUACAUUGUGAAAAAACAAAUAUAUG
AAAGUAAAACGAGCUCAUUAUUAGAGCUUUUAGUUAAAUA
AAUGCAGAAAAUAAUAUUAUUGCUUUUUCUCGAAAAUUAGC
UGUUGCAUAAAUAGUCUCAAUUUUUGUAAUUCGAAGUGAU
AGACUCUUAUACACUACGAAUAUUCUGUUAGAGUUGCUCUU
AAUAAAAGAAAAGUAAAAAAAUACAAAUUCUUAUGUUUUU
UACCUGAAUUGAUUCAAUUUAAGGUUAGUAUUUUUUGAUU
UUUACAAUGGACGUGGGUUCAAGUCCCACCAGCUCCACCA
Porphyromonas gingivalis ssrA
SEQ ID NO: 95
GGGGCTGACCGGCTTTGACAGCGTGATGAAGCGGTATGTAAG
CATGTAGTGCGTGGGTGGCTTGCACTATAATCTCAGACATCAA
AAGTTTAATTGGCGAAAATAACTACGCTCTCGCTGCGTAATCG
AAGAATAGTAGATTAGACGCTTCATCGCCGCCAAAGTGGCAG
CGACGAGACATCGCCCGAGCAGCTTTTTCCCGAAGTAGCTCG
ATGGTGCGGTGCTGACAAATCGGGAACCGCTACAGGATGCTT
CCTGCCTGTGGTCAGATCGAACGGAAGATAAGGATCGTGCAT
TGGGTCGTTTCAGCCTCCGCTCGCTCACGAAAATTCCAACTGA
AACTAAACATGTAGAAAGCATATTGATTCCATGTTTGGACGA
GGGTTCAATTCCCTCCAGCTCCACCA
Porphyromonas gingivalis tmRNA
SEQ ID NO: 96
GGGGCUGACCGGCUUUGACAGCGUGAUGAAGCGGUAUGUAA
GCAUGUAGUGCGUGGGUGGCUUGCACUAUAAUCUCAGACAU
CAAAAGUUUAAUUGGCGAAAAUAACUACGCUCUCGCUGCGU
AAUCGAAGAAUAGUAGAUUAGACGCUUCAUCGCCGCCAAAG
UGGCAGCGACGAGACAUCGCCCGAGCAGCUUUUUCCCGAAG
UAGCUCGAUGGUGCGGUGCUGACAAAUCGGGAACCGCUACA
GGAUGCUUCCUGCCUGUGGUCAGAUCGAACGGAAGAUAAGG
AUCGUGCAUUGGGUCGUUUCAGCCUCCGCUCGCUCACGAAA
AUUCCAACUGAAACUAAACAUGUAGAAAGCAUAUUGAUUCC
AUGUUUGGACGAGGGUUCAAUUCCCUCCAGCUCCACCA
Proteus rettgeri ssrA (NCTC 10975),
internal partial
SEQ ID NO: 97
GGGATTTGCGAAACCCAAGGTGCATGCCGAGGGGCGGTTGGC
CTCGTAAAAAGCCGCAAAAAAATAGTCGCAAACGACGAAAAC
TACGCTTTAGCAGCTTAATAACCTGCTTAGAGCCCTCTCTCCC
TAGCCTCCGCTCTTGGACGGGGATCAAGAGAGGTCAAACCCA
AAAGAGATCGCGTGGATGCCTTGCCTGGGGTTGAAGCGTTAA
ACTTAATCAGGATAGTTTGTTGGTGGCGTGTCTGTCCGCAGCT
GGCAAATGAATTCAAAGACTAGACTAAGCATGTAGTACCGAG
GATGTAGAAATTTC
Proteus rettgeri tmRNA (NCTC 10975),
internal partial
SEQ ID NO: 98
GGGAUUUGCGAAACCCAAGGUGCAUGCCGAGGGGCGGUUGG
CCUCGUAAAAAGCCGCAAAAAAAUAGUCGCAAACGACGAAA
ACUACGCUUUAGCAGCUUAAUAACCUGCUUAGAGCCCUCUC
UCCCUAGCCUCCGCUCUUGGACGGGGAUCAAGAGAGGUCAA
ACCCAAAAGAGAUCGCGUGGAUGCCUUGCCUGGGGUUGAAG
CGUUAAACUUAAUCAGGAUAGUUUGUUGGUGGCGUGUCUGU
CCGCAGCUGGCAAAUGAAUUCAAAGACUAGACUAAGCAUGU
AGUACCGAGGAUGUAGAAAUUUC
Pseudoalteromonas haloplanktoni ssrA,
internal partial
SEQ ID NO: 99
GGAATTCAAGAAGCCCGAGGTGCATGTCGAGGTGCGGTTTGC
CTCGTAAAAAAGCCGCAATTTAAAGTAATCGCAAACGACGAT
AACTACTCTCTAGCAGCTTAGGCTGGCTAGCGCTCCTTCCATG
TATTCTTGTGGACTGGATTTTGGAGTGTCACCCTAACACCTGA
TCGCGACGGAAACCCTGGCCGGGGTTGAAGCGTTAAAACTAA
GCGGCCTCGCCTTTATCTACCGTGTTTGTCCGGGATTTAAAGG
TTAATTAAATGACAATACTAAACATGTAGTACCGACGGTCGA
GGCTTTTCGGACGGGG
Pseudoalteromonas haloplanktoni tmRNA,
internal partial
SEQ ID NO: 100
GGAAUUCAAGAAGCCCGAGGUGCAUGUCGAGGUGCGGUUUG
CCUCGUAAAAAAGCCGCAAUUUAAAGUAAUCGCAAACGACG
AUAACUACUCUCUAGCAGCUUAGGCUGGCUAGCGCUCCUUC
CAUGUAUUCUUGUGGACUGGAUUUUGGAGUGUCACCCUAAC
ACCUGAUCGCGACGGAAACCCUGGCCGGGGUUGAAGCGUUA
AAACUAAGCGGCCUCGCCUUUAUCUACCGUGUUUGUCCGGG
AUUUAAAGGUUAAUUAAAUGACAAUACUAAACAUGUAGUA
CCGACGGUCGAGGCUUUUCGGACGGGG
Pseudomonas aeruginosa ssrA
SEQ ID NO: 101
GGGGCCGATTAGGATTCGACGCCGGTAACAAAAGTTGAGGGG
CATGCCGAGTTGGTAGCAGAACTCGTAAATTCGCTGCTGCAA
ACTTATAGTTGCCAACGACGACAACTACGCTCTAGCTGCTTAA
TGCGGCTAGCAGTCGCTAGGGGATGCCTGTAAACCCGAAACG
ACTGTCAGATAGAACAGGATCGCCGCCAAGTTCGCTGTAGAC
GTAACGGCTAAAACTCATACAGCTCGCTCCAAGCACCCTGCC
ACTCGGGCGGCGCGGAGTTAACTCAGTAGAGCTGGCTAAGCA
TGTAAAACCGATAGCGGAAAGCTGGCGGACGGGGGTTCAAAT
CCCCCCGGTTCCACCA
Pseudomonas aeruginosa tmRNA
SEQ ID NO: 102
GGGGCCGAUUAGGAUUCGACGCCGGUAACAAAAGUUGAGGG
GCAUGCCGAGUUGGUAGCAGAACUCGUAAAUUCGCUGCUGC
AAACUUAUAGUUGCCAACGACGACAACUACGCUCUAGCUGC
UUAAUGCGGCUAGCAGUCGCUAGGGGAUGCCUGUAAACCCG
AAACGACUGUCAGAUAGAACAGGAUCGCCGCCAAGUUCGCU
GUAGACGUAACGGCUAAAACUCAUACAGCUCGCUCCAAGCA
CCCUGCCACUCGGGCGGCGCGGAGUUAACUCAGUAGAGCUG
GCUAAGCAUGUAAAACCGAUAGCGGAAAGCUGGCGGACGGG
GGUUCAAAUCCCCCCGGUUCCACCA
Salmonella typhimurium ssrA
SEQ ID NO: 103
GGGGCTGATTCTGGATTCGACGGGATTTGCGAAACCCAAGGT
GCATGCCGAGGGGCGGTTGGCCTCGTAAAAAGCCGCAAAAAA
ATAGTCGCAAACGACGAAACCTACGCTTTAGCAGCTTAATAA
CCTGCTTAGAGCCCTCTCTCCCTAGCCTCCGCTCTTAGGACGG
GGATCAAGAGAGGTCAAACCCAAAAGAGATCGCGCGGATGCC
CTGCCTGGGGTTGAAGCGTTAAAACGAATCAGGCTAGTCTGG
TAGTGGCGTGTCCGTCCGCAGGTGCCAGGCGAATGTAAAGAC
TGACTAAGCATGTAGTACCGAGGATGTAGGAATTTCGGACGC
GGGTTCAACTCCCGCCAGCTCCACCA
Salmonella typhimurium tmRNA
SEQ ID NO: 104
GGGGCUGAUUCUGGAUUCGACGGGAUUUGCGAAACCCAAGG
UGCAUGCCGAGGGGCGGUUGGCCUCGUAAAAAGCCGCAAAA
AAAUAGUCGCAAACGACGAAACCUACGCUUUAGCAGCUUAA
UAACCUGCUUAGAGCCCUCUCUCCCUAGCCUCCGCUCUUAG
GACGGGGAUCAAGAGAGGUCAAACCCAAAAGAGAUCGCGCG
GAUGCCCUGCCUGGGGUUGAAGCGUUAAAACGAAUCAGGCU
AGUCUGGUAGUGGCGUGUCCGUCCGCAGGUGCCAGGCGAAU
GUAAAGACUGACUAAGCAUGUAGUACCGAGGAUGUAGGAAU
UUCGGACGCGGGUUCAACUCCCGCCAGCUCCACCA
Shewanella putrefaciens ssrA
SEQ ID NO: 105
GGGGGCGATTCTGGATTCGACAGGATTCACGAAACCCTGGGA
GCATGCCGAGGGGCGGTTGGCCTCGTAAAAAGCCGCAAAGTT
ATAGTTGCAAACGACGATAACTACGCTCTAGCCGCTTAATGCC
GCTAGCCATCTACCACACGCTTTGCACATGGGCAGTGGATTTG
ATGGTCATCTCACATCGTGCTAGCGAGGGAACCCTGTCTGGGG
GTGAACCGCGAAACAGTACCGGACTCACCGTGTGGGATCCTG
TCTTTCGGAGTTCAAACGGTTAAACAATAGAAAGACTAAGCA
TGTAGCGCCTTGGATGTAGGTTTTCTGGACGCGGGTTCAAGTC
CCGCCGCCTCCACCA
Shewanella putrefaciens tmRNA
SEQ ID NO: 106
GGGGGCGAUUCUGGAUUCGACAGGAUUCACGAAACCCUGGG
AGCAUGCCGAGGGGCGGUUGGCCUCGUAAAAAGCCGCAAAG
UUAUAGUUGCAAACGACGAUAACUACGCUCUAGCCGCUUAA
UGCCGCUAGCCAUCUACCACACGCUUUGCACAUGGGCAGUG
GAUUUGAUGGUCAUCUCACAUCGUGCUAGCGAGGGAACCCU
GUCUGGGGGUGAACCGCGAAACAGUACCGGACUCACCGUGU
GGGAUCCUGUCUUUCGGAGUUCAAACGGUUAAACAAUAGAA
AGACUAAGCAUGUAGCGCCUUGGAUGUAGGUUUUCUGGACG
CGGGUUCAAGUCCCGCCGCCUCCACCA
Staphylococcus aureus ssrA
SEQ ID NO: 107
GGGGACGTTCATGGATTCGACAGGGGTCCCCCGAGCTCATTA
AGCGTGTCGGAGGGTTGTCTTCGTCATCAACACACACAGTTTA
TAATAACTGGCAAATCAAACAATAATTTCGCAGTAGCTGCCTA
ATCGCACTCTGCATCGCCTAACAGCATTTCCTATGTGCTGTTA
ACGCGATTCAACCTTAATAGGATATGCTAAACACTGCCGTTTG
AAGTCTGTTTAGAAGAAACTTAATCAAACTAGCATCATGTTGG
TTGTTTATCACTTTTCATGATGCGAAACCTATCGATAAACTAC
ACACGTAGAAAGATGTGTATCAGGACCTTTGGACGCGGGTTC
AAATCCCGCCGTCTCCACCA
Staphylococcus aureus tmRNA
SEQ ID NO: 108
GGGGACGUUCAUGGAUUCGACAGGGGUCCCCCGAGCUCAUU
AAGCGUGUCGGAGGGUUGUCUUCGUCAUCAACACACACAGU
UUAUAAUAACUGGCAAAUCAAACAAUAAUUUCGCAGUAGCU
GCCUAAUCGCACUCUGCAUCGCCUAACAGCAUUUCCUAUGU
GCUGUUAACGCGAUUCAACCUUAAUAGGAUAUGCUAAACAC
UGCCGUUUGAAGUCUGUUUAGAAGAAACUUAAUCAAACUAG
CAUCAUGUUGGUUGUUUAUCACUUUUCAUGAUGCGAAACCU
AUCGAUAAACUACACACGUAGAAAGAUGUGUAUCAGGACCU
UUGGACGCGGGUUCAAAUCCCGCCGUCUCCACCA
Streptococcus gordonii ssrA
SEQ ID NO: 109
GGGGTCGTTACGGATTCGACAGGCATTATGAGGCATATTTTGC
GACTCATCTAGCGGATGTAAAACGCCAGTTAAATATAACTGC
AAAAAATAATACTTCTTACGCTTTAGCTGCCTAAAAACCAGCG
GGCGTGACCCGATTCGGATTGCTTGTGTCTGATGACAGGTCTT
ATTATTAGCAAGCTACGGTAGAATCTTGTCTAGTGATTTTACA
AGAGATTGATAGACTCGCTTGATTTGGGCTTGAGTTATGTGTC
AAAATCAAGTTAAAACAATACATAGCCTATGGTTGTAGACAA
ATGTGTTGGCAGATGTTTGGACGTGGGTTCGACTCCCACCGGC
TCCACCA
Streptococcus gordonii tmRNA
SEQ ID NO: 110
GGGGUCGUUACGGAUUCGACAGGCAUUAUGAGGCAUAUUUU
GCGACUCAUCUAGCGGAUGUAAAACGCCAGUUAAAUAUAAC
UGCAAAAAAUAAUACUUCUUACGCUUUAGCUGCCUAAAAAC
CAGCGGGCGUGACCCGAUUCGGAUUGCUUGUGUCUGAUGAC
AGGUCUUAUUAUUAGCAAGCUACGGUAGAAUCUUGUCUAGU
GAUUUUACAAGAGAUUGAUAGACUCGCUUGAUUUGGGCUUG
AGUUAUGUGUCAAAAUCAAGUUAAAACAAUACAUAGCCUAU
GGUUGUAGACAAAUGUGUUGGCAGAUGUUUGGACGUGGGU
UCGACUCCCACCGGCUCCACCA
Streptococcus mutans ssrA
SEQ ID NO: 111
GGGGTCGTTACGGATTCGACAGGCATTATGAGACCTATTTTGC
GACTCATCTAGCGGATGTAAAACGCCAGTTAAATATAACTGC
AAAAAATACAAATTCTTACGCAGTAGCTGCCTAAAAACCAGC
CTGTGTGATCAATAACAAATTGCTTGTGTTTGTTGATTGGTCTT
ATTGTTAACAAGCTACGTTAGAACTGAGTCAGGCTGTTCTAAA
AGAGTTCTACTGACTCGCATCGTTAGAGTTTGAGTTATGTATT
GTAACGGTGTTAAATAAACACATAACCTATAGTTGTAGACAA
ATGGGTTAGCAGATGTTTGGACGTGGGTTCGACTCCCACCGGC
TCCACCA
Streptococcus mutans tmRNA
SEQ ID NO: 112
GGGGUCGUUACGGAUUCGACAGGCAUUAUGAGACCUAUUUU
GCGACUCAUCUAGCGGAUGUAAAACGCCAGUUAAAUAUAAC
UGCAAAAAAUACAAAUUCUUACGCAGUAGCUGCCUAAAAAC
CAGCCUGUGUGAUCAAUAACAAAUUGCUUGUGUUUGUUGAU
UGGUCUUAUUGUUAACAAGCUACGUUAGAACUGAGUCAGGC
UGUUCUAAAAGAGUUCUACUGACUCGCAUCGUUAGAGUUUG
AGUUAUGUAUUGUAACGGUGUUAAAUAAACACAUAACCUAU
AGUUGUAGACAAAUGGGUUAGCAGAUGUUUGGACGUGGGU
UCGACUCCCACCGGCUCCACCA
Streptococcus pneumoniae ssrA
SEQ ID NO: 113
GGGGTCGTTACGGATTCGACAGGCATTATGAGGCATATTTTGC
GACTCGTGTGGCGACGTAAACGCTCAGTTAAATATAACTGCA
AAAAATAACACTTCTTACGCTCTAGCTGCCTAAAAACCAGCA
GGCGTGACCCGATTTGGATTGCTCGTGTTCAATGACAGGTCTT
ATTATTAGCGAGATACGATTAAGCCTTGTCTAGCGGTTTGATA
AGAGATTGATAGACTCGCAGTTTCTAGACTTGAGTTATGTGTC
