PEPPER HYBRID PS09930066

-

The invention provides seed and plants of pepper hybrid PS09930066 and the parent lines thereof. The invention thus relates to the plants, seeds and tissue cultures of pepper hybrid PS09930066 and the parent lines thereof, and to methods for producing a pepper plant produced by crossing such plants with themselves or with another pepper plant, such as a plant of another genotype. The invention further relates to seeds and plants produced by such crossing. The invention further relates to parts of such plants, including the fruit and gametes of such plants.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
FIELD OF THE INVENTION

The present invention relates to the field of plant breeding and, more specifically, to the development of pepper hybrid PS09930066 and the inbred pepper lines SLR113-1074 and SBY99-1238.

BACKGROUND OF THE INVENTION

The goal of vegetable breeding is to combine various desirable traits in a single variety/hybrid. Such desirable traits may include any trait deemed beneficial by a grower and/or consumer, including greater yield, resistance to insects or disease, tolerance to environmental stress, and nutritional value.

Breeding techniques take advantage of a plant's method of pollination. There are two general methods of pollination: a plant self-pollinates if pollen from one flower is transferred to the same or another flower of the same plant or plant variety. A plant cross-pollinates if pollen comes to it from a flower of a different plant variety.

Plants that have been self-pollinated and selected for type over many generations become homozygous at almost all gene loci and produce a uniform population of true breeding progeny, a homozygous plant. A cross between two such homozygous plants of different genotypes produces a uniform population of hybrid plants that are heterozygous for many gene loci. Conversely, a cross of two plants each heterozygous at a number of loci produces a population of hybrid plants that differ genetically and are not uniform. The resulting non-uniformity makes performance unpredictable.

The development of uniform varieties requires the development of homozygous inbred plants, the crossing of these inbred plants, and the evaluation of the crosses. Pedigree breeding and recurrent selection are examples of breeding methods that have been used to develop inbred plants from breeding populations. Those breeding methods combine the genetic backgrounds from two or more plants or various other broad-based sources into breeding pools from which new lines and hybrids derived therefrom are developed by selfing and selection of desired phenotypes. The new lines and hybrids are evaluated to determine which of those have commercial potential.

SUMMARY OF THE INVENTION

In one aspect, the present invention provides a pepper plant of the hybrid designated PS09930066, the pepper line SLR113-1074 or pepper line SBY99-1238. Also provided are pepper plants having all the physiological and morphological characteristics of such a plant. Parts of these pepper plants are also provided, for example, including pollen, an ovule, scion, a rootstock, a fruit, and a cell of the plant.

In another aspect of the invention, a plant of pepper hybrid PS09930066 and/or pepper lines SLR113-1074 and SBY99-1238 comprising an added heritable trait is provided. The heritable trait may comprise a genetic locus that is, for example, a dominant or recessive allele. In one embodiment of the invention, a plant of pepper hybrid PS09930066 and/or pepper lines SLR113-1074 and SBY99-1238 is defined as comprising a single locus conversion. In specific embodiments of the invention, an added genetic locus confers one or more traits such as, for example, herbicide tolerance, insect resistance, disease resistance, and modified carbohydrate metabolism. In further embodiments, the trait may be conferred by a naturally occurring gene introduced into the genome of a line by backcrossing, a natural or induced mutation, or a transgene introduced through genetic transformation techniques into the plant or a progenitor of any previous generation thereof. When introduced through transformation, a genetic locus may comprise one or more genes integrated at a single chromosomal location.

The invention also concerns the seed of pepper hybrid PS09930066 and/or pepper lines SLR113-1074 and SBY99-1238. The pepper seed of the invention may be provided as an essentially homogeneous population of pepper seed of pepper hybrid PS09930066 and/or pepper lines SLR113-1074 and SBY99-1238. Essentially homogeneous populations of seed are generally free from substantial numbers of other seed. Therefore, seed of hybrid PS09930066 and/or pepper lines SLR113-1074 and SBY99-1238 may be defined as forming at least about 97% of the total seed, including at least about 98%, 99% or more of the seed. The seed population may be separately grown to provide an essentially homogeneous population of pepper plants designated PS09930066 and/or pepper lines SLR113-1074 and SBY99-1238.

In yet another aspect of the invention, a tissue culture of regenerable cells of a pepper plant of hybrid PS09930066 and/or pepper lines SLR113-1074 and SBY99-1238 is provided. The tissue culture will preferably be capable of regenerating pepper plants capable of expressing all of the physiological and morphological characteristics of the starting plant, and of regenerating plants having substantially the same genotype as the starting plant. Examples of some of the physiological and morphological characteristics of the hybrid PS09930066 and/or pepper lines SLR113-1074 and SBY99-1238 include those traits set forth in the tables herein. The regenerable cells in such tissue cultures may be derived, for example, from embryos, meristems, cotyledons, pollen, leaves, anthers, roots, root tips, pistils, flowers, seed and stalks. Still further, the present invention provides pepper plants regenerated from a tissue culture of the invention, the plants having all the physiological and morphological characteristics of hybrid PS09930066 and/or pepper lines SLR113-1074 and SBY99-1238.

In still yet another aspect of the invention, processes are provided for producing pepper seeds, plants and fruit, which processes generally comprise crossing a first parent pepper plant with a second parent pepper plant, wherein at least one of the first or second parent pepper plants is a plant of pepper line SLR113-1074 or pepper line SBY99-1238. These processes may be further exemplified as processes for preparing hybrid pepper seed or plants, wherein a first pepper plant is crossed with a second pepper plant of a different, distinct genotype to provide a hybrid that has, as one of its parents, a plant of pepper line SLR113-1074 or pepper line SBY99-1238. In these processes, crossing will result in the production of seed. The seed production occurs regardless of whether the seed is collected or not.

In one embodiment of the invention, the first step in “crossing” comprises planting seeds of a first and second parent pepper plant, often in proximity so that pollination will occur for example, mediated by insect vectors. Alternatively, pollen can be transferred manually. Where the plant is self-pollinated, pollination may occur without the need for direct human intervention other than plant cultivation.

A second step may comprise cultivating or growing the seeds of first and second parent pepper plants into plants that bear flowers. A third step may comprise preventing self-pollination of the plants, such as by emasculating the flowers (i.e., killing or removing the pollen).

A fourth step for a hybrid cross may comprise cross-pollination between the first and second parent pepper plants. Yet another step comprises harvesting the seeds from at least one of the parent pepper plants. The harvested seed can be grown to produce a pepper plant or hybrid pepper plant.

The present invention also provides the pepper seeds and plants produced by a process that comprises crossing a first parent pepper plant with a second parent pepper plant, wherein at least one of the first or second parent pepper plants is a plant of pepper hybrid PS09930066 and/or pepper lines SLR113-1074 and SBY99-1238. In one embodiment of the invention, pepper seed and plants produced by the process are first generation (F1) hybrid pepper seed and plants produced by crossing a plant in accordance with the invention with another, distinct plant. The present invention further contemplates plant parts of such an F1 hybrid pepper plant, and methods of use thereof. Therefore, certain exemplary embodiments of the invention provide an F1 hybrid pepper plant and seed thereof.

In still yet another aspect, the present invention provides a method of producing a plant derived from hybrid PS09930066 and/or pepper lines SLR113-1074 and SBY99-1238, the method comprising the steps of: (a) preparing a progeny plant derived from hybrid PS09930066 and/or pepper lines SLR113-1074 and SBY99-1238, wherein said preparing comprises crossing a plant of the hybrid PS09930066 and/or pepper lines SLR113-1074 and SBY99-1238 with a second plant; and (b) crossing the progeny plant with itself or a second plant to produce a seed of a progeny plant of a subsequent generation. In further embodiments, the method may additionally comprise: (c) growing a progeny plant of a subsequent generation from said seed of a progeny plant of a subsequent generation and crossing the progeny plant of a subsequent generation with itself or a second plant; and repeating the steps for an additional 3-10 generations to produce a plant derived from hybrid PS09930066 and/or pepper lines SLR113-1074 and SBY99-1238. The plant derived from hybrid PS09930066 and/or pepper lines SLR113-1074 and SBY99-1238 may be an inbred line, and the aforementioned repeated crossing steps may be defined as comprising sufficient inbreeding to produce the inbred line. In the method, it may be desirable to select particular plants resulting from step (c) for continued crossing according to steps (b) and (c). By selecting plants having one or more desirable traits, a plant derived from hybrid PS09930066 and/or pepper lines SLR113-1074 and SBY99-1238 is obtained which possesses some of the desirable traits of the line/hybrid as well as potentially other selected traits.

In certain embodiments, the present invention provides a method of producing food or feed comprising: (a) obtaining a plant of pepper hybrid PS09930066 and/or pepper lines SLR113-1074 and SBY99-1238, wherein the plant has been cultivated to maturity, and (b) collecting one or more peppers from the plant.

