Nucleic Acid Based Assay Involving A Hybridization Step With A Nucleic Acid Probe, Involving A Single Nucleotide Polymorphism (snp), Involving Pharmacogenetics, Involving Genotyping, Involving Haplotyping, Or Involving Detection Of Dna Methylation Gene Expression Patents (Class 435/6.11)
  • Patent number: 11365439
    Abstract: The present invention relates to a method for the sensitive identification of high-affinity complexes made of two ligands (2, 3, 4, 5, 6, 7) and one receptor (1). A large number of different ligands (2, 3, 4, 5, 6, 7) of a chemical library are hereby contacted with at least one receptor (1) in a solution. The ligands of the library have a single-strand DNA (8, 9) or RNA with a base length of 2 to 10 bases or alternatively more than 10 bases. In addition, the solution is incubated for a specific period of time and complexes made of two ligands (2, 3, 4, 5, 6, 7) and one receptor (1) are identified.
    Type: Grant
    Filed: July 10, 2015
    Date of Patent: June 21, 2022
    Assignee: DYNABIND GMBH
    Inventors: Francesco Reddavide, Helena De Andrade, Weilin Lin, Yixin Zhang
  • Patent number: 11365447
    Abstract: Technology provided herein relates in part to methods, processes and apparatuses for non-invasive assessment of genetic variations. In particular the invention relates to methods and kits for detecting aneuploidy of a fetal chromosome by determining the amounts of differentially methylated regions in each of chromosomes 13, 18 and 21 in circulating cell-free nucleic acid from a human pregnant female.
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: June 21, 2022
    Assignee: Sequenom, Inc.
    Inventors: Taylor Jacob Jensen, Jennifer Geis, Sung Kyun Kim, Cosmin Deciu, Mathias Ehrich
  • Patent number: 11358105
    Abstract: The present invention generally relates to systems and methods for the control of fluids and, in some cases, to systems and methods for flowing a fluid into and/or out of other fluids. As examples, fluid may be injected into a droplet contained within a fluidic channel, or a fluid may be injected into a fluidic channel to create a droplet. In some embodiments, electrodes may be used to apply an electric field to one or more fluidic channels, e.g., proximate an intersection of at least two fluidic channels. For instance, a first fluid may be urged into and/or out of a second fluid, facilitated by the electric field. The electric field, in some cases, may disrupt an interface between a first fluid and at least one other fluid. Properties such as the volume, flow rate, etc.
    Type: Grant
    Filed: January 11, 2021
    Date of Patent: June 14, 2022
    Assignee: President and Fellows of Harvard College
    Inventors: David A. Weitz, Adam R. Abate, Tony Hung, Pascaline Mary
  • Patent number: 11359246
    Abstract: The present disclosure provides methods of treating subjects having obesity, methods of identifying subjects having an increased risk of developing obesity, methods of detecting human G-protein coupled receptor 75 variant nucleic acid molecules and variant polypeptides, and GPR75 variant nucleic acid molecules and variant polypeptides.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: June 14, 2022
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Luca Andrea Lotta, Manuel Allen Revez Ferreira, Aris Baras, Parsa Akbari, Olukayode Sosina
  • Patent number: 11352659
    Abstract: Localized detection of RNA in a tissue sample that includes cells is accomplished on an array. The array include a number of features on a substrate. Each feature includes a different capture probe immobilized such that the capture probe has a free 3? end. Each feature occupies a distinct position on the array and has an area of less than about 1 mm2. Each capture probe is a nucleic acid molecule, which includes a positional domain including a nucleotide sequence unique to a particular feature, and a capture domain including a nucleotide sequence complementary to the RNA to be detected. The capture domain can be at a position 3? of the positional domain.
    Type: Grant
    Filed: September 14, 2021
    Date of Patent: June 7, 2022
    Assignee: Spatial Transcriptomics AB
    Inventors: Jonas Frisen, Patrik Stahl, Joakim Lundeberg
  • Patent number: 11351225
    Abstract: The present invention relates to compositions and methods comprising administering gene modifiers for treating ocular disease.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: June 7, 2022
    Assignee: The Schepens Eye Research Institute, Inc.