GAGGGGCTGTTAAAATAATACATAACCTATGGTTGTAGACAA
ATATGTTGGCAGGTGTTTGGACGTGGGTTCGACTCCCACCGGC
TCCACCA
Streptococcus pneumoniae tmRNA
SEQ ID NO: 114
GGGGUCGUUACGGAUUCGACAGGCAUUAUGAGGCAUAUUUU
GCGACUCGUGUGGCGACGUAAACGCUCAGUUAAAUAUAACU
GCAAAAAAUAACACUUCUUACGCUCUAGCUGCCUAAAAACC
AGCAGGCGUGACCCGAUUUGGAUUGCUCGUGUUCAAUGACA
GGUCUUAUUAUUAGCGAGAUACGAUUAAGCCUUGUCUAGCG
GUUUGAUAAGAGAUUGAUAGACUCGCAGUUUCUAGACUUGA
GUUAUGUGUCGAGGGGCUGUUAAAAUAAUACAUAACCUAUG
GUUGUAGACAAAUAUGUUGGCAGGUGUUUGGACGUGGGUU
CGACUCCCACCGGCUCCACCA
Streptococcus pyogenes ssrA
SEQ ID NO: 115
GGGGTTGTTACGGATTCGACAGGCATTATGAGGCATGTTTTGC
GTCCCATCGGCAGATGTAAATTGCCAGTTAAATATAACTGCAA
AAAATACAAACTCTTACGCTTTAGCTGCCTAAAAACCAGCTAG
CGTGACTTCTACAAGATTGCTTGTGTCCTGTTAGAAGTCTCAA
AATAGCAAGCTACGGTTACGAAATTGTCTAGTTTCGTGACAAG
AGATTGATAGACTCGCAAACTAATGGCTTGAGTTATGTGTCTT
TAGTTTGTTAAATGAAGACATAACCTATGGACGTAGACAAAT
ATGTTGGCAGGTGTTTGGACGTGGGTTCGACTCCCACCAGCTC
CACCA
Streptococcus pyogenes tmRNA
SEQ ID NO: 116
GGGGUUGUUACGGAUUCGACAGGCAUUAUGAGGCAUGUUUU
GCGUCCCAUCGGCAGAUGUAAAUUGCCAGUUAAAUAUAACU
GCAAAAAAUACAAACUCUUACGCUUUAGCUGCCUAAAAACC
AGCUAGCGUGACUUCUACAAGAUUGCUUGUGUCCUGUUAGA
AGUCUCAAAAUAGCAAGCUACGGUUACGAAAUUGUCUAGUU
UCGUGACAAGAGAUUGAUAGACUCGCAAACUAAUGGCUUGA
GUUAUGUGUCUUUAGUUUGUUAAAUGAAGACAUAACCUAU
GGACGUAGACAAAUAUGUUGGCAGGUGUUUGGACGUGGGU
UCGACUCCCACCAGCUCCACCA
Synechococcus sp. PCC6301 ssrA
SEQ ID NO: 117
GGGGCTGTAATGGTTTCGACGTGTTGGTGAATCCTTCACCGTG
ATTCAGGCCGAGAGGGAGTCCACTCTCGTAAATCCAGGCTCA
ACCAAAAGTAACTGCGAACAACATCGTTCCTTTCGCTCGTAAG
GCTGCTCCTGTAGCTGCTTAAACGCCACAAACTTTCTGGCTCGAGCG
TCTAGTCGTAGACTCCGTTAATACGCCTAGACTTAAACCCCCA
ACGGATGCTCGAGTGGCGGCCTCAGGTCCGTCCTCTCGCTAAG
CAAAAACCTGAGCATCCCGCCAACGGGGATAATCGTTGGCTC
CCGCACAGTGGGTCAACCGTGCTAAGCCTGTGAACGAGCGGA
AAGTTACTAGTCAATGCGGACAGCGGTTCGATTCCGCTCAGCT
CCACCA
Synechococcus sp. PCC6301 tmRNA
SEQ ID NO: 118
GGGGCUGUAAUGGUUUCGACGUGUUGGUGAAUCCUUCACCG
UGAUUCAGGCCGAGAGGGAGUCCACUCUCGUAAAUCCAGGC
UCAACCAAAAGUAACUGCGAACAACAUCGUUCCUUUCGCUC
GUAAGGCUGCUCCUGUAGCUGCUUAAACGCCACAAACUUUC
UGGCUCGAGCGUCUAGUCGUAGACUCCGUUAAUACGCCUAG
ACUUAAACCCCCAACGGAUGCUCGAGUGGCGGCCUCAGGUC
CGUCCUCUCGCUAAGCAAAAACCUGAGCAUCCCGCCAACGG
GGAUAAUCGUUGGCUCCCGCACAGUGGGUCAACCGUGCUAA
GCCUGUGAACGAGCGGAAAGUUACUAGUCAAUGCGGACAGC
GGUUCGAUUCCGCUCAGCUCCACCA
Synechocystis sp. PCC6803 ssrA
SEQ ID NO: 119
GGGGCCGCAATGGTTTCGACAGGTTGGCGAAAGCTTGCCCGT
GATACAGGTCGAGAGTGAGTCTCCTCTCGCAAATCAAAGGCT
CAAAAAAAAGTAACTGCGAATAACATCGTCAGCTTCAAACGG
GTAGCCATAGCAGCCTAGTCTGTAAAAGCTACATTTTCTTGTC
AAAGACCGTTTACTTCTTTTCTGACTCCGTTAAGGATTAGAGG
TTAACCCCAACGGATGCTTTGTTTGGCTCTTCTCTAGTTAGCTA
AACAATCAAGACTCAGACTAGAGCATCCCACCATCAGGGATA
ATCGATGGTCCCCGTCCTAGGGCTAGAAGGACTAAACCTGTG
AATGAGCGGAAAGTTAATACCCAGTTTGGACAGCAGTTCAAT
TCTGCTCGGCTCCACCA
Synechocystis sp. PCC6803 tmRNA
SEQ ID NO: 120
GGGGCCGCAAUGGUUUCGACAGGUUGGCGAAAGCUUGCCCG
UGAUACAGGUCGAGAGUGAGUCUCCUCUCGCAAAUCAAAGG
CUCAAAAAAAAGUAACUGCGAAUAACAUCGUCAGCUUCAAA
CGGGUAGCCAUAGCAGCCUAGUCUGUAAAAGCUACAUUUUC
UUGUCAAAGACCGUUUACUUCUUUUCUGACUCCGUUAAGGA
UUAGAGGUUAACCCCAACGGAUGCUUUGUUUGGCUCUUCUC
UAGUUAGCUAAACAAUCAAGACUCAGACUAGAGCAUCCCAC
CAUCAGGGAUAAUCGAUGGUCCCCGUCCUAGGGCUAGAAGG
ACUAAACCUGUGAAUGAGCGGAAAGUUAAUACCCAGUUUGG
ACAGCAGUUCAAUUCUGCUCGGCUCCACCA
Thermotoga maritima ssrA
SEQ ID NO: 121
GGGGGCGAACGGGTTCGACGGGGATGGAGTCCCCTGGGAAGC
GAGCCGAGGTCCCCACCTCCTCGTAAAAAAGGTGGGACAAAG
AATAAGTGCCAACGAACCTGTTGCTGTTGCCGCTTAATAGATA
AGCGGCCGTCCTCTCCGAAGTTGGCTGGGCTTCGGAAGAGGG
CGTGAGAGATCCAGCCTACCGATTCAGCTTCGCCTTCCGGCCT
GAATCGGGAAAACTCAGGAAGGCTGTGGGAGAGGACACCCTG
CCCGTGGGAGGTCCCTCCCGAGAGCGAAAACACGGGCTGCGC
TCGGAGAAGCCCAGGGGCCTCCATCTTCGGACGGGGGTTCGA
ATCCCCCCGCCTCCACCA
Thermotoga maritima tmRNA
SEQ ID NO: 122
GGGGGCGAACGGGUUCGACGGGGAUGGAGUCCCCUGGGAAG
CGAGCCGAGGUCCCCACCUCCUCGUAAAAAAGGUGGGACAA
AGAAUAAGUGCCAACGAACCUGUUGCUGUUGCCGCUUAAUA
GAUAAGCGGCCGUCCUCUCCGAAGUUGGCUGGGCUUCGGAA
GAGGGCGUGAGAGAUCCAGCCUACCGAUUCAGCUUCGCCUU
CCGGCCUGAAUCGGGAAAACUCAGGAAGGCUGUGGGAGAGG
ACACCCUGCCCGUGGGAGGUCCCUCCCGAGAGCGAAAACAC
GGGCUGCGCUCGGAGAAGCCCAGGGGCCUCCAUCUUCGGAC
GGGGGUUCGAAUCCCCCCGCCUCCACCA
Thermus thermophilus ssrA
SEQ ID NO: 123
GGGGGTGAAACGGTCTCGACGGGGGTCGCCGAGGGCGTGGCT
GCGCGCCGAGGTGCGGGTGGCCTCGTAAAAACCCGCAACGGC
ATAACTGCCAACACCAACTACGCTCTCGCGGCTTAATGACCGC
GACCTCGCCCGGTAGCCCTGCCGGGGGCTCACCGGAAGCGGG
GACACAAACCCGGCTAGCCCGGGGCCACGCCCTCTAACCCCG
GGCGAAGCTTGAAGGGGGCTCGCTCCTGGCCGCCCGTCCGCG
GGCCAAGCCAGGAGGACACGCGAAACGCGGACTACGCGCGT
AGAGGCCCGCCGTAGAGACCTTCGGACGGGGGTTCGACTCCC
CCCACCTCCACCA
Thermus thermophilus tmRNA
SEQ ID NO: 124
GGGGGUGAAACGGUCUCGACGGGGGUCGCCGAGGGCGUGGC
UGCGCGCCGAGGUGCGGGUGGCCUCGUAAAAACCCGCAACG
GCAUAACUGCCAACACCAACUACGCUCUCGCGGCUUAAUGA
CCGCGACCUCGCCCGGUAGCCCUGCCGGGGGCUCACCGGAAG
CGGGGACACAAACCCGGCUAGCCCGGGGCCACGCCCUCUAAC
CCCGGGCGAAGCUUGAAGGGGGCUCGCUCCUGGCCGCCCGU
CCGCGGGCCAAGCCAGGAGGACACGCGAAACGCGGACUACG
CGCGUAGAGGCCCGCCGUAGAGACCUUCGGACGGGGGUUCG
ACUCCCCCCACCUCCACCA
Treponema pallidum ssrA
SEQ ID NO: 125
GGGGATGACTAGGTTTCGACTAGGGATGTGGGGTGTTGCGCT
GCAGGTGGAGTGTCGATCTCCTGATTCGGCGCCTTTATAACTG
CCAATTCTGACAGTTTCGACTACGCGCTCGCCGCGTAATCGCG
GGCCTGTGTTTGCGCTGCTCTGAGCGAACATATCGGCCCGACG
CCAAACGGAGCTTGCTCTTACGTTGTGCACGGCGGACGTAGG
GGGACTTTTGTCTGTGCTAAGACTCTGGCGCGTGCGGTGCAGG
CCTAGCAGAGTCCGACAAACGCAGTACGCACCGCTAAACCTG
TAGGCGCGCAGCACTCGCTCTTTAGGACGGGGGTTCGATTCCC
CCCATCTCCACCA
Treponema pallidum tmRNA
SEQ ID NO: 126
GGGGAUGACUAGGUUUCGACUAGGGAUGUGGGGUGUUGCGC
UGCAGGUGGAGUGUCGAUCUCCUGAUUCGGCGCCUUUAUAA
CUGCCAAUUCUGACAGUUUCGACUACGCGCUCGCCGCGUAA
UCGCGGGCCUGUGUUUGCGCUGCUCUGAGCGAACAUAUCGG
CCCGACGCCAAACGGAGCUUGCUCUUACGUUGUGCACGGCG
GACGUAGGGGGACUUUUGUCUGUGCUAAGACUCUGGCGCGU
GCGGUGCAGGCCUAGCAGAGUCCGACAAACGCAGUACGCAC
CGCUAAACCUGUAGGCGCGCAGCACUCGCUCUUUAGGACGG
GGGUUCGAUUCCCCCCAUCUCCACCA
Vibrio cholerae ssrA
SEQ ID NO: 127
GGGGCTGATTCAGGATTCGACGGGAATTTTGCAGTCTGAGGT
GCATGCCGAGGTGCGGTAGGCCTCGTTAACAAACCGCAAAAA
AATAGTCGCAAACGACGAAAACTACGCACTAGCAGCTTAATA
CCCTGCTCAGAGCCCTTCCTCCCTAGCTTCCGCTTGTAAGACG
GGGAAATCAGGAAGGTCAAACCAAATCAAGCTGGCGTGGATT
CCCCCACCTGAGGGATGAAGCGCGAGATCTAATTCAGGTTAG
CCATTCGTTAGCGTGTCGGTTCGCAGGCGGTGGTGAAATTAAA
GATCGACTAAGCATGTAGTACCAAAGATGAATGGTTTTCGGA
CGGGGGTTCAACTCCCCCCAGCTCCACCA
Vibrio cholerae tmRNA
SEQ ID NO: 128
GGGGCUGAUUCAGGAUUCGACGGGAAUUUUGCAGUCUGAGG
UGCAUGCCGAGGUGCGGUAGGCCUCGUUAACAAACCGCAAA
AAAAUAGUCGCAAACGACGAAAACUACGCACUAGCAGCUUA
AUACCCUGCUCAGAGCCCUUCCUCCCUAGCUUCCGCUUGUA
AGACGGGGAAAUCAGGAAGGUCAAACCAAAUCAAGCUGGCG
UGGAUUCCCCCACCUGAGGGAUGAAGCGCGAGAUCUAAUUC
AGGUUAGCCAUUCGUUAGCGUGUCGGUUCGCAGGCGGUGGU
GAAAUUAAAGAUCGACUAAGCAUGUAGUACCAAAGAUGAAU
GGUUUUCGGACGGGGGUUCAACUCCCCCCAGCUCCACCA
Yersinia pestis ssrA
SEQ ID NO: 129
GGGGCTGATTCTGGATTCGACGGGATTCGCGAAACCCAAGGT
GCATGCCGAGGTGCGGTGGCCTCGTAAAAAACCGCAAAAAAA
ATAGTTGCAAACGACGAAAACTACGCACTAGCAGCTTAATAA
CCTGCTTAGAGCCCTCTCTGCCTAGCCTCCGCTCTTAGGACGG
GGATCAAGAGAGGTCAAACCTAAAAGAGCTCGTGTGGAAACC
TTGCCTGGGGTGGAAGCATTAAAACTAATCAGGATAGTTTGTC
AGTAGCGTGTCCATCCGCAGCTGGCCGGCGAATGTAATGATT
GGACTAAGCATGTAGTGCCGACGGTGTAGTAATTTCGGACGG
GGGTTCAAATCCCCCCAGCTCCACCA
Yersinia pestis tmRNA
SEQ ID NO: 130
GGGGCUGAUUCUGGAUUCGACGGGAUUCGCGAAACCCAAGG
UGCAUGCCGAGGUGCGGUGGCCUCGUAAAAAACCGCAAAAA
AAAUAGUUGCAAACGACGAAAACUACGCACUAGCAGCUUAA
UAACCUGCUUAGAGCCCUCUCUGCCUAGCCUCCGCUCUUAG
GACGGGGAUCAAGAGAGGUCAAACCUAAAAGAGCUCGUGUG
GAAACCUUGCCUGGGGUGGAAGCAUUAAAACUAAUCAGGAU
AGUUUGUCAGUAGCGUGUCCAUCCGCAGCUGGCCGGCGAAU
GUAAUGAUUGGACUAAGCAUGUAGUGCCGACGGUGUAGUAA
UUUCGGACGGGGGUUCAAAUCCCCCCAGCUCCACCA
Campylobacter fetus ssrA, internal partial
SEQ ID NO: 131
AGGAGTAAGTCTGCTTAGATGGCATGTCGCTTTGGGCAAAGC
GTAAAAAGCCCAAATAAAATTAAACGCAAACAACGTTAAATT
CGCTCCTGCTTACGCTAAAGCTGCGTAAGTTCAGTTGAGCCTG
AAATTTAAGTCATACTATCTAGCTTAATTTTCGGTCATCTTTGA
TAGTGTAGCCTTGCGTTTGACAAGCGTTGAGGTGAAATAAAGT
CTTAGCCTTGCTTTTGAGTTTTGGAAGATGAGCGAAGTAGGGT
GAAGTAGTCATCTTTGCTAAGCATGTAGAGGTCTTTGTGGGAT
TATTTTTGG
Campylobacter fetus tmRNA, internal partial
SEQ ID NO: 132
AGGAGUAAGUCUGCUUAGAUGGCAUGUCGCUUUGGGCAAAG
CGUAAAAAGCCCAAAUAAAAUUAAACGCAAACAACGUUAAA
UUCGCUCCUGCUUACGCUAAAGCUGCGUAAGUUCAGUUGAG
CCUGAAAUUUAAGUCAUACUAUCUAGCUUAAUUUUCGGUCA
UCUUUGAUAGUGUAGCCUUGCGUUUGACAAGCGUUGAGGUG
AAAUAAAGUCUUAGCCUUGCUUUUGAGUUUUGGAAGAUGA
GCGAAGUAGGGUGAAGUAGUCAUCUUUGCUAAGCAUGUAGA
GGUCUUUGUGGGAUUAUUUUUGG
Campylobacter coli (BM2509) ssrA,
internal partial
