IBC WITH SHOCK ABSORBING FEET

The present disclosure relates to a pallet container (1) comprising a base portion (10) and a cage portion (20), wherein the cage portion (20) is connected with the base portion (10) to define an inner region (21) which is sized and shaped to accept a container (30). The pallet container (1) comprises shock absorbing means (40) to absorb and dissipate Shockwaves, preventing the shock from propagating through the pallet container.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
BACKGROUND

Intermediate bulk containers, or IBCs, are often used for storing and transporting bulk materials, particularly fluids. Having a generally cubic structure, IBCs typically comprise a plastic container in which the fluid exists, the container being surrounded on its four vertical sides by a protective metal cage.

Certain problems arise with existing IBCs, particularly if they are storing or transporting dangerous chemicals or hazardous materials. If an IBC was unintentionally dropped onto an immovable impact surface, a shockwave would propagate through the IBC, possibly causing a mechanical failure in the cage or container. The shockwave may be violent enough to crack or break open the container, spilling its potentially harmful contents.

A criterion to be fulfilled by IBCs transporting or storing hazardous materials is stipulated by legislation sanctioned in the United Nations tests and regulations for IBCs. This criterion requires that an IBC can be dropped, on its base and at different angles, without damaging the container sufficiently to cause a spillage of a contained fluid. The United Nations regulations require the drop test to be performed at a range of heights and at a specific temperature. In order to comply with the regulations and to pass the UN test, IBCs must be made from strong, durable materials, the production of which can often be expensive and environmentally damaging. These strong, durable materials, such as polyethylene plastic or metals, are able to withstand the shockwaves generated as the IBC contacts the surface onto which it is dropped. A particularly damaging component of the shockwave is the initial shock or “G-load” shock, which tends to cause the majority of the structural damage to the IBC and its container.

A solution to the above problems, i.e. to produce an IBC which is made of inexpensive and environmentally-friendly materials but one which can satisfactorily pass the UN drop test, is provided herein by the present disclosure. Shock-absorbing means are incorporated into an IBC, wherein the energy resulting from the G-load is absorbed by and dissipated throughout the shock absorbing means.

DISCLOSURE OF THE INVENTION

The present invention provides an intermediate bulk container in accordance with independent claim 1. Further preferred embodiments are given in the dependent claims.

The claimed invention can be better understood in view of the embodiments of the intermediate bulk container described hereinafter. In general, the described embodiments describe preferred embodiments of the invention. The attentive reader will note, however, that some aspects of the described embodiments extend beyond the scope of the claims. To the respect that the described embodiments indeed extend beyond the scope of the claims, the described embodiments are to be considered supplementary background information and do not constitute definitions of the invention per se. This also holds for the subsequent “Brief Description of the Drawings” as well as the “Detailed Description of the Preferred Embodiments.”

The intermediate bulk container of the present disclosure comprises a pallet container, which itself comprises a base portion and a cage portion, wherein the cage portion is connected with the base portion and defines an inner region which is sized and shaped to accept a container. The base portion comprises a generally planar base member to which one or more feet are attachable on the underside thereof, the underside being the side opposite the cage portion.

The pallet container also comprises shock absorbing means. The shock absorbing means themselves may comprise a deformable, energy absorbing portion which is adapted to bend, compress or crumple so as to eliminate the initial peak load, or G-Load, in the load vs. deformation characteristics of the pallet container, thus reducing the maximum load transferred to the cage member and container.

Alternatively, the shock absorbing means may comprise a longitudinal deformation zone which is adapted to bend, compress or crumple so as to eliminate the G-Load.

Again, as an alternative, the shock absorbing means may comprise one or more metallic plates or pieces positioned in a region of the pallet container such that the weight of the pallet container above the one or more metallic plates or pieces acts generally along the plane of the one or more metallic plates or pieces, and the metallic plates or pieces comprise a deformation zone running perpendicular to the direction in which the weight of the pallet container acts, when the pallet container is positioned in its normal resting orientation.

Additional alternative shock absorbing means comprise a corrugation running generally perpendicular to the direction that the weight of the pallet container acts, when the pallet container is positioned in its normal resting orientation, wherein the corrugation is adapted to deform so as to eliminate the G-Load. The corrugation may have a profile chosen from one or more of the following: one or more generally sinusoidal ridges extending out of the plane of the surrounding material; two or more generally sinusoidal ridges one extending out of the plane of the surrounding material the other extending inward through the plane of the surrounding material; one or more generally triangular ridges extending out of the plane of the surrounding material; two or more generally triangular ridges one extending out of the plane of the surrounding material the other extending inward through the plane of the surrounding material.