    Inventor: Neena B. Haider
  • Patent number: 11352671
    Abstract: Provided herein are methods and compositions for determining the susceptibility of Parkinson's disease patients to optimized drug therapy (ODT) and or deep brain stimulation (DBS) therapy.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: June 7, 2022
    Assignees: VANDERBILT UNIVERSITY, BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY
    Inventors: David Charles, Mallory Hacker, Caryl E. Sortwell, Jack W. Lipton
  • Patent number: 11352675
    Abstract: The disclosure relates generally to molecular diagnostic devices configured to amplifying a single nucleotide polymorphism (SNP) locus and discriminate between two or more allelic variants of the SNP, indicating presence or absence of a target allele. In some embodiments, the molecular diagnostic devices are capable of detecting, at point-of-care, SNPs associated with resistance or susceptibility to antibiotic treatment of organism infections. In other aspects, the disclosure provides methods of treatment for disease or disorders (e.g. organism infections) where treatment is guided by presence or absence of an allele at a SNP locus as determined by such molecular diagnostic devices.
    Type: Grant
    Filed: December 31, 2020
    Date of Patent: June 7, 2022
    Assignee: VISBY MEDICAL, INC.
    Inventors: Brian Ciopyk, Paul Dentinger, Teresa Abraham, Brandon Ma, Kamal Kajouke, Mackenzie Hunt, Austin Phung
  • Patent number: 11346782
    Abstract: A tomographic imaging method which includes the steps of activating fluorescence in a surface layer of a protein-marked or fluorescent dye-marked biological tissue sample not emitting fluorescence or only emitting specific fluorescence to acquire an activated surface of biological tissue sample; performing fluorescence excitation on the acquired surface biological tissue sample, and imaging the fluorescence to acquire a fluorescence image of the surface layer; cutting off the surface layer; exposing an inactivated new surface layer after cutting the surface layer; repeatedly performing activating, imaging and cutting off steps for the new surface layer to repeat tomographic imaging in such a manner till acquiring a two-dimensional image of each layer of the biological tissue sample; and overlapping the two-dimensional images to acquire a complete three-dimensional image of the biological tissue sample, thus acquiring three-dimensional structure information of the entire sample.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: May 31, 2022
    Assignee: Huazhong University of Science and Technology
    Inventors: Shaoqun Zeng, Qingming Luo, Hanqing Xiong, Wenyan Guo, Xiaohua Lv
  • Patent number: 11346784
    Abstract: A method of storing fluorescent dye-containing resin particles comprising adding the fluorescent dye-containing resin particles in a liquid comprising a buffer, a protein, and a surfactant, thereby obtaining a particle-containing liquid. The rate of change in the backscatter intensity (transmitted light) at the center of the height of the particle-containing liquid left to stand for 24 hours after the adding is not less than ?1% based on the particle-containing liquid immediately after the adding.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: May 31, 2022
    Assignee: KONICA MINOLTA, INC.