SEQ ID NO: 133
AGGAGTAAGTCTGCTTAGATGGCATGTCGCTTTGGACAAAGC
GTAAAAAGTCCAAATTAAAATTAAACGCAAATAACGTTAAAT
TTGCTCCTGCTTACGCTAAAGCTGCGTAAGTTCAGTTGAGCCC
GAAACTCAAGTGATGCTATCTAGCTTGAATTTTGGTCATCTTT
GATAGTGTAGATTGAAAATTGACAACTTTTAATCGAAGTTAAA
GTCTTAGTCTAGCTTGAAATTTTGGAAGGTGAGTTTAGCCAGA
TGAAGTTTTCACCTTTGCTAAACATGTAGAAGTCTTTGTGGGG
TTATTTTTGG
Campylobacter coli (BM2509) tmRNA,
internal partial
SEQ ID NO: 134
AGGAGUAAGUCUGCUUAGAUGGCAUGUCGCUUUGGACAAAG
CGUAAAAAGUCCAAAUUAAAAUUAAACGCAAAUAACGUUAA
AUUUGCUCCUGCUUACGCUAAAGCUGCGUAAGUUCAGUUGA
GCCCGAAACUCAAGUGAUGCUAUCUAGCUUGAAUUUUGGUC
AUCUUUGAUAGUGUAGAUUGAAAAUUGACAACUUUUAAUC
GAAGUUAAAGUCUUAGUCUAGCUUGAAAUUUUGGAAGGUG
AGUUUAGCCAGAUGAAGUUUUCACCUUUGCUAAACAUGUAG
AAGUCUUUGUGGGGUUAUUUUUGG
Camplyobacter chicken isolate ssrA,
internal partial
SEQ ID NO: 135
ACAGGAGTAAGTCTGCTTAGATGGCATGTCGCTTTGGGCAAA
GCGTAAAAAGCCCAAATAAAATTAAACGCAAACAACGTTAAA
TTCGCTCCTGCTTACGCTAAAGCTGCGTAAGTTCAGTTGAGCC
TGAAATTTAAGTCATACTATCTAGCTTAATTTTCGGTCATTTTT
GATAGTGTAGCCTTGCGTTTGACAAGCGTTGAGGTGAAATAA
GGTCTTAGCCTTGCTTTTGAGTTTTGGAAGATGAGCGAAGTAG
GGTGAAGTAGTCATCTTTGCTAAGCATGTAGAGGTCTTTGTGG
GATTATTTTTGG
Camplyobacter chicken isolate tmRNA,
internal partial
SEQ ID NO: 136
ACAGGAGUAAGUCUGCUUAGAUGGCAUGUCGCUUUGGGCAA
AGCGUAAAAAGCCCAAAUAAAAUUAAACGCAAACAACGUUA
AAUUCGCUCCUGCUUACGCUAAAGCUGCGUAAGUUCAGUUG
AGCCUGAAAUUUAAGUCAUACUAUCUAGCUUAAUUUUCGGU
CAUUUUUGAUAGUGUAGCCUUGCGUUUGACAAGCGUUGAGG
UGAAAUAAGGUCUUAGCCUUGCUUUUGAGUUUUGGAAGAU
GAGCGAAGUAGGGUGAAGUAGUCAUCUUUGCUAAGCAUGUA
GAGGUCUUUGUGGGAUUAUUUUUGG
Clostridium perfringens ssrA,
internal partial
SEQ ID NO: 137
ACGGGGGTAGGATGGGTTTGATAAGCGAGTCGAGGGAAGCAT
GGTGCCTCGATAATAAAGTATGCATTAAAGATAAACGCACGA
GATAATTTTGCATTAGCAGCTTAAGTTAGCGCTGCTCATCCTT
CCTCAATTGCCCACGGTTGAGAGTAAGGGTGTCATTTAAAAGT
GGGGAACCGAGCCTAGCAAAGCTTTGAGCTAGGAACGGAATT
TATGAAGCTTACCAAAGAGGAAGTTTGTCTGTGGACGTTCTCT
GAGGGAATTTTAAAACACAAGACTACACTCGTAGAAAGTCTT
ACTGGTCTGCTTTCGG
Clostridium perfringens tmRNA,
internal partial
SEQ ID NO: 138
ACGGGGGUAGGAUGGGUUUGAUAAGCGAGUCGAGGGAAGC
AUGGUGCCUCGAUAAUAAAGUAUGCAUUAAAGAUAAACGCA
CGAGAUAAUUUUGCAUUAGCAGCUUAAGUUAGCGCUGCUCA
UCCUUCCUCAAUUGCCCACGGUUGAGAGUAAGGGUGUCAUU
UAAAAGUGGGGAACCGAGCCUAGCAAAGCUUUGAGCUAGGA
ACGGAAUUUAUGAAGCUUACCAAAGAGGAAGUUUGUCUGUG
GACGUUCUCUGAGGGAAUUUUAAAACACAAGACUACACUCG
UAGAAAGUCUUACUGGUCUGCUUUCGG
Haemophilus ducreyi (NCTC 10945) ssrA,
internal partial
SEQ ID NO: 139
ACGGGATTAGCGAAGTCCAAGGTGCACGTCGAGGTGCGGTAG
GCCTCGTAACAAACCGCAAAAAAATAGTCGCAAACGACGAAC
AATACGCTTTAGCAGCTTAATAACCTGCATTTAGCCTTCGCGC
CCTAGCTTTCGCTCGTAAGACGGGGAGCACGCGGAGTCAAAC
CAAAACGAGATCGTGTGGACGCTTCCGCTTGTAGATGAAACA
CTAAATTGAATCAAGCTAGTTTATTTCTTGCGTGTCTGTCCGCT
GGAGATAAGCGAAATTAAAGACCAGACTAAACGTGTAGTACT
GAAGATAGAGTAATTTCGGACCCGGGTTCGACTC
Haemophilus ducreyi (NCTC 10945) tmRNA,
internal partial
SEQ ID NO: 140
ACGGGAUUAGCGAAGUCCAAGGUGCACGUCGAGGUGCGGUA
GGCCUCGUAACAAACCGCAAAAAAAUAGUCGCAAACGACGA
ACAAUACGCUUUAGCAGCUUAAUAACCUGCAUUUAGCCUUC
GCGCCCUAGCUUUCGCUCGUAAGACGGGGAGCACGCGGAGU
CAAACCAAAACGAGAUCGUGUGGACGCUUCCGCUUGUAGAU
GAAACACUAAAUUGAAUCAAGCUAGUUUAUUUCUUGCGUGU
CUGUCCGCUGGAGAUAAGCGAAAUUAAAGACCAGACUAAAC
GUGUAGUACUGAAGAUAGAGUAAUUUCGGACCCGGGUUCGA
CUC
Listeria innocua (food isolate #1) ssrA,
internal partial
SEQ ID NO: 141
GGCAAAGAAAAACAAAACCTAGCTTTCGCTGCCTAATAACCA
GTAGCATAGCTGATCCTCCGTGCATCGCCCATGTGCTACGGTA
AGGGTCTCACTCTAAGTGGGCTACACTAGTTAATCTCCGTCTG
AGGTTAAATAGAAGAGCTTAATCAGACTAGCTGAATGGAAGC
CTGTTACCGGGCTGATGTTTATGCGAAATGCTAATACGGTGAC
TACGCTCGTAGATATTCAA
Listeria innocua (food isolate #1) tmRNA,
internal partial
SEQ ID NO: 142
GGCAAAGAAAAACAAAACCUAGCUUUCGCUGCCUAAUAACC
AGUAGCAUAGCUGAUCCUCCGUGCAUCGCCCAUGUGCUACG
GUAAGGGUCUCACUCUAAGUGGGCUACACUAGUUAAUCUCC
GUCUGAGGUUAAAUAGAAGAGCUUAAUCAGACUAGCUGAAU
GGAAGCCUGUUACCGGGCUGAUGUUUAUGCGAAAUGCUAAU
ACGGUGACUACGCUCGUAGAUAUUCAA
Listeria innocua (food isolate #2) ssrA,
internal partial
SEQ ID NO: 143
GGCAAAGAAAAACAAAACCTAGCTTTCGCTGCCTAATAAGCA
GTAGCATAGCTGATCCTCCGTGCATCGCCCATGTGCTACGGTA
AGGGTCTCACTCTAAGTGGGCTACACTAGTTAATCTCCGTCTG
AGGTTAAATAGAAGAGCTTAATCAGACTAGCTGAATGGAAGC
CTGTTACCGGGCCGATGTTTATGCGAAATGCTAATACGGTGAC
TACGCTCGTAGATATTTAA
Listeria innocua (food isolate #2) tmRNA,
internal partial
SEQ ID NO: 144
GGCAAAGAAAAACAAAACCUAGCUUUCGCUGCCUAAUAAGC
AGUAGCAUAGCUGAUCCUCCGUGCAUCGCCCAUGUGCUACG
GUAAGGGUCUCACUCUAAGUGGGCUACACUAGUUAAUCUCC
GUCUGAGGUUAAAUAGAAGAGCUUAAUCAGACUAGCUGAAU
GGAAGCCUGUUACCGGGCCGAUGUUUAUGCGAAAUGCUAAU
ACGGUGACUACGCUCGUAGAUAUUUAA
Listeria innocua (food isolate #3) ssrA,
internal partial
SEQ ID NO: 145
GGCAAAGAAAAACAAAACCTAGCTTTCGCTGCCTAATAAGCA
GTAGAATAGCTGATCCTCCGTGCATCGCCCATGTGCTACGGTA
AGGGTCTCACTCTAAGTGGGCTACACTAGTTAATCTCCGTCTG
AGGTTAAATAGAAGAGCTTAATCGGACTAGCTGAATGGAAGC
CTGTTACCGGGCCGATGTTTATGCGAAATGCTAATACGGTGAC
TACGCTCGTAGATATTTAA
Listeria innocua (food isolate #3) tmRNA,
internal partial
SEQ ID NO: 146
GGCAAAGAAAAACAAAACCUAGCUUUCGCUGCCUAAUAAGC
AGUAGAAUAGCUGAUCCUCCGUGCAUCGCCCAUGUGCUACG
GUAAGGGUCUCACUCUAAGUGGGCUACACUAGUUAAUCUCC
GUCUGAGGUUAAAUAGAAGAGCUUAAUCGGACUAGCUGAAU
GGAAGCCUGUUACCGGGCCGAUGUUUAUGCGAAAUGCUAAU
ACGGUGACUACGCUCGUAGAUAUUUAA
Listeria innocua (ATCC 12210) ssrA,
internal partial
SEQ ID NO: 147
GGCAAAGAAAAACAAAACCTAGCTTTCGCTGCCTAATAAGCA
GTAGCATAGCTGATCCTCCGTGCATCGCCCATGTGCTACGGTA
AGGGTCTCACTCTAAGTGGGCTACACTAGTTAATCTCCGTCTG
GGGTTAAATAGAAGAGCTTAATCAGACTAGCTGAATGGAAGC
CTGTTACTGGGCCGATGTTTATGCGAAATGCTAATACGGTGAC
TACGCTCGTAGATATTTAA
Listeria innocua (ATCC 12210) tmRNA,
internal partial
SEQ ID NO: 148
GGCAAAGAAAAACAAAACCUAGCUUUCGCUGCCUAAUAAGC
AGUAGCAUAGCUGAUCCUCCGUGCAUCGCCCAUGUGCUACG
GUAAGGGUCUCACUCUAAGUGGGCUACACUAGUUAAUCUCC
GUCUGGGGUUAAAUAGAAGAGCUUAAUCAGACUAGCUGAAU
GGAAGCCUGUUACUGGGCCGAUGUUUAUGCGAAAUGCUAAU
ACGGUGACUACGCUCGUAGAUAUUUAA
Listeria ivanovii (NCTC 11846) ssrA,
internal partial
SEQ ID NO: 149
ACAGGGATAGTTCGAGCTTGAGTTGCGAGTCGGGGGGATCGT
CCTCGTTATTAACGTCAAAGCCAATAATAACTGGCAAAGAAA
AACAAAACCTAGCTTTCGCTGCCTAATAAGCAGTAGCATAGCT
GATCCTCCGTGCATCGCCCATGTGCTACGGTAAGGGTCTCACT
TTAAGTGGGCTACACTAAATAATCTCCGTCTGGGGTTAGTTAG
AAGAGCTTAATCAGACTAGCTGAATGGAAGCCTGTTACCGGG
CTGATGTTTATGCGAAATGCTAATACGGTGACTACGCTCGTAG
ATATTTAAGTGCCGATATTTCTGG
Listeria ivanovii (NCTC 11846) tmRNA,
internal partial
SEQ ID NO: 150
ACAGGGAUAGUUCGAGCUUGAGUUGCGAGUCGGGGGGAUCG
UCCUCGUUAUUAACGUCAAAGCCAAUAAUAACUGGCAAAGA
AAAACAAAACCUAGCUUUCGCUGCCUAAUAAGCAGUAGCAU
AGCUGAUCCUCCGUGCAUCGCCCAUGUGCUACGGUAAGGGU
CUCACUUUAAGUGGGCUACACUAAAUAAUCUCCGUCUGGGG
UUAGUUAGAAGAGCUUAAUCAGACUAGCUGAAUGGAAGCCU
GUUACCGGGCUGAUGUUUAUGCGAAAUGCUAAUACGGUGAC
UCGCUCGUAGAUAUUUAAGUGCCGAUAUUUCUGG
Listeria seeligeri (NCTC 11856) ssrA,
internal partial
SEQ ID NO: 151
ACAGGGATAGTTCGAGCTTGAGTTGCGAGTCGGGGGGATCGT
CCTCGTTATCAACGTCAAAGCCAATAATAACTGGCAAAGAAA
AACAAAACCTAGCTTTCGCTGCCTAATAAGCAGTAGCATAGCT
GATCCTCCGTGCATCGCCCATGTGCTACGGAAAGGGTCTCACT
TTAAGTGGGCTACACTAAATAATCTCCGTCTGGGGTTAGTTAG
AAGAGCTTAATCAGACTAGCTGAATGGAAGCCTGTTACCGGG
CTGATGTTTATGCGAAATACTAATACGGTGACTACGCTCGTAG
ATATTTAAGTGCCCATATTTCTGG
Listeria seeligeri (NCTC 11856) tmRNA,
internal partial
SEQ ID NO: 152
ACAGGGAUAGUUCGAGCUUGAGUUGCGAGUCGGGGGGAUCG
UCCUCGUUAUCAACGUCAAAGCCAAUAAUAACUGGCAAAGA
AAAACAAAACCUAGCUUUCGCUGCCUAAUAAGCAGUAGCAU
AGCUGAUCCUCCGUGCAUCGCCCAUGUGCUACGGAAAGGGU
CUCACUUUAAGUGGGCUACACUAAAUAAUCUCCGUCUGGGG
UUAGUUAGAAGAGCUUAAUCAGACUAGCUGAAUGGAAGCCU
GUUACCGGGCUGAUGUUUAUGCGAAAUACUAAUACGGUGAC
UACGCUCGUAGAUAUUUAAGUGCCCAUAUUUCUGG
Salmonella enteritidis ssrA, internal partial
SEQ ID NO: 153
ACGGGATTTGCGAAACCCAAGGTGCATGCCGAGGGGCGGTTG
GCCTCGTAAAAAGCCGCAAAAAAATAGTCGCAAACGACGAAA
CCTACGCTTTAGCAGCTTAATAACCTGCTTAGAGCCCTCTCTC
CCTAGCCTCCGCTCTTAGGACGGGGATCAAGAGAGGTCAAAC
CCAAAAGAGATCGCGTGGATGCCCTGCCTGGGGTTGAAGCGT
TAAAACGAATCAGGCTAGTCTGGTAGTGGCGTGTCCGTCCGC
AGGTGCCAGGCGAATGTAAAGACTGACTAAGCATGTAGTACC
GAGGATGTAGGAATTTCGG
Salmonella enteritidis tmRNA, internal partial
SEQ ID NO: 154
ACGGGAUUUGCGAAACCCAAGGUGCAUGCCGAGGGGCGGUU
GGCCUCGUAAAAAGCCGCAAAAAAAUAGUCGCAAACGACGA
AACCUACGCUUUAGCAGCUUAAUAACCUGCUUAGAGCCCUC
UCUCCCUAGCCUCCGCUCUUAGGACGGGGAUCAAGAGAGGU
CAAACCCAAAAGAGAUCGCGUGGAUGCCCUGCCUGGGGUUG
AAGCGUUAAAACGAAUCAGGCUAGUCUGGUAGUGGCGUGUC
CGUCCGCAGGUGCCAGGCGAAUGUAAAGACUGACUAAGCAU
GUAGUACCGAGGAUGUAGGAAUUUCGG
Staphylococcus epidermidis (NCTC 11047) ssrA,