In still yet another aspect of the invention, the genetic complement of pepper hybrid PS09930066 and/or pepper lines SLR113-1074 and SBY99-1238 is provided. The phrase “genetic complement” is used to refer to the aggregate of nucleotide sequences, the expression of which sequences defines the phenotype of, in the present case, a pepper plant, or a cell or tissue of that plant. A genetic complement thus represents the genetic makeup of a cell, tissue or plant, and a hybrid genetic complement represents the genetic make up of a hybrid cell, tissue or plant. The invention thus provides pepper plant cells that have a genetic complement in accordance with the pepper plant cells disclosed herein, and seeds and plants containing such cells.

Plant genetic complements may be assessed by genetic marker profiles, and by the expression of phenotypic traits that are characteristic of the expression of the genetic complement, e.g., isozyme typing profiles. It is understood that hybrid PS09930066 and/or pepper lines SLR113-1074 and SBY99-1238 could be identified by any of the many well known techniques such as, for example, Simple Sequence Length Polymorphisms (SSLPs) (Williams et al., 1990), Randomly Amplified Polymorphic DNAs (RAPDs), DNA Amplification Fingerprinting (DAF), Sequence Characterized Amplified Regions (SCARs), Arbitrary Primed Polymerase Chain Reaction (AP-PCR), Amplified Fragment Length Polymorphisms (AFLPs) (EP 534 858, specifically incorporated herein by reference in its entirety), and Single Nucleotide Polymorphisms (SNPs) (Wang et al., 1998).

In still yet another aspect, the present invention provides hybrid genetic complements, as represented by pepper plant cells, tissues, plants, and seeds, formed by the combination of a haploid genetic complement of a pepper plant of the invention with a haploid genetic complement of a second pepper plant, preferably, another, distinct pepper plant. In another aspect, the present invention provides a pepper plant regenerated from a tissue culture that comprises a hybrid genetic complement of this invention.

In still yet another aspect, the invention provides a method of determining the genotype of a plant of pepper hybrid PS09930066 and/or pepper lines SLR113-1074 and SBY99-1238 comprising detecting in the genome of the plant at least a first polymorphism. The method may, in certain embodiments, comprise detecting a plurality of polymorphisms in the genome of the plant. The method may further comprise storing the results of the step of detecting the plurality of polymorphisms on a computer readable medium. The invention further provides a computer readable medium produced by such a method.

Any embodiment discussed herein with respect to one aspect of the invention applies to other aspects of the invention as well, unless specifically noted.

The term “about” is used to indicate that a value includes the standard deviation of the mean for the device or method being employed to determine the value. The use of the term “or” in the claims is used to mean “and/or” unless explicitly indicated to refer to alternatives only or the alternatives are mutually exclusive. When used in conjunction with the word “comprising” or other open language in the claims, the words “a” and “an” denote “one or more,” unless specifically noted otherwise. The terms “comprise,” “have” and “include” are open-ended linking verbs. Any forms or tenses of one or more of these verbs, such as “comprises,” “comprising,” “has,” “having,” “includes” and “including,” are also open-ended. For example, any method that “comprises,” “has” or “includes” one or more steps is not limited to possessing only those one or more steps and also covers other unlisted steps. Similarly, any plant that “comprises,” “has” or “includes” one or more traits is not limited to possessing only those one or more traits and covers other unlisted traits.

Other objects, features and advantages of the present invention will become apparent from the following detailed description. It should be understood, however, that the detailed description and any specific examples provided, while indicating specific embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.

DETAILED DESCRIPTION OF THE INVENTION

The invention provides methods and compositions relating to plants, seeds and derivatives of pepper hybrid PS09930066, pepper line SLR113-1074 and pepper line SBY99-1238. The hybrid PS09930066 is produced by the cross of parent lines SLR113-1074 and SBY99-1238. The parent lines show uniformity and stability within the limits of environmental influence. By crossing the parent lines, uniform seed hybrid PS09930066 can be obtained.

Pepper hybrid PS09930066 develops a large, robust plant that produces a late, continuous set of fruit. The plant produces a very productive set of uniform, medium green maturing to medium red, half-long fruit. The mostly four-lobe, smooth fruit are trapezoidal in shape. Hybrid PS09930066 is resistant to Tobamo virus (P0), bacterial leaf spot (BLS; races 0-3, 7, 8; caused by Xanthomonas campestris pv. vesicatoria), Tomato spotted wilt virus (TSWV; P0), Pepper mottle virus (PepMoV), and Potato virus Y (PVY 1.2). Hybrid PS09930066 is intended for open field production in Mexico and California. It is particularly well adapted to the coastal valleys of California and similar environments.

The development of pepper hybrid PS09930066 and its parent lines can be summarized as follows.

A. Origin and Breeding History of Pepper Hybrid PS09930066

The parents of hybrid PS09930066 are SLR113-1074 and SBY99-1238. These parents were created as described below.

SLR113-1074 develops large, leafy, upright plants. The plants produce a late-maturing, heavy set of firm, deep, red, mostly three-lobe fruit. The line is resistant to the Tomato spotted wilt virus (Tsw gene; P0). The crossing and selections made to develop this line were as follows:

    • July, Year 1: Collected seed from the Enza Zaden F1 hybrid LRF4441F.
    • January, Year 2: Planted the F2 line LRF4441F-M as stake 01LT 3446. Five selections were made.
    • January, Year 3: Planted the F3 line 01LT 3446-05 as stake 02LT 4625. The line developed a compact plant, with good leaf cover and shortened internodes. The line was resistant to the Tomato spotted wilt virus (Tsw gene; P0). The plants produced a heavy set of firm, half-long, red, smooth fruit. Selections were made.
    • January, Year 4: Planted F4 inbred 02LT 4625-2 as stake 03LB 03164. Plants grew as a weak plot of big plants and it was questioned if male sterility was being exhibited. No plant selections were made.
    • January, Year 4: Planted F4 inbred 02LT 4625-2 as stake 03LB LBGH 8512 in the greenhouse. The line grew as leafy, small to medium plants that produced a heavy set of dark red of smooth fruit with variable shape. The inbred line was fixed for resistance to the Tomato spotted wilt virus (Tsw gene; P0). The plants in the plot were massed as 03LB LBGH 8512-M.
    • July, Year 4: Planted F5 inbred 03LB LBGH 8512-M as stake 03LB 09037. The line produced a heavy set of rather small, firm fruit. There was some question if the line was segregating for set. Selections were made.
    • January, Year 5: Planted F6 inbred line of 03LB 09037-03 as stake 04LB 03377. The line grew as large plants that produced firm, red, late-maturing small fruit. The line tested fixed for resistance to the Tomato spotted wilt virus (Tsw gene; P0). Plant selections were made.
    • March, Year 6: The F6 inbred line 04LB 03377-01 was planted as stake 05LT 4374. The line was bulked as 05LT4374-M
    • March, Year 7: 05LT 4374-M was submitted to foundation seed as SLR113-1074.

SBY99-1238 develops a very large anthocyaninless plant that produces a gradual set of large, deep and tapered, ribby, semi-soft fruit. The fruit matures from a medium green to a yellow color. The line is resistant to Tobamo virus (P0), bacterial leaf spot (BS; Bs2 gene, races 0-3, 7, 8; caused by Xanthomonas campestris pv. vesicatoria), Pepper mottle virus (PepMoV), Potato virus Y (PVY 1.2), and is moderately resistant to Phytopthora capsici (PB). The crossing and selections made to develop this line were as follows:

    • January, Year 1: Breeders produced the hybrid SVR 2704405 from parents 99LB 7173-01 and 99LB 7699-01.
    • July, Year 1: Planted the F1 hybrid SVR 2704405 as stake 00LB 5731. The line was bulked.
    • January, Year 2: Planted the F2 line 00LB 5731-M as stake 01LB 4372. The line was observed to produce a heavy set of good sized, smooth, medium green maturing to red fruit. Selections were made.
    • January, Year 3: Planted the F3 line 01LB 4372-05 as stake 02LB 1662. The line developed a medium-large, anthocyaninless plant and was found resistant to PepMoV, PVY 1.2 and susceptible to PB. Selections were made.
    • January, Year 4: Planted F4 inbred 02LB 1662-02 as stake 03LB 4355. The line was observed to develop a gradual set of smooth firm yellow fruit. Pathology tests indicated moderate resistance to PB and resistance to BS. Selections were made.
    • July, Year 4: Planted F5 inbred 03LB 4355-01 as stake 03LB 8359. The line was observed to produce leafy, medium-sized, late setting plants that produced a potentially poor set of fruit. Pathology tests indicated moderate resistance to PB. Selections were made.
    • January, Year 5: Planted F6 inbred 03LB 8359-03 as stake 04LB 2167. The line was observed to develop a weak-branched, medium-sized plant that produced a concentrated, heavy set of large, deep, yellow fruit. Further pathology tests indicated moderate resistance to PB. The line was massed.
    • July, Year 5: Planted F7 inbred 04LB 2167-M as stake 04LB 07862. The line was observed to develop a very large plant. It produced a gradual set of large, deep and tapered, ribby, semi-soft fruit. The fruit matured from a medium green to yellow color.
    • November, Year 5: 04LB 2167-M was submitted to foundation seed as the finished line, SBY99-1238.

