DEVICES, METHODS AND SYSTEMS FOR TARGET DETECTION

Polymer arrays suitable to perform quantitative and qualitative detection as well as sorting of a target molecules and related devices methods and systems.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application No. 61/302,535 entitled “Using Phylogenetic Probes For Quantification Of Stable Isotope Labeling And Microbial Community Analysis” filed on Feb. 8, 2010, docket IB-2774P1 and with U.S. Provisional Application No. 61/302,827 entitled “Chip-SIP: Quantification of Nucleic Acid Stable Isotope Labeling with Biopolymer Microarrays and Secondary Ionization Mass Spectrometry (SIMS)” filed on Feb. 9, 2010, with docket number IL-12105, each of which is incorporated herein by reference in its entirety. The present application may also be related to U.S. application Ser. No. 12/366,476 entitled “ ”Functionalized platform for arrays configured for optical detection of targets and related arrays, methods and systems” filed on Feb. 5, 2009 with docket IL-11703, and to U.S. application Ser. No. ______, entitled “Using Phylogenetic Probes For Quantification Of Stable Isotope Labeling And Microbial Community Analysis” filed on Feb. 8, 2011 with docket IB-2774, each of which is herein also incorporated by reference in its entirety.

STATEMENT OF GOVERNMENT INTEREST

The United States Government has rights in this invention pursuant to Contract No. DE-AC52-07NA27344 between the United States Department of Energy and Lawrence Livermore National Security, LLC for the operation of Lawrence Livermore National Laboratory

FIELD

The present disclosure relates to devices methods and systems for target detection. In particular, the present disclosure relates to devices methods and systems for detection of targets on a polymer array.

BACKGROUND

The application of molecular techniques has rapidly advanced the detection and identification of targets in sample where targets of various chemical natures are included. Several techniques are available that allow detection of target molecules such as polymers, and in particular biopolymers, for various purposes, including, for example, identification of microorganisms and microbial systems.

However, reproducibility and/or quantification of targets can still be challenging in particular when detection is performed using a polymer array. Chemical similarities between the target molecules can interfere with the ability to accurately detect multiple targets. In certain cases ability to predict the extent of hybridization and sensitivity of some related reporting techniques can make detection of specific molecules and related quantitation quite challenging.

SUMMARY

Provided herein are devices, methods and systems configured for target detection through Secondary Ion Mass Spectrometry (SIMS), which, in several embodiments, allow quantitative and/or sensitive detection of targets bound to a polymer array. In particular, in several embodiments, devices methods and systems herein described allow quantitative and/or sensitive detection of target polymers presenting SIMS detectable labels following binding of the target polymers with the polymer array.

According to a first aspect a method for quantitative detection of a target is described. The method comprises, labeling a target with a SIMS detectable label, which can in particular be formed by stable isotope probes, to provide a SIMS labeled target, the SIMS labeled target capable of binding a polymer of a polymer array herein described. The method further comprises contacting the SIMS labeled target with the polymer array for a time and under conditions that allow binding of the SIMS labeled target molecule to the polymer array. The method also comprises performing SIMS detection of the polymer array following the contacting to detect the SIMS labeled target bound to the polymer array. For the polymer array, the platform comprises a substrate coated with an electrically conductive layer and the polymer is attached to the platform through a functional linker molecule attached to the electrically conductive layer.

According to a second aspect a method to detect a target in a sample is described: The method comprises exposing the sample to a label detectable by Secondary Ion Mass Spectrometry (SIMS label) for a time and under conditions that allow binding of the SIMS label with the target. The method further comprises contacting a polymer array with the sample to allow binding of the labeled target to the polymer array. The method also comprises performing Secondary Ion Mass Spectrometry on the polymer array following the contacting in order to detect the SIMS labeled target. In the polymer array, the platform comprises a substrate coated with an electrically conductive layer and the polymer is attached to the platform through a functional linker molecule attached to the electrically conductive layer.

According to a third aspect, a system for detection of a target is described, that comprises a polymer array herein described, and a SIMS detectable label. In some embodiments, the system can further include SIMS detecting elements, such as suitable pieces of equipment to perform detection of a target comprising the SIMS detectable label.

According to a fourth aspect, a functionalized platform is described, that comprises a substrate having an electrically conductive surface, the electrically conductive surface attaching a functionalized linker molecule comprising an organosilane presenting an organosilane functional group. The functionalized platform is also configured to be associated, during operation, with a polymer array, through attachment of the polymers of the polymer array with the functionalized linker molecule, and the polymer array is configured for SIMS detection of a target attached to a polymer on the polymer array, through a SIMS detectable label attached to the target.

According to a fifth aspect, a polymer array is described that is configured to allow SIMS detection of a target attached to the polymer through a SIMS detectable label attached to the target. The polymer array comprises a polymer attached to a functionalized platform described herein wherein the polymer is attached to the functionalized linker molecules of the platform.

According to a sixth aspect, a bio-chip is described that comprises a polymer array herein described.

The platforms, arrays, methods and systems described allow in several embodiments quantitative detection of targets such as a polymers and in particular biopolymer comprising nucleic acids, polypeptides and additional polymers identifiable by a skilled person.

The platforms, arrays, methods and systems described herein can be used in connection with applications wherein quantitative detection sorting and/or analysis of targets of interest and in particular nucleic acid molecules through an array is desired, including but not limited to medical application, biological analysis and diagnostics including but not limited to clinical applications.

The details of one or more embodiments of the disclosure are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated into and constitute a part of this specification, illustrate one or more embodiments of the present disclosure and, together with the detailed description and the examples, serve to explain the principles and implementations of the disclosure.

FIG. 1 shows a schematic illustration of the basic coupling chemistry between phosphonate (phosphonic acid) and a metal oxide coated surface to generate a functionalized platform according to an embodiment of the present disclosure.

FIG. 2A shows oligonucleotides spotted onto a glass surface coated with the industry standard triethoxy silane.

FIG. 2B shows an illustration of oligonucleotides spotted on a glass surface coated with an alkyl phosphonate compound terminated with an alkyl phosphonate surface. The illustration is comparative to the corresponding oligonucleotide probes of FIG. 2A.

FIG. 2C shows a diagram illustrating the signal to noise ratio for fluorescent signal of the array of FIG. 2A (silane linker upper trace) and the array of FIG. 2B (ITO lower trace).

FIG. 3 shows a chart illustrating data from an indium tin oxide (referred to as ITO) coated array slide analysis by NanoSIMS. Ion counts from the NanoSIMS analysis indicate the suitability of ITO surfaces for SIMS analysis, as the conductive, oxide coating allows for consistent ion sputtering with depth.

FIG. 4 shows an ITO coated microarray slide analyzed by NanoSIMS. The suitability and stability of ITO coated arrays for SIMS analysis are demonstrated. NanoSIMS secondary electron (left), and 18O and 12C ion images indicating no evidence of sample charging. Clockwise from top left: secondary electron (SE) image, silicon ion image (28Si), oxygen ion image (16O), carbon ion image (12C).

FIG. 5A shows a post-hybridization fluorescence scan of an ITO alkyl phosphonate array synthesized with multiple different Pseudomonas stutzeri probes and hybridized with RNA from 13C labeled P. stutzeri cells. The scale of fluorescence intensity moves from low to high, black to white. Each square region is comprised of a 2×2 grid of separate probe spots, all targeting the same DNA sequence.

FIG. 5B shows a montage of NanoSIMS 13C enrichment images collected from a nanoSIMS analysis of the same array shown in FIG. 5A. The scale of enrichment moves from low to high, black-dark grey-medium grey-light gray-white.

FIG. 5C shows a plot of the quantitative NanoSIMS data displayed in FIG. 5B versus the fluorescence data shown in FIG. 5A. The correlation between the two is good, as evidenced by the R2 value.

FIG. 6 shows fluorescence detection by microarray scanner (FIG. 6A) and 13C enrichment by NanoSIMS (FIG. 6B) of RNA enriched with as little as 0.5% following RNA hybridization to ITO microarray and then detection via NanoSIMS).

FIG. 7 shows a plot of quantitative NanoSIMS data versus hybridization data for an array hybridized with extracted RNA from two bacterial species (Vibrio cholera and Bacillus cereus) grown separately on two different levels of 13C-glucose (FIG. 7A) and 15N-ammonium (FIG. 7B) as their sole carbon and nitrogen source. RNA is from bacterial cultures of Vibrio cholerae (squares), and Bacillus cereus (triangles); background (diamond) values are displayed for reference. HCE=hybridization corrected enrichment, a metric which allows different populations of RNA molecules to be compared with respect to their isotopic enrichment. Each data point represents a distinct probe specific for each bacterial species.

FIG. 8 illustrates detection by array fluorescence (FIG. 8A); and d15N by NanoSIMS (FIG. 8B) of Pseudomonas stutzeri grown on 25% 15N ammonium, and Bacillus cereus grown on natural abundance ammonium; with RNA extracted, mixed in equal concentrations, hybridized on ITO-coated array.

FIG. 9 shows diagrams illustrating the results of experiments with simple two-member communities performed with devices, methods and systems herein described. The two member communities comprise Pseudomonas stutzeri grown on 100% 13C glucose, and Vibrio cholera grown on 20% 13C glucose. In FIG. 9A, each data point represents a NanoSIMS analysis of a single array probe spot (plotted against array fluorescence). In FIG. 9B a one-way ANOVA test, indicating a statistically significant difference between the two RNA populations (p<0.0001) is shown.

FIG. 10A shows an array designed to target marine microorganisms designed using ARB software; each row on the array represents a series of probes designed to hybridize to a different taxon (microbial species), as indicated.

FIG. 10B shows a schematic illustration of an analysis performed with devices, methods and systems herein described. It quantitatively illustrates the flow of three organic substrates to different bacterial taxa in an estuary, identifying substrate specialists and generalists; the thicknesses of the lines are proportional to the substrate incorporation rates.

DETAILED DESCRIPTION

Devices, arrays methods and systems described herein are also indicated as “Chip-SIP” that in several embodiments allow detection of a target on a polymer array through Secondary Ion Mass Spectrometry.

The term “detect” or “detection” as used herein indicates the determination of the existence, presence or fact of a target or signal in a limited portion of space, including but not limited to a sample, a reaction mixture, a molecular complex and a substrate including a platform and an array. A detection is “quantitative” when it refers, relates to, or involves the measurement of quantity or amount of the target or signal (also referred as quantitation), which includes but is not limited to any analysis designed to determine the amounts or proportions of the target or signal. A detection is “qualitative” when it refers, relates to, or involves identification of a quality or kind of the target or signal in terms of relative abundance to another target or signal, which is not quantified. In several embodiments, the Chip-SIP devices, methods and systems allows quantitative detection of single or multiple targets.

The term “target” as used herein indicates an analyte of interest. The term “analyte” refers to a substance, compound or component whose presence or absence in a sample has to be detected. Analytes include but are not limited to biomolecules and in particular biomarkers. The term “biomolecule” as used herein indicates a substance compound or component associated with a biological environment, especially the nucleic acids DNA and RNA. The term “biomarker” indicates a biomolecule that is associated with a specific state of a biological environment including but not limited to a phase of cellular cycle, health and disease state. The presence, absence, reduction, upregulation of the biomarker is associated with and is indicative of a particular state. Biomolecules that are detectable through Chip-SIP include in particular biopolymers, which in certain embodiments can also be used as biomarkers.

According to various embodiments the Chip-SIP herein described, detection of a target can be performed through Secondary Ion Mass Spectrometry analysis of a polymer array presenting a target, typically formed by one or more biopolymers.

The term “polymer array” as used herein indicates a regular and imposing grouping or arrangement of polymer molecules immobilized on an appropriate or compatible substrate in an ordered manner, herein also indicated as probe polymers. More particularly, the term polymer array indicates an ordered grouping of probe polymers arranged so to allow, under appropriate conditions, specific binding of a target to at least one of the polymer composing the polymer array and subsequent detection of the target bound to the polymer.

In Chip-SIP detection, polymer arrays are attached on a functionalized platform through linkage with functional linker molecules attached on an electrically conductive layer and presenting functional groups for binding with probe polymers.

The term “platform” as used herein indicates a physical and usually flat structure suitable for carrying a polymer array. A platform typically comprises a substrate functionalized to be capable of reacting with a polymer of the polymer array and the polymer array.

The term “substrate” as used herein indicates a base material on which processing can be conducted to modify the chemical nature of at least one surface of the base material. Exemplary chemical modifications include functionalization and/or depositing on the modified surface a layer of a second material chemically different from the base material. Exemplary substrates in the sense of the present disclosure include but are not limited to glass, such as silica-based glass, plastics, such as cyclo-olefin copolymer, carbonates and the like, and silicon materials, such as the ones used in the electronic industry. The substrate can be two dimensional such as a typical glass microscope slide of standard dimension, i.e. 25 mm×75 mm.

In platform described herein a substrate is coated with a functionalized electrically conductive layer that can be formed by a metal oxide layer. The term “layer” as used herein indicates a single thickness of material covering a surface. Accordingly, a metal oxide layer is a thickness of a metal oxide compound covering a substrate surface of the substrate of the platform or a portion thereof.

The term “metal oxide” as used herein indicates a compound including at least one oxygen atom bound to a metal atom. Exemplary metal oxides include in particular amphoteric metal oxide such as aluminum oxide and other metal oxides wherein the metal element is in a +3 oxidation state, tin oxide other metal oxides wherein the metal element is in a +4 oxidation state or mixture thereof. In an embodiment, the metal oxide comprises Indium Tin Oxide, a solid solution of indium (III) oxide (In2O3) and tin oxide (SnO2), typically 90% In2O3, 10% SnO2 by weight, which is a particularly suitable electrically conductive material.

In platform herein described, a metal oxide thickness can be applied to the substrate by deposition of the metal oxide performed by techniques identifiable by a skilled person. In particular, in several embodiments herein disclosed, the surface of a substrate is coated by the metal oxide, wherein the term “coat” and “coating” indicates a covering of the metal oxide applied to the surface using techniques known in the art. Exemplary techniques suitable to apply a coating to a substrate include chemical vapor deposition, conversion coating, plating and other techniques identifiable by a skilled person. In case of ITO thin films of indium tin oxide coating procedures can be performed by electron beam evaporation, physical vapor deposition, or a range of sputter deposition techniques. Concentration of charge carriers during deposition is selected in view of the desired electrical conductivity since a high concentration will increase the material's conductivity, but decrease its transparency.

In platforms and the microarray herein described, the metal oxide is functionalized to allow attachment of a polymer array. The terms “functionalize” and “functionalization” as used herein, indicates the appropriate chemical modifications of a molecular structure (including a substrate or a compound) resulting in attachment of a functional group to the molecular structure. The term “functional group” as used herein indicates specific groups of atoms within a molecular structure that are responsible for the characteristic chemical reactions of that structure. Exemplary functional groups include, hydrocarbons, groups containing halogen, groups containing oxygen, groups containing nitrogen and groups containing phosphorus and sulfur all identifiable by a skilled person. The term “attach” or “attached” as used herein, refers to connecting or uniting by a bond, link, force or tie in order to keep two or more components together, which encompasses either direct or indirect attachment such that for example where a first compound is directly bound to a second compound or material, and the embodiments wherein one or more intermediate compounds, and in particular molecules, are disposed between the first compound and the second compound or material.

In platforms herein described the electrically conductive layer is functionalized to attach an alkyl phosphonate compound that presents an alkyl phosphonate functional group and/or with organosilanes that presents an organosilane functional group. The term “present” as used herein with reference to a compound or functional group indicates attachment performed to maintain the chemical reactivity of the compound or functional group as attached. Accordingly, a functional group presented on a surface is able to perform under the appropriate conditions the one or more chemical reactions that chemically characterize the functional group.

In particular, in some embodiments, the metal oxide layer is treated with a solution of a functionalized alkyl phosphonate compound. In those embodiments, the phosphonates form an ordered monolayer on the metal oxide surface and are covalently linked to the metal oxide via formation of stable metal-phosphodiester bonds as has been well-established in published scientific literature. In some embodiments, the metal oxide is functionalized with an organosilane, e.g. triethoxyaminoproply silane or other organosilane identifiable by a skilled person. The alkylphosphonate functional group and/or organosilane functional groups are used to attach probe polymers of a polymer array.

The term “polymer” as used herein indicates a large molecule (macromolecule) composed of repeating structural units typically connected by covalent chemical bonds. Polymers constitute a large class of natural and synthetic materials with a variety of properties and purposes and include bio-polymers which are the typical polymer component of polymer arrays as identified herewith. Biopolymers comprise polysaccharides polymers made up of many monosaccharides joined together by glycosidic bonds, polynucleotide and polypeptides that are originally produced by living organisms including viruses.

The term “polynucleotide” as used herein indicates an organic polymer composed of two or more monomers including nucleotides, nucleosides or analogs thereof. The term “nucleotide” refers to any of several compounds that consist of a ribose or deoxyribose sugar joined to a purine or pyrimidine base and to a phosphate group and that is the basic structural unit of nucleic acids. The term “nucleoside” refers to a compound (such as guanosine or adenosine) that consists of a purine or pyrimidine base combined with deoxyribose or ribose and is found especially in nucleic acids. The term “nucleotide analog” or “nucleoside analog” refers respectively to a nucleotide or nucleoside in which one or more individual atoms have been replaced with a different atom or a with a different functional group. Accordingly, the term polynucleotide includes nucleic acids of any length including DNA, RNA, DNA or RNA analogs and fragments thereof. A polynucleotide of three or more nucleotides is also called a nucleotidic oligomers or oligonucleotide. Exemplary polynucleotides composing arrays herein disclosed are DNA molecules, and in particular DNA oligomers, peptide nucleic acids (PNAs), locked nucleic acid polymers (LNAs) and the like.

The term “peptide nucleic acid” indicates an artificially synthesized polymer similar to DNA or RNA and is used in biological research and medical treatments. PNA is not known to occur naturally. In particular, while DNA and RNA have a deoxyribose and ribose sugar backbone, respectively, whereas PNA's backbone is composed of repeating N-(2-aminoethyl)-glycine units linked by peptide bonds. The various purine and pyrimidine bases are linked to the backbone by methylene carbonyl bonds. PNAs are depicted like peptides, with the N-terminus at the first (left) position and the C-terminus at the right.

The term “locked nucleic acid”, often referred to as inaccessible RNA, indicates a modified RNA nucleotide. The ribose moiety of an LNA nucleotide is modified with an extra bridge connecting the 2′ and 4′ carbons. The bridge “locks” the ribose in the 3′-endo structural conformation, which is often found in the A-form of DNA or RNA. LNA nucleotides can be mixed with DNA or RNA bases in the oligonucleotide whenever desired. Such oligomers are commercially available. The locked ribose conformation enhances base stacking and backbone pre-organization. This significantly increases the thermal stability (melting temperature) of oligonucleotides. LNA nucleotides are used to increase the sensitivity and specificity of expression in DNA microarrays, FISH probes, real-time PCR probes and other molecular biology techniques based on oligonucleotides. For the in situ detection of miRNA the use of LNA is currently (2005) the only efficient method. A triplet of LNA nucleotides surrounding a single-base mismatch site maximizes LNA probe specificity unless the probe contains the guanine base of G-T mismatch.

The term “polypeptide” as used herein indicates an organic polymer composed of two or more amino acid monomers and/or analogs thereof. The term “polypeptide” includes amino acid polymers of any length including full length proteins and peptides, as well as analogs and fragments thereof. A polypeptide of three or more amino acids is also called a protein oligomer or oligopeptide. As used herein the term “amino acid”, “amino acidic monomer”, or “amino acid residue” refers to any of the twenty naturally occurring amino acids including synthetic amino acids with unnatural side chains and including both D and L optical isomers. The term “amino acid analog” refers to an amino acid in which one or more individual atoms have been replaced, either with a different atom, isotope, or with a different functional group but is otherwise identical to its natural amino acid analog.

The term “protein” as used herein indicates a polypeptide with a particular secondary and tertiary structure that can participate in, but not limited to, interactions with other biomolecules including other proteins, DNA, RNA, lipids, metabolites, hormones, chemokines, and small molecules. Exemplary proteins composing arrays herein described are antibodies.

The term “antibody” as used herein refers to a protein that is produced by activated B cells after stimulation by an antigen and binds specifically to the antigen promoting an immune response in biological systems and that typically consists of four subunits including two heavy chains and two light chains. The term antibody includes natural and synthetic antibodies, including but not limited to monoclonal antibodies, polyclonal antibodies or fragments thereof. Exemplary antibodies include IgA, IgD, IgG1, IgG2, IgG3, IgM and the like. Exemplary fragments include Fab Fv, Fab′ F(ab′)2 and the like. A monoclonal antibody is an antibody that specifically binds to and is thereby defined as complementary to a single particular spatial and polar organization of another biomolecule which is termed an “epitope”. A polyclonal antibody refers to a mixture of monoclonal antibodies with each monoclonal antibody binding to a different antigenic epitope. Antibodies can be prepared by techniques that are well known in the art, such as immunization of a host and collection of sera (polyclonal) or by preparing continuous hybridoma cell lines and collecting the secreted protein (monoclonal).

In polymer array herein described, any of the above polymers can be synthesized or added and in particular spotted on a coated substrate according to techniques identifiable by a skilled person.

Applicants have surprisingly found that probe polymer arrays on functionalized platforms herein described allow detection of properly labeled target performed through SIMS.

The term “SIMS” or “Secondary Ion Mass Spectrometry” as used herein indicates a technique typically used in materials science and surface science to analyze the composition of solid surfaces and thin films by sputtering the surface of the specimen with a focused primary ion beam and collecting and analyzing ejected secondary ions. These secondary ions are typically measured with a mass spectrometer or other SIMS detecting elements to determine the elemental, isotopic, or molecular composition of the surface. In several applications, SIMS is one of the most sensitive surface analysis techniques able to detect elements present in the parts per billion range. Exemplary procedures and detecting elements suitable for SIMS analysis are described for example in the enclosed references (see e.g. ref (1) and ref (15)). A skilled person will be able to identify additional instruments and procedures that are suitable for the implementation of Chip-SIP herein described upon reading of the present disclosure.

A detection performed through SIMS, or “SIMS detection” is performed through measurement of a SIMS detectable signal typically issued by a SIMS label on a surface following sputtering of the surface with a focused primary ion beam. The terms “label” and “labeled molecule” as used herein refer to any elemental label capable of detection, which in general comprise radioactive isotopes, stable isotopes, halogenated oligonucleotide probes, metal ions, nanoparticles, and the like. As a consequence the wording “labeling signal” indicates in general the signal emitted from the label that allows detection of the label.

A “SIMS label” as used herein indicates a label capable of issuing a SIMS detectable signal on a surface following sputtering of the surface with a focused primary ion beam. A “SIMS detectable signal” indicates a signal that is detectable through the use of SIMS detecting elements, (e.g. a sector, quadrupole, and time-of-flight mass analyzer) A SIMS detectable signal is typically in the form of characteristic secondary ions detectable through any appropriate SIMS detecting element as will be understood by a skilled person. Exemplary SIMS labels comprise stable isotopes wherein the term “stable isotope” refers to a non-radioactive isotopic form of an element, which can include, but is not limited to, 13C or 15N, 18O, 19E, 127I, 79Br, or 197Au.

Metal oxide layers and in particular layers formed by comprising Indium Tin Oxide (ITO), are particularly suitable for SIMS analysis because of their conductive properties and stability under reduced pressure. Presentation of probe polymers on such an electrically conducting layer, made possible by use of functionalized linker molecules such as phosphohonate or organosilane, in combination with use of SIMS detectable label has enabled a detection of single and in particular multiple targets that in some embodiments, is significantly more sensitive of corresponding approach of the art. Additional details concerning procedures specific embodiments of platform presenting alkyl phosphonate functional groups are described in US Pat. Application US 2009-0203549 and International Application WO 2009/100201, each of which is herein incorporated in its entirety.

In several embodiments of the Chip-SIP devices, methods and systems, detection of a SIMS signal issued by a SIMS labeled target bound on a polymer array herein described allows quantitative and/or qualitative detection of target.

In particular in some embodiments a quantitative detection of a target can be performed by labeling the target with a SIMS detectable label to provide a SIMS labeled target, the SIMS labeled target capable of binding a polymer of a polymer array herein described.

Suitable labeling procedures depend on the target and desired detection. For example nucleic acids can be labeled by incorporating 13C and/or 15N in the nucleic acids during synthesis which can be performed within a cell, or in vitro e.g. in a cell free system. Additional labeling can be performed by attaching gold nanoparticles or halogen atoms (F, I, Br) to DNA or RNA. In an embodiment, the labeling can be performed by exposing a sample to a SIMS-label to allow binding of the SIMS label with a target whose quantity or presence in the sample one wants to detect. The term “exposing” or “expose” or “to expose” as used herein refers to a contacting of the sample performed to allow the introduction of SIMS-label (e.g. stable isotopes) to a sample, to allow attachment of the SIMS-label in the target if present in the sample. By way of example, in embodiments where detection of nucleic acids in microbes is desired, a bacterial population can be grown on a substrate enriched with a SIMS label formed by stable isotopes. By way of example, bacteria can be grown in a liquid media substance containing stable isotopes wherein the bacteria feed off the stable isotope-containing liquid media. Additional methods for enabling the attachment of a SIMS-label onto a target in a sample are identifiable by a skilled person depending on the specific target and label selected for the detection.

In an embodiment, the SIMS labeled target resulting from a labeling procedure is then contacted with a polymer array for a time and under conditions to allow binding of the SIMS labeled target molecule to the polymer array.

In some embodiments, the contacting is performed by isolating the labeled target from a sample comprising the target (e.g. by extraction of nucleic acids from an organism) and then contacting the isolated target with a polymer array herein described.

In particular, in embodiments, where the target are also biopolymers the contacting can be performed by hybridization of the probe polymers with the target polymer. The term “hybridize” or “hybridization” or “hybridized” as used herein refers to a process by which single strands of nucleic acid sequences form double-helical segments via hydrogen bonding between complementary nucleotides covalently bonded to a functionalized platform. Other forms of specific binding between probe polymers and target herein described will be identifiable by a skilled person. Additional forms of contacting include protein-protein interactions, antigen-antibody interaction, nucleic acid protein interaction and additional interactions identifiable by a skilled person upon reading of the present disclosure.

In some embodiments, the contacting is performed with a polymer array that comprises an arrayed series of thousands of microscopic spots of the polymer of interest, called features, each containing a small amount, (e.g. picomoles) of a specific probe polymer and in particular a probe biopolymer, (for example a DNA polymer having a specific sequence). Exemplary biopolymers include, a short section of a gene or other DNA element that are used as stationary probes capable of binding to added sample molecule (target) under conditions or varying binding stringency. In an embodiment, arrays can include but are not limited to: features ranging in size from 25 square microns (μ2) to 250 square microns (μ2) that are made by mechanically (robotically) or manually spotting a defined volume of polymer on the substrate surface. In an embodiment microarrays can include but are not limited to features ranging in size from 5 square microns (μ2) to 250 square microns (μ2) that are prepared by de novo synthesis of a plurality of defined biopolymer material, e.g. DNA probes; using established solid phase synthetic chemistry. In some embodiments, probe polymers are used the comprise oligonucleotides between 25 and 50 base pairs, although one skilled in the art would recognize that oligonucleotides that are much shorter than 25 base pairs, or significantly longer than 50 base pairs could be used. Probe arrangement suitable for SIMS includes any organized arrangement where probe spots are a consistent distance apart, ideally laid out in a precise grid pattern.

Following contacting, SIMS detection of the polymer array is performed to qualitative and/or quantitatively detect the SIMS labeled target bound to the polymer array. Detecting can be performed with SIMS detecting elements which comprise many SIMS instruments having a resolution of about 10 microns or less, (e.g. a ToF-SIMS). In principle, any SIMS instrument can be used to detect the presence of stable isotopes as described above provided it can rater over a sample feature between 13-15 micron.

In embodiments, wherein an oligonucleotide array is being used to detect or sort a population of nucleic acids, the Chip-SIP approach will allow one to measure the relative amount of hybridization of the target and the surface probe. In particular, in some of those embodiments, Chip-SIP allows relatively rapid, high sensitivity measurements of complex populations of target such as RNA fragments with rapid throughput and high resolution. As demonstrated by Applicants (see Example 5 and in FIG. 7), quantitation can be achieved with an isotopic label concentration as low as 0.05%.

In some embodiments, Chip-SIP also allows multiple labels to be used simultaneously. SIMS detection with Chip-SIP further allows for quantification of label incorporation. In some of those embodiments, Chip-SIP can be used for multiplex detection and can be used in applications such as molecular biology and in medicine to analyze/detect molecular recognition, e.g. hybridization between complementary strands of DNA and other chemical and biological properties associated with molecular recognition between biopolymers of interest.

In an embodiment, the Chip-SIP method combines polymer microarray methodology with nano-scale secondary ion mass spectrometry (NanoSIMS) analysis. In particular, Chip-SIP can be accomplished by SIMS-labeling targets, such as microbial nucleic acids (e.g. by exposing organisms and/or microbial communities to isotopically enriched substrates), contacting the SIMS labeled target with a polymer array configured for SIMS detection (e.g. hybridizing the SIMS labeled microbial nucleic acid to an engineered high-density oligonucleotide microarray as described herein), and then analyzing the polymer array binding the SIMS labeled target through NanoSIMS.

NanoSIMS is an imaging secondary ion mass spectrometer with the unprecedented combination of high spatial resolution (50 nm), high sensitivity (1 of every 20 C/N atoms) and high mass specificity (2, 3). For example, when an ITO microarray is hybridized to isotopically labeled RNA fragments, the added oligonucleotides can be quantified with NanoSIMS imaging; the conductive ITO layer uniquely facilitates generation of secondary ions for measurement and quantification. If the population of DNA oligonucleotides are assembled as a microarray on the ITO surface, a test population of complimentary nucleic acid polymers, e.g. DNA, RNA or analogs thereof (PNAs and the like) containing a stable isotope can be hybridized, and the extent of hybridization can be measured and quantified directly by NanoSIMS. Some of the current methods require substantial (15-50 atom %) enrichment of the stable-isotope, whereas Chip-SIP is able to detect small isotopic enrichments (<1 atom %). This provides for the ability to measure the level of isotopic enrichment of DNA/RNA hybridization to pre-synthesized DNA array probes, which can be used for various purposes including linking the identity of microbes to their functional roles.

In some embodiments, CHIP-SIP can be used to: connect identity to physiological function of microorganisms in most environmental or medical settings (i.e. soils. sediments, lake water marine water, insect gut, human tissue) and/or to quantify hybridization or molecular recognition events of nucleic acids on microarray surfaces. Functional roles of microorganisms include, but are not limited to, microbial biofilms pathogenic to human tissues, microbial communities involved in bioremediation, microorganisms controlling the fate of greenhouse gases, microbial communities present in a wide variety of engineered bioreactors, biodegradation of pollutants, and additional functional roles identifiable by a skilled person

In some embodiments, Chip-SIP is accomplished by isotopically-labeling microbial nucleic acids by exposing organisms and/or microbial communities to isotopically enriched substrates. The nucleic acids are then hybridized to the engineered high-density oligonucleotide microarray as described herein, and then analyzed by NanoSIMS.

In several embodiments, Chip-SIP can be used to decipher of wide variety of microbial systems having unique functional roles: microbial biofilms pathogenic to human tissues, microbial communities involved in bioremediation, microorganisms controlling the fate of greenhouse gases, microbial communities present in a wide variety of engineered bioreactors, biodegradation of pollutants, etc.

Microbial systems refer to systems formed by microorganisms. The term “microorganism” as used herein refers to prokaryotic and eukaryotic cells, which grow as single cells, or when growing in association with other cells, do not form organs. Microorganisms include, but are not limited to, bacteria, yeast, molds, protozoa, plankton and fungi. Exemplary microbial system that can be investigated with Chip SIP comprise Pseudomonas stutzeri, Vibria cholera, Bacillus cereus, Francisellia tularensis, and the cellulose-degrading and N-fixing microorganisms found in the guts of the passalid beetle Odontotaenius disjunctus In an embodiment, Chip-SIP analysis can be performed on microorganisms that are collected from a marine and/or estuarine environment.

In particular in some embodiments, nucleic acid stable isotope probing techniques (4, 5) can be used to directly connect specific substrate utilization to microbial identity. In an exemplary approach natural microbial communities are incubated in the presence of substrates enriched in rare isotopes (e.g., 13C or 15N). The organisms, including their nucleic acids, incorporate the substrate and become isotopically enriched over time. DNA- and RNA-Stable isotope probing technique exposure requires high substrate concentrations in order to meet the sensitivity threshold of density gradient separation (in many systems >20% 13C DNA) (6) and can be extremely difficult to perform with 15N substrates (>40% 15N DNA required) (7). Traditional SIP further requires long exposure times (risking community cross-feeding), low-throughput (1-2 weeks lab processing time per sample batch), and incomplete quantification. Related culture-independent approaches can link microbial identity to function and can also have ideal qualities such as high sensitivity or in situ resolution (e.g. 13C-PLFA (8); EL FISH (9), FISH MAR (10), isotope arrays (11)). In contrast, the multiple stable isotope (e.g. 15N and 13C) incorporation made possible with the Chip-SIP method combines high throughput, sensitivity, taxonomic resolution, and quantitative estimation.

Molecular approaches for detection of microbes typically target conserved biomarkers present in all organisms of interest, such as the small subunit ribosomal RNA molecule (16S rRNA for prokaryotes and 18S rRNA for eukaryotes). Detection and monitoring of bacteria and archaea routinely rely upon classifying heterogeneous 16S rRNA molecules, either as RNA or as gene fragments amplified by universal PCR.

In an embodiment described herein, cellular RNA is used as the nucleic acid to identify organisms because one skilled in the art would recognize that the higher synthesis rates of cellular RNA allows rapid response to environmental stimuli.

An embodiment described herein, rRNA is used as the nucleic acid to identify organisms. One skilled in the art would recognize that the use of rRNA facilitates the identification of organisms with higher ribosome content, which is the active fraction of a microbial community. One skilled in the art would recognize, however, that any type of natural or synthesized nucleic acid can be used with the methods and system described herein.

As described herein, following extraction from a sample population of interest, isotopically hybridized nucleic acids can be hybridized to a functional platform using probes complementary to active community microorganism. Hybridization allows the identification of each probe having a target match, as evidenced by a fluorescent signal.

In an embodiment, 16S rRNA microarrays can be used to analyze the prokaryotic composition of complex environmental samples, such as those obtained from bioaerosols (12), soils ((13) and water(14). Such microarrays take advantage of the potential for array technology to identify individual components and assess multiple samples simultaneously. The 16S rRNA PhyloChip consists of almost 9,000 sets of 25-mer oligonucleotide probes, and is exemplary of a type of 16S rRNA microarray that can be used as a functionalized platform. Each set is specific for one 16S-rRNA gene of a particular species or group of related species. Each probe set is composed of at least 11 individual perfect-match probes and their corresponding single mismatch probes, which contain one centrally located sequence mismatch. The mismatch probe allows for the assessment and control of non-specific hybridization. For data analysis using the 16S rRNA PhyloChip, a summary statistic that describes the quantity of sequence-specific hybridization to each probe set can be calculated from the ratio of perfect-match to mismatch probe fluorescence for each probe and the consistency in fluorescence across all the probes within a given probe set.