internal partial
SEQ ID NO: 155
ACAGGGGTCCCCCGAGCTTATTAAGCGTGTCGGAGGGTTGGC
TCCGTCATCAACACATTTCGGTTAAATATAACTGACAAATCAA
ACAATAATTTCGCAGTAGCTGCGTAATAGCCACTGCATCGCCT
AACAGCATCTCCTACGTGCTGTTAACGCGATTCAACCCTAGTA
GGATATGCTAAACACTGCCGCTTGAAGTCTGTTTAGATGAAAT
ATAATCAAGCTAGTATCATGTTGGTTGTTTATTGCTTAGCATG
ATGCGAAAATTATCAATAAACTACACACGTAGAAAGATTTGT
ATCAGGACCTCTGG
Staphylococcus epidermidis (NCTC 11047) tmRNA,
internal partial
SEQ ID NO: 156
ACAGGGGUCCCCCGAGCUUAUUAAGCGUGUCGGAGGGUUGG
CUCCGUCAUCAACACAUUUCGGUUAAAUAUAACUGACAAAU
CAAACAAUAAUUUCGCAGUAGCUGCGUAAUAGCCACUGCAU
CGCCUAACAGCAUCUCCUACGUGCUGUUAACGCGAUUCAAC
CCUAGUAGGAUAUGCUAAACACUGCCGCUUGAAGUCUGUUU
AGAUGAAAUAUAAUCAAGCUAGUAUCAUGUUGGUUGUUUA
UUGCUUAGCAUGAUGCGAAAAUUAUCAAUAAACUACACACG
UAGAAAGAUUUGUAUCAGGACCUCUGG
Streptococcus agalactiae (NCTC 8181) ssrA,
internal partial
SEQ ID NO: 157
ACAGGCATTATGAGGTATATTTTGCGACTCATCGGCAGATGTA
AAATGCCAGTTAAATATAACTGCAAAAAATACAAATTCTTAC
GCATTAGCTGCCTAAAAAACAGCCTGCGTGATCTTCACAAGAT
TGTTTGCGTTTTGCTAGAAGGTCTTATTTATCAGCAAACTACG
TTTGGCTACTGTCTAGTTAGTTAAAAAGAGATTTATAGACTCG
CTATGTGAGGGCTTGAGTTATGTGTCATCACCTAGTTAAATCA
ATACATAACCTATAGTTGTAGACAAATATATTAGCAGATGTTT
GG
Streptococcus agalactiae (NCTC 8181) tmRNA,
internal partial
SEQ ID NO: 158
ACAGGCAUUAUGAGGUAUAUUUUGCGACUCAUCGGCAGAUG
UAAAAUGCCAGUUAAAUAUAACUGCAAAAAAUACAAAUUCU
UACGCAUUAGCUGCCUAAAAAACAGCCUGCGUGAUCUUCAC
AAGAUUGUUUGCGUUUUGCUAGAAGGUCUUAUUUAUCAGCA
AACUACGUUUGGCUACUGUCUAGUUAGUUAAAAAGAGAUUU
AUAGACUCGCUAUGUGAGGGCUUGAGUUAUGUGUCAUCACC
UAGUUAAAUCAAUACAUAACCUAUAGUUGUAGACAAAUAUA
UUAGCAGAUGUUUGG
Bordetella bronchiseptica ssrA
SEQ ID NO: 159
GGGGCCGATCCGGATTCGACGTGGGTCATGAAACAGCTCAAG
GCATGCCGAGCACCAGTAAGCTCGTTAATCCACTGGAACACT
ACAAACGCCAACGACGAGCGTTTCGCTCTCGCCGCTTAAGCG
GTGAGCCGCTGCACTGATCTGTCCTTGGGTCACGCGGGGGAA
Bordetella bronchiseptica tmRNA
SEQ ID NO: 160
GGGGCCGAUCCGGAUUCGACGUGGGUCAUGAAACAGCUCAAG
GCAUGCCGAGCACCAGUAAGCUCGUUAAUCCACUGGAACACU
ACAAACGCCAACGACGAGCGUUUCGCUCUCGCCGCUUAAGCG
GUGAGCCGCUGCACUGAUCUGUCCUUGGGUCACGCGGGGGAA
Chlamydia pneumoniae (CWL029), ssrA
SEQ ID NO: 161
GGGGGTGTATAGGTTTCGACTTGAAAATGAAGTGTTAATTGCA
TGCGGAGGGCGTTGGCTGGCCTCCTAAAAAGCCAACAAAACA
ATAAATGCCGAACCTAAGGCTGAATGCGAAATTATTAGCTTGT
TTGACTCAGTAGAGGAAAGACTAGCTGCTTAATTAGCAAAAG
TTGTTAGCTAGATAATCTCTAGGTAACCCGGTATCTGCGAGCT
CCACCAGAGGCTTGCAAAATACCGTCATTTATCTGGTTGGAAC
TTACTTTCTCTAATTCTCAAGGAAGTTCGTTCGAGATTTTTGAG
AGTCATTGGCTGCTATAGAGGCTTCTAGCTAAGGGAGTCCAAT
GTAAACAATTCTAGAAGATAAGCATGTAGAGGTTAGCAGGGA
GTTTGTCAAGGACGAGAGTTCGAGTCTCTCCACCTCCACCA
Chlamydia pneumoniae (CWL029) tmRNA
SEQ ID NO: 162
GGGGGUGUAUAGGUUUCGACUUGAAAAUGAAGUGUUAAUU
GCAUGCGGAGGGCGUUGGCUGGCCUCCUAAAAAGCCAACAA
AACAAUAAAUGCCGAACCUAAGGCUGAAUGCGAAAUUAUUA
GCUUGUUUGACUCAGUAGAGGAAAGACUAGCUGCUUAAUUA
GCAAAAGUUGUUAGCUAGAUAAUCUCUAGGUAACCCGGUAU
CUGCGAGCUCCACCAGAGGCUUGCAAAAUACCGUCAUUUAU
CUGGUUGGAACUUACUUUCUCUAAUUCUCAAGGAAGUUCGU
UCGAGAUUUUUGAGAGUCAUUGGCUGCUAUAGAGGCUUCUA
GCUAAGGGAGUCCAAUGUAAACAAUUCUAGAAGAUAAGCAU
GUAGAGGUUAGCAGGGAGUUUGUCAAGGACGAGAGUUCGA
GUCUCUCCACCUCCACCA
Francisella tularensis ssrA
SEQ ID NO: 163
GGGGGCGAATATGGTTTCGACATGAATGTCAAAATCTAAGGT
GCATGCCGAGGAAGTACCGTAACCTCGTTAATAACAGTACAA
ATGCCAATAATAACTGGCAACAAAAAAGCAAACCGCGTAGCG
GCTAACGACAGCAACTTTGCTGCTGTTGCTAAAGCTGCCTAGT
CTAGCTTAATAATCTAGATGCGCACGGATATGATAGTCTTTCT
TATGACACTATCTATACATCCGTTCATATTCCGCATAAGACGG
TCTTTGCTTTTTGTCTGGGAGTTAAGGCTGTATTTAACAGACTC
GCTAACTATTACCCTGGCTAATTGGGGAATAGTCAAGCTAAAC
TCAAATAGATTAGCCTAAGCATGTAGATCCAAAGATCTAGAG
TTTGTGGACGCGGGTTCAAATCCCGCCGCCTCCACCA
Francisella tularensis tmRNA
SEQ ID NO: 164
GGGGGCGAAUAUGGUUUCGACAUGAAUGUCAAAAUCUAAGG
UGCAUGCCGAGGAAGUACCGUAACCUCGUUAAUAACAGUAC
AAAUGCCAAUAAUAACUGGCAACAAAAAAGCAAACCGCGUA
GCGGCUAACGACAGCAACUUUGCUGCUGUUGCUAAAGCUGC
CUAGUCUAGCUUAAUAAUCUAGAUGCGCACGGAUAUGAUAG
UCUUUCUUAUGACACUAUCUAUACAUCCGUUCAUAUUCCGC
AUAAGACGGUCUUUGCUUUUUGUCUGGGAGUUAAGGCUGUA
UUUAACAGACUCGCUAACUAUUACCCUGGCUAAUUGGGGAA
UAGUCAAGCUAAACUCAAAUAGAUUAGCCUAAGCAUGUAGA
UCCAAAGAUCUAGAGUUUGUGGACGCGGGUUCAAAUCCCGC
CGCCUCCACCA
Guillardia theta (plastid) ssrA
SEQ ID NO: 165
GGGGCTGATTTGGATTCGACATATAAATTTGCGTGTTTCATTA
TGAAGCAAGTCAAGTTTAATGATCTTGTAAAAAACATTAAAG
TACAAATAAATGCAAGCAATATAGTTTCATTTAGTTCAAAACG
TTTAGTCTCTTTTGCATAAGCAAAATGTGTTAATAACTTTCTTA
GTAGAAATTGGAGAAGTTTACTAAGATTTATATTTACTCCATA
ATTATTTTAAAGATGGTAAAAAGGTGATTCATCATTTGTATGT
TTCTAAACTTTGTGAAAGAATAGTGGGCTCCATTTATAATGAA
CGTGGGTTCAAATCCCACCAGCTCCACCA
Guillardia theta (plastid) tmRNA
SEQ ID NO: 166
GGGGCUGAUUUGGAUUCGACAUAUAAAUUUGCGUGUUUCAU
UAUGAAGCAAGUCAAGUUUAAUGAUCUUGUAAAAAACAUU
AAAGUACAAAUAAAUGCAAGCAAUAUAGUUUCAUUUAGUUC
AAAACGUUUAGUCUCUUUUGCAUAAGCAAAAUGUGUUAAUA
ACUUUCUUAGUAGAAAUUGGAGAAGUUUACUAAGAUUUAU
AUUUACUCCAUAAUUAUUUUAAAGAUGGUAAAAAGGUGAU
UCAUCAUUUGUAUGUUUCUAAACUUUGUGAAAGAAUAGUG
GGCUCCAUUUAUAAUGAACGUGGGUUCAAAUCCCACCAGCU
CCACCA
Thalassiosira Weissflogii (plastid) ssrA
SEQ ID NO: 167
GGGGCTGATTTGGTTTCGACATTTAAAACTTCTTTCTATGTGTC
AGGTCAAAGTTTGTATTCTTTGTAAAAAAATACTAAAATACTA
ATAAATGCTAATAATATAATACCGTTTATTTTTAAAGCAGTAA
AAACAAAAAAAGAAGCAATGGCTTTAAATTTTGCTGTATAGT
TCATTAACTTAGGTTATTAAATATTTTTTCATTATAACTGGACT
TTTCTCTAGTTTATAGTTTAGAATAAATTTAAATTTTGCAAAAC
TCGTTCGAAAATTTTCGGGCTAAACCTGTAAACGCAAATACTA
AGAAATTTTAGATGGACATGGGTTCAATTCCCATCAGTTCCAC
CA
Thalassiosira Weissflogii (plastid) tmRNA
SEQ ID NO: 168
GGGGCUGAUUUGGUUUCGACAUUUAAAACUUCUUUCUAUGU
GUCAGGUCAAAGUUUGUAUUCUUUGUAAAAAAAUACUAAA
AUACUAAUAAAUGCUAAUAAUAUAAUACCGUUUAUUUUUA
AAGCAGUAAAAACAAAAAAAGAAGCAAUGGCUUUAAAUUU
UGCUGUAUAGUUCAUUAACUUAGGUUAUUAAAUAUUUUUU
CAUUAUAACUGGACUUUUCUCUAGUUUAUAGUUUAGAAUAA
AUUUAAAUUUUGCAAAACUCGUUCGAAAAUUUUCGGGCUAA
ACCUGUAAACGCAAAUACUAAGAAAUUUUAGAUGGACAUGG
GUUCAAUUCCCAUCAGUUCCACCA
Helicobacter pylori ssrA, (clinical isolate 1),
internal partial
SEQ ID NO: 176
TGGGGATGTTACGGTTTCGACAGGGGTAGTTCGAGCTTAGGTG
GCGAGTCGAGGGGATCGGCCTCGTTAAAACGTCAAAGCCTAT
AACTGGCAAACAACAAAACAACTTCGCTTTAGCAGCTTAATA
AGCTCTTAGCGGTTCCTCCCTCCATCGCCCATGTGGTAGGGTA
AGGGACTCAAATTAAGTGGGCTACGCTGGATTCCACCGTCTG
AGGATGAAAGAAGAGAACAACCAGACTAGCTACCCGGACGC
CCGTCGATAGGCAGATGGAGTAGCGAATCGCGAATATATCGA
CTACACTCGTAGAAGCTTAAGTGCCGATATTCTTGGACGTGGG
TTCGACTCCC
Helicobacter pylori tmRNA, (clinical isolate 1),
internal partial
SEQ ID NO: 177
UGGGGAUGUUACGGUUUCGACAGGGGUAGUUCGAGCUUAGG
UGGCGAGUCGAGGGGAUCGGCCUCGUUAAAACGUCAAAGCC
UAUAACUGGCAAACAACAAAACAACUUCGCUUUAGCAGCUU
AAUAAGCUCUUAGCGGUUCCUCCCUCCAUCGCCCAUGUGGU
AGGGUAAGGGACUCAAAUUAAGUGGGCUACGCUGGAUUCCA
CCGUCUGAGGAUGAAAGAAGAGAACAACCAGACUAGCUACC
CGGACGCCCGUCGAUAGGCAGAUGGAGUAGCGAAUCGCGAA
UAUAUCGACUACACUCGUAGAAGCUUAAGUGCCGAUAUUCU
UGGACGUGGGUUCGACUCCC
Helicobacter pylori ssrA, (clinical isolate 2),
internal partial
SEQ ID NO: 178
TGGGGACGTTACGGTTTCGACAGGGATAGTTCGAGCTTAGGTT
GCGAGTCGAGGGGATCGGCCTCGTTAAAACGTCAAAGCCTAT
AATTGGCAAACAAAACAATCTTTCTTTAGCTGCTTAATTGCAC
TAAAGGTTCCTCCCTCCATCGTCCATGTGGTAGGGTAAGGGAC
TCAAACTAAGTGGACTACGCCGGAGTTCGCCGTCTGAGGACA
AAGGAAGAGAACAACCAGACTAGCAACTTGGAAGCCTGTCGA
TAGGCCGAAGAGTTCGCGAAATGCTAATATATCGACTACACT
CGTAGAAGCTTAAGTGCCGATATTTTTGGACGTGGGTTCGATT
CCCT
Helicobacter pylori tmRNA, (clinical isolate 2),
internal partial
SEQ ID NO: 179
UGGGGACGUUACGGUUUCGACAGGGAUAGUUCGAGCUUAGG
UUGCGAGUCGAGGGGAUCGGCCUCGUUAAAACGUCAAAGCC
UAUAAUUGGCAAACAAAACAAUCUUUCUUUAGCUGCUUAAU
UGCACUAAAGGUUCCUCCCUCCAUCGUCCAUGUGGUAGGGU
AAGGGACUCAAACUAAGUGGACUACGCCGGAGUUCGCCGUC
UGAGGACAAAGGAAGAGAACAACCAGACUAGCAACUUGGAA
GCCUGUCGAUAGGCCGAAGAGUUCGCGAAAUGCUAAUAUAU
CGACUACACUCGUAGAAGCUUAAGUGCCGAUAUUUUUGGAC
GUGGGUUCGAUUCCCU
Listeria seeligeri (NCTC 11856) ssrA,
internal partial
SEQ ID NO: 180
ACAGGGATAGTTCGAGCTTGAGTTGCGAGTCGGGGGGATCGT
CCTCGTTATCAACGTCAAAGCCAATAATAACTGGCAAAGAAA
AACAAAACCTAGCTTTCGCTGCCTAATAAGCAGTAGCATAGCT
GATCCTCCGTGCATCGCCCATGTGCTACGGAAAGGGTCTCACT
TTAAGTGGGCTACACTAAATAATCTCCGTCTGGGGTTAGTTAG
AAGAGCTTAATCAGACTAGCTGAATGGAAGCCTGTTACCGGG
CTGATGTTTATGCGAAATACTAATACGGTGACTACGCTCGTAG
ATATTTAAGTGCCCATATTTCTGG
Listeria seeligeri (NCTC 11856) tmRNA,
internal partial
SEQ ID NO: 181
ACAGGGAUAGUUCGAGCUUGAGUUGCGAGUCGGGGGGAUCG
UCCUCGUUAUCAACGUCAAAGCCAAUAAUAACUGGCAAAGA
AAAACAAAACCUAGCUUUCGCUGCCUAAUAAGCAGUAGCAU
AGCUGAUCCUCCGUGCAUCGCCCAUGUGCUACGGAAAGGGU
CUCACUUUAAGUGGGCUACACUAAAUAAUCUCCGUCUGGGG
UUAGUUAGAAGAGCUUAAUCAGACUAGCUGAAUGGAAGCCU
GUUACCGGGCUGAUGUUUAUGCGAAAUACUAAUACGGUGAC