    Inventors: Masaru Takahashi, Fuminori Okada
  • Patent number: 11345949
    Abstract: Provided herein is technology relating compositions and methods for analysis of methylated DNA from a subject. The technology also relates to use of endogenous methylated DNAs as internal controls for marker gene methylation assays.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: May 31, 2022
    Assignee: Exact Sciences Corporation
    Inventors: Hatim T. Allawi, Graham P. Lidgard
  • Patent number: 11344121
    Abstract: The subject invention pertains to biomarkers for identifying a subject as having high risk of the development PE. The biomarkers presented herein include miRNAs, post-translational modification of histone proteins, amount, expression and/or activity of histone or DNA modifying enzymes and methylation of sites in the genomic DNA. In certain embodiments, increased miR-17, increased acetylation of H4 histone protein, decreased amount, expression and/or activity of HDACS mRNA or protein or increased methylation of DNA at the genomic site CYP19A1 in the blood, serum or plasma of a subject compared to that of a control subject is used to predict the development of PE in the subject. The invention also provides kits and reagents to conduct assays to quantify biomarkers described herein. The invention further provides the methods of treating and/or managing PE in a subject identified as having a high risk of the development of PE.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: May 31, 2022
    Assignee: THE TEXAS A&M UNIVERSITY SYSTEM
    Inventor: Mahua Choudhury
  • Patent number: 11339447
    Abstract: Provided in the disclosure relates to a panel of gene expression markers for cancer patient treated or to be treated by karenitecin. The disclosure provides methods and compositions, e.g., kits, for evaluating gene expression levels of the markers and methods of using such gene expression levels to predict a cancer patient's response to karenitecin. Such information can be used in determining prognosis and treatment options for cancer patients.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: May 24, 2022
    Assignee: CROWN BIOSCIENCE, INC. (TAICANG)
    Inventors: Binchen Mao, Dawei Chen, Sheng Guo, Henry Qixiang Li
  • Patent number: 11339364
    Abstract: A micro alternating tangential flow (microATF) perfusion filter includes a hollow cylinder having a proximal end and a distal end. The proximal end is connected in series to a permeate chamber, followed by a retentate chamber. The proximal end either (i) terminates in or at the permeate chamber, or (ii) terminates in or at the retentate chamber. The portion of the proximal end within the permeate chamber, in a case of (ii), possesses at least one opening allowing fluid communication between an inside of the hollow cylinder and the permeate chamber. The microATF perfusion filter further includes an inlet, positioned over the retentate chamber, for communication with a source of positive or negative pressure, and an outlet, positioned in a wall of the permeate chamber, which can be connected to a check valve, which, in turn, can be connected to a hydrophobic fluid vent filter.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: May 24, 2022
    Assignee: Repligen Corporation
    Inventors: Michael Bransby, Philip Yuen
  • Patent number: 11332778
    Abstract: The disclosure provides methods and systems for nucleic acid amplification including isothermal nucleic acid amplification.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: May 17, 2022
    Assignee: GENAPSYS, INC.
    Inventor: Florian Oberstrass
  • Patent number: 11332784
    Abstract: Disclosed herein are adapter nucleic acid sequences, double-stranded complexed nucleic acids, compositions, and methods for sequencing a double-stranded target nucleic acid with applications to error correction by duplex sequencing.
    Type: Grant
    Filed: December 8, 2016
    Date of Patent: May 17, 2022
    Assignee: TwinStrand Biosciences, Inc.
    Inventors: Michael W. Schmitt, Lawrence A. Loeb, Jesse J. Salk
  • Patent number: 11333876
    Abstract: A method and system for mapping fluid objects on a substrate using a microscope inspection system that includes a light source, imaging device, stage for moving a substrate disposed on the stage, and a control module. A computer analysis system includes an object identification module that identifies for each of the objects on the substrate, an object position on the substrate including a set of X, Y, and ? coordinates using algorithms, networks, machines and systems including artificial intelligence and image processing algorithms. At least one of the objects is fluid and has shifted from a prior position or deformed from a prior size.
    Type: Grant
    Filed: October 8, 2020
    Date of Patent: May 17, 2022
    Assignee: Nanotronics Imaging, Inc.
    Inventors: Matthew C. Putman, John B. Putman, John Cruickshank, Julie Orlando, Adele Frankel, Brandon Scott
  • Patent number: 11332782
    Abstract: Methods for detecting single nucleotide polymorphisms in nucleotide sequences using LAMP reactions are provided herein. Generally, two sets of LAMP primers, a wild-type primer that matches expected DNA sequences and an SNP primer that matches the expected SNP DNA are provided. One method includes providing the wild-type primer and the SNP primer in separate wells of a multi-well microfluidic array device, adding the sample nucleotide sequence into the wells seeded with the primers, and initiating LAMP reactions within the wells. The method includes observing the reaction differential between the primers and determining the status of the DNA with regard to that particular SNP. A second method includes providing the primers with tags in a mixture, adding the sample nucleotide sequence to the mixture, and initiating LAMP reactions.
