Nucleic Acid Based Assay Involving A Hybridization Step With A Nucleic Acid Probe, Involving A Single Nucleotide Polymorphism (snp), Involving Pharmacogenetics, Involving Genotyping, Involving Haplotyping, Or Involving Detection Of Dna Methylation Gene Expression Patents (Class 435/6.11)
  • Patent number: 11655504
    Abstract: Compositions useful for the detection of single molecules in a sample are provided. In some aspects, the disclosure provides a nucleic acid connected to a nucleotide and two or more luminescent labels. In some embodiments, the nucleic acids described herein comprise one or more structural features that provide enhanced fluorescence intensity. In some aspects, methods of sequencing using the labeled nucleotides of the disclosure are provided.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: May 23, 2023
    Assignee: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Jeremy Lackey, Brian Reed, Xinghua Shi, Haidong Huang, David Dodd
  • Patent number: 11655497
    Abstract: The present disclosure provides a method of amplifying a target nucleic acid, wherein the method comprises: (a) providing a reaction mixture comprising: (i) a nucleic acid sample comprising or suspected of comprising the target nucleic acid, (ii) multiple primer pairs, wherein at least one primer of each type of primer pairs is complementary to a portion of the target nucleic acid, and each primer pair has at least one blocking primer comprising a blocking group capable of blocking polymerase extension, (iii) nucleic acid polymerase, and (iv) de-blocking agent capable of enabling polymerization of the target nucleic acid by said nucleic acid polymerase using the blocking primers; and (b) incubating the reaction mixture under a condition for amplification of the target nucleic acid and a kit used for the method. The present disclosure further provides a method of sequencing a target nucleic acid and a kit used for the method.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: May 23, 2023
    Assignee: NINGBO SHINING BIOTECHNOLOGY CO., LTD
    Inventor: Zhaochun Ma
  • Patent number: 11643657
    Abstract: The present invention relates to chirally controlled oligonucleotides, chirally controlled oligonucleotide compositions, and the method of making and using the same. The invention specifically encompasses the identification of the source of certain problems with prior methodologies for preparing chiral oligonucleotides, including problems that prohibit preparation of fully chirally controlled compositions, particularly compositions comprising a plurality of oligonucleotide types. In some embodiments, the present invention provides chirally controlled oligonucleotide compositions. In some embodiments, the present invention provides methods of making chirally controlled oligonucleotides and chirally controlled oligonucleotide compositions.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: May 9, 2023
    Assignee: WAVE LIFE SCIENCES LTD.
    Inventors: David Charles Donnell Butler, Naoki Iwamoto, Meena, Nenad Svrzikapa, Gregory L. Verdine, Ivan Zlatev
  • Patent number: 11639521
    Abstract: The present invention provides novel compositions and methods for assessing the size of tandem repeat sequences, e.g., telomeres, within a genome, using specially designed Molecular Inversion Probes (MIPs) and reaction conditions.
    Type: Grant
    Filed: June 3, 2020
    Date of Patent: May 2, 2023
    Assignee: The Chinese University of Hong Kong
    Inventors: Leung Sang Nelson Tang, Suk Ling Ma, Jean Woo
  • Patent number: 11636822
    Abstract: Systems for identifying threat materials such as CBRNE threats and locations are provided. The systems can include a data acquisition component configured to determine the presence of a CBRNE threat; data storage media; and processing circuitry operatively coupled to the data acquisition device and the storage media. Methods for identifying a CBRNE threat are provided. The methods can include: determining the presence of a CBRNE threat using a data acquisition component; and acquiring an image while determining the presence of the CBRNE threat. Methods for augmenting a real-time display to include the location and/or type of CBRNE threat previously identified are also provided. Methods for identifying and responding to CBRNE threats are provided as well.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: April 25, 2023
    Assignee: TELEDYNE FLIR DETECTION, INC.
    Inventors: Scott Donahue, Jeremy P. Walker, Jessica L. Milke, Jason Robosky
  • Patent number: 11635431
    Abstract: An apparatus for label-free analysis of molecules, including interactions and reactions of the molecules, is disclosed. The apparatus is based on detecting molecule movement under the influence of an external electric field. The apparatus is able to achieve sensitive detection of molecular binding to proteins or other molecules, and conformational changes of proteins or other molecules and biochemical reactions of the proteins or other molecules. Applications of the apparatus include screening of drug molecules, kinetic analysis of posttranslational modification of proteins, and small molecule-protein interactions.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: April 25, 2023
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventor: Nongjian Tao
  • Patent number: 11634750
    Abstract: Provided herein are methods, compositions, and kits for forming amplification products. In various embodiments provided herein, transposomes comprising transposases are used in forming tagged polynucleotides for downstream amplification and polynucleotide processing steps.