The parent lines are uniform and stable, as is a hybrid therefrom. A small percentage of variants can occur within commercially acceptable limits for almost any characteristic during the course of repeated multiplication. However no variants are expected.

B. Physiological and Morphological Characteristics of Pepper Hybrid PS09930066, Pepper Line SLR113-1074 and Pepper Line SBY99-1238

In accordance with one aspect of the present invention, there is provided a plant having the physiological and morphological characteristics of pepper hybrid PS09930066 and the parent lines thereof. A description of the physiological and morphological characteristics of such plants is presented in Tables 1-3.

TABLE 1 Physiological and Morphological Characteristics of Hybrid PS09930066 CHARACTERISTIC PS09930066 Cubanelle 1. Species C. annuum C. annuum 2. Maturity (in region of best adaptability) Days from transplanting until mature green 57 60 stage Days from transplanting until mature red or 110 74 yellow stage Days from direct seeding until mature green 83 97 stage Days from direct seeding until mature red or 136 111 yellow stage 3. Plant Habit Semi-spreading Semi-spreading Attitude Upright/erect Semi-upright/ (De Cayenne, Doux semi-erect très long des Landes, Piquant d'Algérie) Plant height 38.1 cm 40.3 cm Plant width 36.7 cm 41.15 cm Length of stem from cotyledon to first 13.4 cm 18.05 cm flower Length of the third internode (from soil 77.5 mm 47.25 mm surface) Length of stem Long Long (Lipari, Marconi, Rouge long ordinaire) Shortened internode (in upper part) Present Absent (Feher, Kalocsai 601, Kalocsai 702) For varieties with shortened internodes: More than three number of internodes between the first (Kalocsai 702) flower and the shortened internodes For varieties without shortened internodes: Medium length of internode (on primary side shoots) Stem: hairiness of nodes Weak Absent or very (Andevalo, Clovis) weak Height Tall Medium (Century, Orias) Basal branches None Few Branch flexibility Rigid Rigid (Yolo Wonder) Stem strength (breakage resistance) Weak Intermediate Seedling: anthocyanin coloration of Weak Strong hypocotyl Anthocyanin coloration of stem Moderate Absent Anthocyanin coloration of nodes Strong Moderate (California wonder) Stem: intensity of anthocyanin coloration of Strong Medium nodes (Piquant d'Algérie, Zarai) Anthocyanin coloration of leaf Absent Absent Anthocyanin coloration of pedicel Absent Absent Anthocyanin coloration of calyx Absent Absent Beginning of flowering (1st flower on 2nd Early Early flowering node) (Carré doux extra hâtif, Cupido, Fehér, Flaviano, Lito, Trophy) Time of maturity Medium Early (Lamuyo, Latino, Sonar) 4. Leaf Length of blade Long Long (Cupido, Dolmy, Encore, Mazurka, Monte) Width of blade Broad Narrow (California wonder, Golden calwonder, Seifor, Solario) Leaf width 47 mm 40.1 mm Leaf length 76 mm 82.6 mm Petiole length 29.8 mm 38 mm Leaf color Medium green Yellow-green Leaf color (RHS color chart value) 146A 147B Intensity of green color Medium Medium (Doux tres long des Landes, Merit) Mature leaf shape Ovate Lanceolate (Balico, Sonar) Leaf and stem pubescence Absent Absent Undulation of margin Very weak Absent Blistering Medium Weak (Merit) Profile in cross section Moderately concave Strongly concave (Doux italien, Favolor) Glossiness Medium (Alby, Eolo) Strong Peduncle attitude Semi-drooping Semi-drooping (Blondy) 5. Flower Number of flowers per leaf axil 1 1 Number of calyx lobes 6 7 Number of petals 6 6 Diameter 26.3 mm 26.2 mm Corolla color White White Corolla throat markings Yellow Yellow Anther color Purple Purple Style length Same as stamen Less than stamen Self-incompatability Absent Absent Anthocyanin coloration in anther Present present (Lamuyo) 6. Fruit Group Bell Cuban (Cubanelle) (Yolo Wonder L.) Color (Before maturity) Green Green (California wonder, Lamuyo) Intensity of color (before maturity) Medium Light Immature fruit color Medium green Light green Immature fruit color (RHS color chart 134A 144A value) Attitude/position Drooping/pendent Drooping/pendent (De Cayenne, Lamuyo) Length Long Long (Doux d'Espagne, Majister) Diameter Broad Narrow (Clovis, Lamuyo) Ratio length/diameter Large Large (Heldor, Lamuyo, Magister, Tenno, Vidi) Calyx diameter 30 mm 22.2 mm Fruit length 106.6 mm 190.5 mm Fruit diameter at calyx attachment 71 mm 54 mm Fruit diameter at mid-point 68.6 mm 38.1 mm Flesh thickness at mid-point 5.5 mm 9 mm Average number of fruits per plant 11 10 % large fruits 31% (weight range: 17% (weight 151-190 g) range: 101-150 g) % medium fruits 60% (weight range: 33% (weight 50-150 g) range: 51-100 g) % small fruits 9% (weight range: 50% (weight 10-49 g) range: 1-50 g) Measurements (average fruit weight) 101.9 gm 60.8 gm Shape in longitudinal section Trapezoidal Trapezoidal (Dolta, Piperade) Shape in cross section (at level of placenta) Circular Circular (Cherry Sweet, Doux très long des Landes) Sinuation of pericarp at basal part Weak Weak (Donat) Sinuation of pericarp excluding basal part Weak Medium (Clovis, Sonar) Texture of surface Smooth or very Strong wrinkled/ slightly wrinkled rough (Milord) Color (at maturity) Red Red (Feher Lamuyo) Intensity of color (at maturity) Dark Medium Mature fruit color Red Red Mature fruit color (RHS color chart value) N34A N34A Glossiness Medium/moderate Medium (Carré doux extra hâtif, Lamuyo, Sonar) Stalk cavity Present Absent (Bingor, Lamuyo) Depth of stalk cavity Medium (Lamuyo, Magister) Pedicel length 44.3 mm 32.4 mm Pedicel thickness 9.7 mm 9.1 mm Pedicel shape Curved Curved Pedicel cavity Present Absent Measurements (depth of pedicel cavity) 19.6 mm Stalk length Long Medium (De Cayenne, Sierra Nevada, Sweet banana) Stalk thickness Medium Medium (Doux italien, Surpas) Base shape Cupped Cupped Shape of apex Moderately depressed Moderately (Quadrato a'Asti depressed rosso) Shape Oblate (Sunnybrook) Elongate (Long Thin Cayenne) Fruit set Concentrated Concentrated Depth of interloculary grooves Shallow Shallow (Milord, Topgirl) Number of locules Predominantly four Predominantly and more three (Palio, PAZ szentesi) Fruits with two locules   0% 14.2% Fruits with three locules   30% 57.1% Fruits with four locules 63.30%  21.4% Fruits with five or more locules 6.70%  7.3% Average number of locules 4 3 Thickness of flesh Thick Medium (Andevalo, Bingor, Daniel, Topgirl) Calyx: aspect Non-enveloping/ Non-enveloping/ saucer-shaped saucer-shaped (Lamuyo, Sonar) Pungency Sweet Sweet Capsaicin in placenta Absent Absent (Sonar) Flavor Mild pepper flavor Mild pepper flavor Glossiness Moderate Moderate Anthocyanin coloration Absent Absent (Lamuyo) 7. Seed Seed cavity length 96.7 mm 97.6 mm Seed cavity diameter 54.2 mm 34.2 mm Placenta length 27.5 mm 27.1 mm Number of seeds per fruit 138 192 Grams per 1000 seeds 6.2 gm 3.8 gm Seed color Yellow Yellow *These are typical values. Values may vary due to environment. Other values that are substantially equivalent are also within the scope of the invention.