    Type: Grant
    Filed: August 7, 2017
    Date of Patent: May 17, 2022
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Rhett Martineau, Deirdre Meldrum
  • Patent number: 11332776
    Abstract: The disclosure provides for methods, compositions, and kits for normalizing nucleic acid libraries, for example sequencing libraries.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: May 17, 2022
    Assignee: Becton, Dickinson and Company
    Inventors: Craig Betts, Glenn Fu
  • Patent number: 11332793
    Abstract: The invention provides methods for simultaneously amplifying multiple nucleic acid regions of interest in one reaction volume as well as methods for selecting a library of primers for use in such amplification methods. The invention also provides library of primers with desirable characteristics, such as minimal formation of amplified primer dimers or other non-target amplicons.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: May 17, 2022
    Assignee: Natera, Inc.
    Inventors: Matthew Rabinowitz, Matthew Micah Hill, Bernhard Zimmermann, Johan Baner, George Gemelos, Milena Banjevic, Allison Ryan, Styrmir Sigurjonsson, Zachary Demko
  • Patent number: 11332772
    Abstract: A structure for culturing cells includes growth medium regions on a surface of the structure. Each of the growth medium regions includes a growth medium surface configured to receive and promote growth in a cell that is being cultured. The structure includes a non-growth medium. The non-growth medium includes a non-growth medium surface configured to receive the cell that is being cultured.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: May 17, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Amos Cahan, Guy M. Cohen, Theodore G. van Kessel, Sufi Zafar
  • Patent number: 11333674
    Abstract: A test kit of the present invention includes an analysis chip and a pipette tip. The pipette tip includes: a first portion coming in contact with an insertion hole hermetic seal when the pipette tip is inserted into a pipette tip insertion portion so as to allow a liquid dispensation port to be positioned at or in the vicinity of a bottom surface of the pipette tip insertion portion; and a second portion positioned closer to the liquid dispensation port side than the first portion. The outer diameter of the second portion is formed to be equal to or greater than the outer diameter of the first portion and any portion between the first portion and the second portion.
    Type: Grant
    Filed: November 7, 2016
    Date of Patent: May 17, 2022
    Assignee: OTSUKA PHARMACEUTICAL CO., LTD.
    Inventors: Mami Takeuchi, Masataka Matsuo
  • Patent number: 11327001
    Abstract: A particle or pollen sensor comprises an array of relative humidity sensors. A change in relative humidity is representative of a particle or pollen in contact with one or more of the sensors. A size and/or shape of a particle or pollen in contact with one or more of the sensors is optionally also determined based on the number and/or configuration of sensors. From this information, a particle or pollen type is determined.
    Type: Grant
    Filed: October 8, 2018
    Date of Patent: May 10, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Peng Zhang, Shuang Chen, Qiushi Zhang
  • Patent number: 11326207
    Abstract: The present disclosure provides methods and systems for nucleic acid sequencing. Such systems and methods may achieve context-independent incorporation, have reduced context-dependence or have context-dependence that is amenable to calibration and modeling. Such systems and methods may also reduce misincorporation.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: May 10, 2022
    Assignee: ULTIMA GENOMICS, INC.
    Inventors: Gilad Almogy, Linda Lee
  • Patent number: 11319539
    Abstract: The present invention relates to RNAi agents, e.g., double stranded RNAi agents, targeting a xanthine dehydrogenase (XDH) gene, and methods of using such double stranded RNAi agents to inhibit expression of an XDH gene and methods of treating subjects having an XDH-associated disease.
    Type: Grant
    Filed: January 27, 2020
    Date of Patent: May 3, 2022
    Assignee: Alnylam Pharmaceuticals, Inc.
    Inventors: Kevin Fitzgerald, Gregory Hinkle, Timothy Ryan Mooney
  • Patent number: 11319541
    Abstract: The present invention is directed to a method of treating cancer using interfering RNA duplexes to mediate gene silencing. The present invention is also directed to interfering RNA duplexes and vectors encoding such interfering RNA duplexes.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: May 3, 2022
    Assignee: PHYZAT BIOPHARMACEUTICALS, LDA.