The shock absorbing means of the present disclosure may be provided in one or more feet of the pallet container. The feet can be made from folded or bent metal sheets or tubes, which may be generally hollow.

The force or load required to deform, bend or crumple the shock absorbing means is chosen to be higher than the possible maximum force or load generated by a full pallet container under gravity, when the pallet container is resting on the ground.

Regarding the construction of the pallet container, the cage portion comprises one or more vertical struts extending from the upper surface of the base member to an upper rim which is approximately the same size as the periphery of the base member and runs around the top of the cage portion. The vertical struts may have a cross-section which resembles a four-pointed star, or a square in which the corners are extended outward along the direction of the diagonal. The upper rim has a generally inverted U-shaped cross-section and the vertical struts are located within the inner portion between the parallel sides of the U-shape, and the corner portions of the vertical struts are attached to the inner portion of the U-shaped upper rim. The vertical struts are preferably attached to the inner portion of the U-shaped upper rim by resistance welding.

The cage portion also comprises one or more horizontal ribs which encircle and are attached to the vertical struts. The one or more horizontal ribs may have a profile comprising a triangular ridge with flat sections either side thereof, wherein the flat sections are used for attachment to the vertical struts with the triangular ridge extending away from the vertical struts. Additionally, one or more plastic bands or straps can be positioned around the vertical struts in order to help maintain the shape of the cage portion when under stress.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view of a pallet container.

FIG. 2 is a perspective view of the base portion of a pallet container.

FIG. 3 is a cross-sectional view of the upper rim engaging with a vertical strut.

FIG. 4 is a cross-sectional view of a vertical strut engaging with the upper rim.

FIG. 5 is a spectrum showing the shock response of a pallet container without shock absorption means.

FIG. 6 is a spectrum showing the shock response of a pallet container with shock absorption means.

FIG. 7 is a perspective view of a pallet container foot with shock absorption means, according to the present invention.

FIG. 8 is a plan view of a corner foot of a pallet container.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The following description provides details of the preferred embodiment of the present invention. The description is divided into two subsections: I. Pallet shape & design and II. Shock absorption, both of which combine synergistically to solve the objectives of the present invention.

I. Pallet Shape & Design

FIG. 1 shows a pallet container 1 including certain aspects of the present disclosure. The pallet container comprises a base portion 10 and a cage portion 20 which, when connected together, define an inner region 21 which is sized and shaped to accept a container 30. A discussion of each of these components is provided hereinbelow, along with a description of how they interact with each other.

(a) Base Portion 10

Base portion 10 comprises a generally planar base member 11, as shown by FIG. 2. Base member 11 itself comprises a generally rectangular- or square-shaped frame, with one or more recesses 5 along the anterior of one or more of its peripheral sides 15, to provide access to one or more outflows 6 of mounted container 30. The rectangular shape of the periphery 15 is sized to accommodate container 30. Different shapes of container (i.e. pentagonal, hexagonal, etc.) would require a base member 11 and periphery 15 of equivalent geometry, a condition which can be considered herein without departing from the scope of the current invention. Furthermore, the one or more recesses 5 designed to accommodate one or more outflows 6 of a mounted container is merely a design choice. Base members 11 and peripheries 15 constructed without this non-essential feature, suitable for a container without an outflow 6, are anticipated in the present disclosure.

Base portion 10 may also include an optional crossbar strength member 16, lying within the plane of base portion 10 and contacting two or more sides of periphery 15. Crossbar strength member 16 acts to provide increased rigidity and stability to base portion 10. An external compression force acting towards the centre of base portion 10, through a peripheral side 15 of base member 11 to which crossbar strength member 16 is attached, would be resisted against due to crossbar strength member 16. In a similar yet opposite manner, an expansive force acting from within container 30 or a pulling force acting on the anterior of a peripheral side 15, to which crossbar strength member 16 is attached, would be resisted since the crossbar strength member 16 is designed to contact at least two peripheries 15. Crossbar strength member 16 of base portion 10 would advantageously add additional resistance against forces to the base of pallet container 1.

Attached to the underside 13 of base member 11 are one or more feet 12. A more complete discussion of feet 12 is provided in section II below.