TABLE 2 Physiological and Morphological Characteristics of Line SLR113-1074 Early Cal CHARACTERISTIC SLR113-1074 Wonder 1. Species C. annuum C. annuum 2. Maturity (in region of best adaptability) Number of days from transplanting until 72 67 mature green stage Number of days from transplanting until 138 85 mature red or yellow stage Number of days from direct seeding until 98 104 mature green stage Number of days from direct seeding until 164 122 mature red or yellow stage 3. Plant Habit Compact Compact Attitude Upright/erect Upright/erect (De Cayenne, Doux très long des Landes, Piquant d'Algérie) Plant height 31 cm 40.9 cm Plant width 33 cm 47.1 cm Length of stem from cotyledon to first 12.9 cm 10.7 cm flower Length of the third internode (from soil 73.7 mm 54 mm surface) Length of stem Long Medium (Lipari, Marconi, Rouge long ordinaire) Shortened internode (in upper part) Present Absent (Fehér, Kalocsai 601, Kalocsai 702) For varieties with shortened internodes: More than three number of internodes between the first (Kalocsai 702) flower and the shortened internodes For varieties without shortened internodes: Medium length of internode (on primary side shoots) Stem: hairiness of nodes Absent or very Weak Absent or very (Arlequin) weak Height Tall Medium (Century, Orias) Basal branches None Few Branch flexibility Rigid Rigid (Yolo Wonder) Stem strength (breakage resistance) Weak Intermediate Seedling: anthocyanin coloration of Absent Moderate hypocotyl (Albaregia, Albena) Anthocyanin coloration of stem Weak Absent Anthocyanin coloration of nodes Weak Weak Stem: intensity of anthocyanin coloration of Very weak Medium nodes Anthocyanin coloration of leaf Absent Absent Anthocyanin coloration of pedicel Absent Absent Anthocyanin coloration of calyx Absent Absent Beginning of flowering (1st flower on 2nd Early Early flowering node) (Carré doux extra hâtif, Cupido, Fehér, Flaviano, Lito, Trophy) Time of maturity Very Late Medium (Cancun, California wonder) 4. Leaf Length of blade Long (Cupido, Medium Dolmy, Encore, Mazurka, Monte) Width of blade Broad (California Medium wonder, Golden calwonder, Seifor, Solario) Leaf width 50.4 mm 60 mm Leaf length 83.3 mm 113.3 mm Petiole length 29.2 mm 46 mm Leaf color Light green Light green Leaf color (RHS color chart value) 146A 147A Intensity of green color Dark Light (Dolmy, Tinto) Mature leaf shape Ovate Ovate (Balico, Sonar) Leaf and stem pubescence Absent Absent Undulation of margin Weak Absent (Doux très long des Landes) Blistering Weak Weak (Pusztagold) Profile in cross section Flat Moderately (De Cayenne, Recio) concave Glossiness Medium Medium (Alby, Eolo) Peduncle attitude Semi-drooping Erect (Blondy) 5. Flower Number of flowers per leaf axil 1 1 Number of calyx lobes 6 6 Number of petals 6 6 Diameter 27.8 mm 25.1 mm Corolla color White White Corolla throat markings Yellow Yellow Anther color Purple Purple Style length Same as stamen Same as stamen Self-incompatibility Absent Absent Anthocyanin coloration in anther Absent Present (Danza) 6. Fruit Group Bell Bell (Yolo Wonder L.) (Yolo Wonder L.) Color (before maturity) Green Green (California wonder, Lamuyo) Intensity of color (before maturity) Medium Medium Immature fruit color Medium green Medium green Immature fruit color (RHS color chart 146A 137A value) Attitude/position Dropping/pendent Drooping/pendent (De Cayenne, Lamuyo) Length Medium Medium (Fehér, Lamuyo) Diameter Medium Broad (Doux italien, Como di toro) Ratio length/diameter Medium Medium (Adra, Cherry Sweet, Daniel, Delphin, Edino) Calyx diameter 26.9 mm 32 mm Fruit length 89.6 mm 80 mm Fruit diameter at calyx attachment 58.7 mm 70 mm Fruit diameter at mid-point 53 mm 80 mm Flesh thickness at mid-point 4.8 mm 6 mm Average number of fruits per plant 5 10 % large fruits 81% (weight range: 50% (weight range 50-130 g) 140-199 g) % medium fruits 17% (weight range 30% (weight range 20-49 g) 80-139 g) % small fruits 2% (weight range 9-19 g) 20% (weight range 20-79 g) Average fruit weight 83.6 gm 100 gm Shape in longitudinal section Trapezoidal Square (Delta, Piperade) Shape in cross section (at level of placenta) Circular Quadrangular (Cherry Sweet, Doux très long des Landes) Sinuation of pericarp at basal part Weak Very weak (Donat) Sinuation of pericarp excluding basal part Weak Very weak (Clovis, Sonar) Texture of surface Slightly wrinkled Smooth or very (Doux très long des slightly wrinkled Landes) Color (at maturity) Red Red (Fehér, Lamuyo) Intensity of color (at maturity) Medium Dark Mature fruit color Red Red Mature fruit color (RHS color chart value) 44A 46A Glossiness Medium/moderate Medium/moderate (Carré doux extra hatif, Lamuyo, Sonar) Stalk cavity Present Absent (Bingor, Lamuyo) Depth of stalk cavity Medium (Lamuyo, Magister) Pedicel length 39.2 mm 20 mm Pedicel thickness 7.9 mm 6 mm Pedicel shape Curved Curved Pedicel cavity Present Absent Measurements (depth of pedicel cavity) 15.7 mm Stalk length Medium Medium (Fehér, Sonar) Stalk thickness Medium Medium (Doux italien, Surpas) Base shape Cupped Cupped Shape of apex Moderately depressed Very depressed (Quadrato a'Asti rosso) Shape Bell Bell (Yolo Wonder L.) (Yolo Wonder L.) Fruit set Scattered Scattered Depth of interloculary grooves Medium Medium (Clovis, Lamuyo, Marconi) Number of Locules Predominantly three Predominantly (Century) four and more Fruits with two locules 16.70%  0% Fruits with three locules 53.30% 40% Fruits with four locules   30% 60% Average number of locules 3 4 Thickness of flesh Medium Thick (Fehér, Lamuyo) Calyx aspect Non-enveloping/ Non-enveloping/ saucer-shaped saucer-shaped (Lamuyo, Sonar) Pungency Sweet Sweet Capsaicin in placenta Absent (Sonar) Absent Flavor Mild pepper flavor Moderate Glossiness Moderate Shiny Anthocyanin coloration Absent Absent (Lamuyo) 7. Seed Seed cavity length 77.8 mm 43 mm Seed cavity diameter 42.1 mm 52 mm Placenta length 20.3 mm 22 mm Number of seeds per fruit 41 100 Grams per 1000 seeds 4.5 gm 7.5 gm Seed color Yellow Yellow *These are typical values. Values may vary due to environment. Other values that are substantially equivalent are also within the scope of the invention.