    Inventor: Patricio Soares da Silva
  • Patent number: 11313001
    Abstract: Provided herein are compositions, systems, and methods for detecting microorganisms. In particular, provided herein are compositions, systems, and methods for rapid, multiplex detection of microorganism in unpurified biological samples.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: April 26, 2022
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Nicholas Kotov, Jeremy Scott VanEpps, Kevin Ward
  • Patent number: 11315016
    Abstract: The technology disclosed relates to constructing a convolutional neural network-based classifier for variant classification. In particular, it relates to training a convolutional neural network-based classifier on training data using a backpropagation-based gradient update technique that progressively match outputs of the convolutional neural network-based classifier with corresponding ground truth labels. The convolutional neural network-based classifier comprises groups of residual blocks, each group of residual blocks is parameterized by a number of convolution filters in the residual blocks, a convolution window size of the residual blocks, and an atrous convolution rate of the residual blocks, the size of convolution window varies between groups of residual blocks, the atrous convolution rate varies between groups of residual blocks. The training data includes benign training examples and pathogenic training examples of translated sequence pairs generated from benign variants and pathogenic variants.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: April 26, 2022
    Assignee: Illumina, Inc.
    Inventors: Laksshman Sundaram, Kai-How Farh, Hong Gao, Samskruthi Reddy Padigepati, Jeremy Francis McRae
  • Patent number: 11312930
    Abstract: A method of analysing nucleic acid using apparatus comprising a reaction chamber and plurality of sensors located in the base of the chamber, with each sensor preferably located within a respective well. The method comprises flowing a fluid containing the nucleic acid or fragments thereof into the reaction chamber. While the chamber is fully or at least partially sealed, amplification of the nucleic acid or said fragments is performed within the chamber using an amplification primer or primers whilst detecting the generation of amplicons using said sensors. Sequencing or hybridisation is then performed on the amplicons, and sequencing or hybridisation is detected using said sensors.
    Type: Grant
    Filed: April 27, 2015
    Date of Patent: April 26, 2022
    Assignee: DNAe Group Holdings Limited
    Inventors: Christofer Toumazou, David Davidson, Samuel Reed
  • Patent number: 11305253
    Abstract: High surface area coatings are applied to solid substrates to increase the surface area available for solid-phase synthesis of polymers. The high surface area coatings use three-dimensional space to provide more area for functional groups to bind polymers than an untreated solid substrate. The polymers may be oligonucleotides, polypeptides, or another type of polymer. The solid substrate is a rigid supportive layer made from a material such as glass, a silicon material, a metal material, and plastic. The coating may be thin films, hydrogels, microparticles. The coating may be made from a metal oxide, a high-? dielectric, a low-? dielectric, an etched metal, a carbon material, or an organic polymer. The functional groups may be hydroxyl groups, amine groups, thiolate groups, alkenes, n-alkenes, alkalines, N-Hydroxysuccinimide (NHS)-activated esters, polyaniline, aminosilane groups, silanized oxides, oligothiophenes, and diazonium compounds.
    Type: Grant
    Filed: October 9, 2019
    Date of Patent: April 19, 2022
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Bichlien Hoang Nguyen, Karin Strauss, Hsing-Yeh Parker
  • Patent number: 11308715
    Abstract: Inputs from sensors (e.g., image and environmental sensors) are used for real-time optimization of plant growth in indoor farms by adjusting the light provided to the plants and other environmental factors. The sensors use wireless connectivity to create an Internet of Things network. The optimization is determined using machine-learning analysis and image recognition of the plants being grown. Once a machine-learning model has been generated and/or trained in the cloud, the model is deployed to an edge device located at the indoor farm to overcome connectivity issues between the sensors and the cloud. Plants in an indoor farm are continuously monitored and the light energy intensity and spectral output are automatically adjusted to optimal levels at optimal times to create better crops. The methods and systems are self-regulating in that light controls the plant's growth, and the plant's growth in-turn controls the spectral output and intensity of the light.
    Type: Grant
    Filed: October 12, 2020
    Date of Patent: April 19, 2022
    Assignee: AGEYE TECHNOLOGIES, INC.