UACGCUCGUAGAUAUUUAAGUGCCCAUAUUUCUGG
Listeria ivanovii (NCTC 11846) ssrA,
internal partial
SEQ ID NO: 182
ACAGGGATAGTTCGAGCTTGAGTTGCGAGTCGGGGGGATCGT
CCTCGTTATTAACGTCAAAGCCAATAATAACTGGCAAAGAAA
AACAAAACCTAGCTTTCGCTGCCTAATAAGCAGTAGCATAGCT
GATCCTCCGTGCATCGCCCATGTGCTACGGTAAGGGTCTCACT
TTAAGTGGGCTACACTAAATAATCTCCGTCTGGGGTTAGTTAG
AAGAGCTTAATCAGACTAGCTGAATGGAAGCCTGTTACCGGG
CTGATGTTTATGCGAAATGCTAATACGGTGACTACGCTCGTAG
ATATTTAAGTGCCGATATTTCTGG
Listeria ivanovii (NCTC 11846) tmRNA,
internal partial
SEQ ID NO: 183
ACAGGGAUAGUUCGAGCUUGAGUUGCGAGUCGGGGGGAUCG
UCCUCGUUAUUAACGUCAAAGCCAAUAAUAACUGGCAAAGA
AAAACAAAACCUAGCUUUCGCUGCCUAAUAAGCAGUAGCAU
AGCUGAUCCUCCGUGCAUCGCCCAUGUGCUACGGUAAGGGU
CUCACUUUAAGUGGGCUACACUAAAUAAUCUCCGUCUGGGG
UUAGUUAGAAGAGCUUAAUCAGACUAGCUGAAUGGAAGCCU
GUUACCGGGCUGAUGUUUAUGCGAAAUGCUAAUACGGUGAC
UCGCUCGUAGAUAUUUAAGUGCCGAUAUUUCUGG
Mycobacterium africanum (clinical isolate) ssrA,
internal partial
SEQ ID NO: 184
ACTTCGCGCATCGAATCAAGGGAAGCGTGCCGGTGCAGGCAA
GAGACCACCGTAAGCGTCGTTGCGACCAAATAAGCGCCGATT
CACATCAGCGCGACTACGCTCTCGCTGCCTAAGCGACGGCTA
GTCTGTCAGACCGGGAACGCCCTCGGCCCGGACCCTGGCATC
AGCTAGAGGGATCCACCGATGAGTCCGGTCGCGGGACTCCTC
GGGACAACCACAGCGACTGGGATCGTCATCTCGGCTAGTTCG
CGTGACCGGGAGATCCGAGCAGAGGCATAGCGAACTGCGCAC
GGAGAAGCCTTGAGGGAATGCCGTA
Mycobacterium africanum (clinical isolate) tmRNA,
internal partial
SEQ ID NO: 185
ACUUCGCGCAUCGAAUCAAGGGAAGCGUGCCGGUGCAGGCA
AGAGACCACCGUAAGCGUCGUUGCGACCAAAUAAGCGCCGA
UUCACAUCAGCGCGACUACGCUCUCGCUGCCUAAGCGACGG
CUAGUCUGUCAGACCGGGAACGCCCUCGGCCCGGACCCUGG
CAUCAGCUAGAGGGAUCCACCGAUGAGUCCGGUCGCGGGAC
UCCUCGGGACAACCACAGCGACUGGGAUCGUCAUCUCGGCU
AGUUCGCGUGACCGGGAGAUCCGAGCAGAGGCAUAGCGAAC
UGCGCACGGAGAAGCCUUGAGGGAAUGCCGUA
Mycobacterium gordonae (clinical isolate)ssrA,
internal partial
SEQ ID NO: 186
ACTTCGCGCATCGAATCAAGGGAAGCGTGCCGGTGCAGGCAA
GAGACCACCGTAAGCGTCGTTGCAACCATATAAGCGCCGATT
CACATCAGCGCGACTACGCTCTCGCTGCCTAAGCGACGGCTA
GTCTGTCGGACCGGGAACGCCCTCGCCCCGGACCCCGGCATC
AGCTAGAGGGATCAACCGATGAGTTCGGTCGCGGGACTCATC
GGGACACCAACAGCGACTGGGATCGTCATCCTGGCTAGTCCG
TGTGACCAGGAGATCCGAGCAGAGACATAGCGGACTGCGCAC
GGAGAAGCCTTGAGGGAATGCCGTA
Mycobacterium gordonae (clinical isolate) tmRNA,
internal partial
SEQ ID NO: 187
ACUUCGCGCAUCGAAUCAAGGGAAGCGUGCCGGUGCAGGCA
AGAGACCACCGUAAGCGUCGUUGCAACCAUAUAAGCGCCGA
UUCACAUCAGCGCGACUACGCUCUCGCUGCCUAAGCGACGG
CUAGUCUGUCGGACCGGGAACGCCCUCGCCCCGGACCCCGGC
AUCAGCUAGAGGGAUCAACCGAUGAGUUCGGUCGCGGGACU
CAUCGGGACACCAACAGCGACUGGGAUCGUCAUCCUGGCUA
GUCCGUGUGACCAGGAGAUCCGAGCAGAGACAUAGCGGACU
GCGCACGGAGAAGCCUUGAGGGAAUGCCGUA
Mycobacterium kansasii (clinical isolate) ssrA,
internal partial
SEQ ID NO: 188
ACTTCGCGCATCGAATCAAGGGAAGCGTGCCGGTGCAGGCAA
GAGACCACCGTAAGCGTCGTTGCAACCAAATAAGCGCCGATT
CACATCAGCGCGACTACGCTCTCGCTGCCTAAGCGACGGCTA
GTCTGTCAGACCGGGACCGCCCTCGACCCGGACTCTGGCATCA
GCTAGAGGGATCAACCGATGAGTTCGGTCGCGGGACTCGTCG
GGACACCAACAGCGACTGGGATCGTCATCCTGGCTAGTTCGC
GTGACCAGGAGATCCGAGCAGAGGCATAGCGAACTGCGCACG
GAGAAGCCTTGAGGGAATGCCGTA
Mycobacterium kansasii (clinical isolate) tmRNA,
internal partial
SEQ ID NO: 189
ACUUCGCGCAUCGAAUCAAGGGAAGCGUGCCGGUGCAGGCA
AGAGACCACCGUAAGCGUCGUUGCAACCAAAUAAGCGCCGA
UUCACAUCAGCGCGACUACGCUCUCGCUGCCUAAGCGACGG
CUAGUCUGUCAGACCGGGACCGCCCUCGACCCGGACUCUGG
CAUCAGCUAGAGGGAUCAACCGAUGAGUUCGGUCGCGGGAC
UCGUCGGGACACCAACAGCGACUGGGAUCGUCAUCCUGGCU
AGUUCGCGUGACCAGGAGAUCCGAGCAGAGGCAUAGCGAAC
UGCGCACGGAGAAGCCUUGAGGGAAUGCCGUA
Mycobacterium chelonae ssrA, internal partial
SEQ ID NO: 190
ACAGCGAGTCTCGACTTAAGGGAAGCGTGCCGGTGCAGGCAA
GAGACCACCGTAAGCGTCATTGCAACCAATTAAGCGCCGATT
CTCATCAGCGCGACTACGCACTCGCTGCCTAAGCGACTGCGTG
TCTGTCAGACCGGGAGCGCCCTCAGCCCGGACCCTGGCATCA
GCTAGAGGGACAAACTACGGGTTCGGTCGCGGGACCCGTAGG
GACATCAAACAGCGACTGGGATCGTCATCTCGGCTTGTTCGCG
GGACCGAGAGATCCAAGTAGAGGCATAGCGAACTGCGCACGG
AGAAGCCTTAATGAACGGCCGTTG
Mycobacterium chelonae tmRNA, internal partial
SEQ ID NO: 191
ACAGCGAGUCUCGACUUAAGGGAAGCGUGCCGGUGCAGGCA
AGAGACCACCGUAAGCGUCAUUGCAACCAAUUAAGCGCCGA
UUCUCAUCAGCGCGACUACGCACUCGCUGCCUAAGCGACUG
CGUGUCUGUCAGACCGGGAGCGCCCUCAGCCCGGACCCUGG
CAUCAGCUAGAGGGACAAACUACGGGUUCGGUCGCGGGACC
CGUAGGGACAUCAAACAGCGACUGGGAUCGUCAUCUCGGCU
UGUUCGCGGGACCGAGAGAUCCAAGUAGAGGCAUAGCGAAC
UGCGCACGGAGAAGCCUUAAUGAACGGCCGUUG
Mycobacterium szulgai (ATCC 35799) ssrA,
internal partial
SEQ ID NO: 192
ACTTCGCGCATCGAATCAAGGGAAGCGTGCCGGTGCAGGCAA
GAGACCACCGTAAGCGTCGTTGCAACCAATTAAGCGCCGAGA
ACACTCAGCGCGACTTCGCTCTCGCTGCCTAAGCGACAGCAA
GTCCGTCAGACCGGGAAAGCCCTCGACCCGGACCCTGGCGTC
ATCTAGAGGGATCCACCGGTGAGTTCGGTCGCGGGACTCATC
GGGACACCAACAGCGACTGGGATCGTCATCCTGGCTAGTTCG
CGTGACCAGGAGATCCGAGTAGAGACATAGCGAACTGCGCAC
GGAGAAGCCTTGAGGGAATGCCGTAG
Mycobacterium szulgai (ATCC 35799) tmRNA,
internal partial
SEQ ID NO: 193
ACUUCGCGCAUCGAAUCAAGGGAAGCGUGCCGGUGCAGGCA
AGAGACCACCGUAAGCGUCGUUGCAACCAAUUAAGCGCCGA
GAACACUCAGCGCGACUUCGCUCUCGCUGCCUAAGCGACAG
CAAGUCCGUCAGACCGGGAAAGCCCUCGACCCGGACCCUGG
CGUCAUCUAGAGGGAUCCACCGGUGAGUUCGGUCGCGGGAC
UCAUCGGGACACCAACAGCGACUGGGAUCGUCAUCCUGGCU
AGUUCGCGUGACCAGGAGAUCCGAGUAGAGACAUAGCGAAC
UGCGCACGGAGAAGCCUUGAGGGAAUGCCGUAG
Mycobacterium malmoense (clinical isolate) ssrA,
internal partial
SEQ ID NO: 194
ACTTCGCGCATCGAATCAAGGGAAGCGTGCCGGTGCAGGCAA
GAGACCACCGTAAGCGTCGTTGCAACCATATAAGCGCCGTTTC
AACACAGCGCGACTACGCTCTCGCTGCCTAAGCGACAGCTAG
TCCGTCAGACCGGGAACGCCCTCGACCCGGAGCCTGGCGTCA
GCTGGAGGGATCCACCGGTGAGTCCGGTCGCGGGACTCATCG
GGACATACACAGCGACTGGGATCGTCATCCTGGCTGGTTCGC
GTGACCGGGAGATCCGAGCAGAGGCATAGCGAACTGCGCACG
GAGAAGCCTTGAGGGAATGCCGTAG
Mycobacterium malmoense (clinical isolate) tmRNA,
internal partial
SEQ ID NO: 195
ACUUCGCGCAUCGAAUCAAGGGAAGCGUGCCGGUGCAGGCA
AGAGACCACCGUAAGCGUCGUUGCAACCAUAUAAGCGCCGU
UUCAACACAGCGCGACUACGCUCUCGCUGCCUAAGCGACAG
CUAGUCCGUCAGACCGGGAACGCCCUCGACCCGGAGCCUGG
CGUCAGCUGGAGGGAUCCACCGGUGAGUCCGGUCGCGGGAC
UCAUCGGGACAUACACAGCGACUGGGAUCGUCAUCCUGGCU
GGUUCGCGUGACCGGGAGAUCCGAGCAGAGGCAUAGCGAAC
UGCGCACGGAGAAGCCUUGAGGGAAUGCCGUAG
Mycobacterium flavescens ssrA, internal partial
SEQ ID NO: 196
ACTTCGAGCGTCGAATCAAGGGAAGCGTGCCGGTGCAGGCAA
GAGACCACCGTAAGCGTCGTTGCAACCAATTAAGCGCCGATT
CCAATCAGCGCGACTACGCACTCGCTGCCTAAGCGACTGCGT
GTCTGTCAGCCCGGGAGAGCCCTCGACCCGGTGTCTGGCATCA
GCTAGAGGGATAAACCGGTGGGTCCGGTCGCGGGACTCATCG
GGACATCAAACAGCGACTGGGATCGTCATCCTGACTTGTTCGC
GTGATCAGGAGATCCGAGTAGAGACATAGCGAACTGCGCACG
GAGAAGCCTTGAGGGAACGCCGTAG
Mycobacterium flavescens tmRNA, internal partial
SEQ ID NO: 197
ACUUCGAGCGUCGAAUCAAGGGAAGCGUGCCGGUGCAGGCA
AGAGACCACCGUAAGCGUCGUUGCAACCAAUUAAGCGCCGA
UUCCAAUCAGCGCGACUACGCACUCGCUGCCUAAGCGACUG
CGUGUCUGUCAGCCCGGGAGAGCCCUCGACCCGGUGUCUGG
CAUCAGCUAGAGGGAUAAACCGGUGGGUCCGGUCGCGGGAC
UCAUCGGGACAUCAAACAGCGACUGGGAUCGUCAUCCUGAC
UUGUUCGCGUGAUCAGGAGAUCCGAGUAGAGACAUAGCGAA
CUGCGCACGGAGAAGCCUUGAGGGAACGCCGUAG
Mycobacterium marinum ssrA, internal partial
SEQ ID NO: 198
ACTTCGCGCATCGAATCAAGGGAAGCGTGCCGGTGCAGGCAA
GAGACCACCGTAAGCGTCGATGCAACTAGATAAGCGCCGATT
CACATCAGCGCGACTACGCTCTCGCTGCCTAAGCGACGGCTA
GTCTGTCGGACCGGGAACGCCCTCGCCCCGGACCCCGGCATC
AGCTAGAGGGATCAACCGATGAGTTCGGTCGCGGGGCTCATC
GGGACATCAACAGCGACTGGGATCGTCATCCTGGCTAGTTCG
CGTGACCAGGAGATCCGAGCAGAGACCTAGCGGACTGCGCAC
GGAGAAGCCTTGAGGGAATGCCGTAG
Mycobacterium marinum tmRNA, internal partial
SEQ ID NO: 199
ACUUCGCGCAUCGAAUCAAGGGAAGCGUGCCGGUGCAGGCA
AGAGACCACCGUAAGCGUCGAUGCAACUAGAUAAGCGCCGA
UUCACAUCAGCGCGACUACGCUCUCGCUGCCUAAGCGACGG
CUAGUCUGUCGGACCGGGAACGCCCUCGCCCCGGACCCCGGC
AUCAGCUAGAGGGAUCAACCGAUGAGUUCGGUCGCGGGGCU
CAUCGGGACAUCAACAGCGACUGGGAUCGUCAUCCUGGCUA
GUUCGCGUGACCAGGAGAUCCGAGCAGAGACCUAGCGGACU
GCGCACGGAGAAGCCUUGAGGGAAUGCCGUAG
Mycobacterium microti (environmental isolate)
ssrA, internal partial
SEQ ID NO: 200
ACTTCGCGCATCGAATCAAGGGAAGCGTGCCGGTGCAGGCAA
GAGACCACCGTAAGCGTCGTTGCGACCAAATAAGCGCCGATT
CACATCAGCGCGACTACGCTCTCGCTGCCTAAGCGACGGCTA
GTCTGTCAGACCGGGAACGCCCTCGGCCCGGACCCTGGCATC
AGCTAGAGGGATCCACCGATGAGTCCGGTCGCGGGACTCCTC
GGGACAGCCACAGCGACTGGGATCGTCATCTCGGCTAGTTCG
CGTGACCGGGAGATCCGAGCAGAGGCATAGCGAACTGCGCAC
GGAGAAGCCTTGAGGGAATGCCGTA
Mycobacterium microti (environmental isolate)
tmRNA, internal partial
SEQ ID NO: 201
ACUUCGCGCAUCGAAUCAAGGGAAGCGUGCCGGUGCAGGCA
AGAGACCACCGUAAGCGUCGUUGCGACCAAAUAAGCGCCGA
UUCACAUCAGCGCGACUACGCUCUCGCUGCCUAAGCGACGG
CUAGUCUGUCAGACCGGGAACGCCCUCGGCCCGGACCCUGG
CAUCAGCUAGAGGGAUCCACCGAUGAGUCCGGUCGCGGGAC