TABLE 3 Physiological and Morphological Characteristics of Line SBY99-1238 Early Cal CHARACTERISTIC SBY99-1238 Wonder 1. Species C. annuum C. annuum 2. Maturity (in region of best adaptability) Number of days from transplanting until 57 67 mature green stage Number of days from transplanting until 127 85 mature red or yellow stage Number of days from direct seeding until 83 104 mature green stage Number of days from direct seeding until 157 122 mature red or yellow stage 3 Plant Habit Compact Compact Attitude Upright/erect (De Upright/erect Cayenne, Doux très long des Landes, Piquant d'Algérie) Plant height 31 cm 40.9 cm Plant width 34 cm 47.1 cm Length of stem from cotyledon to first 12 cm 10.7 cm flower Length of the third internode (from soil 68 mm 54 mm surface) Length of stem Medium (Belsir, Medium Lamuyo) Shortened internode (in upper part) Present (Fehér, Absent Kalocsai 601, Kalocsai 702) For varieties with shortened internodes: One to three (Fehér) number of internodes between the first flower and the shortened internodes For varieties without shortened internodes: Medium length of internode (on primary side shoots) Stem: hairiness of nodes Absent or very weak Absent or very (Arlequin) weak Height Medium (HRF) Medium Basal branches Few (2-3) Few Branch flexibility Rigid (Yolo Wonder) Rigid Stem strength (breakage resistance) Weak Intermediate Seedling: anthocyanin coloration of Absent (Albaregia, Moderate hypocotyl Albena) Anthocyanin coloration of stem Moderate Absent Anthocyanin coloration of nodes Moderate Weak Stem: intensity of anthocyanin coloration of Medium (Clovis, Medium nodes Lamuyo, Sonar) Anthocyanin coloration of leaf Absent Absent Anthocyanin coloration of pedicel Weak Absent Anthocyanin coloration of calyx Absent Absent Beginning of flowering (1st flower on 2nd Early (Carré doux Early flowering node) extra hâtif, Cupido, Fehér, Flaviano, Lito, Trophy) Time of maturity Very late (Cancun, Medium California wonder) 4. Leaf Length of blade Long (Cupido, Medium Dolmy, Encore, Mazurka, Monte) Width of blade Broad (California Medium wonder, Golden calwonder, Seifor, Solario) Leaf width 53.2 mm 60 mm Leaf length 97.8 mm 113.3 mm Petiole length 37 mm 46 mm Leaf color Medium green Light green Leaf color (RHS color chart value) 146A 147A Intensity of green color Medium (Doux très Light long des Landes, Merit) Mature leaf shape Broad elliptic Ovate (Solario) Leaf and stem pubescence Light Absent Undulation of margin Weak (Doux très Absent long des Landes) Blistering Weak (Pusztagold) Weak Profile in cross section Strongly concave Moderately (Slávy) concave Glossiness Very weak (Diavolo) Medium Peduncle attitude Semi-drooping Erect (Blondy) 5. Flower Number of flowers per leaf axil 1 1 Number of calyx lobes 6 6 Number of petals 6 6 Diameter 22.4 mm 25.1 mm Corolla color White White Corolla throat markings Yellow Yellow Anther color Yellow Purple Style length Same as stamen Same as stamen Self-incompatability Absent Absent Anthocyanin coloration in anther Absent (Danza) Present 6. Fruit Group (Bell (Yolo Wonder (Bell (Yolo L.) Wonder L.) Color (before maturity) Green (California Green wonder, Lamuyo) Intensity of color (before maturity) Medium Medium Immature fruit color Medium green Medium green Immature fruit color (RHS color chart 144A 137A value) Attitude/position Dropping/pendent Drooping/pendent (De Cayenne, Lamuyo) Length Medium (Fehér, Medium Lamuyo) Diameter Broad (Clovis, Broad Lamuyo) Ratio length/diameter medium (Adra, Medium Cherry Sweet, Daniel, Delphin, Edino) Calyx diameter 30.4 mm 32 mm Fruit length 96.8 mm 80 mm Fruit diameter at calyx attachment 69.9 mm 70 mm Fruit diameter at mid-point 65.5 mm 80 mm Flesh thickness at mid-point 8.2 mm 6 mm Average number of fruits per plant 8 10 % large fruits 46.50% (weight 50% (weight range: 150-180 g) range: 140-199 g) % medium fruits 42% (weight range: 30% (weight 50-149 g) range: 80-139 g) % small fruits 11.50% (weight 20% (weight range: 10-49 g) range: 20-79 g) Measurements (average fruit weight) 110.4 gm 100 gm Shape in longitudinal section Trapezoidal (Delta, Square Piperade) Shape in cross section (at level of placenta) Quadrangular Quadrangular Sinuation of pericarp at basal part Weak (Donat) Very weak Sinuation of pericarp excluding basal part Weak (Clovis, Sonar) Very weak Texture of surface Slightly wrinkled Smooth or very (Doux très long des slightly wrinkled Landes) Color (at maturity) Orange (Ariane) Red Intensity of color (at maturity) Light Dark Mature fruit color Orange Red Mature fruit color (RHS color chart value) N30D 46A Glossiness Medium/moderate Medium/moderate (Carré doux extra hâtif, Lamuyo, Sonar) Stalk cavity Present (Bingor, Absent Lamuyo) Depth of stalk cavity Very deep (Cancun, Cubor, Pablor, Shy Beauty) Pedicel length 50.7 mm 20 mm Pedicel thickness 9 mm 6 mm Pedicel shape Curved Curved Pedicel cavity Present Absent Measurements (depth of pedicel cavity) 23.2 mm Stalk length Medium (Fehér, Medium Sonar) Stalk thickness Thick (Lamuyo, Medium Trophy, Palio) Base shape Cupped Cupped Shape of apex Rounded (Cherry Very depressed Sweet) Shape Bell (Yolo Wonder Bell (Yolo Wonder L.) L.) Fruit set Scattered Scattered Depth of interloculary grooves Deep (Majister, Medium Surpas) Number of Locules Predominantly four Predominantly and more (Palio, PAZ four and more szentesi) Fruits with three locules 23.30% 40% Fruits with four locules   60% 60% Fruits with five or more locules 16.70%  0% Average number of locules 4 4 Thickness of flesh Thick (Andevalo, Thick Bingor, Daniel, Topgirl) Calyx: aspect Non- Non- enveloping/saucer- enveloping/saucer- shaped (Lamuyo, shaped Sonar) Pungency Sweet Sweet Capsaicin in placenta Absent (Sonar) Absent Flavor Mild pepper flavor Moderate Glossiness Moderate Shiny Anthocyanin coloration Absent (Lamuyo) Absent 7. Seed Seed cavity length 107.2 mm 43 mm Seed cavity diameter 59.1 mm 52 mm Placenta length 19.2 mm 22 mm Number of seeds per fruit 111 100 Grams per 1000 seeds 7 gm 7.5 gm Seed color Yellow Yellow *These are typical values. Values may vary due to environment. Other values that are substantially equivalent are also within the scope of the invention.

C. Breeding Pepper Plants

One aspect of the current invention concerns methods for producing seed of pepper hybrid PS09930066 involving crossing pepper lines SLR113-1074 and SBY99-1238. Alternatively, in other embodiments of the invention, hybrid PS09930066, line SLR113-1074, or line SBY99-1238 may be crossed with itself or with any second plant. Such methods can be used for propagation of hybrid PS09930066 and/or the pepper lines SLR113-1074 and SBY99-1238, or can be used to produce plants that are derived from hybrid PS09930066 and/or the pepper lines SLR113-1074 and SBY99-1238. Plants derived from hybrid PS09930066 and/or the pepper lines SLR113-1074 and SBY99-1238 may be used, in certain embodiments, for the development of new pepper varieties.

The development of new varieties using one or more starting varieties is well known in the art. In accordance with the invention, novel varieties may be created by crossing hybrid PS09930066 followed by multiple generations of breeding according to such well known methods. New varieties may be created by crossing with any second plant. In selecting such a second plant to cross for the purpose of developing novel lines, it may be desired to choose those plants which either themselves exhibit one or more selected desirable characteristics or which exhibit the desired characteristic(s) when in hybrid combination. Once initial crosses have been made, inbreeding and selection take place to produce new varieties. For development of a uniform line, often five or more generations of selfing and selection are involved.

Uniform lines of new varieties may also be developed by way of double-haploids. This technique allows the creation of true breeding lines without the need for multiple generations of selfing and selection. In this manner true breeding lines can be produced in as little as one generation. Haploid embryos may be produced from microspores, pollen, anther cultures, or ovary cultures. The haploid embryos may then be doubled autonomously, or by chemical treatments (e.g. colchicine treatment). Alternatively, haploid embryos may be grown into haploid plants and treated to induce chromosome doubling. In either case, fertile homozygous plants are obtained. In accordance with the invention, any of such techniques may be used in connection with a plant of the invention and progeny thereof to achieve a homozygous line.

Backcrossing can also be used to improve an inbred plant. Backcrossing transfers a specific desirable trait from one inbred or non-inbred source to an inbred that lacks that trait. This can be accomplished, for example, by first crossing a superior inbred (A) (recurrent parent) to a donor inbred (non-recurrent parent), which carries the appropriate locus or loci for the trait in question. The progeny of this cross are then mated back to the superior recurrent parent (A) followed by selection in the resultant progeny for the desired trait to be transferred from the non-recurrent parent. After five or more backcross generations with selection for the desired trait, the progeny have the characteristic being transferred, but are like the superior parent for most or almost all other loci. The last backcross generation would be selfed to give pure breeding progeny for the trait being transferred.

The plants of the present invention are particularly well suited for the development of new lines based on the elite nature of the genetic background of the plants. In selecting a second plant to cross with PS09930066 and/or pepper lines SLR113-1074 and SBY99-1238 for the purpose of developing novel pepper lines, it will typically be preferred to choose those plants which either themselves exhibit one or more selected desirable characteristics or which exhibit the desired characteristic(s) when in hybrid combination. Examples of desirable traits may include, in specific embodiments, high seed yield, high seed germination, seedling vigor, high fruit yield, disease tolerance or resistance, and adaptability for soil and climate conditions. Consumer-driven traits, such as a fruit shape, color, texture, and taste are other examples of traits that may be incorporated into new lines of pepper plants developed by this invention.

D. Performance Characteristics

As described above, pepper hybrid PS09930066 and pepper lines SLR113-1074 and SBY99-1238 exhibit desirable agronomic traits. The performance characteristics of hybrid PS09930066 were the subject of an objective analysis of the performance traits relative to other varieties. The results of the analysis are presented below.

TABLE 4 Performance Characteristics For Hybrid PS09930066 Red Variety PS09930066 Maccabi Lion Bacterial leaf spot resistance races yes no no 1, 2, 3, 7, 8 caused by Xanthomonas campestris pv. vesicatoria Tobamo virus (P0) resistance yes no no Tomato spotted wilt virus (P0) yes no no resistance Potato virus Y (PVY 1.2) resistance yes no no Pepper mottle virus resistance yes no no Fruit size large medium large Fruit wall thickness thick medium medium Maturity late medium early

TABLE 5 Performance Characteristics for Pepper Line SLR113-1074 Color Susceptibility to Susceptibility (RHS Tomato spotted to Tobamo Shape value) wilt virus (P0) virus (P0) SLR113- trapezoidal light green resistant resistant 1074 (146A) Early Cal square green susceptible susceptible Wonder (137A)

TABLE 6 Performance Characteristics for Pepper Line SBY99-1238 Susceptibility to Susceptibility to bacterial leaf spot (BS; Pepper mottle virus Bs2 gene, races 0-3, 7, 8) (PepMoV) and caused by Xanthomonas Susceptibility to Susceptibility to Fruit Potato virus Y campestris pv. Tobamo virus Phytopthora Anthocyanin Color (PVY 1.2) vesicatoria) (P0) capsici SBY99- Anthers: yellow yellow resistant resistant resistant resistant 1238 (absent) Fruit: absent Early Cal Anthers: slightly red susceptible susceptible susceptible susceptible Wonder purple (present) Fruit: moderate

E. Further Embodiments of the Invention

In certain aspects of the invention, plants described herein are provided modified to include at least a first desired heritable trait. Such plants may, in one embodiment, be developed by a plant breeding technique called backcrossing, wherein essentially all of the morphological and physiological characteristics of a variety are recovered in addition to a genetic locus transferred into the plant via the backcrossing technique. The term single locus converted plant as used herein refers to those pepper plants which are developed by a plant breeding technique called backcrossing, wherein essentially all of the morphological and physiological characteristics of a variety are recovered in addition to the single locus transferred into the variety via the backcrossing technique. By essentially all of the morphological and physiological characteristics, it is meant that the characteristics of a plant are recovered that are otherwise present when compared in the same environment, other than an occasional variant trait that might arise during backcrossing or direct introduction of a transgene.