In an embodiment, 18S DNA microarrays can be used to analyze the eukaryotic composition of complex environmental samples.

In an embodiment, hybridized mixtures of 13C-RNA are combined with mixtures of RNA from multiple organisms. Such an approach can provide both a qualitative and quantitative measure (e.g. a spot can be identified as either enriched or not, and the degree of enrichment can be known by the heavy/light isotope ratio of the spot). Additionally, different organisms can be labeled to differing degrees, creating a standard curve of 13C-RNA samples, with which it can be determined the sensitivity limits and ability to generate quantitative information based upon the degree of isotope incorporation and thus intensity of 13C in individual spots. Hybridized RNA containing stable isotopes can then be quantified trough SIM detection for example using NanoSIMS as herein described.

As disclosed herein, the functionalized platform, probe polymers, polymer arrays and SIMS-label, can be provided as a part of systems to detect targets according to any of the methods described herein. The systems can be provided in the form of kits of parts.

In a kit of parts, the functionalized platform, probe polymers, polymer arrays and SIMS-label and other reagents to perform the methods can be comprised in the kit independently. One or more probe polymers and SIMS-labels can be included in one or more compositions alone or in mixtures identifiable by a skilled person. Each of the one or more of probe polymers or SIMS labels or other reagents can be in a composition together with a suitable vehicle.

Additional reagents can include molecules suitable to enhance or favor the contacting according to any embodiments herein described and/or molecules, standards and/or equipment to allow detection of pressure temperature and possibly other suitable conditions.

In particular, the components of the kit can be provided, with suitable instructions and other necessary reagents, in order to perform the methods here described. The kit will normally contain the compositions in separate containers. Instructions, for example written or audio instructions, on paper or electronic support such as tapes or CD-ROMs, for carrying out the assay, will usually be included in the kit. The kit can also contain, depending on the particular method used, other packaged reagents and materials (i.e. wash buffers and the like).

Further advantages and characteristics of the present disclosure will become more apparent hereinafter from the following detailed disclosure by way of illustration only with reference to an experimental section.

EXAMPLES

The platforms, arrays, methods and systems herein disclosed are further illustrated in the following examples, which are provided by way of illustration and are not intended to be limiting.

In particular, in the following examples platforms, array and related methods and systems are described that use ITO coated glass slide attaching nucleic acid probes through organosilanes or alkyl phosphonate and directed to detection of target biopolymers such as DNA or RNA. A skilled person will be able to adapt the exemplary materials, structures and procedure to additional supports, conductive material probes functionalized linker probes and targets in accordance with the present disclosure.

Example 1 Custom Conductive Surface for Microarrays

A custom conductive surface for the microarrays is used to eliminate charging during SIMS analysis. Glass slides coated with indium-tin oxide (ITO; Sigma) are treated with an amino- or hydroxy-alkyl phosphonate to provide a starting matrix for DNA synthesis (FIG. 1).

Custom-designed microarrays (feature size=15 μm) are synthesized using a photolabile deprotection strategy (15) on the LLNL Maskless Array Synthesizer (MAS)(Roche Nimblegen, Madison, Wis.). Reagents for synthesis (Roche Nimblegen) are delivered via an automated DNA synthesizer (Expedite, PerSeptive Biosystems). For quality control (to determine that DNA synthesis was successful), each slide contains a set of DNA probes to Arabidopsis calmodulin protein kinase 6 (CPK6); the latter is detected using complimentary oligonucleotides labeled with Cy3 (Integrated DNA Technologies).

If synthesis is successful, hybridization with Cy3 or Cy5-labeled complimentary targets reveals a series of ordered fiducial marks (probe spots with the complementary sequence synthesized throughout the array area). Probes targeting microbial taxa are arranged in a densely packed formation to decrease the total area analyzed by imaging secondary ion mass spectrometry the NanoSIMS. Hybridized arrays are later analyzed using a Cameca NanoSIMS 50 which provides the critical capacity to detect isotopic enrichment in the captured ribosomal RNA fragments.

Example 2 Target RNA Extraction, Labelingand Subsequent Array Hybridization

RNA from pelleted cells (for pure culture laboratory strains) and filters (for aquatic field samples) are extracted with the Qiagen RNEasy kit according to manufacturer's instructions, with slight modifications for field samples.

This protocol was used for pure cultures of P. stutzeri, V cholera and B. cereus, and it has also worked for the complex communities found in seawater and insect hindguts.

Filters are incubated in 200 μL TE buffer with 5 mg mL−1 lysozyme and vortexed for 10 min at RT. RLT buffer (800 μL, Qiagen) is then added, vortexed, centrifuged, and the supernatant transferred to a new tube. Ethanol (560 μl) is added, mixed gently, and the sample is applied to the kit-provided mini-column.

The remaining manufacturer's protocol is subsequently followed. At this point, RNA samples are split: one fraction saved for fluorescent labeling (see below), the other saved unlabeled for NanoSIMS analysis. This procedure is used because the labeling protocol introduces background carbon (mostly 12C) that dilutes the 13C signal (data not shown). Alexafluor 546 labeling is done with the Ulysis kit (Invitrogen) for 10 min at 90° C. (2 μL RNA, 10 μL labeling buffer, 2 μL Alexafluor reagent), followed by fragmentation. All RNA (fluorescently labeled or not) is fragmented using 5× fragmentation buffer (Affymetrix) for 10 min at 90° C. before hybridization. Labeled RNA is purified using a SPIN-OUT™mini-column (Millipore), and RNA is concentrated by ethanol precipitation to a final concentration of 500 ng μL−1.

For array hybridization, RNA samples in 1× Hybridization buffer (Nimblegen) are placed on Nimblegen X4 mixer slides and incubated inside a Maui hybridization system (BIOMICRO® Systems) for 18 hrs at 42° C. and subsequently washed according to manufacturer's instructions (Nimblegen). Arrays with fluorescently labeled RNA are imaged with a Genepix 4000B fluorescence scanner at pmt=650 units. Arrays with RNA that is not fluorescently labeled are marked with a diamond pen and also imaged with the fluorescence scanner to subsequently navigate to the analysis spots in the NanoSIMS.

These spots are observable in the fluorescence image because fiducial probe spots are synthesized around the outline of the area to be analyzed by NanoSIMS. Prior to NanoSIMS analysis, samples are not metal coated to avoid further dilution of the RNA's isotope ratio or loss of material Finally, slides are trimmed and mounted in custom-built stainless steel holders.

Example 3 NanoSIMS Analysis

Secondary ion mass spectrometry analysis of microarrays hybridized with 13C and/or 15N rRNA is performed with a Cameca NanoSIMS 50 (Cameca, Gennevilliers, France).

A Cs+ primary ion beam is used to enhance the generation of negative secondary ions. Carbon and nitrogen isotopic ratios are determined by electrostatic peak switching on electron multipliers in pulse counting mode, alternately measuring 12C14N and 12C15N simultaneously for the 15N/14N ratio, and then measuring 12C14N and 13C14N and simultaneously for the 13C/12C ratio. Peak switching strategy is used because the secondary ion count rate for the CN species in these samples is 5-10 times higher than any of the other carbon species (e.g., C, CH, C2), and therefore higher precision is achieved even though total analytical time is split between the two CN species at mass 27.

If only one isotopic ratio was needed, peak switching was not performed. Mass resolution is set to ˜10,000 mass resolving power to minimize the contribution of isobaric interferences to the species of interest (e.g., 11B16O contribution to 13C14N<1/100; 13C2 contribution to 12C14N<1/1000). Analyses are performed in imaging mode to generate digital ion images of the sample for each ion species. Analytical conditions are optimized for speed of analysis, ability to spatially resolve adjacent hybridization locations, and analytical stability. The primary beam current is set to 5 to 7 pA Cs+, which yields spatial resolution of 200-400 nm and a maximum count rate on the detectors of ˜300,000 cps 12C14N. Analysis area is 50×50 μm2 with a pixel density of 256×256 with 0.5 or 1 ms/pixel dwell time. For peak switching, one scan of the analysis area is made per species set, resulting in two scans per analytical cycle. With these conditions, reproducible secondary ion ratios can be measured for a maximum of 4 cycles through the two sets of measurements before the sample is largely consumed.

Data are collected for 2 to 4 cycles. Based on total counts for analyzed cycles, precision of 2-3% for 13C14N and 1-4% for 15N12C can be achieved depending on the enrichment and hybridization intensity. A single microarray analysis of approximately 2500 probes, with an area of 0.75 mm2 and the acquisition of 300 images, was carried out using the Cameca software automated chain analysis in 16 hours. Ion images are stitched together and processed to generate isotopic ratios with custom software (L'IMAGE, L. Nittler, Carnegie Institution of Washington). Ion counts are corrected for detector dead time on a pixel by pixel basis.

Hybridization locations are selected by hand or with the auto-ROI function, and isotopic ratios are calculated for the selected regions over all cycles to produce the location isotopic ratios. Isotopic ratios are converted to delta values using δ=[(Rmeas/Rstandard) 1]×1000, where R the measured ratio and Rstandard is the standard ratio (0.00367 for 15N/14N and 0.011237 for Data are corrected for natural abundance ratios measured in unhybridized locations of the sample.

Example 4 Detection and Data Analysis

For each taxon identified by a microarray probe spot, isotopic enrichment of individual probe spots is plotted against fluorescence and the linear regression slope is calculated with the y-intercept constrained to natural isotope abundances (zero permil for 15N data and −20 permil for 13C data).

This calculated slope (permil/fluorescence), referred to as hybridization-corrected enrichment (HCE), is a metric that can be used to compare the relative incorporation of a given substrate by different taxa. It should be noted that due to the different natural concentrations of 13C and 15N, and more importantly, different background contributions from the microarray, HCEs for 15N substrates and 13C substrates are not comparable.

Example 5 Applicability of Chip-SIP to Microbial Cultures

Initial tests spotted slides with synthetic DNA oligonucleotides representing/covering the genome of a strain of Francisellia tularensis, creating a DNA array. Microscopic examination of the autofluorescence of the arrays provides initial visual assessment of spotting efficiency and sample-substrate interaction.

The features on an alkyl phosphonate spotted array are approximately 150 um in diameter (FIG. 2B), while those spotted on traditional glass silane (coated with the industry standard y-aminopropylsilane) are roughly half the size.

The results of the test illustrated in FIG. 2A and FIG. 2B show preliminary evaluation of glass arrays with (FIG. 2A) traditional triethoxy silane coating versus (FIG. 2B) new alkylphosphonate surface chemistry., (C) ITO array has higher signal to noise for fluorescent signal than traditional silane array. The preliminary results of spotting DNA oligonucleotides (short pieces of DNA) for the alkylphosphonate surface suggests it has highly stable binding, and larger, more uniform spot size. In hybridization tests with fluorescently labeled cDNA generated from F. tularensis RNA samples, signals generated from the phosphonate surface were comparable to the triethoxy silane derivatized slide (hybridization data not shown).

A further series of experiments showed that an ITO coated array slide can be successfully analyzed by NanoSIMS. 5 μm region of ITO coated microarray was sputtered for 20 minutes. The ion plot of carbon (12C), oxygen (16O) and silicon (28Si) generated during NanoSIMS analysis of an ITO-coated microarray is illustrated in FIG. 3.

As shown in the illustration of FIG. 3, the ion concentrations change as the array surface is sputtered by the NanoSIMS primary ion bean. ITO coating makes this array much more conducive, and appropriate for NanoSIMS analysis, than traditional microarraysIon counts over time from a NanoSIMS depth analysis indicate the suitability of ITO surfaces for SIMS analysis (FIG. 3), as the conductive, oxide coating allows for consistent ion sputtering for a sustained period with depth.

A skilled person will understand that the exemplary results shown in FIG. 3 provide a proof of concept for the devices methods and systems herein described with a simple ITO coated glass slide (not yet printed with oligos to make it an array) and not yet hybridized. In particular the results on the conductive platform that has been analyzed by SIMS show minimization of charges build up and a cleaner signal with respect to certain other traditional array of the art.

The suitability and stability of ITO coated arrays for SIMS analysis are demonstrated with a further series of experiments resulting in NanoSIMS analysis images following sputtering of a 5 μm region for 20 minutes.

The results illustrated in FIG. 4). show no evidence of sample charging (as there is with an uncoated, standard microarray). These exemplary result provides a proof of concept with a simple ITO coated glass slide (not yet printed with oligos to make it an array) and not yet hybridized as would be understood by a skilled person.

In further proof of concept experiments, after extracting RNA from microbial cultures of Pseudomonas stuzeri exposed to 13C glucose, NanoSIMS was used to detect isotopic enrichment in P. stuzeri rRNA hybridized to oligonucleotide probe spots on a microarray.

The results of hybridization of extracted RNA from a single bacterial species (Pseudomonas stutzeri) grown on 13C-glucose as the sole carbon source are illustrated in FIG. 5A (fluorescence microarray scanner), FIG. 5B (13C enrichment by NanoSIMS) and FIG. 5C (Plot of 13C enrichment by NanoSIMS versus fluorescence by microarray scanner). Each spot (and data point) represents a distinct probe specific for Pseudomonas. P. stuzeri isolates were grown on 99 atom % 13C-glucose until fully isotope labeled. RNA was extracted and hybridized to a microarray containing probe sets designed to hybridize to P. stuzeri. Mismatch probes were synthesized as negative controls.

By imaging multiple probe spots simultaneously with the NanoSIMS, isotopically enriched nucleic acids were identified against the large background of non-enriched genes in a mixed microbial community RNA sample (FIG. 5B). The excellent correlation (FIG. 5C) of these data (fluorescence (a measure of how much RNA is hybridized) and 13C enrichment) to the standard fluorescence analysis of the array (FIG. 5A) demonstrates successful detection of labeled RNA by NanoSIMS.

NanoSIMS measurements demonstrate detection of 13C in successfully hybridized probe spots (FIG. 5A and FIG. 5B). Fluorescence is a measure of how much RNA is hybridized, which is positively correlated with 13C enrichment, demonstrating successful detection of labeled RNA by NanoSIMS (FIG. 5C).

Results of RNA hybridization to ITO microarray and then detection via NanoSIMS illustrated in FIG. 6 also show that RNA enriched with 0.5% 13C is successfully detected by the Chip-SIP approach (see in particular FIG. 6A Fluorescence by microarray scanner; and FIG. 6B 13C enrichment by nanoSIMS.)

To demonstrate that the approach works with mixtures of nucleic acids, enriched to differing degrees, isolates of two bacterial strains (Vibrio cholerae and Bacillus cereus) were grown on multiple different enrichment levels of 13C glucose. Fluorescence and NanoSIMS analysis of the mixed 13C and 15N V. cholerae and B. cereus RNA on ITO arrays hybridized with differential isotopic enrichment shows clear separation of the two different RNA types (FIG. 7A and FIG. 7B). A useful parameter for comparing the two taxa's RNA is “HCE”, or hybridization corrected enrichment, a metric which allows different populations of RNA molecules to be compared with respect to their isotopic enrichment (FIG. 7). The analysis of 13C and 15N in two different types of RNA with differential isotopic enrichment illustrated in FIG. 7A, and FIG. 7B—demonstrates clear separation of the two different types.

This exemplary series of experiments demonstrates that the Chip-SIP method works with mixtures of RNA (from different taxa) and also with mixtures of both low and high isotope enrichment.

Additional experiments with simple two-member communities including Pseudomonas stutzeri grown on 25% 15N ammonium and Bacillus cereus grown on natural abundance ammonium demonstrate that unenriched RNA is not detected via false positive measurements. From each culture, RNA was extracted, mixed in equal concentrations, and hybridized to an ITO-coated array. Array fluorescence (FIG. 8A) and d15N by nanoSIMS (FIG. 8B) measurements prove that unlabeled taxa do not show isotopic signal in NanoSIMS images, and the Chip-SIP method is quantitative (e.g. one taxon is more enriched than another).

The results illustrated in FIG. 8 show as a control that unlabeled taxa do not show isotopic signals in NanoSIMS. This set of results demonstrates that the NanoSIMS analysis is quantitative (e.g. one taxon is more enriched than another) and that non-specific binding is not occurring on the arrays—otherwise isotopic enrichment would be evident in the region of 12C (Bacillus cereus) probes at the bottom of the figure. Additionally unlabeled taxa do not show isotopic signal in NanoSIMS analyses.

Additional experiments with simple two-member communities including Pseudomonas stutzeri grown on 100% 13C glucose and Vibrio cholera grown on 20% 13C glucose demonstrate that two different types of RNA, enriched to different levels and mixed, can be statistically separated with the Chip-SIP method (FIG. 9). A one way ANOVA analyzing the two populations of data is significant (p<0.0001). These experiments prove that unlabeled taxa do not show isotopic signal in NanoSIMS, and that the Chip-SIP method is quantitative (e.g. proving one taxon is more enriched than another).

Additionally, the experiments of FIG. 9 demonstrates that unlabeled taxa do not show isotopic signal in the NanoSIMS analysis of their RNA hybridized to an ITO microarray, and the Chip-SIP method is quantitative (e.g. one taxon is more enriched than another).

Example 6 Use of Chip-Sip to Identify Resource Utilization in Complex Microbial Communities

The Chip-SIP method of analyzing isotopic or elementally labeled RNA fragments on a high density ITO microarray, can be particularly useful when applied to naturally occurring environmental microbes in which a 16S rRNA and 18S rRNA microarray for common marine microbial taxa (bacteria, archaea, and protists) has been designed to target specific phylotypes (approximately at the species/genus level). In such cases, the technique allows simultaneous identification of a taxa's identity and its physiology.

Currently little is known about organic carbon incorporation patterns in marine and estuarine environments, partly because the dominant organisms are uncultured and cannot be directly interrogated in the laboratory. Applicants used the Chip-SIP method to test whether different taxa incorporate amino acids, fatty acids, and starch for their carbon growth requirements.

A Target taxa selection was performed by PhyloChip analysis and de novo probe design. RNA extracts from SF Bay SIP experiment samples were treated with DNAse I and reverse-transcribed to produce cDNA using the Genechip Expression 3′ amplification one-cycle cDNA synthesis kit (Affymetrix). The cDNA was PCR amplified with bacterial and archaeal primers, fragmented, fluorescently labeled, and hybridized to the G2 PhyloChip (6). Taxa (16S operating taxonomic units, OTU) considered to be present in the samples were identified based on 90% of the probes for that taxon being responsive, defined as the signal of the perfect match probe >1.3 times the signal from the mismatch probe. From approximately 1500 positively identified taxa, we chose a subset of 100 taxa commonly found in marine environments to target with chip-SIP. We also did not target OTUs previously identified from soil, sewage, and bioreactors as our goal was to characterize the activity of marine microorganisms. Using the Greengenes database (18) implemented in ARB (19), Applicants designed 25 probes (25 by long), to create a ‘probe set’ for each taxon (see SEQ ID NO: 1 to SEQ ID NO: 2805 of the annexed Sequence Listing incorporated herein by reference in its entirety), as well as general probes for the three domains of life. Probes for single laboratory strains (Pseudomonas stutzeri, Bacillus cereus, and Vibrio cholerae) were also designed with ARB (SEQ ID NO: 1 to SEQ ID NO: 2805 of the annexed Sequence Listing incorporated herein by reference in its entirety). Sequences of the probes are also reported in the following table