    Inventors: Nicholas R. Genty, John M. J. Dominic
  • Patent number: 11300562
    Abstract: This disclosure provides methods, systems, and compositions of matter for studying solvent accessibility and three-dimensional structure of biological molecules. A plasma can be used to generate marker radicals, which can interact with a biological molecule and mark the solvent-accessible portions of the biological molecule.
    Type: Grant
    Filed: January 16, 2020
    Date of Patent: April 12, 2022
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Michael R. Sussman, J. Leon Shohet, Faraz A. Choudhury, Joshua M. Blatz, Benjamin B. Minkoff, Daniel I. Benjamin
  • Patent number: 11299783
    Abstract: This disclosure provides systems and methods for sample processing and data analysis. Sample processing may include nucleic acid sample processing and subsequent sequencing. Some or all of a nucleic acid sample may be sequenced to provide sequence information, which may be stored or otherwise maintained in an electronic storage location. The sequence information may be analyzed with the aid of a computer processor, and the analyzed sequence information may be stored in an electronic storage location that may include a pool or collection of sequence information and analyzed sequence information generated from the nucleic acid sample. Methods and systems of the present disclosure can be used, for example, for the analysis of a nucleic acid sample, for producing one or more libraries, and for producing biomedical reports. Methods and systems of the disclosure can aid in the diagnosis, monitoring, treatment, and prevention of one or more diseases and conditions.
    Type: Grant
    Filed: April 20, 2021
    Date of Patent: April 12, 2022
    Assignee: Personalis, INC.
    Inventors: John West, Christian Haudenschild, Richard Chen
  • Patent number: 11298698
    Abstract: Systems and methods for light based heating of light absorbing sources for modification of nucleic acids through fast thermal cycling of polymerase chain reaction are described.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: April 12, 2022
    Assignee: Kryptos Biotechnologies, Inc.
    Inventors: Jun Ho Son, Sewoon Han, Jinyong Lee
  • Patent number: 11302417
    Abstract: Methods for processing data using information gained from examining biological materials identifies and characterized probes for Single Nucleotide Polymorphisms and identifies Off Target Variants.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: April 12, 2022
    Assignee: Affymetrix, Inc.
    Inventors: Hong Gao, Ali Pirani, Teresa Webster, Mei-Mei Shen
  • Patent number: 11293054
    Abstract: The inventions provided herein relate to detection reagents, compositions, methods, and kits comprising the detection reagents for use in detection, identification, and/or quantification of analytes in a sample. Such detection reagents and methods described herein allow multiplexing of many more labeled species in the same procedure than conventional methods, in which multiplexing is limited by the number of available and practically usable colors.
    Type: Grant
    Filed: April 24, 2019
    Date of Patent: April 5, 2022
    Assignee: President and Fellows of Harvard College
    Inventors: Daniel Levner, Je-hyuk Lee, George M. Church, Michael Super
  • Patent number: 11293065
    Abstract: Provided herein are methods and compositions for assessing the quality and potential of stem cells in a sample. Such methods and compositions are useful for helping to ensure the safety and quality of a population of stem cells before it is used in a subject.
    Type: Grant
    Filed: March 14, 2017
    Date of Patent: April 5, 2022
    Assignee: AELAN CELL TECHNOLOGIES, INC.
    Inventors: Victoria Lunyak, Meenakshi Gaur
  • Patent number: 11293064
    Abstract: Disclosed herein are novel compositions, methods, and systems for determining whether a subject has, or is at risk of developing, or is at a given stage of a condition afflicting a tissue of interest, or determining the tissue or cell provenance of a biological sample, based on expression level of one or more of the novel miRNA and isomiR sequences disclosed herein. The compositions, methods, and systems described herein can be used to diagnose a disease or disorder, or prognose a given stage and/or progression of the disease or disorder, or determine the identity of the tissue or cell in a sample. In some embodiments, the compositions, methods, and systems described herein can be used to develop a treatment for the disease or disorder. For example, in some embodiments, the novel miRNAs can be used as therapeutics for treatment of a disease or disorder.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: April 5, 2022
    Assignee: Thomas Jefferson University
    Inventors: Isidore Rigoutsos, Phillipe Loher, Eric Londin
  • Patent number: 11293048
    Abstract: Methods for detecting nucleic acid sequences, where attenuator oligonucleotides are provided to reduce the number of detection products resulting from highly abundant sequences.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: April 5, 2022
    Assignee: Bio Spyder Technologies, Inc.