Backcrossing methods can be used with the present invention to improve or introduce a characteristic into the present variety. The parental pepper plant which contributes the locus for the desired characteristic is termed the nonrecurrent or donor parent. This terminology refers to the fact that the nonrecurrent parent is used one time in the backcross protocol and therefore does not recur. The parental pepper plant to which the locus or loci from the nonrecurrent parent are transferred is known as the recurrent parent as it is used for several rounds in the backcrossing protocol.

In a typical backcross protocol, the original variety of interest (recurrent parent) is crossed to a second variety (nonrecurrent parent) that carries the single locus of interest to be transferred. The resulting progeny from this cross are then crossed again to the recurrent parent and the process is repeated until a pepper plant is obtained wherein essentially all of the morphological and physiological characteristics of the recurrent parent are recovered in the converted plant, in addition to the single transferred locus from the nonrecurrent parent.

The selection of a suitable recurrent parent is an important step for a successful backcrossing procedure. The goal of a backcross protocol is to alter or substitute a single trait or characteristic in the original variety. To accomplish this, a single locus of the recurrent variety is modified or substituted with the desired locus from the nonrecurrent parent, while retaining essentially all of the rest of the desired genetic, and therefore the desired physiological and morphological constitution of the original variety. The choice of the particular nonrecurrent parent will depend on the purpose of the backcross; one of the major purposes is to add some commercially desirable trait to the plant. The exact backcrossing protocol will depend on the characteristic or trait being altered and the genetic distance between the recurrent and nonrecurrent parents. Although backcrossing methods are simplified when the characteristic being transferred is a dominant allele, a recessive allele, or an additive allele (between recessive and dominant), may also be transferred. In this instance it may be necessary to introduce a test of the progeny to determine if the desired characteristic has been successfully transferred.

In one embodiment, progeny pepper plants of a backcross in which a plant described herein is the recurrent parent comprise (i) the desired trait from the non-recurrent parent and (ii) all of the physiological and morphological characteristics of pepper the recurrent parent as determined at the 5% significance level when grown in the same environmental conditions.

New varieties can also be developed from more than two parents. The technique, known as modified backcrossing, uses different recurrent parents during the backcrossing. Modified backcrossing may be used to replace the original recurrent parent with a variety having certain more desirable characteristics or multiple parents may be used to obtain different desirable characteristics from each.

Many single locus traits have been identified that are not regularly selected for in the development of a new inbred but that can be improved by backcrossing techniques. Single locus traits may or may not be transgenic; examples of these traits include, but are not limited to, herbicide resistance, resistance to bacterial, fungal, or viral disease, insect resistance, modified fatty acid or carbohydrate metabolism, and altered nutritional quality. These comprise genes generally inherited through the nucleus.

Direct selection may be applied where the single locus acts as a dominant trait. For this selection process, the progeny of the initial cross are assayed for viral resistance and/or the presence of the corresponding gene prior to the backcrossing. Selection eliminates any plants that do not have the desired gene and resistance trait, and only those plants that have the trait are used in the subsequent backcross. This process is then repeated for all additional backcross generations.

Selection of pepper plants for breeding is not necessarily dependent on the phenotype of a plant and instead can be based on genetic investigations. For example, one can utilize a suitable genetic marker which is closely genetically linked to a trait of interest. One of these markers can be used to identify the presence or absence of a trait in the offspring of a particular cross, and can be used in selection of progeny for continued breeding. This technique is commonly referred to as marker assisted selection. Any other type of genetic marker or other assay which is able to identify the relative presence or absence of a trait of interest in a plant can also be useful for breeding purposes. Procedures for marker assisted selection are well known in the art. Such methods will be of particular utility in the case of recessive traits and variable phenotypes, or where conventional assays may be more expensive, time consuming or otherwise disadvantageous. Types of genetic markers which could be used in accordance with the invention include, but are not necessarily limited to, Simple Sequence Length Polymorphisms (SSLPs) (Williams et al., 1990), Randomly Amplified Polymorphic DNAs (RAPDs), DNA Amplification Fingerprinting (DAF), Sequence Characterized Amplified Regions (SCARs), Arbitrary Primed Polymerase Chain Reaction (AP-PCR), Amplified Fragment Length Polymorphisms (AFLPs) (EP 534 858, specifically incorporated herein by reference in its entirety), and Single Nucleotide Polymorphisms (SNPs) (Wang et al., 1998).

F. Plants Derived by Genetic Engineering

Many useful traits that can be introduced by backcrossing, as well as directly into a plant, are those which are introduced by genetic transformation techniques. Genetic transformation may therefore be used to insert a selected transgene into a plant of the invention or may, alternatively, be used for the preparation of transgenes which can be introduced by backcrossing. Methods for the transformation of plants that are well known to those of skill in the art and applicable to many crop species include, but are not limited to, electroporation, microprojectile bombardment, Agrobacterium-mediated transformation and direct DNA uptake by protoplasts.

To effect transformation by electroporation, one may employ either friable tissues, such as a suspension culture of cells or embryogenic callus or alternatively one may transform immature embryos or other organized tissue directly. In this technique, one would partially degrade the cell walls of the chosen cells by exposing them to pectin-degrading enzymes (pectolyases) or mechanically wound tissues in a controlled manner.

An efficient method for delivering transforming DNA segments to plant cells is microprojectile bombardment. In this method, particles are coated with nucleic acids and delivered into cells by a propelling force. Exemplary particles include those comprised of tungsten, platinum, and preferably, gold. For the bombardment, cells in suspension are concentrated on filters or solid culture medium. Alternatively, immature embryos or other target cells may be arranged on solid culture medium. The cells to be bombarded are positioned at an appropriate distance below the macroprojectile stopping plate.

An illustrative embodiment of a method for delivering DNA into plant cells by acceleration is the Biolistics Particle Delivery System, which can be used to propel particles coated with DNA or cells through a screen, such as a stainless steel or Nytex screen, onto a surface covered with target cells. The screen disperses the particles so that they are not delivered to the recipient cells in large aggregates. Microprojectile bombardment techniques are widely applicable, and may be used to transform virtually any plant species.

Agrobacterium-mediated transfer is another widely applicable system for introducing gene loci into plant cells. An advantage of the technique is that DNA can be introduced into whole plant tissues, thereby bypassing the need for regeneration of an intact plant from a protoplast. Modern Agrobacterium transformation vectors are capable of replication in E. coli as well as Agrobacterium, allowing for convenient manipulations (Klee et al., 1985). Moreover, recent technological advances in vectors for Agrobacterium-mediated gene transfer have improved the arrangement of genes and restriction sites in the vectors to facilitate the construction of vectors capable of expressing various polypeptide coding genes. The vectors described have convenient multi-linker regions flanked by a promoter and a polyadenylation site for direct expression of inserted polypeptide coding genes. Additionally, Agrobacterium containing both armed and disarmed Ti genes can be used for transformation.

In those plant strains where Agrobacterium-mediated transformation is efficient, it is the method of choice because of the facile and defined nature of the gene locus transfer. The use of Agrobacterium-mediated plant integrating vectors to introduce DNA into plant cells is well known in the art (Fraley et al., 1985; U.S. Pat. No. 5,563,055).

Transformation of plant protoplasts also can be achieved using methods based on calcium phosphate precipitation, polyethylene glycol treatment, electroporation, and combinations of these treatments (see, e.g., Potrykus et al., 1985; Omirulleh et al., 1993; Fromm et al., 1986; Uchimiya et al., 1986; Marcotte et al., 1988). Transformation of plants and expression of foreign genetic elements is exemplified in Choi et al. (1994), and Ellul et al. (2003).