UCCUCGGGACAGCCACAGCGACUGGGAUCGUCAUCUCGGCU
AGUUCGCGUGACCGGGAGAUCCGAGCAGAGGCAUAGCGAAC
UGCGCACGGAGAAGCCUUGAGGGAAUGCCGUA
Mycobacterium smegmatis (ATCC 10143) ssrA,
internal partial
SEQ ID NO: 202
ACTTCGAGCATCGAATCCAGGGAAGCGTGCCGGTGCAGGCAA
GAGACCACCGTAAGCGTCGTTGCAACCAATTAAGCGCCGATT
CCAATCAGCGCGACTACGCCCTCGCTGCCTAAGCGACGGCTG
GTCTGTCAGACCGGGAGTGCCCTCGGCCCGGATCCTGGCATCA
GCTAGAGGGACCCACCCACGGGTTCGGTCGCGGGACCTGTGG
GGACATCAAACAGCGACTGGGATCGTCATCTCGGCTTGTTCGT
GTGACCGGGAGATCCGAGTAGAGACATAGCGAACTGCGCACG
GAGAAGCCTCGAGGACATGCCGTAG
Mycobacterium smegmatis (ATCC 10143) ssrA,
internal partial
SEQ ID NO: 203
ACUUCGAGCAUCGAAUCCAGGGAAGCGUGCCGGUGCAGGCA
AGAGACCACCGUAAGCGUCGUUGCAACCAAUUAAGCGCCGA
UUCCAAUCAGCGCGACUACGCCCUCGCUGCCUAAGCGACGG
CUGGUCUGUCAGACCGGGAGUGCCCUCGGCCCGGAUCCUGG
CAUCAGCUAGAGGGACCCACCCACGGGUUCGGUCGCGGGAC
CUGUGGGGACAUCAAACAGCGACUGGGAUCGUCAUCUCGGC
UUGUUCGUGUGACCGGGAGAUCCGAGUAGAGACAUAGCGAA
CUGCGCACGGAGAAGCCUCGAGGACAUGCCGUAG
Mycobacterium xenopi (clinical isolate) ssrA,
internal partial
SEQ ID NO: 204
ACTTCGCGCATCGAATCAAGGGAAGCGTGCCGGTGCAGGCAA
GAGACCACCGTAAGCGTCGTTGCAACTAAATAAGCGCCGATT
CACATCAGCGCGACTACGCTCTCGCTGCCTAAGCGACAGCTA
GTCCGTCAGGCCGGGAGTTCCCTCGACCCGGATCCTGGCGTCA
GCTAGAGGGATCCACCGATGGGTTCGGTCGCGGGACCCATCG
GGACACCACACAGCGACTGGGATCGCCGTCCCGGCTAGTTCG
CGAGACCGGGAGATCCGAGTAAGGGCAAAGCGAACTGCGCA
CGGAGAAGCCTTGAGGGTATGCCGTA
Mycobacterium xenopi (clinical isolate) tmRNA,
internal partial
SEQ ID NO: 205
ACUUCGCGCAUCGAAUCAAGGGAAGCGUGCCGGUGCAGGCA
AGAGACCACCGUAAGCGUCGUUGCAACUAAAUAAGCGCCGA
UUCACAUCAGCGCGACUACGCUCUCGCUGCCUAAGCGACAG
CUAGUCCGUCAGGCCGGGAGUUCCCUCGACCCGGAUCCUGG
CGUCAGCUAGAGGGAUCCACCGAUGGGUUCGGUCGCGGGAC
CCAUCGGGACACCACACAGCGACUGGGAUCGCCGUCCCGGC
UAGUUCGCGAGACCGGGAGAUCCGAGUAAGGGCAAAGCGAA
CUGCGCACGGAGAAGCCUUGAGGGUAUGCCGUA
Mycobacterium intracellulare (NCTC 10425) ssrA,
internal partial
SEQ ID NO: 206
ACTTCGCGCATCGAATCAAGGGAAGCGTGCCGGTGCAGGCAA
CCGACCACCGTAAGCGTCGTTGCAAACAGATAAGCGCCGATT
CACATCAGCGCGACTACGCTCTCGCTGCCTAAGCGACAGCTA
GTCCGTCAGACCGGGAACGCCCTCGACCCGGAGCCTGGCGTC
AGCTAGAGGGATCCACCGATGAGTCCGGTCGCGGGACTTATC
GGGACACCAACAGCGACTGGGATCGTCATCTCGGCTTGTTCGC
GTGACCGGGAGATCCGAGTAGAGGCATAGCGAACTGCGCACG
GAGAAGTCTTGAGGGAATGCCGTAG
Mycobacterium intracellulare (NCTC 10425) tmRNA,
internal partial
SEQ ID NO: 207
ACUUCGCGCAUCGAAUCAAGGGAAGCGUGCCGGUGCAGGCA
ACCGACCACCGUAAGCGUCGUUGCAAACAGAUAAGCGCCGA
UUCACAUCAGCGCGACUACGCUCUCGCUGCCUAAGCGACAG
CUAGUCCGUCAGACCGGGAACGCCCUCGACCCGGAGCCUGG
CGUCAGCUAGAGGGAUCCACCGAUGAGUCCGGUCGCGGGAC
UUAUCGGGACACCAACAGCGACUGGGAUCGUCAUCUCGGCU
UGUUCGCGUGACCGGGAGAUCCGAGUAGAGGCAUAGCGAAC
UGCGCACGGAGAAGUCUUGAGGGAAUGCCGUAG
Mycobacterium scrofulaceum (NCTC 10803) ssrA,
internal partial
SEQ ID NO: 208
ACATCGCGCATCGAATCAAGGGAAGCGTGCCGGTGCAGGCAA
GAGACCACCGTAAGCGTCGTTGCAACCAATTAAGCGCCGATT
CACATCAGCGCGACTACGCTCTCGCTGCCTAAGCGACAGCTA
GTCCGTCAGACCGGGAAAGCCCTCGACCCGGAGCCTGGCGTC
AGCTAGAGGGATCAACCGATGAGTTCGGTCGCGGGACTCATC
GGGACACCAACAGCGACTGGGATCGTCATCCTGGCTAGTCCG
CGTGACCAGGAGATCCGAGCAGAGGCATAGCGGACTGCGCAC
GGAGAAGTCTTGAGGGAATGCCGTTG
Mycobacterium scrofulaceum (NCTC 10803) tmRNA,
internal partial
SEQ ID NO: 209
ACAUCGCGCAUCGAAUCAAGGGAAGCGUGCCGGUGCAGGCA
AGAGACCACCGUAAGCGUCGUUGCAACCAAUUAAGCGCCGA
UUCACAUCAGCGCGACUACGCUCUCGCUGCCUAAGCGACAG
CUAGUCCGUCAGACCGGGAAAGCCCUCGACCCGGAGCCUGG
CGUCAGCUAGAGGGAUCAACCGAUGAGUUCGGUCGCGGGAC
UCAUCGGGACACCAACAGCGACUGGGAUCGUCAUCCUGGCU
AGUCCGCGUGACCAGGAGAUCCGAGCAGAGGCAUAGCGGAC
UGCGCACGGAGAAGUCUUGAGGGAAUGCCGUUG
Nocardia asteroides ssrA, internal partial
SEQ ID NO: 210
ACTGTGTGCGCCGAGGTAGGGGAAGCGTGTCGGTGCAGGCTG
GAGACCACCGTTAAGCGTCGCGGCAACCAATTAAGCGCCGAT
TCCAATCAGCGCGACTACGCCCTCGCTGCCTGATCAGCGACGG
CTAGCTGTCGGCCCGGGTTGTGTTCCCGAACCCGGATGCCGGC
ATCATCTCAGGGAACTCACCGTGTTCGCCGGTCGCGGACGGA
CACGGGACAGCAAACAGCGACTGGGATCGTCATCTCGGCTTG
TTCGCGTGACCGGGAGATCCAAGTAGAGACATAGCGGACTGC
ACACGGAGAAGCCCTACTGACTCGACACAG
Nocardia asteroides tmRNA, internal partial
SEQ ID NO: 211
ACUGUGUGCGCCGAGGUAGGGGAAGCGUGUCGGUGCAGGCU
GGAGACCACCGUUAAGCGUCGCGGCAACCAAUUAAGCGCCG
AUUCCAAUCAGCGCGACUACGCCCUCGCUGCCUGAUCAGCG
ACGGCUAGCUGUCGGCCCGGGUUGUGUUCCCGAACCCGGAU
GCCGGCAUCAUCUCAGGGAACUCACCGUGUUCGCCGGUCGC
GGACGGACACGGGACAGCAAACAGCGACUGGGAUCGUCAUC
UCGGCUUGUUCGCGUGACCGGGAGAUCCAAGUAGAGACAUA
GCGGCUGCACACGGAGAAGCCCUACUGACUCGACACAG
Salmonella enteritidis ssrA, internal partial
SEQ ID NO: 212
ACGGGATTTGCGAAACCCAAGGTGCATGCCGAGGGGCGGTTG
GCCTCGTAAAAAGCCGCAAAAAAATAGTCGCAAACGACGAAA
CCTACGCTTTAGCAGCTTAATAACCTGCTTAGAGCCCTCTCTC
CCTAGCCTCCGCTCTTAGGACGGGGATCAAGAGAGGTCAAAC
CCAAAAGAGATCGCGTGGATGCCCTGCCTGGGGTTGAAGCGT
TAAAACGAATCAGGCTAGTCTGGTAGTGGCGTGTCCGTCCGC
AGGTGCCAGGCGAATGTAAAGACTGACTAAGCATGTAGTACC
GAGGATGTAGGAATTTCGG
Salmonella enteritidis tmRNA, internal partial
SEQ ID NO: 213
ACGGGAUUUGCGAAACCCAAGGUGCAUGCCGAGGGGCGGUU
GGCCUCGUAAAAAGCCGCAAAAAAAUAGUCGCAAACGACGA
AACCUACGCUUUAGCAGCUUAAUAACCUGCUUAGAGCCCUC
UCUCCCUAGCCUCCGCUCUUAGGACGGGGAUCAAGAGAGGU
CAAACCCAAAAGAGAUCGCGUGGAUGCCCUGCCUGGGGUUG
AAGCGUUAAAACGAAUCAGGCUAGUCUGGUAGUGGCGUGUC
CGUCCGCAGGUGCCAGGCGAAUGUAAAGACUGACUAAGCAU
GUAGUACCGAGGAUGUAGGAAUUUCGG
Staphylococcus epidermidis (NCTC 11047) ssrA,
internal partial
SEQ ID NO: 214
ACAGGGGTCCCCCGAGCTTATTAAGCGTGTCGGAGGGTTGGC
TCCGTCATCAACACATTTCGGTTAAATATAACTGACAAATCAA
ACAATAATTTCGCAGTAGCTGCGTAATAGCCACTGCATCGCCT
AACAGCATCTCCTACGTGCTGTTAACGCGATTCAACCCTAGTA
GGATATGCTAAACACTGCCGCTTGAAGTCTGTTTAGATGAAAT
ATAATCAAGCTAGTATCATGTTGGTTGTTTATTGCTTAGCATG
ATGCGAAAATTATCAATAAACTACACACGTAGAAAGATTTGT
ATCAGGACCTCTGG
Staphylococcus epidermidis (NCTC 11047) tmRNA,
internal partial
SEQ ID NO: 215
ACAGGGGUCCCCCGAGCUUAUUAAGCGUGUCGGAGGGUUGG
CUCCGUCAUCAACACAUUUCGGUUAAAUAUAACUGACAAAU
CAAACAAUAAUUUCGCAGUAGCUGCGUAAUAGCCACUGCAU
CGCCUAACAGCAUCUCCUACGUGCUGUUAACGCGAUUCAAC
CCUAGUAGGAUAUGCUAAACACUGCCGCUUGAAGUCUGUUU
AGAUGAAAUAUAAUCAAGCUAGUAUCAUGUUGGUUGUUUA
UUGCUUAGCAUGAUGCGAAAAUUAUCAAUAAACUACACACG
UAGAAAGAUUUGUAUCAGGACCUCUGG
Streptococcus agalactiae (NCTC 8181) ssrA,
internal partial
SEQ ID NO: 216
ACAGGCATTATGAGGTATATTTTGCGACTCATCGGCAGATGTA
AAATGCCAGTTAAATATAACTGCAAAAAATACAAATTCTTAC
GCATTAGCTGCCTAAAAAACAGCCTGCGTGATCTTCACAAGAT
TGTTTGCGTTTTGCTAGAAGGTCTTATTTATCAGCAAACTACG
TTTGGCTACTGTCTAGTTAGTTAAAAAGAGATTTATAGACTCG
CTATGTGAGGGCTTGAGTTATGTGTCATCACCTAGTTAAATCA
ATACATAACCTATAGTTGTAGACAAATATATTAGCAGATGTTT
GG
Streptococcus agalactiae (NCTC 8181) tmRNA,
internal partial
SEQ ID NO: 217
ACAGGCAUUAUGAGGUAUAUUUUGCGACUCAUCGGCAGAUG
UAAAAUGCCAGUUAAAUAUAACUGCAAAAAAUACAAAUUCU
UACGCAUUAGCUGCCUAAAAAACAGCCUGCGUGAUCUUCAC
AAGAUUGUUUGCGUUUUGCUAGAAGGUCUUAUUUAUCAGCA
AACUACGUUUGGCUACUGUCUAGUUAGUUAAAAAGAGAUUU
AUAGACUCGCUAUGUGAGGGCUUGAGUUAUGUGUCAUCACC
UAGUUAAAUCAAUACAUAACCUAUAGUUGUAGACAAAUAUA
UUAGCAGAUGUUUGG
Of the above sequences SEQ ID NOs 47 to 62, 65 to 68, 71 and 72, 98 and 99, 159 to 168 and 176-217 are novel sequences.
The above mentioned sequences can be used to form a database of ssrA gene sequences which can be used to identify a bacterial species, or for the generation of nucleic acid diagnostic assays.
Representative probes identified in accordance with the invention are as follows:
Salmonella: 1) Genius specific probe:
5′-CGAATCAGGCTAGTCTGGTAG-3′ SEQ ID NO: 218
Mycobacteria: 2) Oligonucleotide probe for detection of tuberculosis complex
SEQ ID NO: 219
TB01 5′-ACTCCTCGGACA (A/G) CCACAGCGA-3′
3) Oligonucleotide probes for detection of M. avium and M. paratuberculosis sequences
SEQ ID NO: 220
Probe 1: PAV1-5′-GTTGCAAATAGATAAGCGCC-3′
SEQ ID NO: 221
Probe 2: PAV2-5′-TCCGTCAGCCCGGGAACGCC-3′
Listeria: 4) Oligonucleotide probe used in the determination of tmRNA integrity after heat killing treatment of cells:
LVtm: 5′-TTTTGTTTTTCTTTGCCA-3′ SEQ ID NO: 222
Escherichia coli:
5) Oligonucleotide probe used in the determination of tmRNA integrity after heat killing treatment of cells:
Evtm: 5′-AGTTTTCGTCGTTTGCGA-3′ SEQ ID NO: 223
Further representative primers identified in accordance with the invention are as follows:
Mycobacteria: 1) Degenerative oligonucleotide primers for the amplification of all mycobacterial sequences
5′ Primer
SEQ ID NO: 224
10SAAM3-5′-CAGGCAA (G/C) (A/T/C) GACCACCGTAA-3′
3′ Primer
SEQ ID NO: 225
10SAAM4-5′ GGATCTCC(C/T)G(A/G)TC(A/T)C(A/G)CG(A/G)
AC(A/T)A-3′