    Inventors: Joanne M. Yeakley, Bruce Seligmann, Joel McComb
  • Patent number: 11289176
    Abstract: This invention relates to a binomial calculation of copy number of data obtained from a mixed sample having a first source and a second source.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: March 29, 2022
    Assignee: Ariosa Diagnostics, Inc.
    Inventors: Craig Struble, John Stuelpnagel
  • Patent number: 11284934
    Abstract: Methods for treating sleep disorders and for reducing a risk associated with developing a sleep disorder in patients via therapeutic renal neuromodulation and associated systems are disclosed herein. Sympathetic nerve activity can contribute to several cellular and physiological conditions associated with sleep disorders as well as an increased risk of developing a sleep disorder. One aspect of the present technology is directed to methods for improving a patient's calculated risk score corresponding to a sleep disorder status in the patient. Other aspects are directed to reducing a likelihood of developing a sleep disorder in patients presenting one or more sleep disorder risk factors. Renal sympathetic nerve activity can be attenuated to improve a patient's sleep disorder status or risk of developing a sleep disorder. The attenuation can be achieved, for example, using an intravascularly positioned catheter carrying a therapeutic assembly configured to use, e.g.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: March 29, 2022
    Assignee: MEDTRONIC ARDIAN LUXEMBOURG S.A.R.L.
    Inventors: Gabriel Lazarus, Douglas Hettrick
  • Patent number: 11286285
    Abstract: An object of this invention is to provide a streptavidin mutant reduced in affinity to the naturally-occurring biotin, and to provide a modified biotin which shows a high affinity to such streptavidin mutant reduced in affinity to the naturally-occurring biotin. This invention can provide a compound composed of a dimer of modified biotin, a streptavidin mutant, and usage of them.
    Type: Grant
    Filed: February 18, 2015
    Date of Patent: March 29, 2022
    Assignee: SAVID THERAPEUTICS INC.
    Inventors: Akira Sugiyama, Hirofumi Doi, Tatsuhiko Kodama, Tsuyoshi Inoue, Eiichi Mizohata, Tatsuya Kawato, Tomohiro Meshizuka, Motomu Kanai, Yohei Shimizu, Noriaki Takasu, Mari Takatsu
  • Patent number: 11287380
    Abstract: An image analysis apparatus and an image analysis method capable of appropriately analyzing whether an analysis target cell is an abnormal cell even when a subject has a chromosomal abnormality are provided. An image analysis apparatus 10 includes light sources 121 and 122 configured to irradiate light onto a sample 21 whose target portion is labeled, an imaging unit 154 for capturing light generated from the sample 21 by irradiation with light, and a processing unit 11 that processes the image captured by the imaging unit 154. The processing unit 11 acquires information on the chromosomal abnormality and analyzes the image based on the information on the acquired chromosome abnormality.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: March 29, 2022
    Assignee: SYSMEX CORPORATION
    Inventor: Yuki Akasaka
  • Patent number: 11279980
    Abstract: Disclosed herein are methods for identifying a genetic susceptibility to colon cancer in as subject, the method comprising determining the mRNA expression level of one or more of FSCN1, ZIC2, ZIC5, CRYBA2, MUC6, TRNP1 and SEMG1 in a colon tissue sample in the subject, where a ratio of the sample expression level of one or more genes in the panel to a reference expression level of one or more genes in the panel indicates cancer or and increased susceptibility of cancer. Disclosed herein are diagnostic devices comprising one or more biomarkers, wherein the biomarkers are FSCN1, ZIC2, ZIC5, CRYBA2, MUC6, TRNP1 and SEMG1; and a gene expression panel consisting of primers or probes for detecting FSCN1, ZIC2, ZIC5, CRYBA2, MUC6, TRNP1 and SEMG1 in a sample, and methods for assessing risk of developing colon cancer in a subject.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: March 22, 2022
    Assignee: UNIVERSITY OF UTAH RESEARCH FOUNDATION
    Inventors: Don Delker, Priyanka Kanth
  • Patent number: 11279968
    Abstract: Methods for imaging are described, including, but not limited to a method comprising: (1) contacting a sample being tested for the presence of one or more targets with one or more target-specific binding partners, wherein each target-specific binding partner is linked to a docking strand, and wherein target-specific binding partners of different specificity are linked to different docking strands, (2) optionally removing unbound target-specific binding partners, (3) contacting the sample with antigen-bound imager strands and antigen-specific binding partners linked (directly or indirectly) to optical labels, wherein the antigen-bound imager strands have complementarity to a docking strand, directly or indirectly, and wherein each antigen-specific binding partner is linked to one or more optical labels, and wherein antigen-specific binding partners of different specificity are linked to distinct optical labels, (4) optionally removing unbound antigen-bound imager strands and/or antigen-specific binding partner
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: March 22, 2022
    Assignee: Ultivue, Inc.