A number of promoters have utility for plant gene expression for any gene of interest including but not limited to selectable markers, scoreable markers, genes for pest tolerance, disease resistance, nutritional enhancements and any other gene of agronomic interest. Examples of constitutive promoters useful for plant gene expression include, but are not limited to, the cauliflower mosaic virus (CaMV) P-35S promoter, which confers constitutive, high-level expression in most plant tissues (see, e.g., Odel et al., 1985), including in monocots (see, e.g., Dekeyser et al., 1990; Terada and Shimamoto, 1990); a tandemly duplicated version of the CaMV 35S promoter, the enhanced 35S promoter (P-e35S); the nopaline synthase promoter (An et al., 1988); the octopine synthase promoter (Fromm et al., 1989); and the figwort mosaic virus (P-FMV) promoter as described in U.S. Pat. No. 5,378,619 and an enhanced version of the FMV promoter (P-eFMV) where the promoter sequence of P-FMV is duplicated in tandem; the cauliflower mosaic virus 19S promoter; a sugarcane bacilliform virus promoter; a commelina yellow mottle virus promoter; and other plant DNA virus promoters known to express in plant cells.

A variety of plant gene promoters that are regulated in response to environmental, hormonal, chemical, and/or developmental signals can also be used for expression of an operably linked gene in plant cells, including promoters regulated by (1) heat (Callis et al., 1988), (2) light (e.g., pea rbcS-3A promoter, Kuhlemeier et al., 1989; maize rbcS promoter, Schaffner and Sheen, 1991; or chlorophyll a/b-binding protein promoter, Simpson et al., 1985), (3) hormones, such as abscisic acid (Marcotte et al., 1989), (4) wounding (e.g., wunl, Siebertz et al., 1989); or (5) chemicals such as methyl jasmonate, salicylic acid, or Safener. It may also be advantageous to employ organ-specific promoters (e.g., Roshal et al., 1987; Schernthaner et al., 1988; Bustos et al., 1989).

Exemplary nucleic acids which may be introduced to plants of this invention include, for example, DNA sequences or genes from another species, or even genes or sequences which originate with or are present in the same species, but are incorporated into recipient cells by genetic engineering methods rather than classical reproduction or breeding techniques. However, the term “exogenous” is also intended to refer to genes that are not normally present in the cell being transformed, or perhaps simply not present in the form, structure, etc., as found in the transforming DNA segment or gene, or genes which are normally present and that one desires to express in a manner that differs from the natural expression pattern, e.g., to over-express. Thus, the term “exogenous” gene or DNA is intended to refer to any gene or DNA segment that is introduced into a recipient cell, regardless of whether a similar gene may already be present in such a cell. The type of DNA included in the exogenous DNA can include DNA which is already present in the plant cell, DNA from another plant, DNA from a different organism, or a DNA generated externally, such as a DNA sequence containing an antisense message of a gene, or a DNA sequence encoding a synthetic or modified version of a gene.

Many hundreds if not thousands of different genes are known and could potentially be introduced into a pepper plant according to the invention. Non-limiting examples of particular genes and corresponding phenotypes one may choose to introduce into a pepper plant include one or more genes for insect tolerance, such as a Bacillus thuringiensis (B.t.) gene, pest tolerance such as genes for fungal disease control, herbicide tolerance such as genes conferring glyphosate tolerance, and genes for quality improvements such as yield, nutritional enhancements, environmental or stress tolerances, or any desirable changes in plant physiology, growth, development, morphology or plant product(s). For example, structural genes would include any gene that confers insect tolerance including but not limited to a Bacillus insect control protein gene as described in WO 99/31248, herein incorporated by reference in its entirety, U.S. Pat. No. 5,689,052, herein incorporated by reference in its entirety, U.S. Pat. Nos. 5,500,365 and 5,880,275, herein incorporated by reference in their entirety. In another embodiment, the structural gene can confer tolerance to the herbicide glyphosate as conferred by genes including, but not limited to Agrobacterium strain CP4 glyphosate resistant EPSPS gene (aroA:CP4) as described in U.S. Pat. No. 5,633,435, herein incorporated by reference in its entirety, or glyphosate oxidoreductase gene (GOX) as described in U.S. Pat. No. 5,463,175, herein incorporated by reference in its entirety.

Alternatively, the DNA coding sequences can affect these phenotypes by encoding a non-translatable RNA molecule that causes the targeted inhibition of expression of an endogenous gene, for example via antisense- or cosuppression-mediated mechanisms (see, for example, Bird et al., 1991). The RNA could also be a catalytic RNA molecule (i.e., a ribozyme) engineered to cleave a desired endogenous mRNA product (see for example, Gibson and Shillito, 1997). Thus, any gene which produces a protein or mRNA which expresses a phenotype or morphology change of interest is useful for the practice of the present invention.

G. Definitions

In the description and tables herein, a number of terms are used. In order to provide a clear and consistent understanding of the specification and claims, the following definitions are provided:

Allele: Any of one or more alternative forms of a gene locus, all of which alleles relate to one trait or characteristic. In a diploid cell or organism, the two alleles of a given gene occupy corresponding loci on a pair of homologous chromosomes.

Backcrossing: A process in which a breeder repeatedly crosses hybrid progeny, for example a first generation hybrid (F1), back to one of the parents of the hybrid progeny. Backcrossing can be used to introduce one or more single locus conversions from one genetic background into another.

Crossing: The mating of two parent plants.

Cross-pollination: Fertilization by the union of two gametes from different plants.

Diploid: A cell or organism having two sets of chromosomes.

Emasculate: The removal of plant male sex organs or the inactivation of the organs with a cytoplasmic or nuclear genetic factor or a chemical agent conferring male sterility.

Enzymes: Molecules which can act as catalysts in biological reactions. F1 Hybrid: The first generation progeny of the cross of two nonisogenic plants.

Genotype: The genetic constitution of a cell or organism.

Haploid: A cell or organism having one set of the two sets of chromosomes in a diploid.

Linkage: A phenomenon wherein alleles on the same chromosome tend to segregate together more often than expected by chance if their transmission was independent.

Marker: A readily detectable phenotype, preferably inherited in codominant fashion (both alleles at a locus in a diploid heterozygote are readily detectable), with no environmental variance component, i.e., heritability of 1.

Phenotype: The detectable characteristics of a cell or organism, which characteristics are the manifestation of gene expression.

Quantitative Trait Loci (QTL): Quantitative trait loci (QTL) refer to genetic loci that control to some degree numerically representable traits that are usually continuously distributed.

Resistance: As used herein, the terms “resistance” and “tolerance” are used interchangeably to describe plants that show no symptoms to a specified biotic pest, pathogen, abiotic influence or environmental condition. These terms are also used to describe plants showing some symptoms but that are still able to produce marketable product with an acceptable yield. Some plants that are referred to as resistant or tolerant are only so in the sense that they may still produce a crop, even though the plants are stunted and the yield is reduced.

Regeneration: The development of a plant from tissue culture.

Royal Horticultural Society (RHS) color chart value: The RHS color chart is a standardized reference which allows accurate identification of any color. A color's designation on the chart describes its hue, brightness and saturation. A color is precisely named by the RHS color chart by identifying the group name, sheet number and letter, e.g., Yellow-Orange Group 19A or Red Group 41B.

Self-pollination: The transfer of pollen from the anther to the stigma of the same plant.

Single Locus Converted (Conversion) Plant: Plants which are developed by a plant breeding technique called backcrossing, wherein essentially all of the morphological and physiological characteristics of a pepper variety are recovered in addition to the characteristics of the single locus transferred into the variety via the backcrossing technique and/or by genetic transformation.

Substantially Equivalent: A characteristic that, when compared, does not show a statistically significant difference (e.g., p=0.05) from the mean.

Tissue Culture: A composition comprising isolated cells of the same or a different type or a collection of such cells organized into parts of a plant.

Transgene: A genetic locus comprising a sequence which has been introduced into the genome of a pepper plant by transformation.

H. Deposit Information

A deposit of pepper hybrid PS09930066 and inbred parent lines SLR113-1074 and SBY99-1238, disclosed above and recited in the claims, has been made with the American Type Culture Collection (ATCC), 10801 University Blvd., Manassas, Va. 20110-2209. The date of the deposits was Jan. 26, 2010. The accession numbers for those deposited seeds of pepper hybrid PS09930066 and inbred parent lines SLR113-1074 and SBY99-1238 are ATCC Accession No. PTA-10613, ATCC Accession No. PTA-10617, and ATCC Accession No. PTA-10616, respectively. Upon issuance of a patent, all restrictions upon the deposits will be removed, and the deposits are intended to meet all of the requirements of 37 C.F.R. §1.801-1.809. The deposits will be maintained in the depository for a period of 30 years, or 5 years after the last request, or for the effective life of the patent, whichever is longer, and will be replaced if necessary during that period.

Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity and understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the invention, as limited only by the scope of the appended claims.

All references cited herein are hereby expressly incorporated herein by reference.