TABLE 1 list of probes specific for laboratory bacterial strains SEQUENCE_ID PROBE_SEQUENCE SEQUENCE_ID PROBE_SEQUENCE SEQUENCE_ID PROBE_SEQUENCE Pstutzeri_1 TAACCGTCCCCCCGAAG Vcholerae_1 AACTTAACCACCTTC Bcereus_1 TCCACCTCGCGGTCTT GTTAGACT CTCCCTACTG GCAGCTCTT Pstutzeri_2 GGTAACCGTCCCCCCGA Vcholerae_2 GTAGGTAACGTCAA Bcereus_2 GCCTTTCAATTTCGAA AGGTTAGA ATGATTAAGGT CCATGCGGT Pstutzeri_3 TGGTAACCGTCCCCCCG Vcholerae_3 TGTAGGTAACGTCA Bcereus_3 CTCTTAATCCATTCGC AAGGTTAG AATGATTAAGG TCGACTTGC Pstutzeri_4 GTAACCGTCCCCCCGAA Vcholerae_4 TAACTTAACCACCTT Bcereus_4 CCACCTCGCGGTCTTG GGTTAGAC CCTCCCTACT CAGCTCTTT Pstutzeri_5 ACTCCGTGGTAACCGTC Vcholerae_5 ACTTAACCACCTTCC Bcereus_5 CTCTGCTCCCGAAGG CCCCCGAA TCCCTACTGA AGAAGCCCTA Pstutzeri_6 CACTCCGTGGTAACCGT Vcholerae_6 TTAACTTAACCACCT Bcereus_6 CCGCCTTTCAATTTCG CCCCCCGA TCCTCCCTAC AACCATGCG Pstutzeri_7 TCACTCCGTGGTAACCG Vcholerae_7 TAAGGTATTAACTTA Bcereus_7 TCTGCTCCCGAAGGA TCCCCCCG ACCACCTTCC GAAGCCCTAT Pstutzeri_8 ACCGTCCCCCCGAAGGT Vcholerae_8 CTGTAGGTAACGTC Bcereus_8 ACCTGTCACTCTGCTC TAGACTAG AAATGATTAAG CCGAAGGAG Pstutzeri_9 ATCACTCCGTGGTAACC Vcholerae_9 CTTAACCACCTTCCT Bcereus_9 GCTCTTAATCCATTCG GTCCCCCC CCCTACTGAA CTCGACTTG Pstutzeri_10 CCGTGGTAACCGTCCCC Vcholerae_10 ATTAACTTAACCAC Bcereus_10 CGCCTTTCAATTTCGA CCGAAGGT CTTCCTCCCTA ACCATGCGG Pstutzeri_11 CTCCGTGGTAACCGTCC Vcholerae_11 AAGGTATTAACTTA Bcereus_11 ACTCTGCTCCCGAAG CCCCGAAG ACCACCTTCCT GAGAAGCCCT Pstutzeri_12 CCGTCCCCCCGAAGGTT Vcholerae_12 TTAACCACCTTCCTC Bcereus_12 GCTCCCGAAGGAGAA AGACTAGC CCTACTGAAA GCCCTATCTC Pstutzeri_13 CCACCACCCTCTGCCAT Vcholerae_13 CTTCTGTAGGTAACG Bcereus_13 TCACTCTGCTCCCGAA ACTCTAGC TCAAATGATT GGAGAAGCC Pstutzeri_14 TCCACCACCCTCTGCCA Vcholerae_14 TATTAACTTAACCAC Bcereus_14 TCTTAATCCATTCGCT TACTCTAG CTTCCTCCCT CGACTTGCA Pstutzeri_15 TTCCACCACCCTCTGCC Vcholerae_15 ACGACGTACTTTGTG Bcereus_15 CTGCTCCCGAAGGAG ATACTCTA AGATTCGCTC AAGCCCTATC Pstutzeri_16 AATTCCACCACCCTCTG Vcholerae_16 TACGACGTACTTTGT Bcereus_16 TAATCCATTCGCTCGA CCATACTC GAGATTCGCT CTTGCATGT Pstutzeri_17 AAATTCCACCACCCTCT Vcholerae_17 ACTACGACGTACTTT Bcereus_17 CACTCTGCTCCCGAA GCCATACT GTGAGATTCG GGAGAAGCCC Pstutzeri_18 GAAATTCCACCACCCTC Vcholerae_18 CTACGACGTACTTTG Bcereus_18 GGTCTTGCAGCTCTTT TGCCATAC TGAGATTCGC GTACCGTCC Pstutzeri_19 ATTCCACCACCCTCTGC Vcholerae_19 GACTACGACGTACT Bcereus_19 TGCTCCCGAAGGAGA CATACTCT TTGTGAGATTC AGCCCTATCT Pstutzeri_20 GGAAATTCCACCACCCT Vcholerae_20 AGGTATTAACTTAA Bcereus_20 CTTAATCCATTCGCTC CTGCCATA CCACCTTCCTC GACTTGCAT Pstutzeri_21 CAGGAAATTCCACCACC Vcholerae_21 GGTATTAACTTAACC Bcereus_21 TTAATCCATTCGCTCG CTCTGCCA ACCTTCCTCC ACTTGCATG Pstutzeri_22 AGGAAATTCCACCACCC Vcholerae_22 GTATTAACTTAACCA Bcereus_22 CTCCCGAAGGAGAAG TCTGCCAT CCTTCCTCCC CCCTATCTCT Pstutzeri_23 CAGTGTCAGTATTAGCC Vcholerae_23 CGCGGTATCGCTGC Bcereus_23 GTCACTCTGCTCCCGA CAGGTGGT CCTCTGTATAC AGGAGAAGC Pstutzeri_24 TCAGTATTAGCCCAGGT Vcholerae_24 TCGCGGTATCGCTG Bcereus_24 CACCTCGCGGTCTTGC GGTCGCCT CCCTCTGTATA AGCTCTTTG Pstutzeri_25 TCAGTGTCAGTATTAGC Vcholerae_25 CTTGTCAGTTTCAAA Bcereus_25 GTCTTGCAGCTCTTTG CCAGGTGG TGCGATTCCT TACCGTCCA Pstutzeri_26 TGTCAGTATTAGCCCAG Vcholerae_26 TTGTCAGTTTCAAAT Bcereus_26 TGTCACTCTGCTCCCG GTGGTCGC GCGATTCCTA AAGGAGAAG Pstutzeri_27 GTCAGTATTAGCCCAGG Vcholerae_27 GCGGTATCGCTGCC Bcereus_27 TCCCGAAGGAGAAGC TGGTCGCC CTCTGTATACG CCTATCTCTA Pstutzeri_28 CCTCAGTGTCAGTATTA Vcholerae_28 CCTGGGCATATCCG Bcereus_28 CGGTCTTGCAGCTCTT GCCCAGGT GTAGCGCAAGG TGTACCGTC Pstutzeri_29 CTCAGTGTCAGTATTAG Vcholerae_29 TCCCACCTGGGCAT Bcereus_29 TCAAAATGTTATCCG CCCAGGTG ATCCGGTAGCG GTATTAGCCC Pstutzeri_30 ACCTCAGTGTCAGTATT Vcholerae_30 GGCATATCCGGTAG Bcereus_30 CCTGTCACTCTGCTCC AGCCCAGG CGCAAGGCCCG CGAAGGAGA Pstutzeri_31 GTGTCAGTATTAGCCCA Vcholerae_31 ACCTGGGCATATCC Bcereus_31 TTCAAAATGTTATCCG GGTGGTCG GGTAGCGCAAG GTATTAGCC Pstutzeri_32 AGTGTCAGTATTAGCCC Vcholerae_32 CTGGGCATATCCGG Bcereus_32 CACCTGTCACTCTGCT AGGTGGTC TAGCGCAAGGC CCCGAAGGA Pstutzeri_33 CACCTCAGTGTCAGTAT Vcholerae_33 CCCACCTGGGCATA Bcereus_33 TCTTGCAGCTCTTTGT TAGCCCAG TCCGGTAGCGC ACCGTCCAT Pstutzeri_34 GCACCTCAGTGTCAGTA Vcholerae_34 TGGGCATATCCGGT Bcereus_34 CTGTCACTCTGCTCCC TTAGCCCA AGCGCAAGGCC GAAGGAGAA Pstutzeri_35 CGCACCTCAGTGTCAGT Vcholerae_35 GGGCATATCCGGTA Bcereus_35 GCGGTCTTGCAGCTCT ATTAGCCC GCGCAAGGCCC TTGTACCGT Pstutzeri_36 TTCGCACCTCAGTGTCA Vcholerae_36 GCATATCCGGTAGC Bcereus_36 CGCGGTCTTGCAGCT GTATTAGC GCAAGGCCCGA CTTTGTACCG Pstutzeri_37 TCGCACCTCAGTGTCAG Vcholerae_37 CCACCTGGGCATAT Bcereus_37 AGCTCTTAATCCATTC TATTAGCC CCGGTAGCGCA GCTCGACTT Pstutzeri_38 AATGCGTTAGCTGCGCC Vcholerae_38 CATATCCGGTAGCG Bcereus_38 ACCTCGCGGTCTTGC ACTAAGAT CAAGGCCCGAA AGCTCTTTGT Pstutzeri_39 CACCACCCTCTGCCATA Vcholerae_39 CACCTGGGCATATC Bcereus_39 TCGCGGTCTTGCAGCT CTCTAGCT CGGTAGCGCAA CTTTGTACC Pstutzeri_40 ACACAGGAAATTCCACC Vcholerae_40 ATATCCGGTAGCGC Bcereus_40 CTCGCGGTCTTGCAG ACCCTCTG AAGGCCCGAAG CTCTTTGTAC Pstutzeri_41 CACAGGAAATTCCACCA Vcholerae_41 TATCCGGTAGCGCA Bcereus_41 TGCACCACCTGTCACT CCCTCTGC AGGCCCGAAGG CTGCTCCCG Pstutzeri_42 ACAGGAAATTCCACCAC Vcholerae_42 TCCCCTGCTTTGCTC Bcereus_42 ATGCACCACCTGTCA CCTCTGCC TTGCGAGGTT CTCTGCTCCC Pstutzeri_43 GAAGTTAGCCGGTGCTT Vcholerae_43 GTCCCCTGCTTTGCT Bcereus_43 ACCACCTGTCACTCTG ATTCTGTC CTTGCGAGGT CTCCCGAAG Pstutzeri_44 GAAAGTTCTCTGCATGT Vcholerae_44 CCGAAGGTCCCCTG Bcereus_44 GCACCACCTGTCACT CAAGGCCT CTTTGCTCTTG CTGCTCCCGA Pstutzeri_45 AAAGTTCTCTGCATGTC Vcholerae_45 GGTCCCCTGCTTTGC Bcereus_45 CACCACCTGTCACTCT AAGGCCTG TCTTGCGAGG GCTCCCGAA Pstutzeri_46 TCTCTGCATGTCAAGGC Vcholerae_46 GAAGGTCCCCTGCT Bcereus_46 CATAAGAGCAAGCTC CTGGTAAG TTGCTCTTGCG TTAATCCATT Pstutzeri_47 GTTCTCTGCATGTCAAG Vcholerae_47 AGGTCCCCTGCTTTG Bcereus_47 CCTCGCGGTCTTGCA GCCTGGTA CTCTTGCGAG GCTCTTTGTA Pstutzeri_48 AGTTCTCTGCATGTCAA Vcholerae_48 CGAAGGTCCCCTGC Bcereus_48 CCACCTGTCACTCTGC GGCCTGGT TTTGCTCTTGC TCCCGAAGG Pstutzeri_49 AAGTTCTCTGCATGTCA Vcholerae_49 AAGGTCCCCTGCTTT Bcereus_49 AAGAGCAAGCTCTTA AGGCCTGG GCTCTTGCGA ATCCATTCGC Pstutzeri_50 CTCTGCATGTCAAGGCC Vcholerae_50 CCCCTGCTTTGCTCT Bcereus_50 CGAAGGAGAAGCCCT TGGTAAGG TGCGAGGTTA ATCTCTAGGG Pstutzeri_51 TTCTCTGCATGTCAAGG Vcholerae_51 TCTAGGGCACAACC Bcereus_51 AAGCTCTTAATCCATT CCTGGTAA TCCAAGTAGAC CGCTCGACT Pstutzeri_52 CTGCATGTCAAGGCCTG Vcholerae_52 CTCTAGGGCACAAC Bcereus_52 TAAGAGCAAGCTCTT GTAAGGTT CTCCAAGTAGA AATCCATTCG Pstutzeri_53 TCTGCATGTCAAGGCCT Vcholerae_53 CCTCTAGGGCACAA Bcereus_53 ATAAGAGCAAGCTCT GGTAAGGT CCTCCAAGTAG TAATCCATTC Pstutzeri_54 TACTCACCCGTCCGCCG Vcholerae_54 CGACGTACTTTGTGA Bcereus_54 CCCGAAGGAGAAGCC CTGAATCA GATTCGCTCC CTATCTCTAG Pstutzeri_55 CAGCCATGCAGCACCTG Vcholerae_55 TCAGTTTCAAATGCG Bcereus_55 CCGAAGGAGAAGCCC TGTCAGAG ATTCCTAGGT TATCTCTAGG Pstutzeri_56 ACAGCCATGCAGCACCT Vcholerae_56 AGTTTCAAATGCGA Bcereus_56 CAAGCTCTTAATCCAT GTGTCAGA TTCCTAGGTTG TCGCTCGAC Pstutzeri_57 GACAGCCATGCAGCAC Vcholerae_57 TGTCAGTTTCAAATG Bcereus_57 AAGGAGAAGCCCTAT CTGTGTCAG CGATTCCTAG CTCTAGGGTT Pstutzeri_58 CTGGAAAGTTCTCTGCA Vcholerae_58 GTTTCAAATGCGATT Bcereus_58 GAAGGAGAAGCCCTA TGTCAAGG CCTAGGTTGA TCTCTAGGGT Pstutzeri_59 TGGAAAGTTCTCTGCAT Vcholerae_59 CTAGCTTGTCAGTTT Bcereus_59 GCAAGCTCTTAATCC GTCAAGGC CAAATGCGAT ATTCGCTCGA Pstutzeri_60 GGAAAGTTCTCTGCATG Vcholerae_60 TCTAGCTTGTCAGTT Bcereus_60 AGCAAGCTCTTAATC TCAAGGCC TCAAATGCGA CATTCGCTCG eukaryotes_1 AACTAAGAACGGCCAT sphingo_1_1 CCAGCTTGCTGCCCT alpha_7_1 ACATCTCTGTTTCCGC GCACCACCA CTGTACCATC GACCGGGAT eukaryotes_2 CACCAACTAAGAACGG sphingo_1_2 CAGCTTGCTGCCCTC alpha_7_2 CATCTCTGTTTCCGCG CCATGCACC TGTACCATCC ACCGGGATG eukaryotes_3 CCAACTAAGAACGGCC sphingo_1_3 GCCAGCTTGCTGCC alpha_7_3 AAACATCTCTGTTTCC ATGCACCAC CTCTGTACCAT GCGACCGGG eukaryotes_4 ACCAACTAAGAACGGC sphingo_1_4 TGCCAGCTTGCTGCC alpha_7_4 GAAACATCTCTGTTTC CATGCACCA CTCTGTACCA CGCGACCGG eukaryotes_5 CCACCAACTAAGAACG sphingo_1_5 CAGTTTACGACCCA alpha_7_5 AGAAACATCTCTGTTT GCCATGCAC GAGGGCTGTCT CCGCGACCG eukaryotes_6 TCCACCAACTAAGAACG sphingo_1_6 AGCAGTTTACGACC alpha_7_6 AACATCTCTGTTTCCG GCCATGCA CAGAGGGCTGT CGACCGGGA eukaryotes_7 CAACTAAGAACGGCCA sphingo_1_7 AAGCAGTTTACGAC alpha_7_7 ATCTCTGTTTCCGCGA TGCACCACC CCAGAGGGCTG CCGGGATGT eukaryotes_8 CTCCACCAACTAAGAAC sphingo_1_8 GCAGTTTACGACCC alpha_7_8 CTGCCACTGTCCACCC GGCCATGC AGAGGGCTGTC GAGCAAGCT eukaryotes_9 TTGGAGCTGGAATTACC sphingo_1_9 CCGCCTACCTCTAGT alpha_7_9 CCACTGTCCACCCGA GCGGCTGC GTATTCAAGC GCAAGCTCGG eukaryotes_10 TCAGGCTCCCTCTCCGG sphingo_1_10 CATTCCGCCTACCTC alpha_7_10 GCCACTGTCCACCCG AATCGAAC TAGTGTATTC AGCAAGCTCG eukaryotes_11 TCTCAGGCTCCCTCTCC sphingo_1_11 TGCTGTTGCCAGCTT alpha_7_11 AAACCTCTAGGTAGA GGAATCGA GCTGCCCTCT TACCCACGCG eukaryotes_12 TATTGGAGCTGGAATTA sphingo_1_12 GCTGTTGCCAGCTTG alpha_7_12 CCAAACCTCTAGGTA CCGCGGCT CTGCCCTCTG GATACCCACG eukaryotes_13 ATTGGAGCTGGAATTAC sphingo_1_13 TTGCTGTTGCCAGCT alpha_7_13 GTCTGCCACTGTCCAC CGCGGCTG TGCTGCCCTC CCGAGCAAG eukaryotes_14 TAAGAACGGCCATGCA sphingo_1_14 CACATTCCGCCTACC alpha_7_14 CCACCCGAGCAAGCT CCACCACCC TCTAGTGTAT CGGGTTTCTC eukaryotes_15 CTAAGAACGGCCATGC sphingo_1_15 GTCACATTCCGCCTA alpha_7_15 TGCCACTGTCCACCC ACCACCACC CCTCTAGTGT GAGCAAGCTC eukaryotes_16 ACTAAGAACGGCCATG sphingo_1_16 TCACATTCCGCCTAC alpha_7_16 CAAACCTCTAGGTAG CACCACCAC CTCTAGTGTA ATACCCACGC eukaryotes_17 CTCAGGCTCCCTCTCCG sphingo_1_17 GCTTTCGCTTAGCCG alpha_7_17 TCTGCCACTGTCCACC GAATCGAA CTAACTGTGT CGAGCAAGC eukaryotes_18 CTATTGGAGCTGGAATT sphingo_1_18 CGCTTTCGCTTAGCC alpha_7_18 CGTCTGCCACTGTCCA ACCGCGGC GCTAACTGTG CCCGAGCAA eukaryotes_19 AAGAACGGCCATGCAC sphingo_1_19 TCGCTTAGCCGCTA alpha_7_19 TCCGAACCTCTAGGT CACCACCCA ACTGTGTATCG AGATTCCCAC eukaryotes_20 AGGCTCCCTCTCCGGAA sphingo_1_20 TTCGCTTAGCCGCTA alpha_7_20 CACCCGAGCAAGCTC TCGAACCC ACTGTGTATC GGGTTTCTCG eukaryotes_21 CAGGCTCCCTCTCCGGA sphingo_1_21 CTTTCGCTTAGCCGC alpha_7_21 ACCCGAGCAAGCTCG ATCGAACC TAACTGTGTA GGTTTCTCGT eukaryotes_22 GCTATTGGAGCTGGAAT sphingo_1_22 CTGTTGCCAGCTTGC alpha_7_22 CCGTCTGCCACTGTCC TACCGCGG TGCCCTCTGT ACCCGAGCA eukaryotes_23 TTTCTCAGGCTCCCTCT sphingo_1_23 GTTGCCAGCTTGCTG alpha_7_23 CCGAACCTCTAGGTA CCGGAATC CCCTCTGTAC GATTCCCACG eukaryotes_24 GGCTCCCTCTCCGGAAT sphingo_1_24 TGTTGCCAGCTTGCT alpha_7_24 AACCTCTAGGTAGAT CGAACCCT GCCCTCTGTA ACCCACGCGT eukaryotes_25 CACTCCACCAACTAAGA sphingo_1_25 CGCTTAGCCGCTAA alpha_7_25 TCCACCCGAGCAAGC ACGGCCAT CTGTGTATCGC TCGGGTTTCT archaea_1 TTGTGGTGCTCCCCCGC sphingo_2_1 TCACCGCTACACCC alpha_8_1 CTGCCACTGTCCACCC CAATTCCT CTCGTTCCGCT GAGCAAGCT archaea_2 TGCTCCCCCGCCAATTC sphingo_2_2 GCTATCGGCGTTCTG alpha_8_2 GCCACTGTCCACCCG CTTTAAGT AGGAATATCT AGCAAGCTCG archaea_3 CGCGCCTGCTGCGCCCC sphingo_2_3 CGCTATCGGCGTTCT alpha_8_3 AAACCTCTAGGTAGA GTAGGGCC GAGGAATATC TACCCACGCG archaea_4 TTTCGCGCCTGCTGCGC sphingo_2_4 TCGGCGTTCTGAGG alpha_8_4 GTCTGCCACTGTCCAC CCCGTAGG AATATCTATGC CCGAGCAAG archaea_5 TCGCGCCTGCTGCGCCC sphingo_2_5 TTCACCGCTACACCC alpha_8_5 CCACCCGAGCAAGCT CGTAGGGC CTCGTTCCGC CGGGTTTCTC archaea_6 TTCGCGCCTGCTGCGCC sphingo_2_6 TTTCACCGCTACACC alpha_8_6 TGCCACTGTCCACCC CCGTAGGG CCTCGTTCCG GAGCAAGCTC archaea_7 GTGCTCCCCCGCCAATT sphingo_2_7 TCGCTTTCGCTTAGC alpha_8_7 CAAACCTCTAGGTAG CCTTTAAG CACTTACTGT ATACCCACGC archaea_8 GCTCCCCCGCCAATTCC sphingo_2_8 CGGCGTTCTGAGGA alpha_8_8 TCTGCCACTGTCCACC TTTAAGTT ATATCTATGCA CGAGCAAGC archaea_9 GCGCCTGCTGCGCCCCG sphingo_2_9 AACTAATGGGGCGC alpha_8_9 ACTGTCCACCCGAGC TAGGGCCT ATGCCCATCCC AAGCTCGGGT archaea_10 CGCCTGCTGCGCCCCGT sphingo_2_10 CGCTTAGCCACTTAC alpha_8_10 CCACTGTCCACCCGA AGGGCCTG TGTATATCGC GCAAGCTCGG archaea_11 GCCTGCTGCGCCCCGTA sphingo_2_11 ACTAATGGGGCGCA alpha_8_11 CCAAACCTCTAGGTA GGGCCTGG TGCCCATCCCG GATACCCACG archaea_12 GTTTCGCGCCTGCTGCG sphingo_2_12 GCCATGCAGCACCT alpha_8_12 GTCCACCCGAGCAAG CCCCGTAG CGTATAGAGTC CTCGGGTTTC archaea_13 CTTGTGGTGCTCCCCCG sphingo_2_13 AGCCATGCAGCACC alpha_8_13 TCCACCCGAGCAAGC CCAATTCC TCGTATAGAGT TCGGGTTTCT archaea_14 GGTTTCGCGCCTGCTGC sphingo_2_14 CAGCCATGCAGCAC alpha_8_14 CGTCTGCCACTGTCCA GCCCCGTA CTCGTATAGAG CCCGAGCAA archaea_15 AGGTTTCGCGCCTGCTG sphingo_2_15 ACAGCCATGCAGCA alpha_8_15 TGTCCACCCGAGCAA CGCCCCGT CCTCGTATAGA GCTCGGGTTT archaea_16 CCTGCTGCGCCCCGTAG sphingo_2_16 CTTACTTGTCAGCCT alpha_8_16 ACCTCTAGGTAGATA GGCCTGGA ACGCACCCTT CCCACGCGTT archaea_17 CCTTGTGGTGCTCCCCC sphingo_2_17 ACTTACTTGTCAGCC alpha_8_17 CACCCGAGCAAGCTC GCCAATTC TACGCACCCT GGGTTTCTCG archaea_18 CCCCTTGTGGTGCTCCC sphingo_2_18 CCACTGACTTACTTG alpha_8_18 TAAGCCGTCTGCCAC CCGCCAAT TCAGCCTACG TGTCCACCCG archaea_19 ACCCCTTGTGGTGCTCC sphingo_2_19 CACTGACTTACTTGT alpha_8_19 ACCCGAGCAAGCTCG CCCGCCAA CAGCCTACGC GGTTTCTCGT archaea_20 CCCTTGTGGTGCTCCCC sphingo_2_20 GACTTACTTGTCAGC alpha_8_20 CCGTCTGCCACTGTCC CGCCAATT CTACGCACCC ACCCGAGCA archaea_21 CACCCCTTGTGGTGCTC sphingo_2_21 TGACTTACTTGTCAG alpha_8_21 AACCTCTAGGTAGAT CCCCGCCA CCTACGCACC ACCCACGCGT archaea_22 GTGTGTGCAAGGAGCA sphingo_2_22 CTGACTTACTTGTCA alpha_8_22 GCCGTCTGCCACTGTC GGGACGTAT GCCTACGCAC CACCCGAGC archaea_23 TGTGTGCAAGGAGCAG sphingo_2_23 ACTGACTTACTTGTC alpha_8_23 TAGATACCCACGCGT GGACGTATT AGCCTACGCA TACTAAGCCG archaea_24 CGGTGTGTGCAAGGAG sphingo_2_24 CCATGCAGCACCTC alpha_8_24 AAGCCGTCTGCCACT CAGGGACGT GTATAGAGTCC GTCCACCCGA archaea_25 GGTGTGTGCAAGGAGC sphingo_2_25 CGCTTTCGCTTAGCC alpha_8_25 GTAGATACCCACGCG AGGGACGTA ACTTACTGTA TTACTAAGCC bacteria_1 CGCTCGTTGCGGGACTT sphingo_3_1 AGTTTCCTCGAGCTA alpha_9_1 TCTCCGGCGACCAAA AACCCAAC TGCCCCAGTT CTCCCCATGT bacteria_2 GCTCGTTGCGGGACTTA sphingo_3_2 CGAGTTTCCTCGAG alpha_9_2 CGTCTCCGGCGACCA ACCCAACA CTATGCCCCAG AACTCCCCAT bacteria_3 GACTTAACCCAACATCT sphingo_3_3 GTTTCCTCGAGCTAT alpha_9_3 GTCTCCGGCGACCAA CACGACAC GCCCCAGTTA ACTCCCCATG bacteria_4 AACCCAACATCTCACGA sphingo_3_4 TTTCCTCGAGCTATG alpha_9_4 CTCCGGCGACCAAAC CACGAGCT CCCCAGTTAA TCCCCATGTC bacteria_5 ACTTAACCCAACATCTC sphingo_3_5 GAGTTTCCTCGAGCT alpha_9_5 GCCGTCTCCGGCGAC ACGACACG ATGCCCCAGT CAAACTCCCC bacteria_6 TAACCCAACATCTCACG sphingo_3_6 TCGAGTTTCCTCGAG alpha_9_6 TCCGGCGACCAAACT ACACGAGC CTATGCCCCA CCCCATGTCA bacteria_7 GGACTTAACCCAACATC sphingo_3_7 TTACCGAAGTAAAT alpha_9_7 CCGTCTCCGGCGACC TCACGACA GCTGCCCCTCG AAACTCCCCA bacteria_8 CTTAACCCAACATCTCA sphingo_3_8 GTTGCTAGCTCTACC alpha_9_8 CGCCGTCTCCGGCGA CGACACGA CTAAACAGCG CCAAACTCCC bacteria_9 TTAACCCAACATCTCAC sphingo_3_9 AGTTGCTAGCTCTAC alpha_9_9 CCGGCGACCAAACTC GACACGAG CCTAAACAGC CCCATGTCAA bacteria_10 GGGACTTAACCCAACAT sphingo_3_10 CCATTTACCGAAGT alpha_9_10 ACGCCGTCTCCGGCG CTCACGAC AAATGCTGCCC ACCAAACTCC bacteria_11 ACTGCTGCCTCCCGTAG sphingo_3_11 CATTTACCGAAGTA alpha_9_11 GAACTGAAGGACGCC GAGTCTGG AATGCTGCCCC GTCTCCGGCG bacteria_12 CTCGTTGCGGGACTTAA sphingo_3_12 CGCCATTTACCGAA alpha_9_12 CGGCGACCAAACTCC CCCAACAT GTAAATGCTGC CCATGTCAAG bacteria_13 CGGGACTTAACCCAACA sphingo_3_13 TTGCTAGCTCTACCC alpha_9_13 GTCGGCAGCCTCCCTT TCTCACGA TAAACAGCGC ACGGGTCGG bacteria_14 TCGTTGCGGGACTTAAC sphingo_3_14 GCCATTTACCGAAG alpha_9_14 GGTCGGCAGCCTCCC CCAACATC TAAATGCTGCC TTACGGGTCG bacteria_15 CGTTGCGGGACTTAACC sphingo_3_15 TCCTCGAGCTATGCC alpha_9_15 TGGTCGGCAGCCTCC CAACATCT CCAGTTAAAG CTTACGGGTC bacteria_16 GTTGCGGGACTTAACCC sphingo_3_16 TTCCTCGAGCTATGC alpha_9_16 TCGGCAGCCTCCCTTA AACATCTC CCCAGTTAAA CGGGTCGGC bacteria_17 TGCGGGACTTAACCCAA sphingo_3_17 CAGTTGCTAGCTCTA alpha_9_17 GTGGTCGGCAGCCTC CATCTCAC CCCTAAACAG CCTTACGGGT bacteria_18 TTGCGGGACTTAACCCA sphingo_3_18 TGCTAGCTCTACCCT alpha_9_18 CGTGGTCGGCAGCCT ACATCTCA AAACAGCGCC CCCTTACGGG bacteria_19 CCCCACTGCTGCCTCCC sphingo_3_19 CCGTCAGATCCTCTC alpha_9_19 CGGCAGCCTCCCTTA GTAGGAGT GCAAGAGTAT CGGGTCGGCG bacteria_20 GCGGGACTTAACCCAAC sphingo_3_20 CTCGAGCTATGCCC alpha_9_20 CGCACCTCAGCGTCA ATCTCACG CAGTTAAAGGT GATCCGGACC bacteria_21 GCGCTCGTTGCGGGACT sphingo_3_21 CCTCGAGCTATGCC alpha_9_21 AATCTTTCCCCCTCAG TAACCCAA CCAGTTAAAGG GGCTTATCC bacteria_22 TCCCCACTGCTGCCTCC sphingo_3_22 CCAGTTGCTAGCTCT alpha_9_22 CGAACTGAAGGACGC CGTAGGAG ACCCTAAACA CGTCTCCGGC bacteria_23 ATTCCCCACTGCTGCCT sphingo_3_23 TCTCTCTGGATGTCA alpha_9_23 TACCCTCTTCCGATCT CCCGTAGG CTCGCATTCT CTAGCCTAG bacteria_24 TTCCCCACTGCTGCCTC sphingo_3_24 ATCTCTCTGGATGTC alpha_9_24 GGCAGCCTCCCTTAC CCGTAGGA ACTCGCATTC GGGTCGGCGA bacteria_25 ACCCAACATCTCACGAC sphingo_3_25 CTCTCTGGATGTCAC alpha_9_25 GGCGACCAAACTCCC ACGAGCTG TCGCATTCTA CATGTCAAGG rhodobacter_1 TCCCCAGGCGGAATGCT caldithrix_1_1 ACTCCTCAGAGCTTC alpha_10_1 CGCACCTGAGCGTCA TAATCCGT ATCGCCCACG GATCTAGTCC rhodobacter_2 CTCCCCAGGCGGAATGC caldithrix_1_2 CTCCTCAGAGCTTCA alpha_10_2 TCGCACCTGAGCGTC TTAATCCG TCGCCCACGC AGATCTAGTC rhodobacter_3 ACTCCCCAGGCGGAATG caldithrix_1_3 AACAGGGCTTTACA alpha_10_3 CGTGCGCCACTCTCC CTTAATCC CTCCTCAGAGC AGTTCCCGAA rhodobacter_4 CCCCAGGCGGAATGCTT caldithrix_1_4 CACTCCTCAGAGCTT alpha_10_4 CCGTGCGCCACTCTCC AATCCGTT CATCGCCCAC AGTTCCCGA rhodobacter_5 CACCGCGTCATGCTGTT caldithrix_1_5 ACAGGGCTTTACAC alpha_10_5 CCCGTGCGCCACTCTC ACGCGATT TCCTCAGAGCT CAGTTCCCG rhodobacter_6 TCACCGCGTCATGCTGT caldithrix_1_6 ACACTCCTCAGAGC alpha_10_6 CTGAGCGTCAGATCT TACGCGAT TTCATCGCCCA AGTCCAGGTG rhodobacter_7 ATTCACCGCGTCATGCT caldithrix_1_7 CAGGGCTTTACACT alpha_10_7 TTCGCACCTGAGCGT GTTACGCG CCTCAGAGCTT CAGATCTAGT rhodobacter_8 TAGCCCAACCCGTAAGG caldithrix_1_8 TCCTCAGAGCTTCAT alpha_10_8 CCAACCGTTATCCCCC GCCATGAG CGCCCACGCG ACTAAGAGG rhodobacter_9 TACTCCCCAGGCGGAAT caldithrix_1_9 TACACTCCTCAGAG alpha_10_9 TCCAACCGTTATCCCC GCTTAATC CTTCATCGCCC CACTAAGAG rhodobacter_10 AGCCCAACCCGTAAGG caldithrix_1_10 CTTCTGGCACTCCCG alpha_10_10 GCACCTGAGCGTCAG GCCATGAGG ACTTTCATGG ATCTAGTCCA rhodobacter_11 GCCCAACCCGTAAGGG caldithrix_1_11 TTACACTCCTCAGA alpha_10_11 CCTGAGCGTCAGATC CCATGAGGA GCTTCATCGCC TAGTCCAGGT rhodobacter_12 AACGTATTCACCGCGTC caldithrix_1_12 CCTCAGAGCTTCATC alpha_10_12 GTTAGCCCACCGTCTT ATGCTGTT GCCCACGCGG CGGGTAAAA rhodobacter_13 TTCACCGCGTCATGCTG caldithrix_1_13 CCTAACAGGGCTTT alpha_10_13 CCACTAAGAGGTAGG TTACGCGA ACACTCCTCAG TCCCCACGCG rhodobacter_14 ACCGCGTCATGCTGTTA caldithrix_1_14 AGGGCTTTACACTC alpha_10_14 TGAGCGTCAGATCTA CGCGATTA CTCAGAGCTTC GTCCAGGTGG rhodobacter_15 GCGGAATGCTTAATCCG caldithrix_1_15 TTCTGGCACTCCCGA alpha_10_15 ATCCCCCACTAAGAG TTAGGTGT CTTTCATGGC GTAGGTCCCC rhodobacter_16 CCAACCCGTAAGGGCC caldithrix_1_16 TCTGGCACTCCCGA alpha_10_16 GCTTTCACCCCTGACT ATGAGGACT CTTTCATGGCG GGCAAGACC rhodobacter_17 CCCAGGCGGAATGCTTA caldithrix_1_17 CTCAGAGCTTCATC alpha_10_17 CAACCGTTATCCCCC ATCCGTTA GCCCACGCGGC ACTAAGAGGT rhodobacter_18 CCCAACCCGTAAGGGCC caldithrix_1_18 GGGCTTTACACTCCT alpha_10_18 GCGTCACCGAAATCG ATGAGGAC CAGAGCTTCA AAATCCCGAC rhodobacter_19 AATTCCACTCACCTCTC caldithrix_1_19 CTCCTAACAGGGCT alpha_10_19 TGCGTCACCGAAATC TCGAACTC TTACACTCCTC GAAATCCCGA rhodobacter_20 GAATTCCACTCACCTCT caldithrix_1_20 CTGGCACTCCCGAC alpha_10_20 CGTCACCGAAATCGA CTCGAACT TTTCATGGCGT AATCCCGACA rhodobacter_21 TATTCACCGCGTCATGC caldithrix_1_21 TCAGAGCTTCATCG alpha_10_21 CTGCGTCACCGAAAT TGTTACGC CCCACGCGGCG CGAAATCCCG rhodobacter_22 ACGTATTCACCGCGTCA caldithrix_1_22 ACCTCTACAGCAGT alpha_10_22 TTTCGCACCTGAGCGT TGCTGTTA CCCGAAGGAAG CAGATCTAG rhodobacter_23 GAACGTATTCACCGCGT caldithrix_1_23 CCCTCCTAACAGGG alpha_10_23 CTTTCACCCCTGACTG CATGCTGT TTTTACACTCC GCAAGACCG rhodobacter_24 GGAATTCCACTCACCTC caldithrix_1_24 GGTCGAAACCTCCA alpha_10_24 CTAAAAGGTTAGCCC TCTCGAAC ACACCTAGTGC ACCGTCTTCG rhodobacter_25 GTAGCCCAACCCGTAAG caldithrix_1_25 GTCGAAACCTCCAA alpha_10_25 CCCACTAAGAGGTAG GGCCATGA CACCTAGTGCC GTCCCCACGC margrpA_1 ACGAAGTTAGCCGGTGC chloroflexi_1_1 TCTCCGAGGAGTCG alpha_12_1 CCGTGCGCCACTCTAT TTTCTTGT TTCCAGTTTCC AAATAGCGT margrpA_2 CACGAAGTTAGCCGGTG chloroflexi_1_2 CTCCGAGGAGTCGT alpha_12_2 CCCGTGCGCCACTCT CTTTCTTG TCCAGTTTCCC ATAAATAGCG margrpA_3 GTTACTCACCCGTTCGC chloroflexi_1_3 ACGAATGGGTTTGA alpha_12_3 CCAACCGTTATCCCG CAGTTTAC CACCACCCACA CAGAAAAAGG margrpA_4 TAAGGGACATACTGACT chloroflexi_1_4 CGAATGGGTTTGAC alpha_12_4 CCCGCAGAAAAAGGC TGACATCA ACCACCCACAC AGGTTCCCAC margrpA_5 ATAAGGGACATACTGA chloroflexi_1_5 CTCTCCGAGGAGTC alpha_12_5 ACCGTTATCCCGCAG CTTGACATC GTTCCAGTTTC AAAAAGGCAG margrpA_6 AAGGGACATACTGACTT chloroflexi_1_6 TCCGAGGAGTCGTT alpha_12_6 CAACCGTTATCCCGC GACATCAT CCAGTTTCCCT AGAAAAAGGC margrpA_7 TTACTCACCCGTTCGCC chloroflexi_1_7 GAATGGGTTTGACA alpha_12_7 CGTTTCCAACCGTTAT AGTTTACT CCACCCACACC CCCGCAGAA margrpA_8 CGTTACTCACCCGTTCG chloroflexi_1_8 GCTCTCCGAGGAGT alpha_12_8 CCGCAGAAAAAGGCA CCAGTTTA CGTTCCAGTTT GGTTCCCACG margrpA_9 GCGTTACTCACCCGTTC chloroflexi_1_9 CCGAGGAGTCGTTC alpha_12_9 CGCAGAAAAAGGCAG GCCAGTTT CAGTTTCCCTT GTTCCCACGC margrpA_10 CGCGTTACTCACCCGTT chloroflexi_1_10 CGCTCTCCGAGGAG alpha_12_10 CCGTTATCCCGCAGA CGCCAGTT TCGTTCCAGTT AAAAGGCAGG margrpA_11 ACATACTGACTTGACAT chloroflexi_1_11 AATGGGTTTGACAC alpha_12_11 CGTTATCCCGCAGAA CATCCCCA CACCCACACCT AAAGGCAGGT margrpA_12 TACTGACTTGACATCAT chloroflexi_1_12 CGAGGAGTCGTTCC alpha_12_12 ACCCGTGCGCCACTC CCCCACCT AGTTTCCCTTC TATAAATAGC margrpA_13 GGACATACTGACTTGAC chloroflexi_1_13 AGGAGTCGTTCCAG alpha_12_13 CACCCGTGCGCCACT ATCATCCC TTTCCCTTCAC CTATAAATAG margrpA_14 GACATACTGACTTGACA chloroflexi_1_14 GAGGAGTCGTTCCA alpha_12_14 TCCCGCAGAAAAAGG TCATCCCC GTTTCCCTTCA CAGGTTCCCA margrpA_15 ATACTGACTTGACATCA chloroflexi_1_15 CGCTTTGCGACATG alpha_12_15 GCAGAAAAAGGCAGG TCCCCACC AGCGTCAGGTT TTCCCACGCG margrpA_16 CATACTGACTTGACATC chloroflexi_1_16 TGAGCGTCAGGTTC alpha_12_16 GGAAACCAAACTCCC ATCCCCAC AATGCCAGGGT CATGTCAAGG margrpA_17 AGGGACATACTGACTTG chloroflexi_1_17 ACGCTTTGCGACAT alpha_12_17 CCTCCTGCAAGCAGG ACATCATC GAGCGTCAGGT TTAGCTCACC margrpA_18 GGGACATACTGACTTGA chloroflexi_1_18 TCCCCACGCTTTGCG alpha_12_18 TTTCGCGCCTCAGCGT CATCATCC ACATGAGCGT CAAAATCGG margrpA_19 ACGCGTTACTCACCCGT chloroflexi_1_19 TCAGGTTCAATGCC alpha_12_19 TTCGCGCCTCAGCGTC TCGCCAGT AGGGTACCGCT AAAATCGGA margrpA_20 GCACGAAGTTAGCCGGT chloroflexi_1_20 ATCATCTCGGCCTTC alpha_12_20 ACTCCCCATGTCAAG GCTTTCTT ACGTTCGACT GACTGGTAAG margrpA_21 GGCACGAAGTTAGCCG chloroflexi_1_21 TGCGACATGAGCGT alpha_12_21 GCCTCCTGCAAGCAG GTGCTTTCT CAGGTTCAATG GTTAGCTCAC margrpA_22 TGGCACGAAGTTAGCCG chloroflexi_1_22 ATGAGCGTCAGGTT alpha_12_22 CAGAAAAAGGCAGGT GTGCTTTC CAATGCCAGGG TCCCACGCGT margrpA_23 ACTGACTTGACATCATC chloroflexi_1_23 CACGCTTTGCGACA alpha_12_23 TCCGGCGGACCTTTCC CCCACCTT TGAGCGTCAGG CCCGTAGGG margrpA_24 CTGGCACGAAGTTAGCC chloroflexi_1_24 CATGAGCGTCAGGT alpha_12_24 TATCCCGCAGAAAAA GGTGCTTT TCAATGCCAGG GGCAGGTTCC margrpA_25 ACGATTACTAGCGATTC chloroflexi_1_25 GTAATCATCTCGGC alpha_12_25 CCCCTCTTTCTCCGGC CTGCTTCA CTTCACGTTCG GGACCTTTC vibrionaceae_1 TATCCCCCACATCAGGG chloroflexi_2_1 GGTGACTCCCCTTTC alpha_13_1 TCTAACTGTTCAAGC CAATTTCC AGGTTGCTAC AGCCTGCGAG vibrionaceae_2 CGACATTACTCGCTGGC chloroflexi_2_2 AGGTGACTCCCCTTT alpha_13_2 CTAACTGTTCAAGCA AAACAAGG CAGGTTGCTA GCCTGCGAGC vibrionaceae_3 CCGACATTACTCGCTGG chloroflexi_2_3 CCCTCCCCATTAAGC alpha_13_3 TAACTGTTCAAGCAG CAAACAAG GGGGAGATTT CCTGCGAGCC vibrionaceae_4 CCCCACATCAGGGCAAT chloroflexi_2_4 GCAAGCTTGGCTCA alpha_13_4 GTCTAACTGTTCAAG TTCCTAGG TCGGTACCGTT CAGCCTGCGA vibrionaceae_5 CCCCCACATCAGGGCAA chloroflexi_2_5 CTCTCCCGATGTTCC alpha_13_5 CGCTCCTCAGCGTCA TTTCCTAG AAGCAAGCTT GAAAATAGCC vibrionaceae_6 CCCACATCAGGGCAATT chloroflexi_2_6 CCCCTCCCCATTAAG alpha_13_6 GCTCCTCAGCGTCAG TCCTAGGC CGGGGAGATT AAAATAGCCA vibrionaceae_7 CCACATCAGGGCAATTT chloroflexi_2_7 TTCCAAGCAAGCTT alpha_13_7 TCGCTCCTCAGCGTCA CCTAGGCA GGCTCATCGGT GAAAATAGC vibrionaceae_8 TCCCCCACATCAGGGCA chloroflexi_2_8 AGCAAGCTTGGCTC alpha_13_8 CGTCTAACTGTTCAA ATTTCCTA ATCGGTACCGT GCAGCCTGCG vibrionaceae_9 CCCGACATTACTCGCTG chloroflexi_2_9 ACTCTCCCGATGTTC alpha_13_9 AACTGTTCAAGCAGC GCAAACAA CAAGCAAGCT CTGCGAGCCC vibrionaceae_10 ATCCCCCACATCAGGGC chloroflexi_2_10 ACCCCTCCCCATTAA alpha_13_10 CACGTCTAACTGTTCA AATTTCCT GCGGGGAGAT AGCAGCCTG vibrionaceae_11 TGGTTATCCCCCACATC chloroflexi_2_11 TCTCCCGATGTTCCA alpha_13_11 ACGTCTAACTGTTCA AGGGCAAT AGCAAGCTTG AGCAGCCTGC vibrionaceae_12 CCCCCACATCAGGGCAA chloroflexi_2_12 CTCCCGATGTTCCAA alpha_13_12 ACTGTTCAAGCAGCC TTTCCCAG GCAAGCTTGG TGCGAGCCCT vibrionaceae_13 TCCCCCACATCAGGGCA chloroflexi_2_13 AATGACCCCTCCCC alpha_13_13 CCGGGGATTTCACGT ATTTCCCA ATTAAGCGGGG CTAACTGTTC vibrionaceae_14 CCCCACATCAGGGCAAT chloroflexi_2_14 GAATGACCCCTCCC alpha_13_14 CTCCTCAGCGTCAGA TTCCCAGG CATTAAGCGGG AAATAGCCAG vibrionaceae_15 CCCACATCAGGGCAATT chloroflexi_2_15 GTTCCAAGCAAGCT alpha_13_15 TTCAAGCAGCCTGCG TCCCAGGC TGGCTCATCGG AGCCCTTTAC vibrionaceae_16 CACATCAGGGCAATTTC chloroflexi_2_16 CGAATGACCCCTCC alpha_13_16 TGTTCAAGCAGCCTG CCAGGCAT CCATTAAGCGG CGAGCCCTTT vibrionaceae_17 CCACATCAGGGCAATTT chloroflexi_2_17 TGTTCCAAGCAAGC alpha_13_17 CTGTTCAAGCAGCCT CCCAGGCA TTGGCTCATCG GCGAGCCCTT vibrionaceae_18 ATCCCCCACATCAGGGC chloroflexi_2_18 TCGAATGACCCCTC alpha_13_18 GTTCAAGCAGCCTGC AATTTCCC CCCATTAAGCG GAGCCCTTTA vibrionaceae_19 TCCCGACATTACTCGCT chloroflexi_2_19 AAGCAAGCTTGGCT alpha_13_19 CGGCATTGCTGGATC GGCAAACA CATCGGTACCG AGAGTTGCCT vibrionaceae_20 GGTTATCCCCCACATCA chloroflexi_2_20 TGACCCCTCCCCATT alpha_13_20 GGCATTGCTGGATCA GGGCAATT AAGCGGGGAG GAGTTGCCTC vibrionaceae_21 CGCAAGTTGGCCGCCCT chloroflexi_2_21 CCACTCTCCCGATGT alpha_13_21 CGCGGCATTGCTGGA CTGTATGC TCCAAGCAAG TCAGAGTTGC vibrionaceae_22 GCAAGTTGGCCGCCCTC chloroflexi_2_22 CCTCCCCATTAAGC alpha_13_22 GCATTGCTGGATCAG TGTATGCG GGGGAGATTTC AGTTGCCTCC vibrionaceae_23 ATGGTTATCCCCCACAT chloroflexi_2_23 CAAGCTTGGCTCAT alpha_13_23 GCGGCATTGCTGGAT CAGGGCAA CGGTACCGTTC CAGAGTTGCC vibrionaceae_24 ACTCGCTGGCAAACAA chloroflexi_2_24 CCGATGTTCCAAGC alpha_13_24 CCCGGGGATTTCACG GGATAAGGG AAGCTTGGCTC TCTAACTGTT vibrionaceae_25 CGCATCTGAGTGTCAGT chloroflexi_2_25 CACTCTCCCGATGTT alpha_13_25 ACGCGGCATTGCTGG ATCTGTCC CCAAGCAAGC ATCAGAGTTG alteromonadales_1 CCCACTTGGGCCAATCT chlorella_p1_1 CGCCACTCATCGCA delta_1_1 CCGAACTACGAACTG AAAGGCGA ATCTGGCAAGC CTTTCTGGGA alteromonadales_2 ATCCCACTTGGGCCAAT chlorella_p1_2 GCCACTCATCGCAA delta_1_2 TCCGAACTACGAACT CTAAAGGC TCTGGCAAGCC GCTTTCTGGG alteromonadales_3 TCCCACTTGGGCCAATC chlorella_p1_3 CCACTCATCGCAAT delta_1_3 TTGCTGCGGCACAGC TAAAGGCG CTGGCAAGCCA AGGGGTCAAT alteromonadales_4 CCACTTGGGCCAATCTA chlorella_p1_4 CACTCATCGCAATCT delta_1_4 GTTTGCTGCGGCACA AAGGCGAG GGCAAGCCAA GCAGGGGTCA alteromonadales_5 CACTTGGGCCAATCTAA chlorella_p1_5 GCAAGCCAAATTGC delta_1_5 TTTGCTGCGGCACAG AGGCGAGA ATGCGTACGAC CAGGGGTCAA alteromonadales_6 ACTTGGGCCAATCTAAA chlorella_p1_6 GCCAAATTGCATGC delta_1_6 TTGCCCAACGACTTCT GGCGAGAG GTACGACTTGC GGTACAACC alteromonadales_7 CTTGGGCCAATCTAAAG chlorella_p1_7 TGGCAAGCCAAATT delta_1_7 GGTTTGCCCAACGAC GCGAGAGC GCATGCGTACG TTCTGGTACA alteromonadales_8 CACCTCAAGGCATGTTC chlorella_p1_8 CTGTGTCCACTCTGG delta_1_8 TCCCCGAAGGGTTTG CCAAGCAT AACTTCCCCT CCCAACGACT alteromonadales_9 TGAGCGTCAGTGTTGAC chlorella_p1_9 CCGTCCGCCACTCAT delta_1_9 CCCCGAAGGGTTTGC CCAGGTGG CGCAATCTGG CCAACGACTT alteromonadales_10 CGAAGCCCCCTTTGGTC chlorella_p1_10 CCGCCACTCATCGC delta_1_10 CCGAAGGGTTTGCCC CGTAGACA AATCTGGCAAG AACGACTTCT alteromonadales_11 ACAGAACCGAGGTTCC chlorella_p1_11 CGTCCGCCACTCATC delta_1_11 CCCGAAGGGTTTGCC GAGCTTCTA GCAATCTGGC CAACGACTTC alteromonadales_12 CAGAACCGAGGTTCCG chlorella_p1_12 CCTGTGTCCACTCTG delta_1_12 CCCGGGCTTTCACAC AGCTTCTAG GAACTTCCCC CTGACTTAAA alteromonadales_13 AGAACCGAGGTTCCGA chlorella_p1_13 GTCCGCCACTCATC delta_1_13 GCTTCCTTCAGTGGTA