2) Oligonucleotide primers for the amplification of M. avium and M. paratuberculosis
SEQ ID NO: 226
5′ Primer: AP1for-5′-TGCCGGTGCAGGCAACTG-3′
SEQ ID NO: 227
3′ Primer: AP2rev-5′-CACGCGAACAAGCCAGGA-3′
BRIEF DESCRIPTION OF THE DRAWINGS In the accompanying drawings:
FIG. 1 is a clustal alignment of E. coli and V. cholerae ssrA gene sequences;
FIG. 2 is a photograph of an agarose gel of total cellular RNA prepared from E. coli and V. cholerae cells;
FIG. 3 is a photograph of an autoradiogram of hybridisation of a V. cholerae oligonucleotide probe to tmRNA transcripts of E. coli and V. cholerae;
FIG. 4 is a photograph of an agarose gel of the amplified products of universal ssrA gene amplification primers from a panel of organisms;
FIG. 5 is a clustal alignment of the ssrA gene sequences from the Listeria species;
FIG. 6 is a clustal alignment of the L. monocytogenes and B. subtilus ssrA/tmRNA gene sequences;
FIG. 7 is a photograph of an agarose gel of the amplified products of Listeria genus specific PCR amplification primers from a panel of organisms;
FIG. 8 is a photograph of an autoradiogram of hybridised Listeria genus specific oligonucleotide probe to a panel of organisms as prepared in Example 4;
FIG. 9 is a photograph of an autoradiogram of hybridised L. monocytogenes species specific probe to a panel of organisms as prepared in Example 7;
FIG. 10 is a computer scanned image of a nylon membrane strip used in the multiple colorimetric probe detection of Listeria ssrA gene sequences as described in Example 6.
FIG. 11 is a clustal alignment of ssrA gene sequences from C. trachomatis strains;
FIG. 12 is a clustal alignment of ssrA gene sequences from H. pylori strains;
FIG. 13 is a clustal alignment of ssrA gene sequences from M. genitalium strains;
FIG. 14 is a clustal alignment of ssrA gene sequences from N. gonorrhoeae strains;
FIG. 15 is a clustal alignment of ssrA gene sequences from L. monocytogenes strains;
FIG. 16 is a clustal alignment of ssrA gene sequences from L. monocytogenes strains and the L. innocua strain;
FIG. 17 is a photograph of an autoradiogram hybridised Listeria oligonucleotide probe (Evtm) to total RNA samples isolated after medium heat treatment of E. coli cells;
FIG. 18 is a photograph of an autoradiogram hybridised Listeria oligonucleotide probe (Evtm) to total RNA samples isolated after extreme heat treatment of E. coli cells;
FIG. 19 is a photograph of an autoradiogram hybridised Listeria oligonucleotide probe (Lvtm) to total RNA samples isolated after medium heat treatment of L. monocytogenes cells;
FIG. 20 is a photograph of an autoradiogram hybridised Listeria oligonucleotide probe (Lvtm) to total RNA samples isolated after extreme heat treatment of L. monocytogenes cells; and
FIG. 21 is a photograph of an agarose gel of RT-PCR generated tmRNA products at various time points post heat treatment.
The invention will be further illustrated by the following Examples.
MODES FOR CARRYING OUT THE INVENTION Example 1 Examination of the Primary Nucleotide Sequences of Available tmRNA Sequences A comparative primary nucleotide sequence alignment of available tmRNA sequences using the Clustal W nucleic acid alignment programme demonstrated that tmRNA sequences from prokaryotes show a more significant degree of nucleotide sequence variability and non-homology than other bacterial high copy number RNA, as demonstrated in Table 1.
TABLE 1
Percentage nucleotide sequence homology between
RNA molecules from different bacteria.
Escherichia coli vs. Bacillus subtilus vs.
Vibrio cholerae Mycobacterium tuberculosis
rRNA % 88 66
homology
tmRNA % 68 25
homology
These regions of non-homology between tmRNA sequences from different bacteria are located in the middle of the molecule, and the extent of nucleotide sequence non-homology within the tmRNA molecule indicated that genus as well as species specific probes could be generated to distinguish between and/or detect bacteria.
Nucleotide sequence alignments had previously shown that the 5′ and 3′ flanking regions of the tmRNA molecules share a high degree of homology both within species and within genus. This observation indicated that universal oligonucleotide primers could be generated to amplify the ssrA gene or its encoding tmRNA from a wide variety of bacteria.
We have now demonstrated that these regions of homology and non-homology within the nucleotide sequence of tmRNA molecules from different organisms can be used as the basis of identifying and detecting organisms at the molecular level.
Example 2 Development of a V. cholerae tmRNA Specific Probe A nucleotide sequence alignment of the E. coli (SEQ ID NO. 37) and V. cholerae (SEQ ID NO. 127) ssrA sequences as depicted in FIG. 1, shows that these two bacterial species are phylogenetically closely related. There are however, regions of non-homology between the sequences as evidenced by the absence of asterix marks. An oligonucleotide probe, complementary to the variable region of the V. cholerae ssrA nucleotide sequence underlined in FIG. 1, was synthesised.
The sequence of the V. cholerae tmRNA specific probe is
5′-AACGAATGGCTAACCTGAA-3′ SEQ ID NO. 169
Total RNA was isolated from liquid cultures of E. coli and V. cholerae at the mid-exponential phase and the stationary phase of growth. Equivalent amounts of the isolated total RNA were electrophoresed on a denaturing formaldehyde agarose gel and blotted onto HYBOND-N nylon membrane as shown in FIG. 2 in which the Lanes 1-4 represent the following:
Lane 1: Total E. coli RNA mid-log phase
Lane 2: Total V. cholerae RNA mid-log phase
Lane 3: Total E. coli RNA stationary phase
Lane 4: Total V. cholerae RNA stationary phase
The resulting Northern blot was then hybridised with the V. cholerae tmRNA specific probe end-labelled with γP32. The results of the hybridisation experiment shown in FIG. 3 demonstrate the specificity of the probe as only V. cholerae tmRNAs were detected. Moreover, a greater degree of hybridisation signal intensity was observed with the V. cholerae tmRNA isolated from cultures during the stationary phase of growth, indicating that a higher copy number of the tmRNA molecule is present in V. cholerae cells during this phase.
Example 3 Generation of Universal ssrA/tmRNA Oligonucleotide Amplification Primers for the Characterisation of Unknown ssrA Gene and tmRNA Sequences Clustal W alignment of all available ssrA gene and tmRNA sequences indicated that degenerate oligonucleotide primers could be designed to amplify ssrA gene and tmRNA nucleotide sequences for a wide variety of organisms.
Degenerate oligonucleotide primers were synthesised to PCR amplify ssrA gene sequences from total genomic DNA preparations from a broad range of bacteria.
The sequences of the synthesised degenerate oligonucleotides are as follows:
-
- (a) tmU5′: 5′ in vitro PCR amplification primer
5′-GGG(A/C)(C/T)TACGG(A/T)TTCGAC-3′ SEQ ID NO: 170
-
- (b) tmU3′: 3′ in vitro PCR amplification primer
5′-GGGA(A/G)TCGAACC(A/G)(C/G)GTCC-3′ SEQ ID NO: 171
-
- Degenerate base positions are in parentheses.
The products of PCR reactions were electrophoresed on an agarose gel and a 350 base pair (approx.) PCR product was amplified in all cases, as shown in FIG. 4, demonstrating the “universality” of the degenerate tmRNA primers.
In FIG. 4 the lanes represent the following:
Lane A: Molecular weight marker V
Lane 1: Escherichia coli
Lane 2: Salmonella poona
Lane 3: Klebsiella aerogenes
Lane 4: Proteus mirabilis
Lane 5: Proteus rettgeri
Lane 6: Aeromonas hydrophilia
Lane 7: Staphyloccus aureus
Lane 8: Enterococcus faecalis
Lane 9: Lactobacillus lactis
Lane 10: Bacillus subtilus
Lane 11: Listeria monocytogenes
Lane 12: Listeria innocua
Lane 13: Listeria murrayi
Lane 14: Listeria welshimeri
Lane 15: Listeria grayi
Lane 16: Mycobacterium bovis
Lane B: Molecular weight marker V
The universal primers amplified the ssrA gene from both Gram positive and Gram negative bacteria, as shown in Table 2.