(b) Cage Portion 20

Cage portion 20 is attached to the upper surface 14 of base member 11. Preferably, cage portion 20 and upper surface 14 are welded together, although any suitable attaching means can be conceived, e.g. employing heavy-duty bolts. Cage portion 20 itself comprises a plurality of vertical struts 22 and at least one horizontal rib 25 which, in combination with the upper surface 14 of base member 11 define an inner region 21. The dimensions of inner region 21 are sized and shaped to accommodate container 30.

Vertical struts 22 extend vertically from the upper surface 14 of base member 11 to an upper rim 23. In the preferred embodiment, at least one vertical strut 22 extends vertically from the region around each corner of pallet container 1. Since, in the case of a fully-loaded square container 30, the forces are greatest at the corners of container 30, the placement of vertical struts 22 around the corners serves to add strength and support to mechanically weak areas. Similarly, it is advantageous to position at least one vertical strut 22 halfway along a base member periphery 15, again in order to provide resistive support to generally weaker areas. The pallet container 1 illustrated in FIG. 1 demonstrates a suitable arrangement of vertical struts which could provide adequate resistive support against a fully-loaded container 30. Upper rim 23 has approximately the same size and form as the periphery 15 of base member 11. Upper rim 23 extends around the top of the entire cage portion 20, i.e. upper rim 23 contacts and is attached to the terminating end of each of the vertical struts 22. A cross-sectional view of upper rim 23 is provided by FIG. 3, where its form is depicted as an inverted “U”-shape. The “U”-shape of upper rim 23 is sized to accommodate the terminating ends of vertical struts 22. The shape of upper rim 23 is not limited to that of a “U”-shape; this shape has been chosen for illustrative purposes only since other suitable shapes, e.g. circular or triangular rims are anticipated within this disclosure. The choice of shape depends largely on the shape of the terminating ends of vertical struts 22, as discussed hereinafter.

Vertical struts 22 themselves can take any circumferential form, although preferred cross sections are cylindrical, triangular or square. Of crucial importance is the shape of the terminating end of each vertical strut 22. The preferred shape is that of either a four-pointed star or a square in which the corners are extended outward along the direction of the diagonal, as shown in FIG. 4. Indeed, the entire vertical strut 22 itself could take the shape of the terminating end, i.e. that of a four-pointed star or a square with extended corners. A vertical strut 22 of this form is advantageous since the star-like shaped cross section of the strut would contain troughs and ridges, providing increased resilience against unwanted twisted and bending of the strut. At the terminating end of the vertical strut 22, the points of the star or the extended corners of the square contact at least the parallel sides of the inner portion of the “U”-shaped upper rim 23. The vertical struts can then be attached to upper rim 23 by, but not limited to, various welding techniques, e.g. resistance welding. Resistance welding is a preferred attachment method between upper rim 23 as shown in FIG. 3, and vertical strut 22 with a cross section as shown in FIG. 4 since only a minimal amount of welding is required, which is facilitated by the shape of vertical strut 22. The four protrusions emanating from the longitudinal centre of vertical strut 22 are the only points which contact upper rim 23. This allows the use of resistance welding which is advantageous as it offers a secure, reliable, time- and money-efficient, environmentally-friendly method of attachment. Furthermore, a star-like cross section of vertical strut 22 which contains more than four points can also be easily resistance welded to upper rim 23, with each additional contact point offering an increase in strength and resilience.

At least one horizontal rib 25 extends horizontally around cage portion 20, encircling vertical struts 22. As with vertical struts 22, the circumferential form of horizontal rib 25 can take many cross sections, such as cylindrical or square, although in the preferred embodiment horizontal rib 25 has a profile comprising a triangular ridge 26 with flat sections either side of ridge 26. The flat sections are used for attachment to vertical struts 22 where the horizontal rib 25 and vertical struts 22 intersect. Triangular ridge 26 extends away from vertical struts 22, i.e. ridge 26 extends away from inner region 21. Being triangular in shape, ridge 26 provides strength to horizontal rib 25 as triangular ridge 26 is resilient against bending or twisting. Furthermore, triangular ridge 26 is an advantageous shape since only the flat sections either side of triangular ridge 26 require fixing to vertical struts 22. Once again, resistance welding provides a suitable attachment technique due to its simplicity, cleanliness and the speed with which it can weld small surface areas together.

In order to help maintain the shape of cage portion 20 when under stress, for example when a fully loaded container 30 is disposed within inner region 21, one or more plastic bands or straps 27 can be secured around vertical struts 22, in an analogous fashion to horizontal rib 25. Straps 27 would absorb some of the stress forces experienced by cage portion 20. Advantageously, the employment of straps 27 reduces the number of horizontal ribs 25 required for a secure pallet container 1. Choosing plastic straps 27 over horizontal ribs 25 reduces the overall weight of pallet container, whilst also reducing manufacturing costs.