GCTTCTAGT GCAATCTGGCA CCGTCAACA alteromonadales_14 GAAAAACAGAACCGAG chlorella_p1_14 TCCGCCACTCATCGC delta_1_14 AGGCGCCTGCATCCC GTTCCGAGC AATCTGGCAA CGAAGGGTTT alteromonadales_15 GAACCGAGGTTCCGAG chlorella_p1_15 ACCTGTGTCCACTCT delta_1_15 GGCGCCTGCATCCCC CTTCTAGTA GGAACTTCCC GAAGGGTTTG alteromonadales_16 CCGAGGTTCCGAGCTTC chlorella_p1_16 GGCAAGCCAAATTG delta_1_16 GCGCCTGCATCCCCG TAGTAGAC CATGCGTACGA AAGGGTTTGC alteromonadales_17 CGAGGTTCCGAGCTTCT chlorella_p1_17 CTGGCAAGCCAAAT delta_1_17 GCATCCCCGAAGGGT AGTAGACA TGCATGCGTAC TTGCCCAACG alteromonadales_18 AACCGAGGTTCCGAGCT chlorella_p1_18 CCCGTCCGCCACTC delta_1_18 ATCCCCGAAGGGTTT TCTAGTAG ATCGCAATCTG GCCCAACGAC alteromonadales_19 ACCGAGGTTCCGAGCTT chlorella_p1_19 CACCTGTGTCCACTC delta_1_19 CATCCCCGAAGGGTT CTAGTAGA TGGAACTTCC TGCCCAACGA alteromonadales_20 AACAGAACCGAGGTTC chlorella_p1_20 ACCCGTCCGCCACT delta_1_20 ACCTTAGGCGCCTGC CGAGCTTCT CATCGCAATCT ATCCCCGAAG alteromonadales_21 AAACAGAACCGAGGTT chlorella_p1_21 CCACCTGTGTCCACT delta_1_21 CCTTAGGCGCCTGCA CCGAGCTTC CTGGAACTTC TCCCCGAAGG alteromonadales_22 CCGAAGCCCCCTTTGGT chlorella_p1_22 CACCCGTCCGCCAC delta_1_22 TACCTTAGGCGCCTG CCGTAGAC TCATCGCAATC CATCCCCGAA alteromonadales_23 GAAGCCCCCTTTGGTCC chlorella_p1_23 TCACCCGTCCGCCA delta_1_23 ATACCTTAGGCGCCT GTAGACAT CTCATCGCAAT GCATCCCCGA alteromonadales_24 AAGCCCCCTTTGGTCCG chlorella_p1_24 ACCACCTGTGTCCA delta_1_24 CTTAGGCGCCTGCAT TAGACATT CTCTGGAACTT CCCCGAAGGG alteromonadales_25 CCACCTCAAGGCATGTT chlorella_p1_25 CACCACCTGTGTCC delta_1_25 CATACCTTAGGCGCC CCCAAGCA ACTCTGGAACT TGCATCCCCG polaribacters_1 GCCAGATGGCTGCTCAT plastid_1_1 GGTCTCACGACTTG delta_2_1 CTCCAGTCTTTCGATA TGTCCATA GCATCTCATTG GGATTCCCG polaribacters_2 TGCCAGATGGCTGCTCA plastid_1_2 TCTCCCTAGGCAGG delta_2_2 GGCCACCCTTGATCC TTGTCCAT TTTTTGACCTG AAAAACCCGA polaribacters_3 TTGCCAGATGGCTGCTC plastid_1_3 CCACGTGGATTCGA delta_2_3 AGGCCACCCTTGATC ATTGTCCA TACACGCAATG CAAAAACCCG polaribacters_4 CCAGATGGCTGCTCATT plastid_1_4 ATGCACCACCTGTA delta_2_4 AAGGGCACTCCAGTC GTCCATAC TGTGTCTGCCG TTTCGATAGG polaribacters_5 GTTGCCAGATGGCTGCT plastid_1_5 CACCACCTGTATGT delta_2_5 GAGGCCACCCTTGAT CATTGTCC GTCTGCCGAAG CCAAAAACCC polaribacters_6 TCCCTCAGCGTCAGTAC plastid_1_6 AACACCACGTGGAT delta_2_6 GAAGGGCACTCCAGT ATACGTAG TCGATACACGC CTTTCGATAG polaribacters_7 CCCTCAGCGTCAGTACA plastid_1_7 ACCACCTGTATGTGT delta_2_7 ACCCTAGCAAGCTAG TACGTAGT CTGCCGAAGC AGTGTTCTCG polaribacters_8 GTCCCTCAGCGTCAGTA plastid_1_8 CTTCTCCCTAGGCAG delta_2_8 CATGTAGAGGCCACC CATACGTA GTTTTTGACC CTTGATCCAA polaribacters_9 CAGATGGCTGCTCATTG plastid_1_9 TGCACCACCTGTAT delta_2_9 AGAGGCCACCCTTGA TCCATACC GTGTCTGCCGA TCCAAAAACC polaribacters_10 TTCGCATAGTGGCTGCT plastid_1_10 ACACCACGTGGATT delta_2_10 ACATGTAGAGGCCAC CATTGTCC CGATACACGCA CCTTGATCCA polaribacters_11 CGTCCCTCAGCGTCAGT plastid_1_11 CCACCTGTATGTGTC delta_2_11 TACATGTAGAGGCCA ACATACGT TGCCGAAGCA CCCTTGATCC polaribacters_12 AGACCCCCTACCTATCG plastid_1_12 GCACCACCTGTATG delta_2_12 CCCCGAAGGGCACTC TTGCCATG TGTCTGCCGAA CAGTCTTTCG polaribacters_13 CGCTTAGTCACTGAGCT plastid_1_13 CACCACGTGGATTC delta_2_13 CCCTAGCAAGCTAGA AATGCCCA GATACACGCAA GTGTTCTCGT polaribacters_14 TGTTGCCAGATGGCTGC plastid_1_14 CTCACGACTTGGCA delta_2_14 GCTTACATGTAGAGG TCATTGTC TCTCATTGTCC CCACCCTTGA polaribacters_15 GATTCGCTCCTATTCGC plastid_1_15 CAGGTACACGTCAG delta_2_15 GGGCACTCCAGTCTTT ATAGTGGC AAACTTCCTCC CGATAGGAT polaribacters_16 TCGTCCCTCAGCGTCAG plastid_1_16 CTCCCTAGGCAGGT delta_2_16 CCGAAGGGCACTCCA TACATACG TTTTGACCTGT GTCTTTCGAT polaribacters_17 TCGCTTAGTCACTGAGC plastid_1_17 CGGTCTCACGACTT delta_2_17 CGAAGGGCACTCCAG TAATGCCC GGCATCTCATT TCTTTCGATA polaribacters_18 TCGCATAGTGGCTGCTC plastid_1_18 GACCAACTACTGAT delta_2_18 AGGGCACTCCAGTCT ATTGTCCA CGTCACCTTGG TTCGATAGGA polaribacters_19 CAGACCCCCTACCTATC plastid_1_19 GCTTCTCCCTAGGCA delta_2_19 CCCGAAGGGCACTCC GTTGCCAT GGTTTTTGAC AGTCTTTCGA polaribacters_20 TTCGTCCCTCAGCGTCA plastid_1_20 CACCTGTATGTGTCT delta_2_20 CCAGTCTTTCGATAG GTACATAC GCCGAAGCAC GATTCCCGGG polaribacters_21 CTCTCTGTTGCCAGATG plastid_1_21 CTGTATGTGTCTGCC delta_2_21 TCCAGTCTTTCGATAG GCTGCTCA GAAGCACTTC GATTCCCGG polaribacters_22 GCAGATTCTATACGCGT plastid_1_22 CATGCACCACCTGT delta_2_22 GTCTTTCGATAGGATT TACGCACC ATGTGTCTGCC CCCGGGATG polaribacters_23 GGCAGATTCTATACGCG plastid_1_23 AGGTACACGTCAGA delta_2_23 CTTTCGATAGGATTCC TTACGCAC AACTTCCTCCC CGGGATGTC polaribacters_24 CACCTCTGACTTAATTG plastid_1_24 TCGGTCTCACGACTT delta_2_24 CAGTCTTTCGATAGG ACCGCCTG GGCATCTCAT ATTCCCGGGA polaribacters_25 CCTCTGACTTAATTGAC plastid_1_25 CCTTCTACTTCGACT delta_2_25 GGGCTCCCCGAAGGG CGCCTGCG CTACTCGAGC CACTCCAGTC desulfovibrionales_1 CCCGAGCATGCTGATCT plastid_2_1 CAGGTAACGTCAGA delta_3_1 GGCACAGAAAGGGTC CGAATTAC ACTTCCTCCCT AACACTTCCT desulfovibrionales_2 CACCCGAGCATGCTGAT plastid_2_2 AGGTAACGTCAGAA delta_3_2 TCGGCACAGAAAGGG CTCGAATT CTTCCTCCCTG TCAACACTTC desulfovibrionales_3 TCACCCGAGCATGCTGA plastid_2_3 GGTAACGTCAGAAC delta_3_3 CGGCACAGAAAGGGT TCTCGAAT TTCCTCCCTGA CAACACTTCC desulfovibrionales_4 TTCACCCGAGCATGCTG plastid_2_4 TCAGGTAACGTCAG delta_3_4 CTTCGGCACAGAAAG ATCTCGAA AACTTCCTCCC GGTCAACACT desulfovibrionales_5 GCACCCTCTAATTTCCT plastid_2_5 CGCGTTAGCTATAAT delta_3_5 CACTTTACTCTCCCGA AGAGGTCC ACCGCATGGG CGAATCGGA desulfovibrionales_6 AGGGCACCCTCTAATTT plastid_2_6 AATACCGCATGGGT delta_3_6 CCACTTTACTCTCCCG CCTAGAGG CGATACATGCG ACGAATCGG desulfovibrionales_7 GGGCACCCTCTAATTTC plastid_2_7 CTGTATGTACGTTCC delta_3_7 GCTTCGGCACAGAAA CTAGAGGT CGAAGGTGGT GGGTCAACAC desulfovibrionales_8 CCCTCTAATTTCCTAGA plastid_2_8 CCTGTATGTACGTTC delta_3_8 CTCTCCCGACGAATC GGTCCCCT CCGAAGGTGG GGAATTTCTC desulfovibrionales_9 ACCCTCTAATTTCCTAG plastid_2_9 TCAGCCGCGAGCTC delta_3_9 CCGACGAATCGGAAT AGGTCCCC CTCTCTAGGCA TTCTCGTTCG desulfovibrionales_10 ATTTCCTAGAGGTCCCC plastid_2_10 ATACCGCATGGGTC delta_3_10 GCCACTTTACTCTCCC TGGATGTC GATACATGCGA GACGAATCG desulfovibrionales_11 AGGGTACCGTCAAATGC plastid_2_11 ACCTGTATGTACGTT delta_3_11 AGCTTCGGCACAGAA CTACCCTA CCCGAAGGTG AGGGTCAACA desulfovibrionales_12 GAGGGTACCGTCAAAT plastid_2_12 GCCGCGAGCTCCTC delta_3_12 ACTCTCACGAGTTCG GCCTACCCT TCTAGGCAGAA CTACCCTTTG desulfovibrionales_13 GGGTACCGTCAAATGCC plastid_2_13 GCGCCTTCCTCCAA delta_3_13 TCTCCCGACGAATCG TACCCTAT ACGGTTAGAAT GAATTTCTCG desulfovibrionales_14 TTTCCTAGAGGTCCCCT plastid_2_14 AGCCGCGAGCTCCT delta_3_14 TAGCTTCGGCACAGA GGATGTCA CTCTAGGCAGA AAGGGTCAAC desulfovibrionales_15 TTCCTAGAGGTCCCCTG plastid_2_15 CAGCCGCGAGCTCC delta_3_15 CTCTCACGAGTTCGCT GATGTCAA TCTCTAGGCAG ACCCTTTGT desulfovibrionales_16 TGAGGGTACCGTCAAAT plastid_2_16 CACCTGTATGTACGT delta_3_16 GTGCTGGTTACACCC GCCTACCC TCCCGAAGGT GAAGGCAATC desulfovibrionales_17 CTCTAATTTCCTAGAGG plastid_2_17 AATCAGCCGCGAGC delta_3_17 CGCCACTTTACTCTCC TCCCCTGG TCCTCTCTAGG CGACGAATC desulfovibrionales_18 CACCCTCTAATTTCCTA plastid_2_18 TAATCAGCCGCGAG delta_3_18 CTCCCGACGAATCGG GAGGTCCC CTCCTCTCTAG AATTTCTCGT desulfovibrionales_19 GGCACCCTCTAATTTCC plastid_2_19 ATCAGCCGCGAGCT delta_3_19 CTTACTCTCACGAGTT TAGAGGTC CCTCTCTAGGC CGCTACCCT desulfovibrionales_20 CCTCTAATTTCCTAGAG plastid_2_20 GGCGCCTTCCTCCA delta_3_20 TGTGCTGGTTACACCC GTCCCCTG AACGGTTAGAA GAAGGCAAT desulfovibrionales_21 CAACCGTTATCCCCGTC plastid_2_21 CCGCGAGCTCCTCTC delta_3_21 CTCACGAGTTCGCTA TTGAAGGT TAGGCAGAAA CCCTTTGTAC desulfovibrionales_22 ATCAAAGGCTGTTCCAC plastid_2_22 GCATGGGTCGATAC delta_3_22 CTGTGCTGGTTACACC CGTTGAGC ATGCGACATCT CGAAGGCAA desulfovibrionales_23 TTGCTCGTTAGCTCGCC plastid_2_23 CCGCATGGGTCGAT delta_3_23 TCGCCACTTTACTCTC GGCTTCGG ACATGCGACAT CCGACGAAT desulfovibrionales_24 ATTGCTCGTTAGCTCGC plastid_2_24 TACCGCATGGGTCG delta_3_24 CCTGTGCTGGTTACAC CGGCTTCG ATACATGCGAC CCGAAGGCA desulfovibrionales_25 CCTAGAGGTCCCCTGGA plastid_2_25 ACCGCATGGGTCGA delta_3_25 GCTTACTCTCACGAGT TGTCAAGC TACATGCGACA TCGCTACCC aquaficae_1 AACCAGACGCTCCACCG plastid_3_1 CACCGTCGTATATCT altero_1_1 CCCACTTGGGCCAAT GTTGTGCG GACCGACGAT CTAAAGGCGA aquaficae_2 ACCAGACGCTCCACCGG plastid_3_2 TTCACCGTCGTATAT altero_1_2 ATCCCACTTGGGCCA TTGTGCGG CTGACCGACG ATCTAAAGGC aquaficae_3 AAACCAGACGCTCCACC plastid_3_3 TCACCGTCGTATATC altero_1_3 TCCCACTTGGGCCAA GGTTGTGC TGACCGACGA TCTAAAGGCG aquaficae_4 TGCCACTGTAGCGCCTG plastid_3_4 GTAGCCGAGTTTCA altero_1_4 CCACTTGGGCCAATC TGTAGCCC GGCTACAATCC TAAAGGCGAG aquaficae_5 TAAACCAGACGCTCCAC plastid_3_5 TAGCCGAGTTTCAG altero_1_5 CACTTGGGCCAATCT CGGTTGTG GCTACAATCCG AAAGGCGAGA aquaficae_6 GCCACTGTAGCGCCTGT plastid_3_6 GACCTCATCCTCACC altero_1_6 ACTTGGGCCAATCTA GTAGCCCA TTCCTCCAAT AAGGCGAGAG aquaficae_7 CCAGACGCTCCACCGGT plastid_3_7 AGCCGAGTTTCAGG altero_1_7 CTTGGGCCAATCTAA TGTGCGGG CTACAATCCGA AGGCGAGAGC aquaficae_8 CCACTGTAGCGCCTGTG plastid_3_8 GCCGAGTTTCAGGC altero_1_8 CTGTCAGTAACGTCA TAGCCCAG TACAATCCGAA CAGCTAGCAG aquaficae_9 GCATAAAGGGCATACT plastid_3_9 CCGAGTTTCAGGCT altero_1_9 ACAGAACCGAGGTTC GACCTGACG ACAATCCGAAC CGAGCTTCTA aquaficae_10 TTAAACCAGACGCTCCA plastid_3_10 CTCCCGTAGGAGTC altero_1_10 CAGAACCGAGGTTCC CCGGTTGT TGTTCCGTTCT GAGCTTCTAG aquaficae_11 CATTGCCCACGATTCCC plastid_3_11 CCTCCCGTAGGAGT altero_1_11 AGAACCGAGGTTCCG CACTGCTG CTGTTCCGTTC AGCTTCTAGT aquaficae_12 ATTGCCCACGATTCCCC plastid_3_12 TCCCGTAGGAGTCT altero_1_12 GAAAAACAGAACCGA ACTGCTGC GTTCCGTTCTA GGTTCCGAGC aquaficae_13 CCATTGCCCACGATTCC plastid_3_13 CCCGTAGGAGTCTG altero_1_13 GAACCGAGGTTCCGA CCACTGCT TTCCGTTCTAA GCTTCTAGTA aquaficae_14 GCCCATTGCCCACGATT plastid_3_14 TGACCTCATCCTCAC altero_1_14 CCGAGGTTCCGAGCT CCCCACTG CTTCCTCCAA TCTAGTAGAC aquaficae_15 CCCATTGCCCACGATTC plastid_3_15 CTAAAGCATTCATC altero_1_15 CGAGGTTCCGAGCTT CCCACTGC CTCCACGCGGT CTAGTAGACA aquaficae_16 CGCCCATTGCCCACGAT plastid_3_16 CCTAAAGCATTCAT altero_1_16 AACCGAGGTTCCGAG TCCCCACT CCTCCACGCGG CTTCTAGTAG aquaficae_17 TGCCCACGATTCCCCAC plastid_3_17 CCCTAAAGCATTCA altero_1_17 ACCGAGGTTCCGAGC TGCTGCCC TCCTCCACGCG TTCTAGTAGA aquaficae_18 ATTAAACCAGACGCTCC plastid_3_18 ACCCTAAAGCATTC altero_1_18 AACAGAACCGAGGTT ACCGGTTG ATCCTCCACGC CCGAGCTTCT aquaficae_19 TTGCCCACGATTCCCCA plastid_3_19 ACATAAGGGGCATG altero_1_19 AAACAGAACCGAGGT CTGCTGCC CTGACTTGACC TCCGAGCTTC aquaficae_20 GCCCACGATTCCCCACT plastid_3_20 GTTCCGTTCTAAATC altero_1_20 CCAACTGTTGTCCCCC GCTGCCCC CCAGTGTGGC ACCTCAAGG aquaficae_21 CAGACGCTCCACCGGTT plastid_3_21 CATAAGGGGCATGC altero_1_21 CCGGACTACGACGCA GTGCGGGC TGACTTGACCT CTTTAAGTGA aquaficae_22 GGCATAAAGGGCATAC plastid_3_22 GCGGTATTGCTTGGT altero_1_22 TGGGCCAATCTAAAG TGACCTGAC CAAGCTTTCG GCGAGAGCCG aquaficae_23 GCAGTTCGGAATGCCTT plastid_3_23 CGGTATTGCTTGGTC altero_1_23 GGGCCAATCTAAAGG GCCGAAGT AAGCTTTCGC CGAGAGCCGA aquaficae_24 CAGTTCGGAATGCCTTG plastid_3_24 CACGCGGTATTGCTT altero_1_24 TTGGGCCAATCTAAA CCGAAGTT GGTCAAGCTT GGCGAGAGCC aquaficae_25 CGCAGTTCGGAATGCCT plastid_3_25 CATCCTCCACGCGG altero_1_25 GGTTCCGAGCTTCTA TGCCGAAG TATTGCTTGGT GTAGACATCG bacilli_1 CACTCTGCTCCCGAAGG plastid_4_1 CTTAAGCGCCGCCC altero_2_1 TCTCACTTGGGCCTCT AGAAGCCC TCCGAATGGTT CTTTGCGCC bacilli_2 GTCACTCTGCTCCCGAA plastid_4_2 CCTTAAGCGCCGCC altero_2_2 CCCCTCGCAAAGGCA GGAGAAGC CTCCGAATGGT AGTTCCCAAG bacilli_3 CTGCTCCCGAAGGAGA plastid_4_3 TACCTTAAGCGCCG altero_2_3 CCCTCGCAAAGGCAA AGCCCTATC CCCTCCGAATG GTTCCCAAGC bacilli_4 TCACTCTGCTCCCGAAG plastid_4_4 ACCTTAAGCGCCGC altero_2_4 TCACTTGGGCCTCTCT GAGAAGCC CCTCCGAATGG TTGCGCCGG bacilli_5 TCTGCTCCCGAAGGAGA plastid_4_5 AGCCCTACCTTAAG altero_2_5 CTTGGGCCTCTCTTTG AGCCCTAT CGCCGCCCTCC CGCCGGAGC bacilli_6 TGCTCCCGAAGGAGAA plastid_4_6 TTAAGCGCCGCCCT altero_2_6 CGACATTCTTTAAGG GCCCTATCT CCGAATGGTTA GGTCCGCTCC bacilli_7 CTCTGCTCCCGAAGGAG plastid_4_7 TAAGCGCCGCCCTC altero_2_7 CACTTGGGCCTCTCTT AAGCCCTA CGAATGGTTAG TGCGCCGGA bacilli_8 GCTCCCGAAGGAGAAG plastid_4_8 TAGCCCTACCTTAA altero_2_8 CTCACTTGGGCCTCTC CCCTATCTC GCGCCGCCCTC TTTGCGCCG bacilli_9 ACTCTGCTCCCGAAGGA plastid_4_9 CTACCTTAAGCGCC altero_2_9 ACTTGGGCCTCTCTTT GAAGCCCT GCCCTCCGAAT GCGCCGGAG bacilli_10 CCGAAGCCGCCTTTCAA plastid_4_10 GCCCTACCTTAAGC altero_2_10 CTACGACATTCTTTAA TTTCGAAC GCCGCCCTCCG GGGGTCCGC bacilli_11 CGTCCGCCGCTAACTTC plastid_4_11 CCCTACCTTAAGCG altero_2_11 CCGGACTACGACATT ATAAGAGC CCGCCCTCCGA CTTTAAGGGG bacilli_12 GTCCGCCGCTAACTTCA plastid_4_12 CCTACCTTAAGCGC altero_2_12 ATCTCACTTGGGCCTC TAAGAGCA CGCCCTCCGAA TCTTTGCGC bacilli_13 CCGCCGCTAACTTCATA plastid_4_13 CTAGCCCTACCTTAA altero_2_13 CCCCCTCGCAAAGGC AGAGCAAG GCGCCGCCCT AAGTTCCCAA bacilli_14 AGCCGAAGCCGCCTTTC plastid_4_14 ACTAGCCCTACCTTA altero_2_14 ACATTCTTTAAGGGG AATTTCGA AGCGCCGCCC TCCGCTCCAC bacilli_15 CTCCCGAAGGAGAAGC plastid_4_15 AAGCGCCGCCCTCC altero_2_15 TTGGGCCTCTCTTTGC CCTATCTCT GAATGGTTAGG GCCGGAGCC bacilli_16 CAGCCGAAGCCGCCTTT plastid_4_16 CACTAGCCCTACCTT altero_2_16 TCCCCCTCGCAAAGG CAATTTCG AAGCGCCGCC CAAGTTCCCA bacilli_17 CTGTCACTCTGCTCCCG plastid_4_17 CGCCGCCCTCCGAA altero_2_17 CCTCGCAAAGGCAAG AAGGAGAA TGGTTAGGCTA TTCCCAAGCA bacilli_18 GCCGAAGCCGCCTTTCA plastid_4_18 GCGCCGCCCTCCGA altero_2_18 GGGTCCGCTCCACAT ATTTCGAA ATGGTTAGGCT CACTGTCTCG bacilli_19 CCCGTCCGCCGCTAACT plastid_4_19 GCCGCCCTCCGAAT altero_2_19 ACGACATTCTTTAAG TCATAAGA GGTTAGGCTAA GGGTCCGCTC bacilli_20 CCGTCCGCCGCTAACTT plastid_4_20 AGCGCCGCCCTCCG altero_2_20 CATTCTTTAAGGGGTC CATAAGAG AATGGTTAGGC CGCTCCACA bacilli_21 CGCCGCTAACTTCATAA plastid_4_21 ACGAGATTAGCTAG altero_2_21 GACATTCTTTAAGGG GAGCAAGC CCTTCGCAGGT GTCCGCTCCA bacilli_22 CCCGAAGGAGAAGCCC plastid_4_22 CCGCCCTCCGAATG altero_2_22 AATCTCACTTGGGCCT TATCTCTAG GTTAGGCTAAC CTCTTTGCG bacilli_23 CGAAGGAGAAGCCCTA plastid_4_23 CGCCCTCCGAATGG altero_2_23 TAAGGGGTCCGCTCC TCTCTAGGG TTAGGCTAACG ACATCACTGT bacilli_24 CCGAAGGAGAAGCCCT plastid_4_24 GCCCTCCGAATGGT altero_2_24 ATCCCCCTCGCAAAG ATCTCTAGG TAGGCTAACGA GCAAGTTCCC bacilli_25 TGTCACTCTGCTCCCGA plastid_4_25 TCACTAGCCCTACCT altero_2_25 GGTCCGCTCCACATC AGGAGAAG TAAGCGCCGC ACTGTCTCGC crenarch_1_1 AGCCTGTACGTTGAGCG plastid_5_1 CTCTACCCCTACCAT colwel_1_1 TGCGCCACTCACGGA TACAGATT ACTCAAGCCT TCAAGTCCAC crenarch_1_2 CCTGTACGTTGAGCGTA plastid_5_2 GACGTCGTCCTCCA colwel_1_2 CTGCGCCACTCACGG CAGATTTA AATGGTTAGAC ATCAAGTCCA crenarch_1_3 GCCTGTACGTTGAGCGT plastid_5_3 CCTTAGACGTCGTCC colwel_1_3 GCTGCGCCACTCACG ACAGATTT TCCAAATGGT GATCAAGTCC crenarch_1_4 GAGCGTACAGATTTAAC plastid_5_4 ACCTTAGACGTCGT colwel_1_4 TAGCTGCGCCACTCA CGAAAACT CCTCCAAATGG CGGATCAAGT crenarch_1_5 TGAGCGTACAGATTTAA plastid_5_5 CCTCTACCCCTACCA colwel_1_5 GTTAGCTGCGCCACT CCGAAAAC TACTCAAGCC CACGGATCAA crenarch_1_6 CAGCCTGTACGTTGAGC plastid_5_6 GCTAGTTCTCGCGA colwel_1_6 CGTTAGCTGCGCCAC GTACAGAT ATTTGCGACTC TCACGGATCA crenarch_1_7 CCTTGTCACGAACCTCA plastid_5_7 CCTCTCGGCATATG colwel_1_7 GTGCGTTAGCTGCGC AGTTCGAT GGGATTTAGCT CACTCACGGA crenarch_1_8 CTTGTCACGAACCTCAA plastid_5_8 GACTAACGGTGTTG colwel_1_8 TGCGTTAGCTGCGCC GTTCGATA GGTATGACCAG ACTCACGGAT crenarch_1_9 TTGTCACGAACCTCAAG plastid_5_9 ACTAACGGTGTTGG colwel_1_9 TTAGCTGCGCCACTC TTCGATAA GTATGACCAGC ACGGATCAAG crenarch_1_10 CTGTACGTTGAGCGTAC plastid_5_10 CCAACAGTTATTCCC colwel_1_10 GCGTTAGCTGCGCCA AGATTTAA CTCCTAAGGG CTCACGGATC crenarch_1_11 GTCACGAACCTCAAGTT plastid_5_11 CTCTCGGCATATGG colwel_1_11 AGCTGCGCCACTCAC CGATAACG GGATTTAGCTG GGATCAAGTC crenarch_1_12 TTCCCTTGTCACGAACC plastid_5_12 GCGCGAGCTCATCC colwel_1_12 GCGGTATTGCTGCCCT TCAAGTTC TTAGGCAGTGT CTGTACCTG crenarch_1_13 TCACGAACCTCAAGTTC plastid_5_13 CGCGAGCTCATCCTT colwel_1_13 CGCGGTATTGCTGCC GATAACGC AGGCAGTGTA CTCTGTACCT crenarch_1_14 TGTCACGAACCTCAAGT plastid_5_14 GCGAGCTCATCCTT colwel_1_14 GGATCAAGTCCACGA TCGATAAC AGGCAGTGTAA ACGGCTAGTT crenarch_1_15 CTGCAGCACTGCATTGG plastid_5_15 CACCTCTCGGCATAT colwel_1_15 CGGATCAAGTCCACG CCACAAGC GGGGATTTAG AACGGCTAGT crenarch_1_16 GCAGCCTGTACGTTGAG plastid_5_16 ACCTCTCGGCATAT colwel_1_16 GCGCCACTCACGGAT CGTACAGA GGGGATTTAGC CAAGTCCACG crenarch_1_17 CACGAACCTCAAGTTCG plastid_5_17 GCAGCCTACAATCC colwel_1_17 ACGGATCAAGTCCAC ATAACGCC GAACTTGGACA GAACGGCTAG crenarch_1_18 TGTACGTTGAGCGTACA plastid_5_18 GGCGCGAGCTCATC colwel_1_18 CACGGATCAAGTCCA GATTTAAC CTTAGGCAGTG CGAACGGCTA crenarch_1_19 CGTTGAGCGTACAGATT plastid_5_19 CGGCAGTCTCTCTA colwel_1_19 CGCCACTCACGGATC TAACCGAA GAGATCCCAAT AAGTCCACGA crenarch_1_20 GTACGTTGAGCGTACAG plastid_5_20 ATCACCGGCAGTCT colwel_1_20 GCCACTCACGGATCA ATTTAACC CTCTAGAGATC AGTCCACGAA acido_1_15 ACCTCTTCTGGAGTCCC margrpA_1_15 ACAACTGTATCCCG altero_3_15 CTGTTGTCCCCCACGT CGAAGGGA AAGGATCCGCT TTTGGCATA acido_1_16 CACCTCTTCTGGAGTCC margrpA_1_16 CAACTGTATCCCGA altero_3_16 CTTGGGCTAATCAAA CCGAAGGG AGGATCCGCTG ACGCGCAAGG acido_1_17 CGGCAGTCCCCCCAAAG margrpA_1_17 AACTGTATCCCGAA altero_3_17 TCCCACTTGGGCTAAT TCCCCGGC GGATCCGCTGC CAAAACGCG acido_1_18 CCCCGAAGGGGCCTTAC margrpA_1_18 AACAACTGTATCCC altero_3_18 TTGGGCTAATCAAAA CGCTCAAC GAAGGATCCGC CGCGCAAGGC acido_1_19 CCTCTTCTGGAGTCCCC margrpA_1_19 GTTAGCTCCGGTAC altero_3_19 CCCACTTGGGCTAAT GAAGGGAA CGAAGGGGTCG CAAAACGCGC acido_1_20 GGCAGTCCCCCCAAAGT margrpA_1_20 TTAGCTCCGGTACC altero_3_20 TCACCGGCAGTCTCC CCCCGGCA GAAGGGGTCGA CTATAGTTCC acido_1_21 AGCCATGCAGCACCTCT margrpA_1_21 GCGTTAGCTCCGGT altero_3_21 TGGGCTAATCAAAAC TCTGGAGT ACCGAAGGGGT GCGCAAGGCC acido_1_22 CAGCCATGCAGCACCTC margrpA_1_22 CGTTAGCTCCGGTA altero_3_22 CCACTTGGGCTAATC TTCTGGAG CCGAAGGGGTC AAAACGCGCA acido_1_23 CCCCCGAAGGGGCCTTA margrpA_1_23 TGCGTTAGCTCCGGT altero_3_23 ATAGTTCCCGACATA CCGCTCAA ACCGAAGGGG ACTCGCTGGC acido_1_24 ACAGCCATGCAGCACCT margrpA_1_24 TCCCTTACGACAGA altero_3_24 CCATCGCTGGTTAGC CTTCTGGA CCTTTACGCTC AACCCTTTGT acido_1_25 CCGAAGGGGCCTTACCG margrpA_1_25 ACTGTATCCCGAAG altero_3_25 GGGCTAATCAAAACG CTCAACTT GATCCGCTGCA CGCAAGGCCC acido_2_1 GTCAACTCCCTCCACAC margrpA_2_1 GCTGCCTTCGCATTT gamma_1_1 CTAAAAGGTCAAGCC CAAGTGTT GACTTTCCTC TCCCAACGGC acido_2_2 GGTCAACTCCCTCCACA margrpA_2_2 GGCTGCCTTCGCATT gamma_1_2 ACTAAAAGGTCAAGC CCAAGTGT TGACTTTCCT CTCCCAACGG acido_2_3 GGGTCAACTCCCTCCAC margrpA_2_3 AGGCTGCCTTCGCA gamma_1_3 GAAGAGGCCCTCTTT ACCAAGTG TTTGACTTTCC CCCTCTTAAG acido_2_4 TCAACTCCCTCCACACC margrpA_2_4 ACAACTGTGCTCCG gamma_1_4 CACTAAAAGGTCAAG AAGTGTTC AAGAGCCCGCT CCTCCCAACG acido_2_5 GGGGTCAACTCCCTCCA margrpA_2_5 TAACAACTGTGCTC gamma_1_5 GCATGTATTAGGCCT CACCAAGT CGAAGAGCCCG GCCGCCAACG acido_2_6 AGGGGTCAACTCCCTCC margrpA_2_6 AACAACTGTGCTCC gamma_1_6 GGCTCCTCCAATAGT ACACCAAG GAAGAGCCCGC GAGAGCTTTC acido_2_7 CAACTCCCTCCACACCA margrpA_2_7 GATACCATCTTCGG gamma_1_7 AAGAGGCCCTCTTTC AGTGTTCA GTACTGCAGAC CCTCTTAAGG acido_2_8 AAGGGGTCAACTCCCTC margrpA_2_8 TTAACAACTGTGCTC gamma_1_8 CAAGAAGAGGCCCTC CACACCAA CGAAGAGCCC TTTCCCTCTT acido_2_9 GAAGGGGTCAACTCCCT margrpA_2_9 CAACTGTGCTCCGA gamma_1_9 TCAAGAAGAGGCCCT CCACACCA AGAGCCCGCTG CTTTCCCTCT acido_2_10 AACTCCCTCCACACCAA margrpA_2_10 CAGAAGGCTGCCTT gamma_1_10 TAGCTGCGCCACTAA GTGTTCAT CGCATTTGACT AAGGTCAAGC acido_2_11 ACTCCCTCCACACCAAG margrpA_2_11 ACCATCTTCGGGTA gamma_1_11 CAGGCTCCTCCAATA TGTTCATC CTGCAGACTTC GTGAGAGCTT acido_2_12 CTCCCTCCACACCAAGT margrpA_2_12 TTGCGGTTAGGATA gamma_1_12 CTCAGCGTCAGTATC GTTCATCG CCATCTTCGGG AATCCAGGGG acido_2_13 CAGTCCCCGTAGAGTTC margrpA_2_13 CTTGCGGTTAGGAT gamma_1_13 AAAGGTCAAGCCTCC CCGCCATG ACCATCTTCGG CAACGGCTAG acido_2_14 TCCCCGTAGAGTTCCCG margrpA_2_14 CCTTGCGGTTAGGAT gamma_1_14 GCGTTAGCTGCGCCA CCATGACG ACCATCTTCG CTAAAAGGTC acido_2_15 GTCCCCGTAGAGTTCCC margrpA_2_15 CCATCTTCGGGTACT gamma_1_15 GAGGCCCTCTTTCCCT GCCATGAC GCAGACTTCC CTTAAGGCG acido_2_16 AGTCCCCGTAGAGTTCC margrpA_2_16 GGATACCATCTTCG gamma_1_16 AGAGGCCCTCTTTCCC CGCCATGA GGTACTGCAGA TCTTAAGGC acido_2_17 GCAGTCCCCGTAGAGTT margrpA_2_17 ACCTGCCTTACCTTA gamma_1_17 CCCCCTCTATCGTACT CCCGCCAT AACAGCTCCC CTAGCCTAT acido_2_18 GGCAGTCCCCGTAGAGT margrpA_2_18 CCTGCCTTACCTTAA gamma_1_18 CCCCTCTATCGTACTC TCCCGCCA ACAGCTCCCT TAGCCTATC acido_2_19 CCGGCACGGAAGGGGT margrpA_2_19 CCAGAAGGCTGCCT gamma_1_19 TTCAAGAAGAGGCCC CAACTCCCT TCGCATTTGAC TCTTTCCCTC acido_2_20 ACGCGCTGGCAACTACG margrpA_2_20 TGCGGTTAGGATAC gamma_1_20 AGGCCCTCTTTCCCTC GGTAAGGG CATCTTCGGGT TTAAGGCGT acido_2_21 GACGCGCTGGCAACTAC margrpA_2_21 CGAAGAGCCCGCTG gamma_1_21 GCCCTCTTTCCCTCTT GGGTAAGG CATTATTTGGT AAGGCGTAT acido_2_22 TGACGCGCTGGCAACTA margrpA_2_22 CCACCATGAATTCT gamma_1_22 CCCTCTTTCCCTCTTA CGGGTAAG GCGTTCCTCTC AGGCGTATG acido_2_23 AGCTCCGGCACGGAAG margrpA_2_23 CCTCCTTGCGGTTAG gamma_1_23 CTCTTTCCCTCTTAAG GGGTCAACT GATACCATCT GCGTATGCG acido_2_24 GCTCCGGCACGGAAGG margrpA_2_24 CATCTTCGGGTACTG gamma_1_24 CCTCTTTCCCTCTTAA GGTCAACTC CAGACTTCCA GGCGTATGC acido_2_25 CTCCGGCACGGAAGGG margrpA_2_25 CGGTTAGGATACCA gamma_1_25 GGCCCTCTTTCCCTCT GTCAACTCC TCTTCGGGTAC TAAGGCGTA acido_3_1 CTCACGGCATTCGTCCC OP10_1_1 CCGCTTGCACGGGC gamma_2_1 TACCTGCTAGCAACC ACTCGACA AGTTCCGTAAG AGGGATAGGG acido_3_2 CGAGGTCCCCACGGTGT OP10_1_2 CCCGCTTGCACGGG gamma_2_2 CAGCATTACCTGCTA CATGCGGT CAGTTCCGTAA GCAACCAGGG acido_3_3 TCACCCTCACGGCATTC OP10_1_3 CGCTTGCACGGGCA gamma_2_3 TTACCTGCTAGCAAC GTCCCACT GTTCCGTAAGA CAGGGATAGG acido_3_4 AGGTCCCCACGGTGTCA OP10_1_4 TCCCGCTTGCACGG gamma_2_4 ACCTGCTAGCAACCA TGCGGTAT GCAGTTCCGTA GGGATAGGGG acido_3_5 GGACCGAGGTCCCCAC OP10_1_5 GGGTGCAGACAATT gamma_2_5 TCAGCATTACCTGCTA GGTGTCATG CAGGTGACTTG GCAACCAGG acido_3_6 CCGAGGTCCCCACGGTG OP10_1_6 CTCCCGCTTGCACG gamma_2_6 TCTCCCTGGAGTTCTC TCATGCGG GGCAGTTCCGT AGCATTACC acido_3_7 ACCCTCACGGCATTCGT OP10_1_7 CCTCCCGCTTGCACG gamma_2_7 GTCTCCCTGGAGTTCT CCCACTCG GGCAGTTCCG CAGCATTAC acido_3_8 ACCGAGGTCCCCACGGT OP10_1_8 GCTTGCACGGGCAG gamma_2_8 CAGTCTCCCTGGAGTT GTCATGCG TTCCGTAAGAG CTCAGCATT acido_3_9 CACCCTCACGGCATTCG OP10_1_9 CGGGTGCAGACAAT gamma_2_9 TCCCTGGAGTTCTCAG TCCCACTC TCAGGTGACTT CATTACCTG acido_3_10 GACCGAGGTCCCCACG OP10_1_10 CCGTAAGAGTTCCC gamma_2_10 CTCCCTGGAGTTCTCA GTGTCATGC GACTTTACGCT GCATTACCT acido_3_11 CCTCACGGCATTCGTCC OP10_1_11 GCAGACAATTCAGG gamma_2_11 GCAGTCTCCCTGGAG CACTCGAC TGACTTGACGG TTCTCAGCAT acido_3_12 TTCACCCTCACGGCATT OP10_1_12 TCGGGTGCAGACAA gamma_2_12 GGCAGTCTCCCTGGA CGTCCCAC TTCAGGTGACT GTTCTCAGCA acido_3_13 GAGGTCCCCACGGTGTC OP10_1_13 CGTAAGAGTTCCCG gamma_2_13 CCTGCTAGCAACCAG ATGCGGTA ACTTTACGCTG GGATAGGGGT acido_3_14 CCCTCACGGCATTCGTC OP10_1_14 TTGCACGGGCAGTT gamma_2_14 TGCTAGCAACCAGGG CCACTCGA CCGTAAGAGTT ATAGGGGTTG acido_3_15 GGTCCCCACGGTGTCAT OP10_1_15 TCCGTAAGAGTTCC gamma_2_15 CTGCTAGCAACCAGG GCGGTATT CGACTTTACGC GATAGGGGTT acido_3_16 GTCCCCACGGTGTCATG OP10_1_16 GGCAGTTCCGTAAG gamma_2_16 TAGCAACCAGGGATA CGGTATTA AGTTCCCGACT GGGGTTGCGC acido_3_17 GATTGTTCACCCTCACG OP10_1_17 CTTGCACGGGCAGT gamma_2_17 AGCAACCAGGGATAG GCATTCGT TCCGTAAGAGT GGGTTGCGCT acido_3_18 AGGACCGAGGTCCCCA OP10_1_18 CGGGCAGTTCCGTA gamma_2_18 CTCAGCATTACCTGCT CGGTGTCAT AGAGTTCCCGA AGCAACCAG acido_3_19 ATTGTTCACCCTCACGG OP10_1_19 TGCACGGGCAGTTC gamma_2_19 CTAGCAACCAGGGAT CATTCGTC CGTAAGAGTTC AGGGGTTGCG acido_3_20 TTGTTCACCCTCACGGC OP10_1_20 ACGGGCAGTTCCGT gamma_2_20 GCTAGCAACCAGGGA ATTCGTCC AAGAGTTCCCG TAGGGGTTGC acido_3_21 TGTTCACCCTCACGGCA OP10_1_21 GCACGGGCAGTTCC gamma_2_21 GCATTACCTGCTAGC TTCGTCCC GTAAGAGTTCC AACCAGGGAT acido_3_22 GGATTGTTCACCCTCAC OP10_1_22 CACGGGCAGTTCCG gamma_2_22 AGCATTACCTGCTAG GGCATTCG TAAGAGTTCCC CAACCAGGGA acido_3_23 CACGGCATTCGTCCCAC OP10_1_23 GCAGTTCCGTAAGA gamma_2_23 TCGCGAGTTGGCAGC TCGACAGG GTTCCCGACTT CCTCTGTACG acido_3_24 TCACGGCATTCGTCCCA OP10_1_24 GGGCAGTTCCGTAA gamma_2_24 CTCGCGAGTTGGCAG CTCGACAG GAGTTCCCGAC CCCTCTGTAC acido_3_25 GCTTTGATCGCAAGGAC OP10_1_25 CCCCCTTACTCCCCA gamma_2_25 CGCGAGTTGGCAGCC CGAGGTCC CACCTTAGAC CTCTGTACGC actino_1_1 AAACCTAGATCCGTCAT OP3_1_1 ATCCAAGGGTGATA gamma_3_1 TGCGACACCGAAGGG CCCACACG GGTCCTTACGG CAACCCCCCC actino_1_2 CAAACCTAGATCCGTCA OP3_1_2 TCCAAGGGTGATAG gamma_3_2 CTGCGACACCGAAGG TCCCACAC GTCCTTACGGA GCAACCCCCC actino_1_3 CACCACCTGTATAGGGC OP3_1_3 CCAAGGGTGATAGG gamma_3_3 GACTAGTTCCGAGTA GCTAATGC TCCTTACGGAT TGTCAAGGGC actino_1_4 ACCACCTGTATAGGGCG OP3_1_4 TGTTCTCCCCTGCTG gamma_3_4 GCTGCGACACCGAAG CTAATGCA ACAGGAGTTT GGCAACCCCC actino_1_5 CCACCTGTATAGGGCGC OP3_1_5 TTGTTCTCCCCTGCT gamma_3_5 AACGCGCTAGCTGCG TAATGCAC GACAGGAGTT ACACCGAAGG actino_1_6 CACCTGTATAGGGCGCT OP3_1_6 CTTGTTCTCCCCTGC gamma_3_6 TAACGCGCTAGCTGC AATGCACA TGACAGGAGT GACACCGAAG actino_1_7 GCACCACCTGTATAGGG OP3_1_7 GTTCTCCCCTGCTGA gamma_3_7 TTACTTAACCGCCAA CGCTAATG CAGGAGTTTA CGCGCGCTTT actino_1_8 AACCTAGATCCGTCATC OP3_1_8 CATCCAAGGGTGAT gamma_3_8 ACGCGCTAGCTGCGA CCACACGC AGGTCCTTACG CACCGAAGGG actino_1_9 TGCACCACCTGTATAGG OP3_1_9 TCGACAGGTTATCC gamma_3_9 TTAACGCGCTAGCTG GCGCTAAT CGAACCCTAGG CGACACCGAA actino_1_10 AGCCCTGAACTTTCACG OP3_1_10 TTCGACAGGTTATCC gamma_3_10 CGCGCTAGCTGCGAC ACCGACTT CGAACCCTAG ACCGAAGGGC actino_1_11 GCCCTGAACTTTCACGA OP3_1_11 TTCTCCCCTGCTGAC gamma_3_11 TACTTAACCGCCAAC CCGACTTG AGGAGTTTAC GCGCGCTTTA actino_1_12 GAGCCCTGAACTTTCAC OP3_1_12 CCATCCAAGGGTGA gamma_3_12 AGCTGCGACACCGAA GACCGACT TAGGTCCTTAC GGGCAACCCC actino_1_13 AGCGTCGATAGCGGCCC OP3_1_13 TGATAGGTCCTTACG gamma_3_13 CTTACTTAACCGCCA AGTGAGCT GATCCCCATC ACGCGCGCTT actino_1_14 GCGTCGATAGCGGCCCA OP3_1_14 TCTCCCCTGCTGACA gamma_3_14 ATCCGACTTACTTAAC GTGAGCTG GGAGTTTACA CGCCAACGC actino_1_15 CGTCGATAGCGGCCCAG OP3_1_15 CGGATCCCCATCTTT gamma_3_15 CGACTTACTTAACCG TGAGCTGC CCCTCATGTT CCAACGCGCG actino_1_16 CAGCGTCGATAGCGGCC OP3_1_16 TCCTTGCCGGTTAGG gamma_3_16 TCCGACTTACTTAACC CAGTGAGC CAACCTACTT GCCAACGCG actino_1_17 CCCTGAACTTTCACGAC OP3_1_17 AGTGCGCACCGACC gamma_3_17 CTTAACGCGCTAGCT CGACTTGT GAAGTCGGTGT GCGACACCGA actino_1_18 TGAGCCCTGAACTTTCA OP3_1_18 CCAGTAATGCGCCT gamma_3_18 ACTTACTTAACCGCC CGACCGAC TCGCGACTGGT AACGCGCGCT actino_1_19 ACCTAGATCCGTCATCC OP3_1_19 AGAGTGCGCACCGA gamma_3_19 GCGCTAGCTGCGACA CACACGCG CCGAAGTCGGT CCGAAGGGCA actino_1_20 CTCGGGCTATCCCAGTA OP3_1_20 TCGAAAAGCACAGG gamma_3_20 CCGACTTACTTAACC ACTAAGGT ACGTATCCGGT GCCAACGCGC actino_1_21 CCTCGGGCTATCCCAGT OP3_1_21 CTGTGCTTCGAAAA gamma_3_21 ACTTAACCGCCAACG AACTAAGG GCACAGGACGT CGCGCTTTAC actino_1_22 TCGATAGCGGCCCAGTG OP3_1_22 CCTTAGAGTGCGCA gamma_3_22 CATCCGACTTACTTAA AGCTGCCT CCGACCGAAGT CCGCCAACG actino_1_23 GTCGATAGCGGCCCAGT OP3_1_23 GCCCTCCTTGCCGGT gamma_3_23 TCTTCACACACGCGG GAGCTGCC TAGGCAACCT CATTGCTAGA actino_1_24 CGATAGCGGCCCAGTG OP3_1_24 CTCCTTGCCGGTTAG gamma_3_24 AGAACTTAACGCGCT AGCTGCCTT GCAACCTACT AGCTGCGACA actino_1_25 TCCTCGGGCTATCCCAG OP3_1_25 CAGTAATGCGCCTT gamma_3_25 ACTTAACGCGCTAGC TAACTAAG CGCGACTGGTG TGCGACACCG actino_2_1 CCGGTTTCCCCAAGTGC OP9_1_1 GGGCAAGATAATGT gamma_4_1 ACACCGAAAGGCAAA AAGCACTT CAAGTCCCGGT CCCTCCCGAC actino_2_2 CAAGCACTTGGTTCGTC OP9_1_2 GCTGGCACATAATT gamma_4_2 GACACCGAAAGGCAA CCTCGACT AGCCGGAGCTT ACCCTCCCGA actino_2_3 GCCGGTTTCCCCAAGTG OP9_1_3 TGCTGGCACATAATT gamma_4_3 CACCGAAAGGCAAAC CAAGCACT AGCCGGAGCT CCTCCCGACA actino_2_4 GCTTCGACACGGAAATC OP9_1_4 CCCACTTACAGGGT gamma_4_4 ACCGAAAGGCAAACC GTGAACTG AGATTACCCAC CTCCCGACAT actino_2_5 TTCGCCGGTTTCCCCAA OP9_1_5 CCCCACTTACAGGG gamma_4_5 CGACACCGAAAGGCA GTGCAAGC TAGATTACCCA AACCCTCCCG actino_2_6 CGACACGGAAATCGTG OP9_1_6 CCCCCACTTACAGG gamma_4_6 CCGAAAGGCAAACCC AACTGATCC GTAGATTACCC TCCCGACATC actino_2_7 GACACGGAAATCGTGA OP9_1_7 CTGCTAACCTCATCA gamma_4_7 GCGACACCGAAAGGC ACTGATCCC TCCCGAAGGA AAACCCTCCC actino_2_8 ACACGGAAATCGTGAA OP9_1_8 TCTGCTAACCTCATC gamma_4_8 CGAAAGGCAAACCCT CTGATCCCC ATCCCGAAGG CCCGACATCT actino_2_9 CGCCGGTTTCCCCAAGT OP9_1_9 CTGCTGGCACATAA gamma_4_9 GCTGCGACACCGAAA GCAAGCAC TTAGCCGGAGC GGCAAACCCT actino_2_10 