    Type: Grant
    Filed: March 19, 2020
    Date of Patent: April 25, 2023
    Assignee: Cygnus Biosciences (Beijing) Co., Ltd.
    Inventors: Yalei Wu, Wai Ho Lee, Kai Qin Lao
  • Patent number: 11629378
    Abstract: Disclosed are methods for determining at least one sequence of interest of a fetus of a pregnant mother. In various embodiments, the method can determine one or more sequences of interest in a test sample that comprises a mixture of maternal cellular DNA and mother-and-fetus cfDNA. In some embodiments, methods are provided for determining whether the fetus has a genetic disease. In some embodiments, methods are provided for determining whether the fetus is homozygous in a disease causing allele when the mother is heterozygous of the same allele. In some embodiments, methods are provided for determining whether the fetus has a copy number variation (CNV) or a non-CNV genetic sequence anomaly.
    Type: Grant
    Filed: October 13, 2020
    Date of Patent: April 18, 2023
    Assignee: Illumina, Inc.
    Inventors: Anupama Srinivasan, Darya I. Chudova, Richard P. Rava
  • Patent number: 11630067
    Abstract: In a fluorescent in-situ hybridization imaging system performs, as nested loops, the following: (1) a valve sequentially couples a flow cell to a plurality of different reagent sources to expose the sample to a plurality of different reagents, (2) for each reagent of the plurality of different reagents, a motor sequentially positions the fluorescence microscope relative to sample at a plurality of different fields of view, (3) for each field of view of the plurality of different fields of view, a variable frequency excitation light source sequentially emits a plurality of different wavelengths, (4) for each wavelength of the plurality of different wavelengths, an actuator sequentially positions the fluorescence microscope relative to sample at a plurality of different vertical heights, and (5) for each vertical height of the plurality of different vertical heights, an image is obtained.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: April 18, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Yun-Ching Chang, Dan Xie, Chloe Kim
  • Patent number: 11624708
    Abstract: A fluorescent in-situ hybridization imaging and analysis system includes a flow cell to contain a sample to be exposed to fluorescent probes in a reagent, a fluorescence microscope to obtain sequentially collect a plurality of images of the sample at a plurality of different combinations of imaging parameters, and a data processing system. The data processing system includes an online pre-processing system configured to sequentially receive the images from the fluorescence microscope as the images are collected and perform on-the-fly image pre-processing to remove experimental artifacts of the image and to provide RNA image spot sharpening, and an offline processing system configured to, after the plurality of images are collected, perform registration of images having a same field of view and to decode intensity values in the plurality of images to identify expressed genes.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: April 11, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Yun-Ching Chang, Dan Xie, Chloe Kim
  • Patent number: 11607660
    Abstract: High surface area coatings are applied to solid substrates to increase the surface area available for solid-phase synthesis of polymers. The high surface area coatings use three-dimensional space to provide more area for functional groups to bind polymers than an untreated solid substrate. The polymers may be oligonucleotides, polypeptides, or another type of polymer. The solid substrate is a rigid supportive layer made from a material such as glass, a silicon material, a metal material, and plastic. The coating may be thin films, hydrogels, microparticles. The coating may be made from a metal oxide, a high-? dielectric, a low-? dielectric, an etched metal, a carbon material, or an organic polymer. The functional groups may be hydroxyl groups, amine groups, thiolate groups, alkenes, n-alkenes, alkalines, N-Hydroxysuccinimide (NHS)-activated esters, polyaniline, aminosilane groups, silanized oxides, oligothiophenes, and diazonium compounds.
    Type: Grant
    Filed: October 9, 2019
    Date of Patent: March 21, 2023
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Bichlien Hoang Nguyen, Karin Strauss, Hsing-Yeh Parker
  • Patent number: 11608534
    Abstract: Disclosed are a tumor biomarker and application thereof, and a tumor detection kit. Patients suffering from non-small cell lung cancer, containing an EML4-ALK or SLC34A2-ROS1 fusion gene, have a specific circular RNA in blood. The base sequences of the circular RNA are represented by SEQ ID NOS. 1-6. The circular RNA is associated with non-small cell lung cancer, stably and constantly exists in plasma samples, and has high specificity and effectiveness, and thus can be used as a biomarker for tumor detection. Reagents such as primers and probes for detecting the circular RNA can be used for preparing the tumor detection kit.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: March 21, 2023
    Assignee: Sichuan University
    Inventors: Yong Peng, Yuquan Wei, Shuangyan Tan, Ke Wu
  • Patent number: 11585814
    Abstract: The invention described herein provides biological markers for the diagnosis, prognosis, and monitoring of prostate cancer.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: February 21, 2023
    Assignee: IMMUNIS.AI, INC.