II. Shock Absorption

As discussed in the foregoing “Disclosure of the Invention,” it is an objective of the apparatus disclosed herein to absorb shocks experienced by a pallet container 1 during, for example, an accidental drop. The shock absorbing means 40 described hereinafter act to absorb and dissipate the initial energy of such a shock, thus reducing the shockwaves transferred to cage member 20 and container 30 of pallet container 1.

According to the preferred embodiment of the present invention, shock absorbing means 40 comprise a deformable, energy absorbing portion 41. This deformable, energy absorbing portion 41 is adapted to bend, compress and/or crumple when an initial load of a certain magnitude is experienced.

FIG. 5 is an illustrative representation of a shock response spectrum (SRS), which shows kinetic energy EKin (or load) along the ordinate versus deflection HKmax along the abscissa, when a load is applied to pallet container 1 without shock absorbing means 40. Of particular interest is the “peak load” or “G-load” characteristic, representative of the initial load experienced by pallet container 1. Without any shock-absorption means, the energy in the G-load propagates into cage member 20 and container 30 of pallet container 1, by way of compression/rarefaction waves and sinusoidal waves, prior to the failing and deformation of some part of pallet container 1. In order for pallet container 1 to withstand the G-load shock, as required by United Nations health and safety regulations, its constituent components, i.e. cage member 20 and container 30 must be made of highly durable shock-resistant material capable of surviving a test G-load shock. These shock-resistant materials can incur large costs to the manufacturer.

The solution to absorbing the G-load shock provided herein by the preferred embodiment utilises shock-absorbing means, preferably located in one or more feet 12 of pallet container 1. A shock-absorbing means which successfully absorbs the G-load during a shock has a characteristic SRS as shown in FIG. 6. Achieving such a plot is possible using a deformable, energy absorbing portion 41 of the present invention, as described hereinbelow.

The deformable, energy absorbing portion 41 can take many forms, only some of which are described herein. One such example is depicted by FIG. 7, which shows one of the one or more feet 12 which form part of base portion 10. Foot 12 as shown in FIG. 7 is cylindrical, although alternative geometries such as cubic or prism-shaped feet are anticipated. Feet 12 positioned at the corners of base member 11 can be shaped so as to curve in coincidence with the peripheral sides 15 of base member 11 (see FIG. 8). A larger footprint at the corners adds stability to pallet container 1, whilst also providing more material which can accommodate shock absorbing means 40. Consequently, a G-load shock can be dissipated through a larger deformable, energy absorbing portion 41, affording larger G-load shocks to be removed from pallet container 1.

In FIG. 7, deformable, energy absorbing portion 41 in particular is a longitudinal deformation zone 42. Longitudinal deformation zone 42 is an integral part of foot 12 which has been pre-failed, i.e. a zone which has been specifically weakened and designed to collapse upon experiencing a shock from the initial G-load (hereinafter referred to as a “G-shock”). Deformable, energy absorbing portion 41 will deform at a low impact energy, continuing to deform in an approximately even manner (up to a maximum deformation), thereby spreading and dissipating the experienced G-shock.

As an example, the shock absorbing means 40, i.e. deformable, energy absorbing portion 41 and/or longitudinal deformation zone 42 could comprise one or more metallic plates or pieces 43. The exact location of metallic plates or pieces 43 is preferably, but not limited to, one or more feet 12. In general, in order for the present invention to solve its intended problem of preventing the G-shock from entering cage member 20 and container 30, the majority of the weight of the pallet must be positioned above the shock-absorbing region. In this case, the governing factor which determines the exact location of metallic plates or pieces 43 is the weight of pallet container 1, such that the weight of pallet container 1 above the one or more metallic plates or pieces 43 acts generally along the plane of the one or more metallic plates or pieces 43. Metallic plates or pieces 43 themselves comprise a deformation zone 44 which runs perpendicular to the direction in which the weight of pallet container 1 acts, when pallet container 1 is positioned in its normal resting orientation, i.e. an orientation as shown in FIG. 1.