ACGGAAATCGTGAACT OP9_1_10 CCACTTACAGGGTA gamma_4_10 AGCTGCGACACCGAA GATCCCCAC GATTACCCACG AGGCAAACCC actino_2_11 TCGCCGGTTTCCCCAAG OP9_1_11 GACGGGCAAGATAA gamma_4_11 TTGGCTAGCCATTGCT TGCAAGCA TGTCAAGTCCC GGTTTGCAG actino_2_12 CACGGAAATCGTGAACT OP9_1_12 TCCCCCACTTACAG gamma_4_12 TGGCTAGCCATTGCT GATCCCCA GGTAGATTACC GGTTTGCAGC actino_2_13 CGGTTTCCCCAAGTGCA OP9_1_13 GCAGTCTGCCTAGA gamma_4_13 GGATTGGCTAGCCAT AGCACTTG GTGCACTTGTA TGCTGGTTTG actino_2_14 AAGTGCAAGCACTTGGT OP9_1_14 GCTGCTGGCACATA gamma_4_14 GATTGGCTAGCCATT TCGTCCCT ATTAGCCGGAG GCTGGTTTGC actino_2_15 GTTCGCCGGTTTCCCCA OP9_1_15 GGGTACCGTCAGGC gamma_4_15 GGGATTGGCTAGCCA AGTGCAAG TTAAGGGTTTA TTGCTGGTTT actino_2_16 CGGAAATCGTGAACTG OP9_1_16 CACTTACAGGGTAG gamma_4_16 GGCTAGCCATTGCTG ATCCCCACA ATTACCCACGC GTTTGCAGCC actino_2_17 GCAAGCACTTGGTTCGT OP9_1_17 GGCAGTCTGCCTAG gamma_4_17 GAAAGGCAAACCCTC CCCTCGAC AGTGCACTTGT CCGACATCTA actino_2_18 CGTTCGCCGGTTTCCCC OP9_1_18 GGTTATCCCCCACTT gamma_4_18 CTGCGACACCGAAAG AAGTGCAA ACAGGGTAGA GCAAACCCTC actino_2_19 AAGCACTTGGTTCGTCC OP9_1_19 GAGGGTTATCCCCC gamma_4_19 TGCGACACCGAAAGG CTCGACTT ACTTACAGGGT CAAACCCTCC actino_2_20 GGTTTCCCCAAGTGCAA OP9_1_20 GGGTTATCCCCCACT gamma_4_20 AGGGATTGGCTAGCC GCACTTGG TACAGGGTAG ATTGCTGGTT actino_2_21 AGTGCAAGCACTTGGTT OP9_1_21 GTCAGAGATAGACC gamma_4_21 AAGGGATTGGCTAGC CGTCCCTC AGAAAGCCGCC CATTGCTGGT actino_2_22 CAAGTGCAAGCACTTGG OP9_1_22 GGGGTACCGTCAGG gamma_4_22 TAAGGGATTGGCTAG TTCGTCCC CTTAAGGGTTT CCATTGCTGG actino_2_23 CCGTTCGCCGGTTTCCC OP9_1_23 AGGGTTATCCCCCA gamma_4_23 TAGCTGCGACACCGA CAAGTGCA CTTACAGGGTA AAGGCAAACC actino_2_24 CCGTAGTTATCCCGGTG OP9_1_24 CGGCAGTCTGCCTA gamma_4_24 TTAGCTGCGACACCG TACAGGGC GAGTGCACTTG AAAGGCAAAC actino_2_25 CCTCAAGCCTTGCAGTA OP9_1_25 CTCCGCATTATCTGC gamma_4_25 GTTAGCTGCGACACC TCGACTGC GGCAGTCTGC GAAAGGCAAA bacter_1_1 GTTTCCGCGACTGTCAT plancto_1_1 TGCAACACCTGTGC gamma_5_1 CCACTAAGGGACAAA TCCACGTT AGGTCACACCC TTCCCCCAAC bacter_1_2 TTCCGCGACTGTCATTC plancto_1_2 GCAACACCTGTGCA gamma_5_2 CGCCACTAAGGGACA CACGTTCG GGTCACACCCG AATTCCCCCA bacter_1_3 ACGTTTCCGCGACTGTC plancto_1_3 ATGCAACACCTGTG gamma_5_3 GCCACTAAGGGACAA ATTCCACG CAGGTCACACC ATTCCCCCAA bacter_1_4 TTTCCGCGACTGTCATT plancto_1_4 AACACCTGTGCAGG gamma_5_4 CACTAAGGGACAAAT CCACGTTC TCACACCCGAA TCCCCCAACG bacter_1_5 CACGTTTCCGCGACTGT plancto_1_5 CAACACCTGTGCAG gamma_5_5 ACTAAGGGACAAATT CATTCCAC GTCACACCCGA CCCCCAACGG bacter_1_6 TCACGTTTCCGCGACTG plancto_1_6 TGTGCAGGTCACAC gamma_5_6 CTAAGGGACAAATTC TCATTCCA CCGAAGGTAAT CCCCAACGGC bacter_1_7 CGTTTCCGCGACTGTCA plancto_1_7 GTGCAGGTCACACC gamma_5_7 GCGCCACTAAGGGAC TTCCACGT CGAAGGTAATC AAATTCCCCC bacter_1_8 TGTCATTCCACGTTCGA plancto_1_8 TGCAGGTCACACCC gamma_5_8 GGTACCGTCAAGACG GCCCAGGT GAAGGTAATCA CGCAGTTATT bacter_1_9 CTGTCATTCCACGTTCG plancto_1_9 CTGTGCAGGTCACA gamma_5_9 AGGTACCGTCAAGAC AGCCCAGG CCCGAAGGTAA GCGCAGTTAT bacter_1_10 CCGCGACTGTCATTCCA plancto_1_10 CCTGTGCAGGTCAC gamma_5_10 TAGGTACCGTCAAGA CGTTCGAG ACCCGAAGGTA CGCGCAGTTA bacter_1_11 ACTGTCATTCCACGTTC plancto_1_11 ACACCTGTGCAGGT gamma_5_11 TGCGCCACTAAGGGA GAGCCCAG CACACCCGAAG CAAATTCCCC bacter_1_12 CGCGACTGTCATTCCAC plancto_1_12 ACAGAGTTAGCCAG gamma_5_12 TAAGGGACAAATTCC GTTCGAGC TGCTTCCTCTC CCCAACGGCT bacter_1_13 GCGACTGTCATTCCACG plancto_1_13 ACCTGTGCAGGTCA gamma_5_13 CTGTAGGTACCGTCA TTCGAGCC CACCCGAAGGT AGACGCGCAG bacter_1_14 CGACTGTCATTCCACGT plancto_1_14 CATGCAACACCTGT gamma_5_14 GTAGGTACCGTCAAG TCGAGCCC GCAGGTCACAC ACGCGCAGTT bacter_1_15 TCCGCGACTGTCATTCC plancto_1_15 CACCTGTGCAGGTC gamma_5_15 CTGCGCCACTAAGGG ACGTTCGA ACACCCGAAGG ACAAATTCCC bacter_1_16 GACTGTCATTCCACGTT plancto_1_16 CACAGAGTTAGCCA gamma_5_16 TGTAGGTACCGTCAA CGAGCCCA GTGCTTCCTCT GACGCGCAGT bacter_1_17 ATCACGTTTCCGCGACT plancto_1_17 CAGAGTTAGCCAGT gamma_5_17 TCTGTAGGTACCGTC GTCATTCC GCTTCCTCTCG AAGACGCGCA bacter_1_18 GTCATTCCACGTTCGAG plancto_1_18 AGCCAGTGCTTCCTC gamma_5_18 GTCCGCCACTCGACG CCCAGGTA TCGAGCTTAC CCTGAAGAGC bacter_1_19 ACGGTACCATCAGCACC plancto_1_19 GCACAGAGTTAGCC gamma_5_19 GCCACTCGACGCCTG GATACACG AGTGCTTCCTC AAGAGCAAGC bacter_1_20 GTACCATCAGCACCGAT plancto_1_20 GGCCTAGCCCCTGC gamma_5_20 GCTGCGCCACTAAGG ACACGACC ATGTCAAGCCT GACAAATTCC bacter_1_21 GGTACCATCAGCACCGA plancto_1_21 GCAGGTCACACCCG gamma_5_21 CACTCGGTTCCCGAA TACACGAC AAGGTAATCAG GGCACCAAAC bacter_1_22 CGGTACCATCAGCACCG plancto_1_22 ACCGGCCTAGCCCC gamma_5_22 CTTCTGTAGGTACCGT ATACACGA TGCATGTCAAG CAAGACGCG bacter_1_23 GATCACGTTTCCGCGAC plancto_1_23 CAGGTCACACCCGA gamma_5_23 CACTCGACGCCTGAA TGTCATTC AGGTAATCAGC GAGCAAGCTC bacter_1_24 TACGGTACCATCAGCAC plancto_1_24 CCGGCCTAGCCCCT gamma_5_24 CGCCACTCGACGCCT CGATACAC GCATGTCAAGC GAAGAGCAAG bacter_1_25 CACCGATACACGACCG plancto_1_25 CGGCCTAGCCCCTG gamma_5_25 GGACAAATTCCCCCA GTGGTTTTT CATGTCAAGCC ACGGCTAGTT bacter_2_1 GGATTTCTCCGGGCTAC plancto_2_1 TCTCCGAAGAGCAC gamma_6_1 AGCTGCGCCACCAAC CTTCCGGT TCTCCCCTTTC CTCTTGAATG bacter_2_2 CTCCGGGCTACCTTCCG plancto_2_2 TACGACCGAGAAAC gamma_6_2 CCAACCTCTTGAATG GTAAAGGG TGTGGGAGGTC AGGCCGACGG bacter_2_3 CGGATTTCTCCGGGCTA plancto_2_3 ACCGAGAAACTGTG gamma_6_3 TGCGCCACCAACCTC CCTTCCGG GGAGGTCCCTC TTGAATGAGG bacter_2_4 TCTCCGGGCTACCTTCC plancto_2_4 CGACCGAGAAACTG gamma_6_4 GCCACCAACCTCTTG GGTAAAGG TGGGAGGTCCC AATGAGGCCG bacter_2_5 TTCTCCGGGCTACCTTC plancto_2_5 CTCCGAAGAGCACT gamma_6_5 ACCAACCTCTTGAAT CGGTAAAG CTCCCCTTTCA GAGGCCGACG bacter_2_6 TTTCTCCGGGCTACCTT plancto_2_6 GCCCGACCTTCCTCT gamma_6_6 CTGCGCCACCAACCT CCGGTAAA GAGGTTTGGT CTTGAATGAG bacter_2_7 GATTTCTCCGGGCTACC plancto_2_7 AAACTGTGGGAGGT gamma_6_7 CAACCTCTTGAATGA TTCCGGTA CCCTCGATCCA GGCCGACGGC bacter_2_8 ATTTCTCCGGGCTACCT plancto_2_8 TCCGAAGAGCACTC gamma_6_8 GCGCCACCAACCTCT TCCGGTAA TCCCCTTTCAG TGAATGAGGC bacter_2_9 CCGGATTTCTCCGGGCT plancto_2_9 GACCGAGAAACTGT gamma_6_9 CGCCACCAACCTCTT ACCTTCCG GGGAGGTCCCT GAATGAGGCC bacter_2_10 TCCGGATTTCTCCGGGC plancto_2_10 ACGACCGAGAAACT gamma_6_10 CACCAACCTCTTGAA TACCTTCC GTGGGAGGTCC TGAGGCCGAC bacter_2_11 TCCGGGCTACCTTCCGG plancto_2_11 GAAACTGTGGGAGG gamma_6_11 GCTGCGCCACCAACC TAAAGGGT TCCCTCGATCC TCTTGAATGA bacter_2_12 ATCCGGATTTCTCCGGG plancto_2_12 CTCTCCGAAGAGCA gamma_6_12 CCACCAACCTCTTGA CTACCTTC CTCTCCCCTTT ATGAGGCCGA bacter_2_13 CTTTATGGATTAGCTCC plancto_2_13 GCCTGGAGGTAGGT gamma_6_13 TAGCTGCGCCACCAA CCGTCGCT ATCTACCTGTT CCTCTTGAAT bacter_2_14 ACTTTATGGATTAGCTC plancto_2_14 TCCCGACGCTATTCC gamma_6_14 AACCTCTTGAATGAG CCCGTCGC CAGCCTGGAG GCCGACGGCT bacter_2_15 CCGGGCTACCTTCCGGT plancto_2_15 TTGGGCATTACCGC gamma_6_15 AGAGGTCCACTTTGC AAAGGGTA CAGTTTCCCGA CCCGAAGGGC bacter_2_16 AATCCGGATTTCTCCGG plancto_2_16 CCGAGAAACTGTGG gamma_6_16 GAGGTCCACTTTGCC GCTACCTT GAGGTCCCTCG CCGAAGGGCG bacter_2_17 GCTACCTTCCGGTAAAG plancto_2_17 TGAGCAGACCCATC gamma_6_17 TCTTCAGGTAACGTC GGTAGGTT TCCAGGCGCCG AATACGCGCG bacter_2_18 GGCTACCTTCCGGTAAA plancto_2_18 AACTGTGGGAGGTC gamma_6_18 TTAGCTGCGCCACCA GGGTAGGT CCTCGATCCAG ACCTCTTGAA bacter_2_19 GGGCTACCTTCCGGTAA plancto_2_19 CCCGACCTTCCTCTG gamma_6_19 CAGAGGTCCACTTTG AGGGTAGG AGGTTTGGTC CCCCGAAGGG bacter_2_20 TAATCCGGATTTCTCCG plancto_2_20 TGGGCATTACCGCC gamma_6_20 AGGTCCACTTTGCCCC GGCTACCT AGTTTCCCGAC GAAGGGCGT bacter_2_21 CTACCTTCCGGTAAAGG plancto_2_21 CGAGAAACTGTGGG gamma_6_21 ACCTCTTGAATGAGG GTAGGTTG AGGTCCCTCGA CCGACGGCTA bacter_2_22 CGGGCTACCTTCCGGTA plancto_2_22 GAGAAACTGTGGGA gamma_6_22 CGCGCGGGTATTAAC AAGGGTAG GGTCCCTCGAT CGCACGCTTT bacter_2_23 TTAATCCGGATTTCTCC plancto_2_23 CAGCCTGGAGGTAG gamma_6_23 CTTCAGGTAACGTCA GGGCTACC GTATCTACCTG ATACGCGCGG bacter_2_24 TTTATGGATTAGCTCCC plancto_2_24 AGCCCGACCTTCCTC gamma_6_24 TCAGAGGTCCACTTT CGTCGCTG TGAGGTTTGG GCCCCGAAGG bacter_2_25 TACCTTCCGGTAAAGGG plancto_2_25 AATAGTGAGCAGAC gamma_6_25 ACGCGCGGGTATTAA TAGGTTGC CCATCTCCAGG CCGCACGCTT bacter_3_1 GGCTCCTCGCCGTATCA plancto_3_1 CGCAGTGCCTCAGT gamma_7_1 GTCCTCCGTAGTTAG TCGAAATT TAAGCTCAGGC ACTAGCCACT bacter_3_2 CAACCTTGCCAATCACT plancto_3_2 GCAGTGCCTCAGTT gamma_7_2 CGTCCTCCGTAGTTAG CCCCAGGT AAGCTCAGGCA ACTAGCCAC bacter_3_3 CTTGCCAATCACTCCCC plancto_3_3 CAACTCTGAGGGAG gamma_7_3 ACCGTCCTCCGTAGTT AGGTGGAT TACCCTCAGAG AGACTAGCC bacter_3_4 CAGGTAAGGCTCCTCGC plancto_3_4 GTCAACTCTGAGGG gamma_7_4 CCGTCCTCCGTAGTTA CGTATCAT AGTACCCTCAG GACTAGCCA bacter_3_5 AGGCTCCTCGCCGTATC plancto_3_5 TATGTTTTCCTACGC gamma_7_5 GACCGTCCTCCGTAG ATCGAAAT CGTTCGCCGC TTAGACTAGC bacter_3_6 AACCTTGCCAATCACTC plancto_3_6 GCAGAAAGAGGAAA gamma_7_6 TGACCGTCCTCCGTA CCCAGGTG CCTCCTCCCGC GTTAGACTAG bacter_3_7 ACCTTGCCAATCACTCC plancto_3_7 AACTCTGAGGGAGT gamma_7_7 CTGCAGGTAACGTCA CCAGGTGG ACCCTCAGAGA AGTACTCACC bacter_3_8 TCAACCTTGCCAATCAC plancto_3_8 TCAACTCTGAGGGA gamma_7_8 TATTAGGGGTAAGCC TCCCCAGG GTACCCTCAGA TTCCTCCCTG bacter_3_9 GGTAAGGCTCCTCGCCG plancto_3_9 CTATGTTTTCCTACG gamma_7_9 TGCAGGTAACGTCAA TATCATCG CCGTTCGCCG GTACTCACCC bacter_3_10 TCCGCCTACCCCAACTA plancto_3_10 TCCTATGTTTTCCTA gamma_7_10 GCAGGTAACGTCAAG TACTCTAG CGCCGTTCGC TACTCACCCG bacter_3_11 TTCAACCTTGCCAATCA plancto_3_11 CCTATGTTTTCCTAC gamma_7_11 TTCCCCGGGTTGTCCC CTCCCCAG GCCGTTCGCC CCACTCATG bacter_3_12 CCCAGGTAAGGCTCCTC plancto_3_12 ACTCTGAGGGAGTA gamma_7_12 TCCCCGGGTTGTCCCC GCCGTATC CCCTCAGAGAT CACTCATGG bacter_3_13 AGGTAAGGCTCCTCGCC plancto_3_13 ACGCAGTGCCTCAG gamma_7_13 CCCCGGGTTGTCCCCC GTATCATC TTAAGCTCAGG ACTCATGGG bacter_3_14 CCAATCACTCCCCAGGT plancto_3_14 TGTCAACTCTGAGG gamma_7_14 TTTCCCCGGGTTGTCC GGATTACC GAGTACCCTCA CCCACTCAT bacter_3_15 CCTTGCCAATCACTCCC plancto_3_15 ATGTTTTCCTACGCC gamma_7_15 CCCGGGTTGTCCCCC CAGGTGGA GTTCGCCGCT ACTCATGGGT bacter_3_16 GTAAGGCTCCTCGCCGT plancto_3_16 AACGCAGTGCCTCA gamma_7_16 CCGGGTTGTCCCCCA ATCATCGA GTTAAGCTCAG CTCATGGGTA bacter_3_17 CCGCCTACCCCAACTAT plancto_3_17 CAGTGCCTCAGTTA gamma_7_17 CTCACCCGTATTAGG ACTCTAGA AGCTCAGGCAT GGTAAGCCTT bacter_3_18 CCAGGTAAGGCTCCTCG plancto_3_18 CTGTCAACTCTGAG gamma_7_18 ACCCGTATTAGGGGT CCGTATCA GGAGTACCCTC AAGCCTTCCT bacter_3_19 AAGGCTCCTCGCCGTAT plancto_3_19 CTCTGAGGGAGTAC gamma_7_19 ACTCACCCGTATTAG CATCGAAA CCTCAGAGATT GGGTAAGCCT bacter_3_20 GCCAATCACTCCCCAGG plancto_3_20 TCTGTCAACTCTGAG gamma_7_20 GTCAAGTACTCACCC TGGATTAC GGAGTACCCT GTATTAGGGG bacter_3_21 TAAGGCTCCTCGCCGTA plancto_3_21 GGAGTACCCTCAGA gamma_7_21 TCACCCGTATTAGGG TCATCGAA GATTTCATCCC GTAAGCCTTC bacter_3_22 GCCCAGGTAAGGCTCCT plancto_3_22 CAAACGCAGTGCCT gamma_7_22 CCCGTATTAGGGGTA CGCCGTAT CAGTTAAGCTC AGCCTTCCTC bacter_3_23 CATTCCGCCTACCCCAA plancto_3_23 CTCTGTCAACTCTGA gamma_7_23 GTACTCACCCGTATTA CTATACTC GGGAGTACCC GGGGTAAGC bacter_3_24 CAATCACTCCCCAGGTG plancto_3_24 ACAGCAGAAAGAGG gamma_7_24 CACCCGTATTAGGGG GATTACCT AAACCTCCTCC TAAGCCTTCC bacter_3_25 CCGCCGGAACTTTGATC plancto_3_25 CTGAGGGAGTACCC gamma_7_25 TACTCACCCGTATTAG ATCAAGAG TCAGAGATTTC GGGTAAGCC flavo_1_1 CTCAGACACCAAGGTCC plancto_4_1 ACTACCTAATATCG gamma_8_1 CGCGAGCTCATCCAT AAACAGCT CATCGGCCGCT CAGCACAAGG flavo_1_2 CAGACACCAAGGTCCA plancto_4_2 CAACTACCTAATAT gamma_8_2 TCATCCATCAGCACA AACAGCTAG CGCATCGGCCG AGGTCCGAAG flavo_1_3 CACTCAGACACCAAGGT plancto_4_3 AACTACCTAATATC gamma_8_3 CTCATCCATCAGCAC CCAAACAG GCATCGGCCGC AAGGTCCGAA flavo_1_4 GCTTAGCCACTCAGACA plancto_4_4 CCAACTACCTAATA gamma_8_4 GCTCATCCATCAGCA CCAAGGTC TCGCATCGGCC CAAGGTCCGA flavo_1_5 ACTCAGACACCAAGGTC plancto_4_5 ACGTTCCGATGTATT gamma_8_5 ACGCGAGCTCATCCA CAAACAGC CCTACCCCGT TCAGCACAAG flavo_1_6 CTTAGCCACTCAGACAC plancto_4_6 TACGTTCCGATGTAT gamma_8_6 CATCCATCAGCACAA CAAGGTCC TCCTACCCCG GGTCCGAAGA flavo_1_7 TACCGTCAAGCTTGGTA plancto_4_7 GTACGTTCCGATGTA gamma_8_7 GACGCGAGCTCATCC CACGTACC TTCCTACCCC ATCAGCACAA flavo_1_8 GTACCGTCAAGCTTGGT plancto_4_8 CTACCTAATATCGC gamma_8_8 GCGAGCTCATCCATC ACACGTAC ATCGGCCGCTC AGCACAAGGT flavo_1_9 GCCACTCAGACACCAA plancto_4_9 CGTTCCGATGTATTC gamma_8_9 TCCATCAGCACAAGG GGTCCAAAC CTACCCCGTT TCCGAAGATC flavo_1_10 TTAGCCACTCAGACACC plancto_4_10 GTTTCCACCCACTAA gamma_8_10 CGACGCGAGCTCATC AAGGTCCA TCCGTGCATG CATCAGCACA flavo_1_11 ACCGTCAAGCTTGGTAC plancto_4_11 TTCCACCCACTAATC gamma_8_11 CATCAGCACAAGGTC ACGTACCA CGTGCATGTC CGAAGATCCC flavo_1_12 CCACTCAGACACCAAG plancto_4_12 TCCACCCACTAATCC gamma_8_12 CCCTCTAATGGGCAG GTCCAAACA GTGCATGTCA ATTCTCACGT flavo_1_13 AGCCACTCAGACACCA plancto_4_13 CCACCCACTAATCC gamma_8_13 CCGACGCGAGCTCAT AGGTCCAAA GTGCATGTCAA CCATCAGCAC flavo_1_14 TAGCCACTCAGACACCA plancto_4_14 GGCAGTAAACCTTT gamma_8_14 CCCCTCTAATGGGCA AGGTCCAA GGTCTCTCGAC GATTCTCACG flavo_1_15 CCGTCAAGCTTGGTACA plancto_4_15 GGTACGTTCCGATGT gamma_8_15 CCCCCTCTAATGGGC CGTACCAA ATTCCTACCC AGATTCTCAC flavo_1_16 CGCTTAGCCACTCAGAC plancto_4_16 TGCGAGCGTCATGA gamma_8_16 CGAGCTCATCCATCA ACCAAGGT ATGTTTCCACC GCACAAGGTC flavo_1_17 TCGCTTAGCCACTCAGA plancto_4_17 GCGAGCGTCATGAA gamma_8_17 CCATCAGCACAAGGT CACCAAGG TGTTTCCACCC CCGAAGATCC flavo_1_18 CGTCAAGCTTGGTACAC plancto_4_18 GAGCGTCATGAATG gamma_8_18 CCTCTAATGGGCAGA GTACCAAG TTTCCACCCAC TTCTCACGTG flavo_1_19 CAGCTAGTAACCATCGT plancto_4_19 CGAGCGTCATGAAT gamma_8_19 CCCAGGTTATCCCCCT TTACCGGC GTTTCCACCCA CTAATGGGC flavo_1_20 GCCATAGCTAGAGACTA plancto_4_20 CAGTTATGCCCCAG gamma_8_20 TCCGACGCGAGCTCA TGGGGGAT TGAATCGCCTT TCCATCAGCA flavo_1_21 TGCCATAGCTAGAGACT plancto_4_21 TCAGTTATGCCCCA gamma_8_21 GAGCTCATCCATCAG ATGGGGGA GTGAATCGCCT CACAAGGTCC flavo_1_22 ATGCCATAGCTAGAGAC plancto_4_22 AGTTATGCCCCAGT gamma_8_22 TTCCCCAGGTTATCCC TATGGGGG GAATCGCCTTC CCTCTAATG flavo_1_23 TTCGCTTAGCCACTCAG plancto_4_23 GTCAGTTATGCCCC gamma_8_23 TCCCCAGGTTATCCCC ACACCAAG AGTGAATCGCC CTCTAATGG flavo_1_24 AGCTAGTAACCATCGTT plancto_4_24 GTTATGCCCCAGTG gamma_8_24 CCCCAGGTTATCCCCC TACCGGCG AATCGCCTTCG TCTAATGGG flavo_1_25 GTCAAGCTTGGTACACG plancto_4_25 CTCCACTGGATGTTC gamma_8_25 ATCCCCCTCTAATGG TACCAAGG CATTCACCTC GCAGATTCTC flavo_2_1 TACAGTACCGTCAGAGC alpha_1_1 CCGGCCCCTTGCGG gamma_9_1 CCTGTCCATCGGTTCC TCTACACG GAAGAAAGCCA CGAAGGCAC flavo_2_2 TCTTACAGTACCGTCAG alpha_1_2 CACCTGTGCACCGG gamma_9_2 CTGTCCATCGGTTCCC AGCTCTAC CCCCTTGCGGG GAAGGCACC flavo_2_3 TTACAGTACCGTCAGAG alpha_1_3 GCACCTGTGCACCG gamma_9_3 TGTCCATCGGTTCCCG CTCTACAC GCCCCTTGCGG AAGGCACCA flavo_2_4 GCATACTCATCTCTTAC alpha_1_4 CTGTGCACCGGCCC gamma_9_4 CAGCACCTGTCCATC CGCCGAAG CTTGCGGGAAG GGTTCCCGAA flavo_2_5 CATACTCATCTCTTACC alpha_1_5 ACCTGTGCACCGGC gamma_9_5 AGCACCTGTCCATCG GCCGAAGC CCCTTGCGGGA GTTCCCGAAG flavo_2_6 ACAGTACCGTCAGAGCT alpha_1_6 CCTGTGCACCGGCC gamma_9_6 ACCTGTCCATCGGTTC CTACACGT CCTTGCGGGAA CCGAAGGCA flavo_2_7 CAGTACCGTCAGAGCTC alpha_1_7 AGCACCTGTGCACC gamma_9_7 GTCCATCGGTTCCCG TACACGTA GGCCCCTTGCG AAGGCACCAA flavo_2_8 CTTACAGTACCGTCAGA alpha_1_8 CGGCCCCTTGCGGG gamma_9_8 CACCTGTCCATCGGTT GCTCTACA AAGAAAGCCAT CCCGAAGGC flavo_2_9 TACTCATCTCTTACCGC alpha_1_9 GCACCGGCCCCTTG gamma_9_9 CCTCCCTCTCTCGCAC CGAAGCTT CGGGAAGAAAG TCTAGCCTT flavo_2_10 ATACTCATCTCTTACCG alpha_1_10 CACCGGCCCCTTGC gamma_9_10 GCACCTGTCCATCGG CCGAAGCT GGGAAGAAAGC TTCCCGAAGG flavo_2_11 CTCATCTCTTACCGCCG alpha_1_11 ACCGGCCCCTTGCG gamma_9_11 GCAGCACCTGTCCAT AAGCTTTA GGAAGAAAGCC CGGTTCCCGA flavo_2_12 CGCCCAGTGGCTGCTCT alpha_1_12 TGTGCACCGGCCCC gamma_9_12 ACCTCCCTCTCTCGCA CTGTCTAT TTGCGGGAAGA CTCTAGCCT flavo_2_13 CCAGTGGCTGCTCTCTG alpha_1_13 GTGCACCGGCCCCT gamma_9_13 CTCCCTCTCTCGCACT TCTATACC TGCGGGAAGAA CTAGCCTTC flavo_2_14 CCCAGTGGCTGCTCTCT alpha_1_14 TGCACCGGCCCCTT gamma_9_14 TCTCTCGCACTCTAGC GTCTATAC GCGGGAAGAAA CTTCCAGTA flavo_2_15 TCGCCCAGTGGCTGCTC alpha_1_15 CAGCACCTGTGCAC gamma_9_15 TCGCACTCTAGCCTTC TCTGTCTA CGGCCCCTTGC CAGTATCGG flavo_2_16 GCCCAGTGGCTGCTCTC alpha_1_16 TTGCGGGAAGAAAG gamma_9_16 CTCGCACTCTAGCCTT TGTCTATA CCATCTCTGGC CCAGTATCG flavo_2_17 GACTCCGATCCGAACTG alpha_1_17 GGCCCCTTGCGGGA gamma_9_17 TACCTCCCTCTCTCGC TGATATAG AGAAAGCCATC ACTCTAGCC flavo_2_18 AGAACGCATACTCATCT alpha_1_18 CCTTGCGGGAAGAA gamma_9_18 CTCTCGCACTCTAGCC CTTACCGC AGCCATCTCTG TTCCAGTAT flavo_2_19 GAACGCATACTCATCTC alpha_1_19 GCAGCACCTGTGCA gamma_9_19 CCCTCTCTCGCACTCT TTACCGCC CCGGCCCCTTG AGCCTTCCA flavo_2_20 CACGTAGAGCGGTTTCT alpha_1_20 TGCGGGAAGAAAGC gamma_9_20 TGCAGCACCTGTCCA TCCTGTAT CATCTCTGGCG TCGGTTCCCG flavo_2_21 GTCCTGTCACACTACAT alpha_1_21 AAAGCCATCTCTGG gamma_9_21 ACTCCGTGGTAATCG TTAAGCCC CGATCATACCG CCCTCCCGAA flavo_2_22 ACTCATCTCTTACCGCC alpha_1_22 GCCCCTTGCGGGAA gamma_9_22 TCCATCGGTTCCCGA GAAGCTTT GAAAGCCATCT AGGCACCAAT flavo_2_23 CCCCTATCTATCGTAGC alpha_1_23 AACAGCAAGCTGCC gamma_9_23 TCACTCCGTGGTAATC CATGGTGT CAACGGCTAGC GCCCTCCCG flavo_2_24 CCCTATCTATCGTAGCC alpha_1_24 CATGCAGCACCTGT gamma_9_24 TCCCTCTCTCGCACTC ATGGTGTG GCACCGGCCCC TAGCCTTCC flavo_2_25 CCTATCTATCGTAGCCA alpha_1_25 GCAAGCTGCCCAAC gamma_9_25 CCTCTCTCGCACTCTA TGGTGTGC GGCTAGCATCC GCCTTCCAG flavo_3_1 CTGTCACCTAACATTTA alpha_2_1 GTGACCCAGAAAGT gamma_10_1 CGCAGGCACATCCGA AGCCCTGG TGCCTTCGCAT TAGCGAGAGC flavo_3_2 CCGTCAAGCTTTCTCAC alpha_2_2 GTATTCACCGCGAC gamma_10_2 ACGCAGGCACATCCG GAGAAAGT GCGCTGATTCG ATAGCGAGAG flavo_3_3 ACCGTCAAGCTTTCTCA alpha_2_3 CGTATTCACCGCGA gamma_10_3 GCGGCTTCGCGGCCC CGAGAAAG CGCGCTGATTC TCTGTACTTG flavo_3_4 CTCTGACTTATTTGTCC alpha_2_4 TATTCACCGCGACG gamma_10_4 CGGCTTCGCGGCCCT ACCTACGG CGCTGATTCGC CTGTACTTGC flavo_3_5 CCTCTGACTTATTTGTC alpha_2_5 ACGTATTCACCGCG gamma_10_5 GGCTTCGCGGCCCTCT CACCTACG ACGCGCTGATT GTACTTGCC flavo_3_6 GTACCGTCAAGCTTTCT alpha_2_6 GGAACGTATTCACC gamma_10_6 CGCGGCTTCGCGGCC CACGAGAA GCGACGCGCTG CTCTGTACTT flavo_3_7 GAGGCAGATTGTATACG alpha_2_7 CCGGGAACGTATTC gamma_10_7 GCTTCGCGGCCCTCTG CGATACTC ACCGCGACGCG TACTTGCCA flavo_3_8 TCTATCGTAGCCTAGGT alpha_2_8 CGGGAACGTATTCA gamma_10_8 CACTACTGGGTAGTTT GTGCCGTT CCGCGACGCGC CCTACGCGT flavo_3_9 CCCCTATCTATCGTAGC alpha_2_9 GGGAACGTATTCAC gamma_10_9 CCACTACTGGGTAGT CTAGGTGT CGCGACGCGCT TTCCTACGCG flavo_3_10 ATCTATCGTAGCCTAGG alpha_2_10 AACGTATTCACCGC gamma_10_10 CCCCACTACTGGGTA TGTGCCGT GACGCGCTGAT GTTTCCTACG flavo_3_11 CCCTATCTATCGTAGCC alpha_2_11 GAACGTATTCACCG gamma_10_11 CCCACTACTGGGTAG TAGGTGTG CGACGCGCTGA TTTCCTACGC flavo_3_12 TATCTATCGTAGCCTAG alpha_2_12 CCCGGGAACGTATT gamma_10_12 CCCCCACTACTGGGT GTGTGCCG CACCGCGACGC AGTTTCCTAC flavo_3_13 CCTATCTATCGTAGCCT alpha_2_13 ATTCACCGCGACGC gamma_10_13 ACTACCGGGTAGTTT AGGTGTGC GCTGATTCGCG CCTACGCGTT flavo_3_14 CTATCTATCGTAGCCTA alpha_2_14 CCGCGACGCGCTGA gamma_10_14 CACTACCGGGTAGTT GGTGTGCC TTCGCGATTAC TCCTACGCGT flavo_3_15 CTATCGTAGCCTAGGTG alpha_2_15 CACCGCGACGCGCT gamma_10_15 ACCGGGTAGTTTCCT TGCCGTTA GATTCGCGATT ACGCGTTACT flavo_3_16 TATCGTAGCCTAGGTGT alpha_2_16 CGCGACGCGCTGAT gamma_10_16 CCACTACCGGGTAGT GCCGTTAC TCGCGATTACT TTCCTACGCG flavo_3_17 CTTATTTGTCCACCTAC alpha_2_17 TCACCGCGACGCGC gamma_10_17 CCCCACTACCGGGTA GGACCCTT TGATTCGCGAT GTTTCCTACG flavo_3_18 ACTTATTTGTCCACCTA alpha_2_18 ACCGCGACGCGCTG gamma_10_18 CCGGGTAGTTTCCTAC CGGACCCT ATTCGCGATTA GCGTTACTC flavo_3_19 GACTTATTTGTCCACCT alpha_2_19 GCGACGCGCTGATT gamma_10_19 CCCACTACCGGGTAG ACGGACCC CGCGATTACTA TTTCCTACGC flavo_3_20 TGACTTATTTGTCCACC alpha_2_20 TTCACCGCGACGCG gamma_10_20 TACCGGGTAGTTTCCT TACGGACC CTGATTCGCGA ACGCGTTAC flavo_3_21 CTGACTTATTTGTCCAC alpha_2_21 TCCTCAGTGTCAGTA gamma_10_21 CCCCCACTACCGGGT CTACGGAC GTGACCCAGA AGTTTCCTAC flavo_3_22 AGATTGTATACGCGATA alpha_2_22 CCCAGAAAGTTGCC gamma_10_22 CTACCGGGTAGTTTCC CTCACCCG TTCGCATTTGG TACGCGTTA flavo_3_23 GATTGTATACGCGATAC alpha_2_23 AGTGCGGGCTCATC gamma_10_23 CTGTTGTCCCCCACTA TCACCCGT TTTCGGCGTAT CTGGGTAGT flavo_3_24 TCTTCGGGCTATTCCCT alpha_2_24 AAGTGCGGGCTCAT gamma_10_24 CTAGCTAATCTCACG AGTATGAG CTTTCGGCGTA CAGGCACATC flavo_3_25 CTTCGGGCTATTCCCTA alpha_2_25 GTGCGGGCTCATCTT gamma_10_25 CAACTAGCTAATCTC GTATGAGG TCGGCGTATA ACGCAGGCAC flavo_4_1 CAGGAGATATTCCCATA alpha_3_1 CACCTGTATCCAATC gamma_11_1 GCTTTCCCCCGTAGG CTATGGGG CACCCGAAGT ATATATGCGG flavo_4_2 TCAAACTCCCACACGTG alpha_3_2 ACCTGTATCCAATCC gamma_11_2 CTTTCCCCCGTAGGAT GGAGTGGT ACCCGAAGTG ATATGCGGT flavo_4_3 CAAACTCCCACACGTGG alpha_3_3 CCTGTATCCAATCCA gamma_11_3 TGCTTTCCCCCGTAGG GAGTGGTT CCCGAAGTGA ATATATGCG flavo_4_4 GTCAAACTCCCACACGT alpha_3_4 GCACCTGTATCCAA gamma_11_4 CTGCTTTCCCCCGTAG GGGAGTGG TCCACCCGAAG GATATATGC flavo_4_5 GGAGATATTCCCATACT alpha_3_5 GGCAGTTCCTTCAA gamma_11_5 CCTGCTTTCCCCCGTA ATGGGGCA AGTTCCCACCA GGATATATG flavo_4_6 AGGAGATATTCCCATAC alpha_3_6 AGCACCTGTATCCA gamma_11_6 CCCTGCTTTCCCCCGT TATGGGGC ATCCACCCGAA AGGATATAT flavo_4_7 CGTCAAACTCCCACACG alpha_3_7 CGGCAGTTCCTTCA gamma_11_7 CTCACTCAGGCTCATC TGGGAGTG AAGTTCCCACC AAATAGCGC flavo_4_8 AAACTCCCACACGTGGG alpha_3_8 CAGCACCTGTATCC gamma_11_8 CCCCTGCTTTCCCCCG AGTGGTTC AATCCACCCGA TAGGATATA flavo_4_9 CTGGGCTATTCCCCTCC alpha_3_9 CCGGCAGTTCCTTCA gamma_11_9 GTGTCAGTATCGAGC AAAAGGTA AAGTTCCCAC CAGTCAGTCG flavo_4_10 CCGTCAAACTCCCACAC alpha_3_10 GCAGCACCTGTATC gamma_11_10 TCAGTGTCAGTATCG GTGGGAGT CAATCCACCCG AGCCAGTCAG flavo_4_11 CTTAACCACTCAGCCCT alpha_3_11 TGCAGCACCTGTAT gamma_11_11 AGTGTCAGTATCGAG TAATCGGG CCAATCCACCC CCAGTCAGTC flavo_4_12 GTTTCCCTGGGCTATTC alpha_3_12 TCACCGGCAGTTCCT gamma_11_12 TGTCAGTATCGAGCC CCCTCCAA TCAAAGTTCC AGTCAGTCGC flavo_4_13 GCTTAACCACTCAGCCC alpha_3_13 CTTACAAATCCGCCT gamma_11_13 CAGTGTCAGTATCGA TTAATCGG ACGCTCGCTT GCCAGTCAGT flavo_4_14 AACTCCCACACGTGGGA alpha_3_14 ATGCAGCACCTGTA gamma_11_14 CTCAGTGTCAGTATC GTGGTTCT TCCAATCCACC GAGCCAGTCA flavo_4_15 ACCGTCAAACTCCCACA alpha_3_15 CGGGCCCATCCAAT gamma_11_15 TCCCCTGCTTTCCCCC CGTGGGAG AGCGCATAAAG GTAGGATAT flavo_4_16 CCACACGTGGGAGTGGT alpha_3_16 GGGCCCATCCAATA gamma_11_16 CCCCACCAACTAGCT TCTTCCTC GCGCATAAAGC AATCTCACTC flavo_4_17 AGTTTCCCTGGGCTATT alpha_3_17 GCGGGCCCATCCAA gamma_11_17 CCTCAGTGTCAGTATC CCCCTCCA TAGCGCATAAA GAGCCAGTC flavo_4_18 TTAACCACTCAGCCCTT alpha_3_18 ACTTACAAATCCGC gamma_11_18 GTCCCCTGCTTTCCCC AATCGGGC CTACGCTCGCT CGTAGGATA flavo_4_19 CACGTGGGAGTGGTTCT alpha_3_19 CGCGGGCCCATCCA gamma_11_19 TCAGTATCGAGCCAG TCCTCTGT ATAGCGCATAA TCAGTCGCCT flavo_4_20 CACACGTGGGAGTGGTT alpha_3_20 GGCCCATCCAATAG gamma_11_20 GTATCGAGCCAGTCA CTTCCTCT CGCATAAAGCT GTCGCCTTCG flavo_4_21 ACACGTGGGAGTGGTTC alpha_3_21 CACCGGCAGTTCCTT gamma_11_21 AGTATCGAGCCAGTC TTCCTCTG CAAAGTTCCC AGTCGCCTTC flavo_4_22 CGCTTAACCACTCAGCC alpha_3_22 ACCGGCAGTTCCTTC gamma_11_22 TATCGAGCCAGTCAG CTTAATCG AAAGTTCCCA TCGCCTTCGC flavo_4_23 ACGTGGGAGTGGTTCTT alpha_3_23 AACTTACAAATCCG gamma_11_23 ATCGAGCCAGTCAGT CCTCTGTA CCTACGCTCGC CGCCTTCGCC flavo_4_24 TTTCCCTGGGCTATTCC alpha_3_24 CGCATAAAGCTTTCT gamma_11_24 GTCAGTATCGAGCCA CCTCCAAA CCCGAAGGAC GTCAGTCGCC flavo_4_25 TTCCCTGGGCTATTCCC alpha_3_25 CATGCAGCACCTGT gamma_11_25 CAGTATCGAGCCAGT CTCCAAAA ATCCAATCCAC CAGTCGCCTT flavo_5_1 CGTCAACAGTTCACACG roseo_1_1 CTCTGGAATCCGCG gamma_12_1 CACTACCTGGTAGAT TGAACCTT ACAAGTATGTC TCCTACGCGT flavo_5_2 ACAGTACCGTCAACAGT roseo_1_2 TGCCCCTATAAATA gamma_12_2 CCACTACCTGGTAGA TCACACGT GTTGGCGCACC TTCCTACGCG flavo_5_3 CCGTCAACAGTTCACAC roseo_1_3 CCCTATAAATAGTTG gamma_12_3 CCCACTACCTGGTAG GTGAACCT GCGCACCACC ATTCCTACGC flavo_5_4 CAGTACCGTCAACAGTT roseo_1_4 CCCCTATAAATAGTT gamma_12_4 AACTGTTGTCCCCCAC CACACGTG GGCGCACCAC TACCTGGTA flavo_5_5 TACAGTACCGTCAACAG roseo_1_5 GCCCCTATAAATAG gamma_12_5 CAACTGTTGTCCCCCA TTCACACG TTGGCGCACCA CTACCTGGT flavo_5_6 ACCGTCAACAGTTCACA roseo_1_6 CGTGGTTGGCTGCC gamma_12_6 CCAACTGTTGTCCCCC CGTGAACC CCTATAAATAG ACTACCTGG flavo_5_7 CTACAGTACCGTCAACA roseo_1_7 CTGCCCCTATAAAT gamma_12_7 CCCCACTACCTGGTA GTTCACAC AGTTGGCGCAC GATTCCTACG flavo_5_8 TACCGTCAACAGTTCAC roseo_1_8 CCGTGGTTGGCTGC gamma_12_8 CGGTATTGCAACCCT ACGTGAAC CCCTATAAATA CTGTACGCCC flavo_5_9 AGTACCGTCAACAGTTC roseo_1_9 TGGCTGCCCCTATA gamma_12_9 ACTGTTGTCCCCCACT ACACGTGA AATAGTTGGCG ACCTGGTAG flavo_5_10 GTACCGTCAACAGTTCA roseo_1_10 GGCTGCCCCTATAA gamma_12_10 TCCAACTGTTGTCCCC CACGTGAA ATAGTTGGCGC CACTACCTG flavo_5_11 CCTACAGTACCGTCAAC roseo_1_11 GGAATCCGCGACAA gamma_12_11 CCCCCACTACCTGGT AGTTCACA GTATGTCAAGG AGATTCCTAC flavo_5_12 TCCTACAGTACCGTCAA roseo_1_12 GCTGCCCCTATAAA gamma_12_12 GCGGTATTGCAACCC CAGTTCAC TAGTTGGCGCA TCTGTACGCC flavo_5_13 CCGAAGAAAAAGATGT roseo_1_13 ACCGTGGTTGGCTG gamma_12_13 GCGGTATCGCAACCC TTCCACCCC CCCCTATAAAT TCTGTACGTT flavo_5_14 CTCAGACCGCAATTAGT roseo_1_14 CCATCTCTGGAATCC gamma_12_14 TCTATCAGTTTGGGGT CCGAACAG GCGACAAGTA GCAGTTCCC flavo_5_15 TAGCCACTCAGACCGCA roseo_1_15 ATAGTTGGCGCACC gamma_12_15 GTCTATCAGTTTGGG ATTAGTCC ACCTTCGGGTA GTGCAGTTCC flavo_5_16 TTAGCCACTCAGACCGC roseo_1_16 GGAATCCATCTCTG gamma_12_16 CTGTTGTCCCCCACTA AATTAGTC GAATCCGCGAC CCTGGTAGA flavo_5_17 ACTCAGACCGCAATTAG roseo_1_17 TACCGTGGTTGGCTG gamma_12_17 CTATCAGTTTGGGGT TCCGAACA CCCCTATAAA GCAGTTCCCA flavo_5_18 AGATGTTTCCACCCCTG roseo_1_18 GAATCCGCGACAAG gamma_12_18 CTGTTGCTAACGTCAC TCAAACTG TATGTCAAGGG AGCTAAGGG flavo_5_19 CAGACCGCAATTAGTCC roseo_1_19 TCCATCTCTGGAATC gamma_12_19 CAGTTTGGGGTGCAG GAACAGCT CGCGACAAGT TTCCCAGGTT flavo_5_20 GCCACTCAGACCGCAAT roseo_1_20 ATCCATCTCTGGAAT gamma_12_20 AGTTTGGGGTGCAGT TAGTCCGA CCGCGACAAG TCCCAGGTTG flavo_5_21 CACTCAGACCGCAATTA roseo_1_21 TAGTTGGCGCACCA gamma_12_21 TTCCAACTGTTGTCCC GTCCGAAC CCTTCGGGTAG CCACTACCT flavo_5_22 CTTAGCCACTCAGACCG roseo_1_22 CCTACCGTGGTTGG gamma_12_22 TATCAGTTTGGGGTG CAATTAGT CTGCCCCTATA CAGTTCCCAG flavo_5_23 AGCCACTCAGACCGCA roseo_1_23 CTACCGTGGTTGGCT gamma_12_23 CGGTATCGCAACCCT ATTAGTCCG GCCCCTATAA CTGTACGTTC flavo_5_24 TCAGACCGCAATTAGTC roseo_1_24 ACGTCGTCCACACC gamma_12_24 CCCCACCAACTAACT CGAACAGC TTCCTCCGGCT AATCTCACGC flavo_5_25 ACTTTCGCTTAGCCACT roseo_1_25 GACGTCGTCCACAC gamma_12_25 GTCAGCGACTAGCAA CAGACCGC CTTCCTCCGGC GCTAGTCCTG flavo_6_1 AGTGCCGGAGTTAAGCC roseo_2_1 GTCACCGGGTCACC gamma_13_1 CGCCACTGAAAGACA CCTGCATT GAAGTGAAAAC TTGTCTCCCA flavo_6_2 GTGCCGGAGTTAAGCCC roseo_2_2 ACCGGGTCACCGAA gamma_13_2 GCGCCACTGAAAGAC CTGCATTT GTGAAAACCAG ATTGTCTCCC flavo_6_3 CAGTGCCGGAGTTAAGC roseo_2_3 CACCGGGTCACCGA gamma_13_3 TGCGCCACTGAAAGA CCCTGCAT AGTGAAAACCA CATTGTCTCC flavo_6_4 TGCCGGAGTTAAGCCCC roseo_2_4 TCACCGGGTCACCG gamma_13_4 TGTCAGTACAGATCC TGCATTTC AAGTGAAAACC AGGAGGCCGC flavo_6_5 AGTTAAGCCCCTGCATT roseo_2_5 TGTCACCGGGTCAC gamma_13_5 GTGTCAGTACAGATC TCACCACT CGAAGTGAAAA CAGGAGGCCG flavo_6_6 GCAGTGCCGGAGTTAA roseo_2_6 CCGGGTCACCGAAG gamma_13_6 CTGCGCCACTGAAAG GCCCCTGCA TGAAAACCAGA ACATTGTCTC flavo_6_7 GTTAAGCCCCTGCATTT roseo_2_7 AGATCTCTCTGGCG gamma_13_7 CTTGGCTCCAAAAGG CACCACTG GTCCCGGGATG CACACTCTCA flavo_6_8 GGCAGTGCCGGAGTTA roseo_2_8 ACCAGATCTCTCTG gamma_13_8 GAGAGCTTCAAGAGA AGCCCCTGC GCGGTCCCGGG GGCCCTCTTT flavo_6_9 TGGCAGTGCCGGAGTTA roseo_2_9 AACCAGATCTCTCT gamma_13_9 CGAGAGCTTCAAGAG AGCCCCTG GGCGGTCCCGG AGGCCCTCTT flavo_6_10 GAGTTAAGCCCCTGCAT roseo_2_10 AAACCAGATCTCTC gamma_13_10 GCGAGAGCTTCAAGA TTCACCAC TGGCGGTCCCG GAGGCCCTCT flavo_6_11 GCCGGAGTTAAGCCCCT roseo_2_11 TCTCTGGCGGTCCCG gamma_13_11 TAGCGAGAGCTTCAA GCATTTCA GGATGTCAAG GAGAGGCCCT flavo_6_12 ATGGCAGTGCCGGAGTT roseo_2_12 ATCTCTCTGGCGGTC gamma_13_12 AGAGCTTCAAGAGAG AAGCCCCT CCGGGATGTC GCCCTCTTTC flavo_6_13 TTAAGCCCCTGCATTTC roseo_2_13 GATCTCTCTGGCGGT gamma_13_13 AGCGAGAGCTTCAAG ACCACTGA CCCGGGATGT AGAGGCCCTC flavo_6_14 GGAGTTAAGCCCCTGCA roseo_2_14 CAGATCTCTCTGGC gamma_13_14 GTCAGTACAGATCCA TTTCACCA GGTCCCGGGAT GGAGGCCGCC flavo_6_15 CGGAGTTAAGCCCCTGC roseo_2_15 TCTGGCGGTCCCGG gamma_13_15 TCAGTACAGATCCAG ATTTCACC GATGTCAAGGG GAGGCCGCCT flavo_6_16 CCCTGCATTTCACCACT roseo_2_16 CTCTGGCGGTCCCG gamma_13_16 CAGTACAGATCCAGG GACTTATC GGATGTCAAGG AGGCCGCCTT flavo_6_17 CAATGGCAGTGCCGGA roseo_2_17 CCAGATCTCTCTGGC gamma_13_17 AGTACAGATCCAGGA GTTAAGCCC GGTCCCGGGA GGCCGCCTTC flavo_6_18 TCAATGGCAGTGCCGGA roseo_2_18 TCTCTCTGGCGGTCC