    Inventors: Stephanie Rae Hennek, Mael Manesse
  • Patent number: 11274957
    Abstract: An analytical system includes a laser disposed to direct light toward a microfluidic feature disposed in a feature layer of a multiple layer test cartridge, a sensor to receive reflections from capping layers disposed about the microfluidic feature in the feature layer, and a controller to determine a depth of the microfluidic feature as a function of the received reflections.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: March 15, 2022
    Assignee: Honeywell International Inc.
    Inventor: Tzu-Yu Wang
  • Patent number: 11274351
    Abstract: Compositions, reactions mixtures, kits, and systems for detecting bacterial contamination are provided, as well as methods of using the same.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: March 15, 2022
    Assignee: DCH MOLECULAR DIAGNOSTICS, INC.
    Inventors: James Jian Quan Wang, Xiangmin Cui, Wayne Jer Hsieh, HiuNam Chan
  • Patent number: 11276481
    Abstract: The present invention relates to a method for writing data comprising a sequence of bits, the data being written in a form of nucleic acid, by in-vitro enzymatically producing memory nucleic acid from a strand of memory writing substrate nucleic acid, wherein the strand of memory writing substrate nucleic acid comprises a plurality of spacer sections and memory writing sections sandwiched between the spacer sections. Each of the spacer sections comprises one or more nucleobases, and each of the memory writing sections comprises a nucleobase other than the nucleobases of an adjacent spacer section upstream of the memory writing section in a travel direction of an enzyme along the strand of memory writing substrate nucleic acid.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: March 15, 2022
    Assignee: IMEC VZW
    Inventors: Tim Stakenborg, Chang Chen, Kris Covens, Qing Cai, Maarten Fauvart
  • Patent number: 11266983
    Abstract: Technology for a pillar structure for a biochip is disclosed. The pillar structure for a biochip includes: a substrate portion having a plate structure; an insertion pillar portion formed in one piece with the substrate portion and protruding downward from a lower surface of the substrate portion so as to be inserted into a well; and a compensation pillar portion formed in one piece with the substrate portion, the compensation pillar portion corresponding to the insertion pillar portion and protruding upward from an upper surface of the substrate portion. Therefore, when the pillar structure is cooled during an injection molding process, the substrate portion is prevented from being partially recessed, and when samples are analyzed using microscopic images, accuracy and reliability may be improved.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: March 8, 2022
    Assignees: MBD Co., Ltd., Samsung Life Public Welfare Foundation
    Inventors: Don Jung Lee, Ho Jeong Song, Dong Woo Lee, Do Hyun Nam
  • Patent number: 11268155
    Abstract: The present disclosure relates to a method for detecting CpG methylation of SDC2 (Syndecan 2) gene, a kit for detecting CpG methylation of SDC2 (Syndecan 2) gene, and a method for detecting CpG methylation of SDC2 (Syndecan 2) gene for a colorectal cancer diagnosis.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: March 8, 2022
    Assignee: GENOMICTREE, INC.
    Inventors: Sung Whan An, Tae Jeong Oh