As an alternative or additional means, shock absorbing means 40 could comprise a corrugation 45 running generally perpendicular to the direction that the weight of pallet container 1 acts, when positioned in its normal resting orientation (see FIG. 1). Corrugation 45 is adapted to deform, thereby eliminating the G-load from propagating through cage member 20 and container 30. Specifically, corrugation 45 could be constructed in such a way that it comprises at least one of the following profiles

    • (i) one or more generally sinusoidal ridges extending out of the plane of the surrounding material;
    • (ii) two or more generally sinusoidal ridges, one extending out of the plane of the surrounding material, the other extending inward through the plane of the surrounding material;
    • (iii) one or more generally triangular ridges extending out of the plane of the surrounding material;
    • (iv) two or more generally triangular ridges, one extending out of the plane of the surrounding material, the other extending inward through the plane of the surrounding material; and/or
    • (v) at least one section of the shock absorbing means which is thinner in its width than the surrounding material which forms the shock absorbing means.

In each of the above cases (i) to (v) and in other alternative arrangements anticipated within the scope of the invention, corrugation 45 offers a G-shock absorbing portion. The exact profile or combination of profiles that corrugation 45 may take can be selected by the skilled person, depending on the magnitude of the G-load to be absorbed.

In the preferred embodiment of the present invention, shock absorbing means 40 may exist in any suitable location on pallet container 1, although preferentially the shock absorbing means are situated in one or more feet 12 of pallet container 1. Feet 12 themselves can be made from folded and/or bent metal sheets and/or tubes, although other suitable constructions and materials are readily anticipated. Indeed, pallet container 1 could comprise shock absorbing means 40 in one or more feet 12, which are generally hollow and constructed of folded and/or bent metal sheets and/or tubes. Shock absorbing means 40 located within feet 12 could comprise a corrugation 45 which runs parallel with planar base member 11, corrugation 45 forming a pre-crush or pre-fail region, adapted to absorb the initial G-shock and to eliminate propagation of the experienced shockwave.

The above discussion of various shock-absorbing means 40 and their location in pallet container 1, along with different types of feet 12 work in harmony, absorbing the initial G-shock and preventing the transmittance of the shockwave throughout pallet container 1. Resultantly, pallet container 1 and its constituent components, cage member 20 and container 30, can be made of less expensive materials which are not designed to withstand the large forces of the G-load, as this will not be transferred into the pallet container 1 components. The absorption of forces in shock-absorbing means 40 ultimately reduces the cost of pallet container 1 construction whilst also removing the necessity to construct entire pallet containers 1 out of shock-absorbing materials. An inexpensive pallet container 1 can be manufactured, offering transportation safety measures which afford pallet container 1 to experience and withstand large initial peak loads.

In order for the G-shock to be successfully absorbed with minimal transference into pallet container 1, the majority of the weight of pallet container 1 must be substantially above shock absorbing means 40. Therefore, in an alternative embodiment to that described above, shock absorbing means 40 could exist in base member 11 rather than in feet 12, or shock absorbing means 40 could exist partly in both base member 11 and feet 12. A deformable, energy absorbing portion 41 could encircle base member 11 in an analogous fashion to how feet 12 are encircled. Providing that shock absorbing means 40 exist between the impact surface which causes the G-shock, i.e. the ground, and the bulk of the weight of pallet container 1, the G-shock can be absorbed and dissipated by shock absorbing means 40, negating the necessity to construct pallet container 1 from expensive, shock-resistant materials, thereby reducing the overall production costs of pallet container 1 whilst providing a container which successfully passes drop tests established by the United Nations. During testing, pallet container 1 is dropped generally onto its feet or part of its base, thereby dictating the approximate suitable location for shock absorbing means 40.

List of Components and Reference Numerals

Reference numeral Component 1 Pallet container 5 Base member recess 6 Container outflow 10 Base portion 11 Base member 12 Feet 13 Underside of base member 11 14 Upper surface of base member 11 15 Periphery of base member 11 16 Crossbar strength member 20 Cage portion 21 Inner region 22 Vertical struts 23 Upper rim 24 Corner portions of vertical struts 22 25 Horizontal ribs 26 Triangular ridge 27 Plastic bands or straps 30 Container 40 Shock absorbing means 41 Deformable, energy absorbing portion 42 Longitudinal deformation zone 43 Metallic plates 44 Deformation zone of metallic plates 43 45 Corrugation

Claims

1. A pallet container comprising:

a base portion and a cage portion, wherein the cage portion is connected with the base portion, and defines an inner region which is sized and shaped to accept a container; wherein
the base portion comprises a base member to which one or more feet are attachable on the underside thereof, the underside being the side opposite the cage portion; wherein further
the pallet container comprises at least one shock absorbing device.