gamma_13_18 GCTGCGCCACTGAAA GTTAAGCC CGGGATGTCA GACATTGTCT flavo_6_19 CCTTACGGTCACCGACT roseo_2_19 CTCTCTGGCGGTCCC gamma_13_19 GAGCTTCAAGAGAGG TCAGGCAC GGGATGTCAA CCCTCTTTCT flavo_6_20 CCGGAGTTAAGCCCCTG roseo_2_20 CTGGCGGTCCCGGG gamma_13_20 TCTTGGCTCCAAAAG CATTTCAC ATGTCAAGGGT GCACACTCTC flavo_6_21 AATGGCAGTGCCGGAG roseo_2_21 ACCTGTCACCGGGT gamma_13_21 AGTGTCAGTACAGAT TTAAGCCCC CACCGAAGTGA CCAGGAGGCC flavo_6_22 TATCAATGGCAGTGCCG roseo_2_22 CCTGTCACCGGGTC gamma_13_22 GGCCCTCTTTCTCCCT GAGTTAAG ACCGAAGTGAA TAGGAGGTA flavo_6_23 GTATCAATGGCAGTGCC roseo_2_23 CTGTCACCGGGTCA gamma_13_23 AGCTTCAAGAGAGGC GGAGTTAA CCGAAGTGAAA CCTCTTTCTC flavo_6_24 CCCCTGCATTTCACCAC roseo_2_24 CGGGTCACCGAAGT gamma_13_24 AGCTGCGCCACTGAA TGACTTAT GAAAACCAGAT AGACATTGTC flavo_6_25 TAAGCCCCTGCATTTCA roseo_2_25 AAAACCAGATCTCT gamma_13_25 CGAGAGCATCAAGAG CCACTGAC CTGGCGGTCCC AGGCCCTCTT flavo_7_1 TCTTACAGTACCGTCAC roseo_3_1 GCCGCTACACCCGA gamma_14_1 GGCGGTCAACTTACT CAGACTAC AGGTGCCGCTC ACGTTAGCTG flavo_7_2 CTTACAGTACCGTCACC roseo_3_2 CTACACCCGAAGGT gamma_14_2 CCAGGCGGTCAACTT AGACTACA GCCGCTCGACT ACTACGTTAG flavo_7_3 CGTCACCAGACTACACG roseo_3_3 GCTACACCCGAAGG gamma_14_3 GCGGTCAACTTACTA TAGTCCTT TGCCGCTCGAC CGTTAGCTGC flavo_7_4 GTACCGTCACCAGACTA roseo_3_4 CCGCTACACCCGAA gamma_14_4 CAGGCGGTCAACTTA CACGTAGT GGTGCCGCTCG CTACGTTAGC flavo_7_5 CCGTCACCAGACTACAC roseo_3_5 CGCTACACCCGAAG gamma_14_5 CCCAGGCGGTCAACT GTAGTCCT GTGCCGCTCGA TACTACGTTA flavo_7_6 TACCGTCACCAGACTAC roseo_3_6 CGCCGCTACACCCG gamma_14_6 CCGAGGGCACTGCTT ACGTAGTC AAGGTGCCGCT CATTACAAAG flavo_7_7 ACCGTCACCAGACTACA roseo_3_7 CCGCCGCTACACCC gamma_14_7 CGAGGGCACTGCTTC CGTAGTCC GAAGGTGCCGC ATTACAAAGC flavo_7_8 TTACAGTACCGTCACCA roseo_3_8 TACACCCGAAGGTG gamma_14_8 TCCCGAGGGCACTGC GACTACAC CCGCTCGACTT TTCATTACAA flavo_7_9 GTCACCAGACTACACGT roseo_3_9 TCCGCCGCTACACC gamma_14_9 CCCGAGGGCACTGCT AGTCCTTA CGAAGGTGCCG TCATTACAAA flavo_7_10 TACAGTACCGTCACCAG roseo_3_10 ACACCCGAAGGTGC gamma_14_10 CCCCAGGCGGTCAAC ACTACACG CGCTCGACTTG TTACTACGTT flavo_7_11 ACAGTACCGTCACCAGA roseo_3_11 GTCCGCCGCTACAC gamma_14_11 TCCCCAGGCGGTCAA CTACACGT CCGAAGGTGCC CTTACTACGT flavo_7_12 AACTTTCACCCCTGACT roseo_3_12 ACCCGAAGGTGCCG gamma_14_12 CTCCCGAGGGCACTG TAACAGCC CTCGACTTGCA CTTCATTACA flavo_7_13 CAGTACCGTCACCAGAC roseo_3_13 CACCCGAAGGTGCC gamma_14_13 CTCCCCAGGCGGTCA TACACGTA GCTCGACTTGC ACTTACTACG flavo_7_14 CCGGTCGTCAGCAAGA roseo_3_14 CGTCCGCCGCTACA gamma_14_14 GCTCCCGAGGGCACT GCAAGCTCC CCCGAAGGTGC GCTTCATTAC flavo_7_15 ACTTTCACCCCTGACTT roseo_3_15 CACCTGGTCTCTTAC gamma_14_15 TCTTGGCTCCCGAGG AACAGCCC GAGAAAACCG GCACTGCTTC flavo_7_16 CCCTGACTTAACAGCCC roseo_3_16 CCAGGAGTTTTGGA gamma_14_16 GGCTCCCGAGGGCAC GCCTACGG GGCCGTTCCAG TGCTTCATTA flavo_7_17 TCGCTTGGCCGCTCAGA roseo_3_17 ACCTGGTCTCTTACG gamma_14_17 TATCTTGGCTCCCGAG TCGAAATC AGAAAACCGG GGCACTGCT flavo_7_18 CGCTTGGCCGCTCAGAT roseo_3_18 CCGGATCTCTCCGG gamma_14_18 ACTCCCCAGGCGGTC CGAAATCC CGGTCCAGGGA AACTTACTAC flavo_7_19 TTCGCTTGGCCGCTCAG roseo_3_19 CCCGAAGGTGCCGC gamma_14_19 ATCTTGGCTCCCGAG ATCGAAAT TCGACTTGCAT GGCACTGCTT flavo_7_20 TTTCGCTTGGCCGCTCA roseo_3_20 ACCAGGAGTTTTGG gamma_14_20 TACTACGTTAGCTGC GATCGAAA AGGCCGTTCCA GCCACTGAGA flavo_7_21 GCTTGGCCGCTCAGATC roseo_3_21 CAGGAGTTTTGGAG gamma_14_21 GTATCTTGGCTCCCGA GAAATCCA GCCGTTCCAGG GGGCACTGC flavo_7_22 CTTGGCCGCTCAGATCG roseo_3_22 CCGAAGGTGCCGCT gamma_14_22 CTTGGCTCCCGAGGG AAATCCAA CGACTTGCATG CACTGCTTCA flavo_7_23 TTGGCCGCTCAGATCGA roseo_3_23 CCGTCCGCCGCTAC gamma_14_23 TGGCTCCCGAGGGCA AATCCAAA ACCCGAAGGTG CTGCTTCATT flavo_7_24 GGCTATCCCTTAGTGTA roseo_3_24 AAACCGGATCTCTC gamma_14_24 ACTACGTTAGCTGCG AGGCAGAT CGGCGGTCCAG CCACTGAGAA flavo_7_25 GGGCTATCCCTTAGTGT roseo_3_25 CCTGGTCTCTTACGA gamma_14_25 TTGGCTCCCGAGGGC AAGGCAGA GAAAACCGGA ACTGCTTCAT flavo_8_1 GCCGAAATACGGTACTA roseo_4_1 CGTACCATCTCTGGT gamma_15_1 TCCGTAGAAGTCCGG CGGGGCAT AGTAGCACAG GCCGTGTCTC flavo_8_2 GATGCCGAAATACGGT roseo_4_2 CCATCTCTGGTAGTA gamma_15_2 CCGTAGAAGTCCGGG ACTACGGGG GCACAGGATG CCGTGTCTCA flavo_8_3 ATGCCGAAATACGGTAC roseo_4_3 GTACCATCTCTGGTA gamma_15_3 CGTAGAAGTCCGGGC TACGGGGC GTAGCACAGG CGTGTCTCAG flavo_8_4 TGCCGAAATACGGTACT roseo_4_4 CTGGTAGTAGCACA gamma_15_4 GTAGAAGTCCGGGCC ACGGGGCA GGATGTCAAGG GTGTCTCAGT flavo_8_5 ACCGTATAACGATGCCG roseo_4_5 TGGTAGTAGCACAG gamma_15_5 TTCCGTAGAAGTCCG AAATACGG GATGTCAAGGG GGCCGTGTCT flavo_8_6 CCGTATAACGATGCCGA roseo_4_6 GAAGGGAACGTACC gamma_15_6 CTTCCGTAGAAGTCC AATACGGT ATCTCTGGTAG GGGCCGTGTC flavo_8_7 CGATGCCGAAATACGGT roseo_4_7 CCTTAGAGAAGGGC gamma_15_7 TAGAAGTCCGGGCCG ACTACGGG ATATTCCCACG TGTCTCAGTC flavo_8_8 CCGAAATACGGTACTAC roseo_4_8 GGTAGTAGCACAGG gamma_15_8 ACTGCTGCCTTCCGTA GGGGCATT ATGTCAAGGGT GAAGTCCGG flavo_8_9 ACGATGCCGAAATACG roseo_4_9 GGGAACGTACCATC gamma_15_9 CATGCAGTCGAGTTC GTACTACGG TCTGGTAGTAG CAGACTGCAA flavo_8_10 AACGATGCCGAAATAC roseo_4_10 GGAACGTACCATCT gamma_15_10 CCTCGAGCTATCCCCC GGTACTACG CTGGTAGTAGC TCCATTGGG flavo_8_11 CGAAGGAAAAGTCATC roseo_4_11 CGAAGGGAACGTAC gamma_15_11 AGAAGTCCGGGCCGT TCTGACCCT CATCTCTGGTA GTCTCAGTCC flavo_8_12 CGAAATACGGTACTACG roseo_4_12 CCGAAGGGAACGTA gamma_15_12 TCCTCGAGCTATCCCC GGGCATTA CCATCTCTGGT CTCCATTGG flavo_8_13 CCGAAGGAAAAGTCAT roseo_4_13 CGTCCCCGAAGGGA gamma_15_13 CTCGAGCTATCCCCCT CTCTGACCC ACGTACCATCT CCATTGGGT flavo_8_14 GTCATCTCTGACCCTGT roseo_4_14 CCCCGAAGGGAACG gamma_15_14 TCATGCAGTCGAGTT CAATATGC TACCATCTCTG CCAGACTGCA flavo_8_15 CCCGAAGGAAAAGTCA roseo_4_15 GTCCCCGAAGGGAA gamma_15_15 CCTTCCGTAGAAGTC TCTCTGACC CGTACCATCTC CGGGCCGTGT flavo_8_16 TACAAGGCAGGTTCCAT roseo_4_16 GCGTCCCCGAAGGG gamma_15_16 GCGCCACTGGATAAA ACGCGGTG AACGTACCATC TCCAACGGCT flavo_8_17 GGCTTTAACCGTATAAC roseo_4_17 ACTGCGTCCCCGAA gamma_15_17 TGCGCCACTGGATAA GATGCCGA GGGAACGTACC ATCCAACGGC flavo_8_18 CTGGGCTATTCCCCTGT roseo_4_18 CTGCGTCCCCGAAG gamma_15_18 TTCCTCGAGCTATCCC ACAAGGCA GGAACGTACCA CCTCCATTG flavo_8_19 GAAGGAAAAGTCATCT roseo_4_19 CCCGAAGGGAACGT gamma_15_19 GTTCCAGACTGCAAT CTGACCCTG ACCATCTCTGG TCGGACTACG flavo_8_20 GCCCGAAGGAAAAGTC roseo_4_20 TGCGTCCCCGAAGG gamma_15_20 CCAGCTCGCGCTTTG ATCTCTGAC GAACGTACCAT GCAACCGTTT flavo_8_21 GTACAAGGCAGGTTCCA roseo_4_21 CTTAGAGAAGGGCA gamma_15_21 TCGAGCTATCCCCCTC TACGCGGT TATTCCCACGC CATTGGGTA flavo_8_22 TGTACAAGGCAGGTTCC roseo_4_22 GAAGGGCGCGCTCG gamma_15_22 GCTGCGCCACTGGAT ATACGCGG ACTTGCATGTA AAATCCAACG flavo_8_23 CCTGGGCTATTCCCCTG roseo_4_23 CACTGCGTCCCCGA gamma_15_23 CGCCACTGGATAAAT TACAAGGC AGGGAACGTAC CCAACGGCTA flavo_8_24 ACAAGGCAGGTTCCATA roseo_4_24 TCACTGCGTCCCCG gamma_15_24 CTGCGCCACTGGATA CGCGGTGC AAGGGAACGTA AATCCAACGG flavo_8_25 GGCAGGTTCCATACGCG roseo_4_25 TCCCCGAAGGGAAC gamma_15_25 TTTCCTCGAGCTATCC GTGCGCAC GTACCATCTCT CCCTCCATT flavo_9_1 ATTCCGCCTACTTCAAT roseo_5_1 GTCACTATGTCCCG gamma_16_1 TTTAAGGGTTTGGCTC ACAACTCA AAGGAAAGCCT CAGCTCGCG flavo_9_2 TTCCGCCTACTTCAATA roseo_5_2 CCGAAGGAAAGCCT gamma_16_2 TTTTAAGGGTTTGGCT CAACTCAA GATCTCTCAGG CCAGCTCGC flavo_9_3 TATTCCGCCTACTTCAA roseo_5_3 TGTCACTATGTCCCG gamma_16_3 TTAAGGGTTTGGCTCC TACAACTC AAGGAAAGCC AGCTCGCGC flavo_9_4 TCCGCCTACTTCAATAC roseo_5_4 TCCCGAAGGAAAGC gamma_16_4 GTTTTAAGGGTTTGGC AACTCAAG CTGATCTCTCA TCCAGCTCG flavo_9_5 CATATTCCGCCTACTTC roseo_5_5 TCACTATGTCCCGA gamma_16_5 CACGCGGTATACCTG AATACAAC AGGAAAGCCTG GATCAGGGTT flavo_9_6 CCGCCTACTTCAATACA roseo_5_6 CCCGAAGGAAAGCC gamma_16_6 ACACGCGGTATACCT ACTCAAGA TGATCTCTCAG GGATCAGGGT flavo_9_7 CGCCTACTTCAATACAA roseo_5_7 CTGTCACTATGTCCC gamma_16_7 CTTCCTCCGGGTTTCA CTCAAGAT GAAGGAAAGC CCCGGCAGT flavo_9_8 GAACTCAAGGTCCCGA roseo_5_8 GTCCCGAAGGAAAG gamma_16_8 TCCTCCGGGTTTCACC ACAGCTAGT CCTGATCTCTC CGGCAGTCT flavo_9_9 TCAGAACTCAAGGTCCC roseo_5_9 GCCTGATCTCTCAG gamma_16_9 CTTCACACACGCGGT GAACAGCT GTTGTCATAGG ATACCTGGAT flavo_9_10 ACTCAAGGTCCCGAACA roseo_5_10 TGACTGACTAATCC gamma_16_10 CACACGCGGTATACC GCTAGTAT GCCTACGTACG TGGATCAGGG flavo_9_11 GATGCCTATCAATAATA roseo_5_11 CTGACTGACTAATC gamma_16_11 ACACACGCGGTATAC CCATGAGG CGCCTACGTAC CTGGATCAGG flavo_9_12 AGAACTCAAGGTCCCG roseo_5_12 CGAAGGAAAGCCTG gamma_16_12 CACACACGCGGTATA AACAGCTAG ATCTCTCAGGT CCTGGATCAG flavo_9_13 CTCAAGGTCCCGAACAG roseo_5_13 CACTATGTCCCGAA gamma_16_13 CCTTCCTCCGGGTTTC CTAGTATC GGAAAGCCTGA ACCCGGCAG flavo_9_14 AACTCAAGGTCCCGAAC roseo_5_14 GCACCTGTCACTAT gamma_16_14 TTCCTCCGGGTTTCAC AGCTAGTA GTCCCGAAGGA CCGGCAGTC flavo_9_15 CAGAACTCAAGGTCCCG roseo_5_15 CCTGTCACTATGTCC gamma_16_15 CCTCCGGGTTTCACCC AACAGCTA CGAAGGAAAG GGCAGTCTC flavo_9_16 CTCAGAACTCAAGGTCC roseo_5_16 CTATGTCCCGAAGG gamma_16_16 TTCACACACGCGGTA CGAACAGC AAAGCCTGATC TACCTGGATC flavo_9_17 TCAAGGTCCCGAACAGC roseo_5_17 ATGTCCCGAAGGAA gamma_16_17 CGCCTTCCTCCGGGTT TAGTATCC AGCCTGATCTC TCACCCGGC flavo_9_18 GCTCAGAACTCAAGGTC roseo_5_18 AGCACCTGTCACTA gamma_16_18 CTCCGGGTTTCACCCG CCGAACAG TGTCCCGAAGG GCAGTCTCC flavo_9_19 CTACATATTCCGCCTAC roseo_5_19 CAGCACCTGTCACT gamma_16_19 GCGGTATACCTGGAT TTCAATAC ATGTCCCGAAG CAGGGTTGCC flavo_9_20 GCCTACTTCAATACAAC roseo_5_20 CCTCCGAAGAGGTT gamma_16_20 CGGTATACCTGGATC TCAAGATG AGCGCACGGCC AGGGTTGCCC flavo_9_21 TACACGTAAGGCTTATT roseo_5_21 TCCGCTGCCTCCTCC gamma_16_21 GGTATACCTGGATCA CTTCCTGT GAAGAGGTTA GGGTTGCCCC flavo_9_22 CACGTAAGGCTTATTCT roseo_5_22 CCGCTGCCTCCTCCG gamma_16_22 TCTTCACACACGCGG TCCTGTAT AAGAGGTTAG TATACCTGGA flavo_9_23 ACACGTAAGGCTTATTC roseo_5_23 TGTCCCGAAGGAAA gamma_16_23 TCACACACGCGGTAT TTCCTGTA GCCTGATCTCT ACCTGGATCA flavo_9_24 CTTAGCCGCTCAGAACT roseo_5_24 CACCTGTCACTATGT gamma_16_24 GCCTTCCTCCGGGTTT CAAGGTCC CCCGAAGGAA CACCCGGCA flavo_9_25 CGCTCAGAACTCAAGGT roseo_5_25 GCAGCACCTGTCAC gamma_16_25 CGCGGTATACCTGGA CCCGAACA TATGTCCCGAA TCAGGGTTGC flavo_10_1 CGCTTAGCCACTCATCT roseo_6_1 CGATAAAACCTAGT gamma_17_1 GGCTCCTCCAATAGT AACCAATG CTCCTAGGCGG GACCGGTCCG flavo_10_2 CTTTCGCTTAGCCACTC roseo_6_2 CCGAGGCTATTCCG gamma_17_2 AGGCTCCTCCAATAG ATCTAACC AAGCAAAAGGT TGACCGGTCC flavo_10_3 ACACGTCGGAGTGTTTC roseo_6_3 CCCGAGGCTATTCC gamma_17_3 CAGGCTCCTCCAATA TTCCTGTA GAAGCAAAAGG GTGACCGGTC flavo_10_4 CCCGTGCGCCACTCGTC roseo_6_4 AAAACCTAGTCTCC gamma_17_4 CATGTATTAGGCCTG ATCTGGTG TAGGCGGTCAG CCGCCAACGT flavo_10_5 ACCCGTGCGCCACTCGT roseo_6_5 AAACCTAGTCTCCT gamma_17_5 GCTCCTCCAATAGTG CATCTGGT AGGCGGTCAGA ACCGGTCCGA flavo_10_6 CACCCGTGCGCCACTCG roseo_6_6 TCCCGAGGCTATTCC gamma_17_6 GCAGGCTCCTCCAAT TCATCTGG GAAGCAAAAG AGTGACCGGT flavo_10_7 TACAACCCGTAGGGCTT roseo_6_7 CTAGTCTCCTAGGC gamma_17_7 CGCCTGAGAGCAAGC TCATCCTG GGTCAGAGGAT TCCCATCGTT flavo_10_8 ACAACCCGTAGGGCTTT roseo_6_8 AACCTAGTCTCCTA gamma_17_8 ACGCCTGAGAGCAAG CATCCTGC GGCGGTCAGAG CTCCCATCGT flavo_10_9 AACCCGTAGGGCTTTCA roseo_6_9 CCTAGTCTCCTAGGC gamma_17_9 GCCTGAGAGCAAGCT TCCTGCAC GGTCAGAGGA CCCATCGTTT flavo_10_10 CAGTTTACAACCCGTAG roseo_6_10 TAGTCTCCTAGGCG gamma_17_10 GACGCCTGAGAGCAA GGCTTTCA GTCAGAGGATG GCTCCCATCG flavo_10_11 CAACCCGTAGGGCTTTC roseo_6_11 CCTCTCAAACCAGC gamma_17_11 AATCCTACGCAGGCT ATCCTGCA TACTGATCGCA CCTCCAATAG flavo_10_12 TTACAACCCGTAGGGCT roseo_6_12 TCCTCTCAAACCAG gamma_17_12 GCATGTATTAGGCCT TTCATCCT CTACTGATCGC GCCGCCAACG flavo_10_13 AGCAGTTTACAACCCGT roseo_6_13 CTCTCAAACCAGCT gamma_17_13 CTAATCCTACGCAGG AGGGCTTT ACTGATCGCAG CTCCTCCAAT flavo_10_14 GCAGTTTACAACCCGTA roseo_6_14 CTCAAACCAGCTAC gamma_17_14 GCTAATCCTACGCAG GGGCTTTC TGATCGCAGAC GCTCCTCCAA flavo_10_15 AAGCAGTTTACAACCCG roseo_6_15 CAGCTACTGATCGC gamma_17_15 CGACGCCTGAGAGCA TAGGGCTT AGACTTGGTAG AGCTCCCATC flavo_10_16 CACGTCGGAGTGTTTCT roseo_6_16 CCAGCTACTGATCG gamma_17_16 CCTGAGAGCAAGCTC TCCTGTAT CAGACTTGGTA CCATCGTTTC flavo_10_17 TGCGCCACTCGTCATCT roseo_6_17 CCATGCAGCACCTG gamma_17_17 CTCCTCCAATAGTGA GGTGCAAG TCACTCTGTAT CCGGTCCGAA flavo_10_18 CCGTGCGCCACTCGTCA roseo_6_18 CATGCAGCACCTGT gamma_17_18 ATCCTACGCAGGCTC TCTGGTGC CACTCTGTATC CTCCAATAGT flavo_10_19 GCGCCACTCGTCATCTG roseo_6_19 AACCAGCTACTGAT gamma_17_19 CGCAGGCTCCTCCAA GTGCAAGC CGCAGACTTGG TAGTGACCGG flavo_10_20 CGTGCGCCACTCGTCAT roseo_6_20 ACCAGCTACTGATC gamma_17_20 AGCTAATCCTACGCA CTGGTGCA GCAGACTTGGT GGCTCCTCCA flavo_10_21 GTGCGCCACTCGTCATC roseo_6_21 GCCATGCAGCACCT gamma_17_21 TCGACGCCTGAGAGC TGGTGCAA GTCACTCTGTA AAGCTCCCAT flavo_10_22 GTTTACAACCCGTAGGG roseo_6_22 AGTTTCCCGAGGCT gamma_17_22 CTGAGAGCAAGCTCC CTTTCATC ATTCCGAAGCA CATCGTTTCC flavo_10_23 TTTACAACCCGTAGGGC roseo_6_23 GTTTCCCGAGGCTAT gamma_17_23 TGTATTAGGCCTGCC TTTCATCC TCCGAAGCAA GCCAACGTTC flavo_10_24 GCACCCGTGCGCCACTC roseo_6_24 GGCGGTCAGAGGAT gamma_17_24 TGCATGTATTAGGCCT GTCATCTG GTCAAGGGTTG GCCGCCAAC flavo_10_25 GCGAAGTGGCTGCTCTC roseo_6_25 AGGCGGTCAGAGGA gamma_17_25 CGCCACCGGTATTCCT TGTACCGG TGTCAAGGGTT CAGAATATC flavo_11_1 GTACAAGTACTTTATGC alpha_4_1 CGACAGGCATGCCT gamma_19_1 GAGGTTGCGACCCTT TGCCCCTC GCCAACAACTA TGTCCTTCCC flavo_11_2 CCGCCGGAGCTTTTCTT alpha_4_2 CCGACAGGCATGCC gamma_19_2 GCGAGGTTGCGACCC AAAAACTC TGCCAACAACT TTTGTCCTTC flavo_11_3 CGGTCGCCATCAAAGTA alpha_4_3 ACCGACAGGCATGC gamma_19_3 CGAAACCTTTCAAGA CAAGTACT CTGCCAACAAC AGAGGGCTCC flavo_11_4 CCGGTCGCCATCAAAGT alpha_4_4 GACAGGCATGCCTG gamma_19_4 AAAGTGGTGAGCGCC ACAAGTAC CCAACAACTAG CAGATAAGCT flavo_11_5 CGTCCCTCAGCGTCAGT alpha_4_5 CCGTCTGCCACTATA gamma_19_5 TGAGCGCCCAGATAA TAATTGTT TCGTTCGACT GCTACCCACT flavo_11_6 TACAAGTACTTTATGCT alpha_4_6 CACCGACAGGCATG gamma_19_6 CAAAGTGGTGAGCGC GCCCCTCG CCTGCCAACAA CCAGATAAGC flavo_11_7 CACGCGGCATCGCTGGA alpha_4_7 CCCGTCTGCCACTAT gamma_19_7 GTGGTGAGCGCCCAG TCAGAGTT ATCGTTCGAC ATAAGCTACC flavo_11_8 TCGTCCCTCAGCGTCAG alpha_4_8 CAGGCATGCCTGCC gamma_19_8 AGTGGTGAGCGCCCA TTAATTGT AACAACTAGCT GATAAGCTAC flavo_11_9 TCACGCGGCATCGCTGG alpha_4_9 ACAGGCATGCCTGC gamma_19_9 GTGAGCGCCCAGATA ATCAGAGT CAACAACTAGC AGCTACCCAC flavo_11_10 TGCCAGTATCAAAGGCA alpha_4_10 TCACCGACAGGCAT gamma_19_10 GGTGAGCGCCCAGAT GTTCTACC GCCTGCCAACA AAGCTACCCA flavo_11_11 ACAAGTACTTTATGCTG alpha_4_11 GCATGCCTGCCAAC gamma_19_11 TGGTGAGCGCCCAGA CCCCTCGA AACTAGCTCTC TAAGCTACCC flavo_11_12 GTACATCGAACAGCTAG alpha_4_12 GGCATGCCTGCCAA gamma_19_12 AAGTGGTGAGCGCCC TGACCATC CAACTAGCTCT AGATAAGCTA flavo_11_13 GCCAGTATCAAAGGCA alpha_4_13 CACCCGTCTGCCACT gamma_19_13 CGCCCAGATAAGCTA GTTCTACCG ATATCGTTCG CCCACTTCTT flavo_11_14 TTCGTCCCTCAGCGTCA alpha_4_14 ACCCGTCTGCCACT gamma_19_14 GCGCCCAGATAAGCT GTTAATTG ATATCGTTCGA ACCCACTTCT flavo_11_15 CAAGTACTTTATGCTGC alpha_4_15 GTCACCGACAGGCA gamma_19_15 GCGAAACCTTTCAAG CCCTCGAC TGCCTGCCAAC AAGAGGGCTC flavo_11_16 CGCCGGTCGCCATCAAA alpha_4_16 AGGCATGCCTGCCA gamma_19_16 AGCGCCCAGATAAGC GTACAAGT ACAACTAGCTC TACCCACTTC flavo_11_17 TCGCCGGTCGCCATCAA alpha_4_17 CTCACCCGTCTGCCA gamma_19_17 ACAAAGTGGTGAGCG AGTACAAG CTATATCGTT CCCAGATAAG flavo_11_18 GCCGGTCGCCATCAAAG alpha_4_18 TCACCCGTCTGCCAC gamma_19_18 CACAAAGTGGTGAGC TACAAGTA TATATCGTTC GCCCAGATAA flavo_11_19 TTCGCCGGTCGCCATCA alpha_4_19 CATGCCTGCCAACA gamma_19_19 CGAGGTTGCGACCCT AAGTACAA ACTAGCTCTCA TTGTCCTTCC flavo_11_20 CGTTCGCCGGTCGCCAT alpha_4_20 CCTGCCAACAACTA gamma_19_20 GAGCGCCCAGATAAG CAAAGTAC GCTCTCATCGT CTACCCACTT flavo_11_21 GTTCGCCGGTCGCCATC alpha_4_21 CGTCACCGACAGGC gamma_19_21 CGCGAGGTTGCGACC AAAGTACA ATGCCTGCCAA CTTTGTCCTT flavo_11_22 TACCTATCGGAGCTTAG alpha_4_22 CTCGGTATTCCGCTA gamma_19_22 GACGCCTAAGAGCAA GTGAGCCG ACCTCTCCTG GCTCTTATCG flavo_11_23 TATCGGAGCTTAGGTGA alpha_4_23 ACTCACCCGTCTGCC gamma_19_23 TCACAAAGTGGTGAG GCCGTTAC ACTATATCGT CGCCCAGATA flavo_11_24 CCCTGACTTAACAAACA alpha_4_24 GCGTCACCGACAGG gamma_19_24 GCAGGCTCATCTGAT GCCTGCGG CATGCCTGCCA AGCGAAACCT flavo_11_25 ACCGTTGAGCGGTAGG alpha_4_25 TACTCACCCGTCTGC gamma_19_25 CGACGCCTAAGAGCA ATTTCACCC CACTATATCG AGCTCTTATC flavo_12_1 CGTCTTCCTGCACGCTG wolbach_1_1 GCCAGGACTTCTTCT gamma_20_1 CCACTAAGGGACAAA CATGGCTG GTGAGTACCG TTCCCCCAAC flavo_12_2 CCGTCTTCCTGCACGCT wolbach_1_2 AGCCAGGACTTCTT gamma_20_2 CGCCACTAAGGGACA GCATGGCT CTGTGAGTACC AATTCCCCCA flavo_12_3 GTCTTCCTGCACGCTGC wolbach_1_3 CCAGGACTTCTTCTG gamma_20_3 GCCACTAAGGGACAA ATGGCTGG TGAGTACCGT ATTCCCCCAA flavo_12_4 CTTCCTGCACGCTGCAT wolbach_1_4 CGGAGTTAGCCAGG gamma_20_4 CACTAAGGGACAAAT GGCTGGAT ACTTCTTCTGT TCCCCCAACG flavo_12_5 TTCCTGCACGCTGCATG wolbach_1_5 CCGGCCGAACCGAC gamma_20_5 ACTAAGGGACAAATT GCTGGATC CCTATCCCTTC CCCCCAACGG flavo_12_6 GCCGTCTTCCTGCACGC wolbach_1_6 ACGGAGTTAGCCAG gamma_20_6 CTAAGGGACAAATTC TGCATGGC GACTTCTTCTG CCCCAACGGC flavo_12_7 TCTTCCTGCACGCTGCA wolbach_1_7 GGAGTTAGCCAGGA gamma_20_7 GCGCCACTAAGGGAC TGGCTGGA CTTCTTCTGTG AAATTCCCCC flavo_12_8 CACGCTGCATGGCTGGA wolbach_1_8 CAGGACTTCTTCTGT gamma_20_8 GGTACCGTCAAGACG TCAGAGTT GAGTACCGTC CGCAGTTATT flavo_12_9 GGCCGTCTTCCTGCACG wolbach_1_9 GGCACGGAGTTAGC gamma_20_9 AGGTACCGTCAAGAC CTGCATGG CAGGACTTCTT GCGCAGTTAT flavo_12_10 TGCCCACCTTTTACCAC wolbach_1_10 CACGGAGTTAGCCA gamma_20_10 TAGGTACCGTCAAGA CGGAGTTT GGACTTCTTCT CGCGCAGTTA flavo_12_11 ATGCCCACCTTTTACCA wolbach_1_11 TGGCACGGAGTTAG gamma_20_11 TGCGCCACTAAGGGA CCGGAGTT CCAGGACTTCT CAAATTCCCC flavo_12_12 CACACGTGGACAGATTT wolbach_1_12 GCACGGAGTTAGCC gamma_20_12 TAAGGGACAAATTCC CTTCCTGT AGGACTTCTTC CCCAACGGCT flavo_12_13 GAAGACTCGCTCTTCCT wolbach_1_13 CGCCTCAGCGTCAG gamma_20_13 CTGTAGGTACCGTCA CGCGGAGT ATTTGAACCAG AGACGCGCAG flavo_12_14 CATGCCCACCTTTTACC wolbach_1_14 GCGCCTCAGCGTCA gamma_20_14 GTAGGTACCGTCAAG ACCGGAGT GATTTGAACCA ACGCGCAGTT flavo_12_15 CCGGCTTTGAAGACTCG wolbach_1_15 CTGGCACGGAGTTA gamma_20_15 CTGCGCCACTAAGGG CTCTTCCT GCCAGGACTTC ACAAATTCCC flavo_12_16 CCACACGTGGACAGATT wolbach_1_16 CTGCTGGCACGGAG gamma_20_16 TGTAGGTACCGTCAA TCTTCCTG TTAGCCAGGAC GACGCGCAGT flavo_12_17 TTTGAAGACTCGCTCTT wolbach_1_17 GCTGGCACGGAGTT gamma_20_17 TCTGTAGGTACCGTC CCTCGCGG AGCCAGGACTT AAGACGCGCA flavo_12_18 GGCTTTGAAGACTCGCT wolbach_1_18 TGCTGGCACGGAGT gamma_20_18 GCTGCGCCACTAAGG CTTCCTCG TAGCCAGGACT GACAAATTCC flavo_12_19 CTTTGAAGACTCGCTCT wolbach_1_19 CGCGCCTCAGCGTC gamma_20_19 CTTCTGTAGGTACCGT TCCTCGCG AGATTTGAACC CAAGACGCG flavo_12_20 TGAAGACTCGCTCTTCC wolbach_1_20 GCCTTCGCGCCTCA gamma_20_20 TCTTCTGTAGGTACCG TCGCGGAG GCGTCAGATTT TCAAGACGC flavo_12_21 GACCGGCTTTGAAGACT wolbach_1_21 GCCTCAGCGTCAGA gamma_20_21 GGACAAATTCCCCCA CGCTCTTC TTTGAACCAGA ACGGCTAGTT flavo_12_22 CGGCTTTGAAGACTCGC wolbach_1_22 TCGCGCCTCAGCGT gamma_20_22 GACAAATTCCCCCAA TCTTCCTC CAGATTTGAAC CGGCTAGTTG flavo_12_23 GCTTTGAAGACTCGCTC wolbach_1_23 CATGCAACACCTGT gamma_20_23 AGCTGCGCCACTAAG TTCCTCGC GTGAAACCCGG GGACAAATTC flavo_12_24 ACCGGCTTTGAAGACTC wolbach_1_24 GACTTTGCAGCCCA gamma_20_24 CGTTACGCACCCGTC GCTCTTCC TTGTAGCCACC CGCCACTCGA flavo_12_25 TCGTACAGTACCGTCAA wolbach_1_25 CGACTTTGCAGCCC gamma_20_25 TCGCGTTAGCTGCGC CTACCCAC ATTGTAGCCAC CACTAAGGGA flavo_13_1 CGCCGGTCGTCAGCATA rickett_1_1 TCTCTGCGATCCGCG gamma_21_1 TCGTCAGCGCAGAGC GCAAGCTA ACCACCATGT AAGCTCCGCC flavo_13_2 AGGTCGCTCCTCACGGT rickett_1_2 ATCTCTGCGATCCGC gamma_21_2 CTCGTCAGCGCAGAG AACGAACT GACCACCATG CAAGCTCCGC flavo_13_3 GGTCGCTCCTCACGGTA rickett_1_3 GTCAGTTGTAGCCC gamma_21_3 ACTCGTCAGCGCAGA ACGAACTT AGATGACCGCC GCAAGCTCCG flavo_13_4 TAGGTCGCTCCTCACGG rickett_1_4 CAGTTGTAGCCCAG gamma_21_4 AGCAAGCTCCGCCTG TAACGAAC ATGACCGCCTT TTACCGTTCG flavo_13_5 AGGACGCATAGTCATCT rickett_1_5 TCAGTTGTAGCCCA gamma_21_5 GTCAGCGCAGAGCAA TGTACCCA GATGACCGCCT GCTCCGCCTG flavo_13_6 CCTCACGGTAACGAACT rickett_1_6 CGTCAGTTGTAGCC gamma_21_6 GAGCAAGCTCCGCCT TCAGGCAC CAGATGACCGC GTTACCGTTC flavo_13_7 TCGCCCAGTGGCTGCTC rickett_1_7 GTTGTAGCCCAGAT gamma_21_7 CAAGCTCCGCCTGTT ATTGTCCA GACCGCCTTCG ACCGTTCGAC flavo_13_8 CGTTCGCCGGTCGTCAG rickett_1_8 AGTTGTAGCCCAGA gamma_21_8 GCTCCGCCTGTTACCG CATAGCAA TGACCGCCTTC TTCGACTTG flavo_13_9 GTCGCTCCTCACGGTAA rickett_1_9 CATCTCTGCGATCCG gamma_21_9 CTGGGCTTTCACATCC CGAACTTC CGACCACCAT GACTGACCG flavo_13_10 GTCGCCCAGTGGCTGCT rickett_1_10 GCGTCAGTTGTAGC gamma_21_10 CTTTTGCAAGCCACTC CATTGTCC CCAGATGACCG CCATGGTGT flavo_13_11 TAGGACGCATAGTCATC rickett_1_11 AGCATCTCTGCGAT gamma_21_11 TCTTTTGCAAGCCACT TTGTACCC CCGCGACCACC CCCATGGTG flavo_13_12 ACCAGTATCAAAGGCA rickett_1_12 GCATCTCTGCGATCC gamma_21_12 CTTCTTTTGCAAGCCA GTTCCATCG GCGACCACCA CTCCCATGG flavo_13_13 TCCTCACGGTAACGAAC rickett_1_13 TTGTAGCCCAGATG gamma_21_13 TTTTGCAAGCCACTCC TTCAGGCA ACCGCCTTCGC CATGGTGTG flavo_13_14 CTAGGTCGCTCCTCACG rickett_1_14 AGCGTCAGTTGTAG gamma_21_14 TTTGCAAGCCACTCCC GTAACGAA CCCAGATGACC ATGGTGTGA flavo_13_15 CTCCTCACGGTAACGAA rickett_1_15 CCACTAACTAATTG gamma_21_15 CCTCAGCGTCAGTATT CTTCAGGC GAGCAAGCCCC GCTCCAGAA flavo_13_16 CCGTTCGCCGGTCGTCA rickett_1_16 GCCACTAACTAATT gamma_21_16 GGGCTTTCACATCCG GCATAGCA GGAGCAAGCCC ACTGACCGTG flavo_13_17 GTTCGCCGGTCGTCAGC rickett_1_17 CAAGCCCCAATTAG gamma_21_17 CTTTCACATCCGACTG ATAGCAAG TCCGTTCGACT ACCGTGCCG flavo_13_18 CTCACGGTAACGAACTT rickett_1_18 CCGTCTTGCTTCCCT gamma_21_18 GGCTTTCACATCCGA CAGGCACT CTGTAAACAC CTGACCGTGC flavo_13_19 TCGCTCCTCACGGTAAC rickett_1_19 CCGTCTGCCACTAA gamma_21_19 CACTCGTCAGCGCAG GAACTTCA CTAATTGGAGC AGCAAGCTCC flavo_13_20 GGTCGCCCAGTGGCTGC rickett_1_20 CTCTGCGATCCGCG gamma_21_20 GCTTTCACATCCGACT TCATTGTC ACCACCATGTC GACCGTGCC flavo_13_21 CGGCATAGCTGGTTCAG rickett_1_21 GCAAGCCCCAATTA gamma_21_21 TCAGCGCAGAGCAAG AGTTGCCT GTCCGTTCGAC CTCCGCCTGT flavo_13_22 GGCATAGCTGGTTCAGA rickett_1_22 AGCAAGCCCCAATT gamma_21_22 CGTCAGCGCAGAGCA GTTGCCTC AGTCCGTTCGA AGCTCCGCCT flavo_13_23 CGCGGCATAGCTGGTTC rickett_1_23 TGTAGCCCAGATGA gamma_21_23 AGAGCAAGCTCCGCC AGAGTTGC CCGCCTTCGCC TGTTACCGTT flavo_13_24 GCGGCATAGCTGGTTCA rickett_1_24 GAGCAAGCCCCAAT gamma_21_24 AGCTCCGCCTGTTACC GAGTTGCC TAGTCCGTTCG GTTCGACTT flavo_13_25 GCATAGCTGGTTCAGAG rickett_1_25 GAAGAAAAGCATCT gamma_21_25 CAGAGCAAGCTCCGC TTGCCTCC CTGCGATCCGC CTGTTACCGT flavo_14_1 GTGCAAGCACTCCTGTT alpha_5_1 ACCAAAGCCCTGTG verru_1_1 CCCCGAGATTTCACA ACCCCTCG GGCCCTAGCAG CCTCACACAT flavo_14_2 AGTGCAAGCACTCCTGT alpha_5_2 CACCAAAGCCCTGT verru_1_2 CCCGAGATTTCACAC TACCCCTC GGGCCCTAGCA CTCACACATC flavo_14_3 GCAAGCACTCCTGTTAC alpha_5_3 CCAAAGCCCTGTGG verru_1_3 TCACACCTCACACAT CCCTCGAC GCCCTAGCAGC CTATCCGCCT flavo_14_4 TGCAAGCACTCCTGTTA alpha_5_4 ACCCTATGGTAGAT verru_1_4 CACCTCACACATCTAT CCCCTCGA CCCCACGCGTT CCGCCTACG flavo_14_5 CAAGCACTCCTGTTACC alpha_5_5 CACCCTATGGTAGA verru_1_5 TTCACACCTCACACAT CCTCGACT TCCCCACGCGT CTATCCGCC flavo_14_6 AAGCACTCCTGTTACCC alpha_5_6 GCACCCTATGGTAG verru_1_6 ACACCTCACACATCT CTCGACTT ATCCCCACGCG ATCCGCCTAC flavo_14_7 AGCACTCCTGTTACCCC alpha_5_7 CCGCACCCTATGGT verru_1_7 CACACCTCACACATC TCGACTTG AGATCCCCACG TATCCGCCTA flavo_14_8 GCACTCCTGTTACCCCT alpha_5_8 CGCACCCTATGGTA verru_1_8 GCCCCGAGATTTCAC CGACTTGC GATCCCCACGC ACCTCACACA flavo_14_9 TGCTACACGTAGCAGTG alpha_5_9 TATTCCGCACCCTAT verru_1_9 ACCTCACACATCTATC TTTCTTCC GGTAGATCCC CGCCTACGC flavo_14_10 CCCGTGCGCCGGTCGTC alpha_5_10 ATTCCGCACCCTATG verru_1_10 AGCCCCGAGATTTCA AGCGAGTG GTAGATCCCC CACCTCACAC flavo_14_11 TCGTCAGCGAGTGCAAG alpha_5_11 TCCGCACCCTATGGT verru_1_11 CTCCCGAAGGATAGC CACTCCTG AGATCCCCAC TCACGTACTT flavo_14_12 TGCGCCGGTCGTCAGCG alpha_5_12 CGCACCAGCTTCGG verru_1_12 CTGCCTCCCGAAGGA AGTGCAAG GTTGATCCAAC TAGCTCACGT flavo_14_13 CGGTCGTCAGCGAGTGC alpha_5_13 TTCCGCACCCTATGG verru_1_13 GGCTATGAACCTCCTT AAGCACTC TAGATCCCCA GTTGCTCCT flavo_14_14 CCGTGCGCCGGTCGTCA alpha_5_14 CCACCAAAGCCCTG verru_1_14 CCTCCCGAAGGATAG GCGAGTGC TGGGCCCTAGC CTCACGTACT flavo_14_15 GCGCCGGTCGTCAGCGA alpha_5_15 CCCTATGGTAGATC verru_1_15 CCCGAAGGATAGCTC GTGCAAGC CCCACGCGTTA ACGTACTTCG flavo_14_16 GGTCGTCAGCGAGTGCA alpha_5_16 CCTATGGTAGATCC verru_1_16 TCCCGAAGGATAGCT AGCACTCC CCACGCGTTAC CACGTACTTC flavo_14_17 GCCGGTCGTCAGCGAGT alpha_5_17 GCGCACCAGCTTCG verru_1_17 GAGGCTATGAACCTC GCAAGCAC GGTTGATCCAA CTTGTTGCTC flavo_14_18 GTCAGCGAGTGCAAGC alpha_5_18 GCACCAGCTTCGGG verru_1_18 GACGCTGCCTCCCGA ACTCCTGTT TTGATCCAACT AGGATAGCTC flavo_14_19 CCGGTCGTCAGCGAGTG alpha_5_19 AGCGCACCAGCTTC verru_1_19 AGGCTATGAACCTCC CAAGCACT GGGTTGATCCA TTGTTGCTCC flavo_14_20 TCAGCGAGTGCAAGCA alpha_5_20 CTATGGTAGATCCC verru_1_20 GCCTCCCGAAGGATA CTCCTGTTA CACGCGTTACG GCTCACGTAC flavo_14_21 CGTGCGCCGGTCGTCAG alpha_5_21 GCCACCAAAGCCCT verru_1_21 CGCTGCCTCCCGAAG CGAGTGCA GTGGGCCCTAG GATAGCTCAC flavo_14_22 CGCCGGTCGTCAGCGAG alpha_5_22 CACCAGCTTCGGGT verru_1_22 TGCCTCCCGAAGGAT TGCAAGCA TGATCCAACTC AGCTCACGTA flavo_14_23 GTGCGCCGGTCGTCAGC alpha_5_23 TAGCGCACCAGCTT verru_1_23 ACGCTGCCTCCCGAA GAGTGCAA CGGGTTGATCC GGATAGCTCA flavo_14_24 CGTCAGCGAGTGCAAG alpha_5_24 CAAAGCCCTGTGGG verru_1_24 GCTGCCTCCCGAAGG CACTCCTGT CCCTAGCAGCT ATAGCTCACG flavo_14_25 GTCGTCAGCGAGTGCAA alpha_5_25 CGCCACCAAAGCCC verru_1_25 AGGACGCTGCCTCCC GCACTCCT TGTGGGCCCTA GAAGGATAGC flavo_15_1 GGCGTACTCCCCAGGTG alpha_6_1 GCGCCACTAACCCC verru_2_1 CGTCGCATGTTCACA CATCACTT GAAGCTTCGTT CTTTCGTGCA flavo_15_2 CTCCCCAGGTGCATCAC alpha_6_2 CTTCTTGCGAGTAGC verru_2_2 CTACCCTAACTTTCGT TTAATACT TGCCCACTGT CCATGAGCG flavo_15_3 GCGTACTCCCCAGGTGC alpha_6_3 CCCAGCTTGTTGGG verru_2_3 ACCCTAACTTTCGTCC ATCACTTA CCATGAGGACT ATGAGCGTC flavo_15_4 CGGCGTACTCCCCAGGT alpha_6_4 ATCTTCTTGCGAGTA verru_2_4 GCGTCGCATGTTCAC GCATCACT GCTGCCCACT ACTTTCGTGC flavo_15_5 ACTCCCCAGGTGCATCA alpha_6_5 TCTTCTTGCGAGTAG verru_2_5 CAAGTGTTCCCTTCTC CTTAATAC CTGCCCACTG CCCTCCAGT flavo_15_6 CGTACTCCCCAGGTGCA alpha_6_6 TAGCCCAGCTTGTTG verru_2_6 TACACCAAGTGTTCC TCACTTAA GGCCATGAGG CTTCTCCCCT flavo_15_7 CCGGCGTACTCCCCAGG alpha_6_7 GCCACTAACCCCGA verru_2_7 CCAAGTGTTCCCTTCT TGCATCAC AGCTTCGTTCG CCCCTCCAG flavo_15_8 GTACTCCCCAGGTGCAT alpha_6_8 GTAGCCCAGCTTGTT verru_2_8 ACACCAAGTGTTCCC CACTTAAT GGGCCATGAG TTCTCCCCTC flavo_15_9 GCCGGCGTACTCCCCAG alpha_6_9 CGCCACTAACCCCG verru_2_9 CGCTACACCAAGTGT GTGCATCA AAGCTTCGTTC TCCCTTCTCC flavo_15_10 GAAGAGAAGGCCTGTTT alpha_6_10 TTCTTGCGAGTAGCT verru_2_10 CACCAAGTGTTCCCTT CCAAGCCG GCCCACTGTC CTCCCCTCC flavo_15_11 CAACAGCGAGTGATGA alpha_6_11 TAGCATCTTCTTGCG verru_2_11 GCTACACCAAGTGTT TCGTTTACG AGTAGCTGCC CCCTTCTCCC flavo_15_12 GCATGCCCATCTCATAC alpha_6_12 AGCATCTTCTTGCGA verru_2_12 CTACACCAAGTGTTC CGAAAAAC GTAGCTGCCC CCTTCTCCCC flavo_15_13 TTGTAATCTGCTCCGAA alpha_6_13 GCCCAGCTTGTTGG verru_2_13 AGTGTTCCCTTCTCCC GAGAAGGC GCCATGAGGAC CTCCAGTAC flavo_15_14 CGCCGGTCGTCAGCAAA alpha_6_14 CACTAACCCCGAAG verru_2_14 AAGTGTTCCCTTCTCC AGCAAGCT CTTCGTTCGAC CCTCCAGTA flavo_15_15 AAGAGAAGGCCTGTTTC alpha_6_15 CATCTTCTTGCGAGT verru_2_15 ACCAAGTGTTCCCTTC CAAGCCGG AGCTGCCCAC TCCCCTCCA flavo_15_16 GCCGGTCGTCAGCAAA alpha_6_16 TGTAGCCCAGCTTGT verru_2_16 GCTACCCTAACTTTCG AGCAAGCTT TGGGCCATGA TCCATGAGC flavo_15_17 TGCCGGCGTACTCCCCA alpha_6_17 AGCCCAGCTTGTTG verru_2_17 GTTCCCTTCTCCCCTC GGTGCATC GGCCATGAGGA CAGTACTCT flavo_15_18 GCGCCGGTCGTCAGCAA alpha_6_18 CCACTAACCCCGAA verru_2_18 GTGTTCCCTTCTCCCC AAGCAAGC GCTTCGTTCGA TCCAGTACT flavo_15_19 CGAAGAGAAGGCCTGT alpha_6_19 GCATCTTCTTGCGAG verru_2_19 TGTTCCCTTCTCCCCT TTCCAAGCC TAGCTGCCCA CCAGTACTC flavo_15_20 CCAACAGCGAGTGATG alpha_6_20 GTGTAGCCCAGCTT verru_2_20 CCGCTACACCAAGTG ATCGTTTAC GTTGGGCCATG TTCCCTTCTC flavo_15_21 GGAGTATTAATCCCCGT alpha_6_21 TGCGCCACTAACCC verru_2_21 TTCCCTTCTCCCCTCC TTCCAGGG CGAAGCTTCGT AGTACTCTA flavo_15_22 TGGAGTATTAATCCCCG alpha_6_22 CTCAAGCACCAAGT verru_2_22 GGCGTCGCATGTTCA TTTCCAGG GCCCGAACAGC CACTTTCGTG flavo_15_23 TCCCCGTTTCCAGGGGC alpha_6_23 CCAGCTTGTTGGGC verru_2_23 CGCTACCCTAACTTTC TATCCTCC CATGAGGACTT GTCCATGAG flavo_15_24 TGCGCCGGTCGTCAGCA alpha_6_24 ACTAACCCCGAAGC verru_2_24 CCCTAACTTTCGTCCA AAAGCAAG TTCGTTCGACT TGAGCGTCA flavo_15_25 AACAGCGAGTGATGAT alpha_6_25 TCTTGCGAGTAGCTG verru_2_25 ACCGCTACACCAAGT CGTTTACGG CCCACTGTCA GTTCCCTTCT