    Inventors: Amin I. Kassis, Harry Stylli, Colleen Kelly, Geoffrey Erickson, Kirk J. Wojno
  • Patent number: 11587651
    Abstract: Computer based methods, systems, and computer readable media for providing genomic services are provided. A request is received from a user. The request is applied to one or more from a group of a personalized data repository for the user and supporting knowledge bases, wherein the personalized data repository includes genetic test results, health/clinical information, and insurance coverage, and wherein the knowledge bases include information pertaining to genetic tests and clinical guidelines. Data from the applied request is integrated with results from service modules performing one or more from a group of content search, variation interpretation, and report generation to produce results for the request. The personalized data repository and supporting knowledge bases are updated based on the results of the request. Surveillance services are triggered based on one or more events.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: February 21, 2023
    Assignee: MERATIVE US L.P.
    Inventors: Pengwei Yang, Cheryl L. Eifert, Kirk A. Beaty, Fang Wang
  • Patent number: 11579111
    Abstract: A biosensor pixel for measuring current that flows through the electrode surface in response to electrochemical interactions and a biosensor array architecture that includes such biosensor pixels. The biosensor pixel includes an electrode transducer configured to measure a current generated by electrochemical interactions occurring at a recognition layer placed directly on top of it in response to an electrical voltage placed across an electrode transducer-electrolyte interface. The biosensor pixel further includes a trans-impedance amplifier connected to the electrode transducer, where the trans-impedance amplifier is configured to convert the current into a voltage signal as the electrochemical interactions occur.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: February 14, 2023
    Assignee: Board of Regents, The University of Texas System
    Inventors: Arjang Hassibi, Arun Manickam, Rituraj Singh
  • Patent number: 11572580
    Abstract: The present invention pertains to: an oligonucleotide preservation method; and a kit comprising an oligonucleotide. The present invention provides a method for stably preserving an oligonucleotide-containing solution by adding a nucleic acid-binding protein to said oligonucleotide-containing solution in advance.
    Type: Grant
    Filed: June 6, 2018
    Date of Patent: February 7, 2023
    Assignee: TAKARA BIO INC.
    Inventors: Miwa Akitomo, Takashi Uemori
  • Patent number: 11572562
    Abstract: This disclosure relates to oligonucleotides, compositions and methods useful for reducing GYS2 expression, particularly in hepatocytes. Disclosed oligonucleotides for the reduction of GYS2 expression may be double-stranded or single-stranded, and may be modified for improved characteristics such as stronger resistance to nucleases and lower immunogenicity. Disclosed oligonucleotides for the reduction of GYS2 expression may also include targeting ligands to target a particular cell or organ, such as the hepatocytes of the liver, and may be used to treat glycogen storage diseases (e.g., GSDIa, GSDIII, GSDIV, GSDVI, and GSDIX) and related conditions.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: February 7, 2023
    Assignee: Dicerna Pharmaceuticals, Inc.