2. The pallet container according to claim 1, wherein the shock absorbing device comprise a deformable, energy absorbing portion, which is adapted to bend, compress or crumple so as to eliminate the initial peak load, or G-Load, in the load vs. deformation characteristics of the pallet container, thus reducing the maximum load transferred to the cage member and container.

3. The pallet container according to claim 1, wherein the shock absorbing device comprise a longitudinal deformation zone which is adapted to bend, compress or crumple so as to eliminate the initial peak load, or G-Load, in the load 's. deformation characteristics of the pallet container, thus reducing the maximum load transferred to the cage member and container.

4. The pallet container according to claim 1, wherein the shock absorbing device comprise one or more metallic plates or pieces positioned in a region of the pallet container such that the weight of the pallet container above the one or more metallic plates or pieces acts generally along the plane of the one or more metallic plates or pieces, and the metallic plates comprise a deformation zone running perpendicular to the direction in which the weight of the pallet container acts, when the pallet container is positioned in its normal resting orientation.

5. The pallet container according to claim 1, wherein the shock absorbing device comprise a corrugation running generally perpendicular to the direction that the weight of the pallet container acts, when the pallet container is positioned in its normal resting orientation, wherein the corrugation is adapted to deform so as to eliminate the initial peak load, or G-Load, in the load vs. deformation characteristics of the pallet container, thus reducing the maximum load transferred to the cage member and container.

6. The pallet container according to claim 5, wherein the corrugation has a profile chosen from one or more of the following:

one or more generally sinusoidal ridges extending out of the plane of the surrounding material;
two or more generally sinusoidal ridges one extending out of the plane of the surrounding material the other extending inward through the plane of the surrounding material;
one or more generally triangular ridges extending out of the plane of the surrounding material;
two or more generally triangular ridges one extending out of the plane of the surrounding material the other extending inward through the plane of the surrounding material.

7. The pallet container according to claim 1, wherein the shock absorbing device is provided in the one or more feet.

8. The pallet container according to claim 1, wherein the one or more feet are made from folded or bent metal sheets or tubes.

9. The pallet container according to claim 1, wherein the shock absorbing device are located in the one of more feet which are generally hollow and constructed from bent or shaped metal plates or tubes, and the shock absorbing device comprises a corrugation running parallel with the plane of the base member forming a pre-crush region, wherein the corrugation is adapted to deform so as to eliminate the initial peak load, or G-Load, in the load vs. deformation characteristics of the pallet container, thus reducing the maximum load transferred to the cage member and container.

10. The pallet container according to claim 1, wherein the force or load required to deform, bend or crumple the shock absorbing device is chosen to be higher than the possible maximum force or load generated by a full pallet container under gravity, when the pallet container is resting on the ground.

11. The pallet container according to claim 1, wherein the container comprises a plastic container suitable for holding fluids.

12. The pallet container according to claim 1, wherein the base member comprises an upper surface and the cage portion comprises one or more vertical struts extending from the upper surface of the base member to an upper rim which is approximately the same size as the periphery of the base member and runs around the top of the cage portion.

13. The pallet container according to claim 12, wherein the vertical struts have a cross-section which resembles a four-pointed star, or a square in which the corners are extended outward along the direction of the diagonal.

14. The pallet container according to claim 13, wherein the upper rim has an inner portion and a generally inverted U-shaped cross-section and the vertical struts are located within the inner portion between the parallel sides thereof, and the corner portions of the vertical struts are attached to the inner portion of the U-shaped upper rim.

15. The pallet container according to claim 14, wherein the vertical struts are attached to the inner portion of the U-shaped upper rim by resistance welding.

16. The pallet container according to claim 12, wherein the cage portion comprises one or more horizontal ribs which encircle the vertical struts.

17. The pallet container according to claim 16, wherein the one or more horizontal ribs have a profile comprising a triangular ridge with flat sections either side thereof, wherein the flat sections are used for attachment to the vertical struts with the triangular ridge extending away from the vertical struts.

18. The pallet container of according to claim 12, wherein one or more plastic bands or straps are positioned around the vertical struts in order to help maintain the shape of the cage portion when under stress.

Patent History
Publication number: 20110210027
Type: Application
Filed: Sep 26, 2008
Publication Date: Sep 1, 2011
Applicant: GREIF INTERNATIONAL HOLDING B.V. (Vreeland)
Inventor: Claude Decroix (La Vieux Rue)
Application Number: 13/120,912
Classifications
Current U.S. Class: With Pallet Feature (206/386); With Load-confining Means (108/55.1)
International Classification: B65D 19/40 (20060101); B65D 19/44 (20060101);