The Chip-SIP method was applied to San Francisco Bay water collected at the Berkeley Calif. pier, incubated in the presence of 200 uM 15N ammonium for 24 hours and sampled over this time. An array designed to target marine microorganisms was designed using ARB software; where each row on the array represents a series of probes designed to hybridize to a different taxon (microbial species).

A collected environmental water sample was analyzed by Chip-SIP. In particular San Francisco Bay water was collected at the Berkeley pier, and incubated with 200 uM 15N ammonium for 24 hours. An array designed to target marine microorganisms was designed using built with ARB software.

To construct the network diagram of FIG. 10B, taxa with HCEs having standard errors not overlapping with zero and with >30 permil enrichment were included (all others were discarded) using Cytoscape software (17). For analyses of marine bacterial genomic information, genomes of marine bacterial isolates were selected in the Joint Genome Institute's Integrated Microbial Genomes (IM-G) database and word-searched for the presence of amino acid, fatty acid, and nucleoside transporters and extracellular nucleases. Results are summarized in Table 2.

TABLE 2 Amino acid Extracellular Nucleoside Fatty acid Genome transport nuclease transport transport Agreia sp. PHSC20C1 Y N N N Algoriphagus sp. PR1 Y N Y Y Aurantimonas sp. SI85-9A1 Y N N N Bacillus sp. B14905 Y N Y N Bacillus sp. NRRL B-14911 Y N Y N Bacillus sp. SG-1 Y Y Y N Beggiatoa sp. PS Y N N Y Bermanella marisrubri Y N N Y Blastopirellula marina DSM 3645 Y Y N N Caminibacter mediatlanticus TB-2 Y N N N Candidatus Blochmannia Y N N N pennsylvanicus BPEN Candidatus Pelagibacter ubique Y N N N HTCC1002 Carnobacterium sp. AT7 Y N Y Y Congregibacter litoralis KT71 Y N Y N Croceibacter atlanticus HTCC2559 Y Y Y N Cyanothece sp. CCY 0110 Y N Y N Dokdonia donghaensis MED134 Y Y Y N Erythrobacter litoralis HTCC2594 Y N Y Y Erythrobacter sp. NAP1 Y N N N Erythrobacter sp. SD-21 Y N Y N Finegoldia magna ATCC 29328 Y N N N Flavobacteria bacterium BAL38 Y N N Y Flavobacteria bacterium BBFL7 N Y N N Flavobacteriales bacterium ALC-1 Y N Y N Flavobacteriales bacterium Y N Y N HTCC2170 Fulvimarina pelagi HTCC2506 Y N N Y Hoeflea phototrophica DFL-43 Y N N Y Hydrogenivirga sp. 128-5-R1-1 Y N N N Idiomarina baltica OS145 Y Y N Y Janibacter sp. HTCC2649 Y Y N N Kordia algicida OT-1 Y Y N Y Labrenzia aggregata IAM 12614 Y N N N Leeuwenhoekiella blandensis Y N Y N MED217 Lentisphaera araneosa HTCC2155 Y N N Y Limnobacter sp. MED105 Y N N Y Loktanella vestfoldensis SKA53 Y N N N Lyngbya sp. PCC 8106 Y Y Y N marine gamma proteobacterium Y Y Y Y HTCC2080 marine gamma proteobacterium Y N N N HTCC2143 marine gamma proteobacterium Y N N N HTCC2148 marine gamma proteobacterium Y N N N HTCC2207 Marinobacter algicola DG893 Y Y N Y Marinobacter sp. ELB17 Y N N Y Marinomonas sp. MED121 Y Y N N Mariprofundus ferrooxydans PV-1 Y N N Y Methylophilales bacterium N N N N HTCC2181 Microscilla marina ATCC 23134 Y Y Y N Moritella sp. PE36 Y Y Y Y Neptuniibacter caesariensis Y N N N Nisaea sp. BAL199 Y N N Y Nitrobacter sp. Nb-311A Y N N N Nitrococcus mobilis Nb-231 Y N N N Nodularia spumigena CCY9414 Y N N N Oceanibulbus indolifex HEL-45 Y N Y Y Oceanicaulis alexandrii HTCC2633 Y N N N Oceanicola batsensis HTCC2597 Y Y N N Oceanicola granulosus HTCC2516 Y Y Y N Parvularcula bermudensis Y Y Y N HTCC2503 Pedobacter sp. BAL39 Y N N Y Pelotomaculum thermopropionicum Y N N N SI Phaeobacter gallaeciensis 2.10 Y N N N Phaeobacter gallaeciensis BS107 Y N N N Photobacterium angustum S14 Y Y Y Y Photobacterium profundum 3TCK Y Y Y Y Photobacterium sp. SKA34 Y Y Y Y Planctomyces maris DSM 8797 Y Y N N Plesiocystis pacifica SIR-1 Y N Y Y Polaribacter irgensii 23-P Y Y Y N Polaribacter sp. MED152 Y Y Y N Prochlorococcus marinus AS9601 N N N N Prochlorococcus marinus MIT 9211 Y N N N Prochlorococcus marinus MIT 9301 N N N N Prochlorococcus marinus MIT 9303 Y N N N Prochlorococcus marinus MIT 9515 Y N N N Prochlorococcus marinus NATL1A Y N N N Pseudoalteromonas sp. TW-7 Y N Y Y Pseudoalteromonas tunicata D2 Y N Y Y Psychroflexus torquis ATCC Y Y N N 700755 Psychromonas sp. CNPT3 Y N N Y Reinekea sp. MED297 Y Y N N Rhodobacterales bacterium Y Y Y N HTCC2150 Rhodobacterales bacterium Y N N N HTCC2654 Rhodobacterales sp. HTCC2255 Y N Y N Roseobacter litoralis Och 149 Y N N N Roseobacter sp. AzwK-3b Y N N N Roseobacter sp. CCS2 Y Y N N Roseobacter sp. MED193 Y N N N Roseobacter sp. SK209-2-6 Y N Y N Roseovarius nubinhibens ISM Y N N N Roseovarius sp. 217 Y Y Y Y Roseovarius sp. HTCC2601 Y N Y N Roseovarius sp. TM1035 Y N N N Sagittula stellata E-37 Y Y N N Shewanella benthica KT99 Y Y N Y Sphingomonas sp. SKA58 Y N Y Y Sulfitobacter sp. EE-36 Y N N N Sulfitobacter sp. NAS-14.1 Y N N N Synechococcus sp. BL107 Y N N N Synechococcus sp. RS9916 Y N N N Synechococcus sp. RS9917 Y N N N Synechococcus sp. WH 5701 Y N N N Synechococcus sp. WH 7805 Y N N N Ulvibacter sp. SCB49 Y Y N Y Vibrio alginolyticus 12G01 Y Y Y Y Vibrio campbellii AND4 Y N Y Y Vibrio harveyi HY01 Y N Y Y Vibrio shilonii AK1 Y Y Y Y Vibrio sp. MED222 Y Y Y Y Vibrio splendidus 12B01 Y Y Y Y Vibrionales bacterium SWAT-3 Y Y Y Y