    Inventors: Bob D. Brown, Natalie Pursell, Henryk T. Dudek, Cheng Lai
  • Patent number: 11568960
    Abstract: Systems and methods for scoring and visualizing the effects of variants in biological sequences. Variants may include substitutions, insertions and deletions. The method comprises encoding biological sequences as vector sequences and then operating a neural network in the forward-propagation mode and possibly in the back-propagation mode to compute variant scores. Variant scores are determined by normalizing the gradients. Variant scores may be used to select a subset of variants, which are then used to produce modified vector sequences which are analyzed by the neural network operating in forward-propagation mode, to determine improved variant scores. The variant scores may be visualized using black and white, greyscale or colored elements that are arranged in blocks with dimensions corresponding to different possible symbols and the length of the sequence. These blocks are aligned with the biological sequence, which is illustrated by a symbol sequence arranged in a line.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: January 31, 2023
    Assignee: DEEP GENOMICS INCORPORATED
    Inventors: Andrew Delong, Brendan Frey
  • Patent number: 11566291
    Abstract: The present disclosure provides for and relates to the identification of novel biomarkers for diagnosis and prognosis of prostate cancer or the biochemical reoccurrence of prostate cancer. The biomarkers of the invention show altered methylation levels of certain CpG loci relative to normal prostate tissue, as set forth.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: January 31, 2023
    Assignees: HUDSONALPHA INSTITUTE FOR BIOTECHNOLOGY, THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Richard M. Myers, James D. Brooks, Marie K. Kirby
  • Patent number: 11555221
    Abstract: The object of the invention is to provide a method for easily and objectively detecting mood disorders in a subject by measuring the expression levels of prescribed genes in the peripheral blood of the subject, the reliability of the detection result being high. The invention also provides a method for detecting mood disorders in a subject, the method having a step for measuring the gene expression levels of ribosomal protein genes, CDKN1C, or any combination thereof in the peripheral blood derived from the subject, and detecting whether or not the subject has mood disorders on the basis of the measurement results.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: January 17, 2023
    Inventors: Seiji Nakamura, Yohei Ishizawa, Ryo Matoba, Kenichi Matsubara, Hiroshi Kunugi, Hiroaki Hori
  • Patent number: 11555208
    Abstract: Disclosed are compositions, methods, and kits for modifying DNA within cells as well as compositions and methods for modifying gene expression in a cell. In particular, the invention generally relates to compositions, methods, and kits for DNA editing using single-stranded DNA. Compositions and methods for modifying gene expression using artificial microRNAs (amiRNA) are also contemplated.
    Type: Grant
    Filed: February 7, 2018
    Date of Patent: January 17, 2023
    Assignees: BOARD OF REGENTS OF THE UNIVERSITY OF NEBRASKA, TOKAI UNIERSITY EDUCATIONAL SYSTEM
    Inventors: Channabasavaiah B. Gurumurthy, Hiromi Miura, Masato Ohtsuka
  • Patent number: 11555215
    Abstract: An electrospinning approach is disclosed for generating a dissolvable formulation of a reagent of interest in a nanoscale fiber medium. In one embodiment, the nanoscale fibers can incorporate and stabilize biological agents of interest, such as for storage at room temperature for extended periods. In one implementation, the fibers can be produced in a continuous manner and dissolve rapidly.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: January 17, 2023
    Assignee: GLOBAL LIFE SCIENCES SOLUTIONS OPERATIONS UK LTD
    Inventors: Bing Li, David Roger Moore, William Christopher Alberts, John Richard Nelson
  • Patent number: 11549126
    Abstract: Disclosed are compositions, methods, and kits for modifying DNA within cells as well as compositions and methods for modifying gene expression in a cell. In particular, the invention generally relates to compositions, methods, and kits for DNA editing using single-stranded DNA. Compositions and methods for modifying gene expression using artificial microRNAs (amiRNA) are also contemplated.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: January 10, 2023
    Assignees: BOARD OF REGENTS OF THE UNIVERSITY OF NEBRASKA, TOKAI UNIVERSITY EDUCATIONAL SYSTEM
    Inventors: Channabasavaiah B. Gurumurthy, Hiromi Miura, Masato Ohtsuka
  • Patent number: 11549149
    Abstract: In one aspect, the invention features a combination of oligonucleotides comprising a forward primer oligonucleotide and a blocking oligonucleotide. The forward primer oligonucleotide has a 3? end region, where the 3? end region includes a portion complementary to a mutation positioned in a region within a polynucleotide. The blocking oligonucleotide contains a blocking moiety and has a 5? end region, where the 5? end region includes a portion complementary to a wild-type sequence of the region corresponding to the position of the mutation. In other aspects, the invention provides kits including the combination of primer oligonucleotides and methods of using the oligonucleotides to detect a mutation in a polynucleotide.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: January 10, 2023
    Assignee: The Broad Institute, Inc.
    Inventor: Edward F. Fritsch
  • Patent number: 11545235
    Abstract: In accordance with an embodiment of the invention, a system and method is provided for determining a probability of a progeny having one or more phenotypes Phj each associated with a single gene Qj. A score sip may be assigned to each allele hip at a plurality of genetic loci (i) in a haploid genome profile Hp of a parent (p). A plurality (Nj) of the alleles hkp (k=1, . . . , Nj) associated with the gene Qj may be identified. The scores sip may be mapped or indexed to gene-specific scores ?j,kp associated with gene Qj for the plurality of (Nj) alleles hkp. A probability may be computed for altering the gene product from gene Qj in a progeny of the parent (p) to be a function of the gene-specific scores ?j,kp.