REFERENCES

The following references, to the extent that they provide exemplary procedural or other details supplementary to those set forth herein, are specifically incorporated herein by reference:

  • U.S. Pat. No. 5,378,619
  • U.S. Pat. No. 5,463,175
  • U.S. Pat. No. 5,500,365
  • U.S. Pat. No. 5,563,055
  • U.S. Pat. No. 5,633,435
  • U.S. Pat. No. 5,689,052
  • U.S. Pat. No. 5,880,275
  • An et al., Plant Physiol., 88:547, 1988.
  • Bird et al., Biotech. Gen. Engin. Rev., 9:207, 1991.
  • Bustos et al., Plant Cell, 1:839, 1989.
  • Callis et al., Plant Physiol., 88:965, 1988.
  • Choi et al., Plant Cell Rep., 13: 344-348, 1994.
  • Dekeyser et al., Plant Cell, 2:591, 1990.
  • Ellul et al., Theor. Appl. Genet., 107:462-469, 2003.
  • EP 534 858
  • Fraley et al., Bio/Technology, 3:629-635, 1985.
  • Fromm et al., Nature, 312:791-793, 1986.
  • Fromm et al., Plant Cell, 1:977, 1989.
  • Gibson and Shillito, Mol. Biotech., 7:125, 1997
  • Klee et al., Bio-Technology, 3(7):637-642, 1985.
  • Kuhlemeier et al., Plant Cell, 1:471, 1989.
  • Marcotte et al., Nature, 335:454, 1988.
  • Marcotte et al., Plant Cell, 1:969, 1989.
  • Odel et al., Nature, 313:810, 1985.
  • Omirulleh et al., Plant Mol. Biol., 21(3):415-428, 1993.
  • Potrykus et al., Mol. Gen. Genet., 199:183-188, 1985.
  • Roshal et al., EMBO J., 6:1155, 1987.
  • Schaffner and Sheen, Plant Cell, 3:997, 1991.
  • Schernthaner et al., EMBO J., 7:1249, 1988.
  • Siebertz et al., Plant Cell, 1:961, 1989.
  • Simpson et al., EMBO J., 4:2723, 1985.
  • Terada and Shimamoto, Mol. Gen. Genet., 220:389, 1990.
  • Uchimiya et al., Mol. Gen. Genet., 204:204, 1986.
  • Wang et al., Science, 280:1077-1082, 1998.
  • Williams et al., Nucleic Acids Res., 1 8:6531-6535, 1990.
  • WO 99/31248

Claims

1. A pepper plant comprising at least a first set of the chromosomes of pepper line SLR113-1074 or pepper line SBY99-1238, a sample of seed of said lines having been deposited under ATCC Accession No. PTA-10617, and ATCC Accession No. PTA-10616, respectively.

2. A seed comprising at least a first set of the chromosomes of pepper line SLR113-1074 or pepper line SBY99-1238, a sample of seed of said lines having been deposited under ATCC Accession No. PTA-10617, and ATCC Accession No. PTA-10616, respectively.

3. The plant of claim 1, which is inbred.

4. The plant of claim 1, which is hybrid.

5. The plant of claim 4, wherein the hybrid plant is pepper hybrid PS09930066, a sample of seed of said hybrid PS09930066 having been deposited under ATCC Accession No. PTA-10613.

6. The plant of claim 1, wherein the plant is a plant of line SLR113-1074 or line SBY99-1238.

7. A plant part of the plant of claim 1.

8. The plant part of claim 7, further defined as a leaf, a ovule, pollen, a fruit, or a cell.

9. A pepper plant having all the physiological and morphological characteristics of the pepper plant of claim 5.

10. A pepper plant having all the physiological and morphological characteristics of the pepper plant of claim 6.

11. A tissue culture of regenerable cells of the plant of claim 1.

12. The tissue culture according to claim 11, comprising cells or protoplasts from a plant part selected from the group consisting of embryos, meristems, cotyledons, pollen, leaves, anthers, roots, root tips, pistil, flower, seed and stalks.

13. A pepper plant regenerated from the tissue culture of claim 12.

14. A method of vegetatively propagating the plant of claim 1 comprising the steps of:

(a) collecting tissue capable of being propagated from a plant according to claim 1;
(b) cultivating said tissue to obtain proliferated shoots; and
(c) rooting said proliferated shoots to obtain rooted plantlets.

15. The method of claim 14, further comprising growing at least a first plant from said rooted plantlets.

16. A method of introducing a desired trait into a pepper line comprising:

(a) crossing a plant of line SLR113-1074 or SBY99-1238 with a second pepper plant that comprises a desired trait to produce F1 progeny, a sample of seed of said lines having been deposited under ATCC Accession No. PTA-10617, and ATCC Accession No. PTA-10616, respectively;
(b) selecting an F1 progeny that comprises the desired trait;
(c) backcrossing the selected F1 progeny with a plant of line SLR113-1074 or SBY99-1238 to produce backcross progeny;
(d) selecting backcross progeny comprising the desired trait and the physiological and morphological characteristic of pepper line SLR113-1074 or SBY99-1238; and
(e) repeating steps (c) and (d) three or more times to produce selected fourth or higher backcross progeny that comprise the desired trait.

17. A pepper plant produced by the method of claim 16.

18. A method of producing a plant comprising an added trait, the method comprising introducing a transgene conferring the trait into a plant of line PS09930066, line SLR113-1074 or line SBY99-1238, a sample of seed of said hybrid and lines having been deposited under ATCC Accession No. PTA-10613, ATCC Accession No. PTA-10617, and ATCC Accession No. PTA-10616, respectively.

19. A plant produced by the method of claim 18.

20. A method of determining the genotype of the plant of claim 1 comprising obtaining a sample of nucleic acids from said plant and detecting in said nucleic acids a plurality of polymorphisms.

21. The method of claim 20, further comprising the step of storing the results of detecting the plurality of polymorphisms on a computer readable medium.

22. The plant of claim 1, comprising a transgene.

23. The plant of claim 22, wherein the transgene confers a trait selected from the group consisting of male sterility, herbicide tolerance, insect resistance, pest resistance, disease resistance, modified fatty acid metabolism, environmental stress tolerance, modified carbohydrate metabolism and modified protein metabolism.

24. The plant of claim 1, comprising a single locus conversion.

25. The plant of claim 24, wherein the single locus conversion confers a trait selected from the group consisting of male sterility, herbicide tolerance, insect resistance, pest resistance, disease resistance, modified fatty acid metabolism, environmental stress tolerance, modified carbohydrate metabolism and modified protein metabolism.

26. A method for producing a seed of a plant derived from at least one of hybrid PS09930066, line SLR113-1074 or line SBY99-1238 comprising the steps of:

(a) crossing a pepper plant of hybrid line PS09930066, line SLR113-1074 or line SBY99-1238 with itself or a second pepper plant; a sample of seed of said hybrid and lines having been deposited under ATCC Accession No. PTA-10613, ATCC Accession No. PTA-10617, and ATCC Accession No. PTA-10616, respectively; and
(b) allowing seed of a hybrid PS09930066, line SLR113-1074 or line SBY99-1238-derived pepper plant to form.

27. The method of claim 26, further comprising the steps of:

(c) selfing a plant grown from said hybrid PS09930066, SLR113-1074 or SBY99-1238-derived pepper seed to yield additional hybrid PS09930066, line SLR113-1074 or line SBY99-1238-derived pepper seed;
(d) growing said additional hybrid PS09930066, line SLR113-1074 or line SBY99-1238-derived pepper seed of step (c) to yield additional hybrid PS09930066, line SLR113-1074 or line SBY99-1238-derived pepper plants; and
(e) repeating the crossing and growing steps of (c) and (d) to generate at least a first further hybrid PS09930066, line SLR113-1074 or line SBY99-1238-derived pepper plant.

28. The method of claim 26, wherein the second pepper plant is of an inbred pepper line.

29. The method of claim 26, comprising crossing line SLR113-1074 with line SBY99-1238, a sample of seed of said lines having been deposited under ATCC Accession No. PTA-10617, and ATCC Accession No. PTA-10616, respectively.

30. The method of claim 27, further comprising:

(f) crossing the further hybrid PS09930066, SLR113-1074 or SBY99-1238-derived pepper plant with a second pepper plant to produce seed of a hybrid progeny plant.

31. A hybrid seed produced by the method of claim 29.

32. A plant produced by growing the seed of claim 29.

33. A plant part of the plant of claim 32.

34. The plant part of claim 33, further defined as a leaf, a flower, a fruit, an ovule, pollen, or a cell.

35. A method of producing a pepper seed comprising crossing the plant of claim 1 with itself or a second pepper plant and allowing seed to form.

36. A method of producing a pepper fruit comprising:

(a) obtaining a plant according to claim 1, wherein the plant has been cultivated to maturity; and
(b) collecting a pepper from the plant.
Patent History
Publication number: 20110265219
Type: Application
Filed: Apr 21, 2010
Publication Date: Oct 27, 2011
Patent Grant number: 8314305
Applicant:
Inventors: William McCarthy (Ft. Myers, FL), Francesco Dellarocca (Latina)
Application Number: 12/764,811