For phylogenetic relationships the global 16S rRNA phylogeny in the Greengenes database (18) was opened in ARB (19) and all taxa except the targets of the array analysis were removed with the taxon pruning function.

As evident in the hybridization patterns measured (FIG. 10A) and in NanoSIMS enrichment data measured on this ITO array, different taxa incorporated ammonia at different rates during the experiment. These experiments show that different marine microbial taxa are present at different time points, and that different taxa incorporated ammonia at different times and to differing degrees. This set of data further demonstrates that the Chip-SIP method can be used to characterized complex mixtures of nucleic acids

In a similar experiment, where isotopically labeled nucleic acids, amino acids, and fatty acids were added as microbial substrates, Chip-SIP was able to identify substrate specialist and generalist taxa (FIG. 10B), based on the organisms that took up all three substrates into their RNA (generalists), versus those that only took up one of the possible substrates (specialists).

The results illustrated in FIG. 10B show that different marine microbial taxa have different substrate use patterns in an environmental water sample analyzed by Chip-SIP. This demonstrates that the Chip-SIP method can be used to quantitatively characterized the substrate uptake patterns of complex microbial communities.

Example 7 Chip-SIP and Related Manufacture and Use

A functionalized microarray was manufactured comprising a defined plurality of single-strand DNA molecules that have been chemically synthesized on the surface of a standard glass microscope slide. Importantly, the latter has been coated with a conductive layer consisting of inorganic indium-tin-oxide (16) between 300 and 1500 angstroms in thickness—such glass microscope slides are commercially available from Sigma Chemical Company, St. Louis, Mo. The ITO surface is treated with a linker molecule to provide a starting point for DNA synthesis.

Such linker molecules contain a chemical group that reacts specifically with the ITO surface, e.g. silanes, phosphonates and the like; as well as a chemical group that provides a starting point for DNA synthesis, e.g. hydroxyl (—OH), amino (—NH2) and the like. These functionalized glass microscope slides are placed in a Maskless Array Synthesizer (MAS) unit; the MAS is programmed to synthesize a plurality of unique single-strand DNA molecules each within a feature size between 13-15 micron2. Subsequent hybridization with complementary single strand oligonucleotides containing stable isotopes, e.g. C13 and N15, results in double-stranded molecular assemblies labeled with stable isotopes. The latter can be detected and quantified by secondary mass spectrometry or SIMS as described herein.

In summary, in several embodiments, polymer arrays are described that are suitable to perform quantitative and qualitative detection as well as sorting of a target molecules and related devices methods and systems.

The examples set forth above are provided to give those of ordinary skill in the art a complete disclosure and description of how to make and use the embodiments of the compositions, systems and methods of the disclosure, and are not intended to limit the scope of what the inventors regard as their disclosure. All patents and publications mentioned in the specification are indicative of the levels of skill of those skilled in the art to which the disclosure pertains.

The entire disclosure of each document cited (including patents, patent applications, journal articles, abstracts, laboratory manuals, books, or other disclosures) in the Background, Summary, Detailed Description, and Examples is hereby incorporated herein by reference. All references cited in this disclosure are incorporated by reference to the same extent as if each reference had been incorporated by reference in its entirety individually.

Further, the sequence listing annexed herewith in computer readable form forms integral part of this description and is incorporated herein by reference in its entirety.

It is to be understood that the disclosures are not limited to particular compositions or biological systems, which can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting. As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the content clearly dictates otherwise. The term “plurality” includes two or more referents unless the content clearly dictates otherwise. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the disclosure pertains.

When a Markush group or other grouping is used herein, all individual members of the group and all combinations and possible subcombinations of the group are intended to be individually included in the disclosure. Every combination of components or materials described or exemplified herein can be used to practice the disclosure, unless otherwise stated. One of ordinary skill in the art will appreciate that methods, device elements, and materials other than those specifically exemplified can be employed in the practice of the disclosure without resort to undue experimentation. All art-known functional equivalents, of any such methods, device elements, and materials are intended to be included in this disclosure. Whenever a range is given in the specification, for example, a temperature range, a frequency range, a time range, or a composition range, all intermediate ranges and all subranges, as well as, all individual values included in the ranges given are intended to be included in the disclosure. Any one or more individual members of a range or group disclosed herein can be excluded from a claim of this disclosure. The disclosure illustratively described herein suitably can be practiced in the absence of any element or elements, limitation or limitations which is not specifically disclosed herein.

Although any methods and materials similar or equivalent to those described herein can be used in the practice for testing of the products, methods and system of the present disclosure, exemplary appropriate materials and methods are described herein.

A number of embodiments of the disclosure have been described. The specific embodiments provided herein are examples of useful embodiments of the disclosure and it will be apparent to one skilled in the art that the disclosure can be carried out using a large number of variations of the functionalized platforms, arrays, compositions, methods steps, and systems set forth in the present description. As will be obvious to one of skill in the art, methods and devices useful for the present methods can include a large number of optional composition and processing elements and steps.

It will be understood that various modifications may be made without departing from the spirit and scope of the present disclosure. Accordingly, other embodiments are within the scope of the following claims.

REFERENCES

  • 1. F. J. Stadermann, R. M. Walker, E. Zinner, Meteoritics & Planetary Science 34, A111 (July, 1999).
  • 2. C. Lechene et al., Journal of biology 5, 20 (2006).
  • 3. S. Behrens et al., Applied and environmental microbiology 74, 3143 (May, 2008).
  • 4. S. Radajewski, P. Ineson, N. R. Parekh, J. C. Murrell, Nature 403, 646 (2000).
  • 5. M. Manefield, A. S. Whiteley, R. I. Griffiths, M. J. Bailey, Appl. Environ. Microbiol. 68, 5367 (2002).
  • 6. O. Uhlík, K. Jecná, M. B. Leigh, M. Macková, T. Macek, Sci. Total Environ. 407, 3611 (2009).
  • 7. S. L. Addison, I. R. McDonald, G. Lloyd-Jones, J. Microbiol. Methods 80, 70 (2010).
  • 8. H. T. S. Boschker et al., Nature 392, 801 (1998).
  • 9. S. Behrens et al., Appl. Environ. Microbiol. 74, 3143 (May 15, 2008).
  • 10. C. C. Ouverney, J. A. Fuhrman, Appl. Environ. Microbiol. 65, 1746 (Apr. 1, 1999, 1999).
  • 11. J. Adamczyk et al., Appl. Environ. Microbiol. 69, 6875 (Nov. 1, 2003, 2003).
  • 12. E. L. Brodie et al., Proceedings of the National Academy of Sciences 104, 299 (Jan. 2, 2007, 2007).
  • 13. E. L. Brodie et al., Appl. Environ. Microbiol. 72, 6288 (Sep. 1, 2006, 2006).
  • 14. T. DeSantis et al., Microbial Ecology 53, 371 (2007).
  • 15. S. Singh-Gasson et al., Nat. Biotech. 17, 974 (1999).
  • 16. C. Lechene et al., Journal of Biology (2006) 5:20, published on line at the http://page jbiol.com/content/5/6/20.
  • 17. M. S. Cline et al., Integration of biological networks and gene expression data using Cytoscape. Nat. Protocols 2, 2366 (2007).
  • 18. T. Z. DeSantis et al., Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB. Appl. Environ. Microbiol. 72, 5069 (2006).
  • 19. W. Ludwig et al., ARB: a software environment for sequence data. Nucl. Acids Res. 32, 1363 (2004).

Claims

1. A method for quantitative detection of a target, the method comprising, wherein the platform comprises a substrate coated with an electrically conductive layer and the polymer is attached to the platform through a functional linker molecule attached to the electrically conductive layer.

labeling the target with a SIMS detectable label to provide a SIMS labeled target, the SIMS labeled target capable of binding a polymer of a polymer array comprising the polymer presented on a platform;
contacting the SIMS labeled target with the polymer array for a time and under condition to allow binding of the SIMS labeled target molecule to the polymer array; and
performing SIMS detection of the polymer array following the contacting to detect the SIM labeled target bound to the polymer array,

2. A method to detect a target in a sample, the method comprising: wherein the platform comprises a substrate coated with an electrically conductive layer and the polymer is attached to the platform through a functional linker molecule attached to the electrically conductive layer.

exposing the sample to a label detectable by Secondary Ion Mass Spectrometry (SIMS label) for a time and under condition to allow binding of the SIMS label with the target;
contacting the polymer array with the sample following the exposing to allow binding of a SIMS labeled target with a polymer array comprising a polymer presented on a platform; and
performing Secondary Ion Mass Spectrometry on the polymer array following the contacting to detect the SIM labeled target bound to the polymer array,

3. The method of claim 1 or 2, wherein the SIMS label is a stable isotope.

4. The method of claim 1 or 2, wherein the polymer is a probe nucleic acid, the target is a target nucleic acids and the contacting is performed to allow specific hybridization of the probe nucleic acid with the target nucleic acid.

5. A system for detection of a target, the system comprising wherein the platform is configured to be associated, during operation, with a polymer array, the polymer array is configured for detection of a target attached to a polymer on the polymer array, the detection performed through the SIMS label attached to the target.

a functionalized platform comprising a substrate coated with an electrically conductive layer attaching a functionalized linker molecule; and
a label detectable by Secondary Ion Mass Spectrometry (SIMS label)

6. The system of claim 5, further comprising the polymer array configured for detection of a target attached to a polymer on the polymer array through the SIMS label.

7. The system of claim 5, wherein the electrically conductive layer comprises a metal oxide.

8. The system of claim 7, wherein the metal oxide is ITO.

9. The system of claim 8, wherein ITO comprises about 90% In2O3 and about 10% SnO2 by weight.

10. The system of claim 9, wherein the substrate is glass, quartz, silica or plastic.

11. The system of claim 5, wherein the polymer is a nucleic acid.

12. The system of claim 5, wherein the SIMS label is 13C or 15N.

13. The system of claim 5, wherein the polymer array is comprised in a biochip.

14. A functionalized platform comprising

a substrate, and
an electrically conductive layer,
wherein
the substrate is coated with the electrically conductive layer and the electrically conductive layer attaches an a functionalized linker molecule comprising an organosilane compound presenting an organosilane functional group,
the platform is configured to be associated, during operation, with a polymer array configured for detection of a target attached to a polymer on the polymer array, through a label attached to the target, the label detectable by Secondary Ion Mass Spectrometry.

15. A polymer array configured to allow detection of a target attached to the polymer through a label attached to the target, the polymer array comprising wherein the platform is the functionalized platform of claim 14, the polymer is attached to the organosilane functional group of the functionalized platform of claim 14, and wherein the label is detectable by Secondary Ion Mass Spectrometry.

a polymer attached to a platform,

16. The polymer array of claim 15, wherein the polymer is a polynucleotide or a polypeptide.

17. The polymer array of claim 15, wherein the polymer is DNA.

18. The polymer array of claim 15, wherein the polymer is spotted on the platform.

19. A bio-chip comprising the polymer array of claim 15.

Patent History
Publication number: 20110195862
Type: Application
Filed: Feb 8, 2011
Publication Date: Aug 11, 2011
Inventors: Jennifer PETT-RIDGE (Berkeley, CA), Paul D. Hoeprich (Pleasanton, CA), Eoin Brodie (Piedmont, CA), Peter K. Weber (Berkeley, CA)
Application Number: 13/023,468