TABLE 2
Bacterial species tested with universal amplification primers.
PCR Product
Gram negative Escherichia coli +
bacteria Salmonella poona +
Klebsiella aerogenes +
Proteus mirabilis +
Proteus rettgeri +
Aeromonas hydrophilia +
Gram positive Staphyloccus aureus +
bacteria Enterococcus faecalis +
Lactobacillus lactis +
Bacillus subtilus +
Listeria monocytogenes +
Listeria innocua +
Listeria murrayi +
Listeria welshimeri +
Listeria grayi +
Mycobacterium bovis +
Example 4 Isolation and Characterisation of Previously Unknown Bacterial ssrA/tmRNA Nucleotide Sequences The PCR products amplified from genomic DNA from the Listeria species of bacteria and that from the M. bovis bacterium, from Example 2, were subcloned into a T-tailed plasmid vector for the purposes of DNA sequencing. Three recombinant clones were selected for each species and sequenced by the di-deoxy sequencing method. The sequence of both DNA strands for each subclone was determined.
The nucleotide sequence determined for the M. bovis ssrA gene shared 100% homology with the Mycobacterium tuberculosis ssrA gene sequence.
A clustal W alignment of the novel ssrA gene sequences obtained for the Listeria species (SEQ ID NOS 51, 53, 55, 59 and 61) is shown in FIG. 5. This analysis indicated that genus-specific probes and oligonucleotide amplification primers can be generated for Listeria bacteria. Furthermore, the alignment also indicated that a species specific oligonucleotide probe can be generated which will distinguish L. monocytogenes from the other Listeria species.
In FIG. 5 the proposed genus specific oligonucleotide primers, Ltm 1 and Ltm 2, are boxed, as is the genus specific Listeria oligonucleotide probe, LGtm. The proposed L. monocytogenes species specific oligonucleotide probe sequence, LStm, is underlined and italicised.
To further illustrate that the ssrA gene/tmRNA nucleic acid target is a suitable target for bacterial diagnostics, a comparative alignment of the L. monocytogenes ssrA gene nucleotide sequence (SEQ ID NO. 55) with the available B. subtilis ssrA gene nucleotide sequence (SEQ ID NO. 11) (a phylogenetically closely related bacteria to Listeria) was carried out as shown in FIG. 6. Analysis of the sequence alignment showed a percentage nucleotide sequence homology of 41%, whereas the corresponding 16S rRNA alignment exhibits a nucleotide sequence percentage homology of 87%, (data not shown).
Example 5 Generation and Application of ssrA Gene/tmRNA Genus-Specific Amplification Primers, Genus-Specific and Species-Specific Probes for the Listeria Bacterial Species Using the Listeria genus ssrA gene/tmRNA nucleotide sequence alignment of Example 4, regions of the ssrA gene/tmRNA nucleotide sequence were analysed to determine their suitability for the generation of genus-specific amplification primers, and genus-specific and species-specific oligonucleotide probes. In this analysis, regions which demonstrated the greatest sequence differences to B. subtilis, were selected in the design of these amplification primers and probes.
The sequences of the synthesised oligonucleotides are as follows:
-
- (a) Ltm1: 5′ Listeria genus specific amplification primer
5′-AAAGCCAATAATAACTGG-3′ SEQ ID NO: 172
-
- (b) Ltm2: 3′ Listeria genus specific amplification primer
5′-CCAGAAATATCGGCACTT-3′ SEQ ID NO: 173
-
- (c) LGtm: Listeria genus specific hybridisation probe
5′-GTGAGACCCTTACCGTAG-3′ SEQ ID NO: 174
-
- (d) LStm: L. monocytogenes species specific hybridisation probe
5′-TCTATTTAACCCCAGACG-3′ SEQ ID NO: 175
The genus specific amplification primers Ltm1 and Ltm2 were used in a series of PCR reactions with total genomic DNA from twenty different strains as the template in each case. Only ssrA gene sequences from the Listeria species were amplified (260 base pair product) with these primers (FIG. 7 and Table 3) demonstrating that the ssrA gene/tmRNA is a suitable target for specific in vitro amplification of a bacterial genus. No amplification products were observed for any other bacterial species tested, although PCR products were obtained from the DNA from these bacterial species using the universal primers (tmU5′ and tmU3′) described in Example 2.
In FIG. 7 the lanes represent the following:
Lane A: Molecular weight marker V
Lane 1: E. coli
Lane 2: S. poona
Lane 3: K. aerogenes
Lane 4: P. mirabilis
Lane 5: P. rettgeri
Lane 6: A. hydrophilia
Lane 7: S. aureus
Lane 8: E. faecalis
Lane 9: L. lactis
Lane 10: B. subtilus
Lane 11: L. monocytogenes strain 1
Lane 12: L. monocytogenes strain 2
Lane 13: L. monocytogenes strain 3
Lane 14: L. monocytogenes strain 4
Lane 15: L. monocytogenes clinical isolate
Lane 16: L. innocua
Lane 17: L. murrayi
Lane 18: L. welshimeri
Lane 19: L. grayi
Lane 20: M. bovis
Lane B: Molecular weight marker V
TABLE 3
Bacterial species tested with Listeria
specific amplification primers.
PCR Product
Gram negative Escherichia coli −
bacteria Salmonella poona −
Klebsiella aerogenes −
Proteus mirabilis −
Proteus rettgeri −
Aeromonas hydrophilia −
Gram positive Staphyloccus aureus −
bacteria Entrococcus faecalis −
Lactobacillus lactis −
Bacillus subtilus −
Listeria monocytogenes strain 1 +
Listeria monocytogenes strain 2 +
Listeria monocytogenes strain 3 +
Listeria monocytogenes strain 4 +
Listeria monocytogenes clinical +
isolate
Listeria innocua +
Listeria murrayi +
Listeria welshimeri +
Listeria grayi +
Mycobacterium bovis −
The Listeria genus specific oligonucleotide probe, LGtm, was hybridised to the Southern blot depicted in FIG. 4. Positive hybridisation signals were observed only with Listeria species as shown in FIG. 8 and Table 4, demonstrating the utility of the tmRNA sequence as a target in detecting a specific genus.
In FIG. 8 the lanes represent the following:
Lane A: Molecular weight marker V
Lane 1: Escherichia coli
Lane 2: Salmonella poona
Lane 3: Klebsiella aerogenes
Lane 4: Proteus mirabilis
Lane 5: Proteus rettgeri
Lane 6: Aeromonas hydrophilia
Lane 7: Staphyloccus aureus
Lane 8: Enterococcus faecalis
Lane 9: Lactobacillus lactis
Lane 10: Bacillus subtilus
Lane 11: Listeria monocytogenes
Lane 12: Listeria innocua
Lane 13: Listeria murrayi
Lane 14: Listeria welshimeri
Lane 15: Listeria grayi
Lane 16: Mycobacterium bovis
Lane B: Molecular weight marker V
The PCR products generated using the genus-specific amplification described in this Example, and shown in FIG. 7, were Southern blotted and hybridised to the L. monocytogenes species-specific oligonucleotide probe. A positive hybridisation signal was observed with three of the four typed strains and the clinical isolate of L. monocytogenes as shown in FIG. 9 and Table 4.
In FIG. 9 the lanes represent the following:
Lane A: Molecular weight marker V
Lane 1: E. coli
Lane 2: S. poona
Lane 3: K. aerogenes
Lane 4: P. mirabilis
Lane 5: P. rettgeri
Lane 6: A. hydrophilia
Lane 7: S. aureus
Lane 8: E. faecalis
Lane 9: L. lactis
Lane 10: B. subtilus
Lane 11: L. monocytogenes strain 1
Lane 12: L. monocytogenes strain 2
Lane 13: L. monocytogenes strain 3
Lane 14: L. monocytogenes strain 4
Lane 15: L. monocytogenes clinical isolate
Lane 16: L. innocua
Lane 17: L. murrayi
Lane 18: L. welshimeri
Lane 19: L. grayi
Lane 20: M. bovis
Lane B: Molecular weight marker V
TABLE 4
Specificity of the Listeria genus-specific probe
and the L. monocytogenes species-specific probe.
LGtm LStm
Genus- Species-
specific specific
probe probe
Gram negative Escherichia coli − −
bacteria Salmonella poona − −
Klebsiella aerogenes − −
Proteus mirabilis − −
Proteus rettgeri − −
Aeromonas hydrophilia − −
Gram positive Staphyloccus aureus − −
bacteria Entrococcus faecalis − −
Lactobacillus lactis − −
Bacillus subtilus − −
Listeria monocytogenes strain 1 + +
Listeria monocytogenes strain 2 + +
Listeria monocytogenes strain 3 + +
Listeria monocytogenes strain 4 + −
Listeria monocytogenes clinical + +
isolate
Listeria innocua + −
Listeria murrayi + −
Listeria welshimeri + −
Listeria grayi + −
Mycobacterium bovis − −
One of the typed L. monocytogenes strains, strain 4, failed to generate a positive signal with this probe. DNA sequencing of the PCR amplified ssrA gene from this strain demonstrated that it contained a probe target region identical to L. innocua. It should be noted however that the ssrA gene from this strain contains other regions where the sequence is identical to the previously characterised L. monocytogenes strain and that these sequences are different to the L. innocua sequence, as shown in FIG. 15. Therefore a species specific oligonucleotide directed to one of these variable regions can be synthesised which would recognise each strain type (isolate) within the species, for example L. monocytogenes.
Example 6 Multiple Colorimetric Probe Detection of Listeria ssrA Gene Sequences LGTm (A), LStm (B) and a Campylobacter upsaliensis 16S-23S rRNA spacer (C-5′ CATTAAACTTTAGCAAGGAAGTG 3′) SEQ ID NO: 228 oligonucleotide probe were irreversibly bound to nylon membrane strips and hybridised to with amplified ssrA PCR product, using the genus specific primers Ltm1 and Ltm2 (Ltm1 was labelled with biotin at the 5′ end), from L. monocytogenes (1-6), L. innocua (7-10), L. ivanovii (11), L. murrayi (12), L. seeligeri (13), L. welshmeri (14) and L. grayii (15). The ssrA amplified PCR products, using tmU5′ and tmU3′ (tmU5′ was labelled with biotin at the 5′ end), were also hybridised to the nylon membrane strips from the Gram-positive bacteria, B. subtilus, L. lactis, S. aureus, S. epidermis, E. faecalis, C. perfringins (16-21) and the Gram-negative bacteria E. coli, S. enteritidis, P. Rettgeri, K. aerogenes (22-25). As shown in FIG. 10 after hybridisation, development of the colorimetric assay to biotin revealed the following: Strips 1-6 demonstrates that the ssrA amplified PCR product originated from L. monocytogenes combined with the confirmation that the PCR product amplified is from the genus Listeria—A and B give colour detection; Strips 7-15 demonstrate that these PCR products originated from the genus Listeria—only A gives colour detection; and Strips 16-25 demonstrate that the PCR products are not from the genus Listeria—no colour detection. C is a negative oligonucleotide control probe and D is a positive control colorimetric detection assay for all samples.
Example 7 Use of ssrA/tmRNA Sequences to Distinguish Between Species of Organisms Clustal W alignments as shown in FIGS. 11 (SEQ ID NOS. 19 and 21), 12 (SEQ ID NOS. 41 and 43), 13 (SEQ ID NOS. 77 and 79), 14 (SEQ ID NOS. 83 and 85), 15 and 16 (SEQ ID NO. 53, 55 and 57), indicate that there are nucleotide differences within the ssrA/tmRNA sequences of different strains of the same bacteria. This suggests that the ssrA/tmRNA sequences could potentially be used to discriminate between individual and/or groups of strains within a bacterial species. This may have useful applications in epidemiology and bacterial population analysis.
Example 8 tmRNA Integrity Analysis after Medium and Extreme Heat Treatment of Bacterial Cells E. coli and L. monocytogenes cultures were heat treated at 80° C., for 20 min. in the case of E. coli and 40 min. in the case of L. monocytogenes and at 120° C. for 15 min. (autoclaving) after overnight growth and tested for viability at Oh, 1 h, 2 h, 6 h, 12 h, 24 h and 48 h after heat treatment. No viability was observed at each time period tested. Total RNA was also isolated at these time periods and electrophoresed on denaturing 1.2% agarose gels and Northern blotted. Each blot was hybridised to, in the case of E. coli (FIGS. 17 and 18) with a radioactively labelled oligonucleotide probe Evtm and in the case of L. monocytogenes (FIGS. 19 and 20) with a radiolabelled LVtm. No tmRNA transcript was detected with each sample tested, demonstrating that tmRNA transcript is degraded after heat treatment. The lanes represented with the notation +ve is a positive control total RNA sample.
Example 9 Use of the tmRNA Transcript in Distinguishing Between Viable and Non-Viable Bacteria A 100 ml culture of L. monocytogenes was grown overnight in liquid culture. After growth, serial dilutions of the cells were carried out and viability was determined by spread plating on nutrient agar plates. Simultaneously, total RNA was isolated from a 1 ml aliquot of these cells. The remainder of the cells were heated at 65° C. for 20 min. Cells were then removed for both viability analysis and total RNA isolation. Samples were taken for viability and RNA isolation at time periods of 0 h, 2 h, 6 h and 24 h after treatment.
Spread plating on nutrient agar plates indicated that heat treatment killed L. monocytogenes cells, with no viable colony forming units observed. Each RNA sample isolated was then treated with DNase to remove any contaminating DNA and total RNA samples (100 ng) were subjected to Reverse Transcriptase-PCR amplification using the Listeria genus specific ssrA/tmRNA oligonucleotide primers Ltm1 and Ltm2. Negative control amplification reactions included primers, target, and Taq polymerase, but no Reverse Transcriptase. The results of the amplification reactions are shown in FIG. 12.
Amplified tmRNA RT-PCR products were only observed with the RNA sample which was not heat treated. All other samples gave no RT-PCR product indicating that the tmRNA molecules in these samples may have been degraded in the non-viable heat treated cells.
In FIG. 21 the lanes represent the following:
Lane A: Molecular weight marker V;
Lane 1: PCR amplification of RNA (no heat treatment of cells)
-
- −Reverse Transcriptase (RT), +Taq polymerase (TP);
Lane 2: RT-PCR of RNA (no heat treatment of cells), +RT, +TP;
Lane 3: PCR amplification of RNA (at 0 time after heat treatment), - —RT, +TP;
Lane 4: RT-PCR of RNA (at 0 time after heat treatment), +RT, +TP;
Lane 5: PCR amplification of RNA (at 1 h time after heat treatment), - −RT, +TP;
Lane 6: RT-PCR of RNA (at 1 h time after heat treatment), - +RT, +TP;
Lane 7: PCR amplification of RNA (at 2 h time after heat treatment), - −RT, +TP;
Lane 8: RT-PCR of RNA (at 2 h time after heat treatment), - +RT, +TP;
Lane 9: PCR amplification of RNA (at 6 h time after heat treatment), - −RT, +TP;
Lane 10: RT-PCR of RNA (at 6 h time after heat treatment), - +RT, +TP;
Lane 11: PCR amplification of RNA (at 24 h time after heat treatment), - −RT, +TP;
Lane 12: RT-PCR of RNA (at 24 h time after heat treatment), - +RT, +TP;
Lane B: Molecular weight marker V.