    Type: Grant
    Filed: December 5, 2013
    Date of Patent: January 3, 2023
    Assignee: Ancestry.com DNA, LLC
    Inventors: Lee M. Silver, Adam Cohn, Ari Julian Silver
  • Patent number: 11543402
    Abstract: An impedance measurement system for detecting an analyte in a sample is disclosed. The system includes first, second, and third electrodes, wherein at least a portion of the third electrode is positioned between the first and second electrodes, means for generating an electromagnetic field between the first and second electrodes, means for electrically controlling the third electrode, wherein the third electrode modifies the electromagnetic field, and a processor for detecting a presence of the analyte in the sample, based at least in part on a property of the electromagnetic field.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: January 3, 2023
    Assignee: Analog Devices, Inc.
    Inventors: Thomas G. O'Dwyer, Gaurav Vohra, Xin Zhang, YounJae Kook, Isaac Chase Novet, Venugopal Gopinathan
  • Patent number: 11543411
    Abstract: The present technology generally relates to methods and compositions relevant to the prediction that a subject with and/or after treatment for DCIS will experience a subsequent ipsilateral breast event that is a DCIS recurrence, an invasive breast cancer, both a DCIS recurrence and invasive cancer, or neither. The technology can assist one with how to treat such subjects.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: January 3, 2023
    Assignee: Prelude Corporation
    Inventors: Troy M. Bremer, Steven Paul Linke
  • Patent number: 11542498
    Abstract: Provided herein is a 3-dimensional lattice microarray system for DNA sequence detection and analysis. The system has a plurality of bifunctional polymer linkers, on one end of which are attached nucleic acid probes where each have a sequence complementary to signature nucleotide sequences in pathogens, plants or animals. The other end of the bifunctional polymer linker is attached to a solid support by non-covalent or covalent means. Each of the nucleic acid probes have terminal thymidine bases at the 5? and 3? ends that permit attachment of the probes to the bifunctional polymer linkers. Also provided is a method for fabricating the microarray system by first attaching the bifunctional polymer linkers to the solid support, followed by photochemical coupling of the nucleic probes to the microarray. A customizable microarray kit is provided that contains the solid support, linkers, probes, solvent mixture and instructions to use the kit.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: January 3, 2023
    Assignee: PathogenDx, Inc.
    Inventors: Michael Edward Hogan, Melissa Rose May, Frederick Henry Eggers
  • Patent number: 11542472
    Abstract: Methods for generating cells of the inner ear, e.g., hair cells and supporting cells, from stem cells, e.g., mesenchymal stem cells, are provided, as well as compositions including the inner ear cells. Methods for the therapeutic use of the inner ear cells for the treatment of hearing loss are also described.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: January 3, 2023
    Assignee: Massachusetts Eye & Ear Infirmary
    Inventor: Albert Edge
  • Patent number: 11535842
    Abstract: Methods and systems for security, authentication, tagging, and tracking using nucleic acid (e.g., deoxyribonucleic acid) molecules encoding information. Unique nucleic acid molecules are efficiently produced from pre-fabricated fragments to quickly produce libraries of nucleic acid molecules encoding encrypted or randomized information. Physical objects or artifacts can be tagged with libraries to authenticate the objects, grant access to secured assets or locations, or track the objects or entities. Chemical methods can be applied to verify authenticity, decrypt, or decode information stored in the libraries.
    Type: Grant
    Filed: October 13, 2020
    Date of Patent: December 27, 2022
    Assignee: CATALOG TECHNOLOGIES, INC.
    Inventors: Nathaniel Roquet, Hyunjun Park, Swapnil P. Bhatia, Devin Leake
  • Patent number: 11534082
    Abstract: The disclosure pertains to a system 100 and method for collecting and measuring particles in exhaled air. The system 100 is arranged to allow for examination of the full or substantially the full volume of each exhalation of a subject.
    Type: Grant
    Filed: July 4, 2018
    Date of Patent: December 27, 2022
    Assignee: PEXA AB
    Inventor: Svante Höjer
  • Patent number: 11530449
    Abstract: This document relates to methods and materials for detecting premalignant and malignant neoplasms. For example, methods and materials for determining whether or not a stool sample from a mammal contains nucleic acid markers or polypeptide markers of a neoplasm are provided.
    Type: Grant
    Filed: January 9, 2020
    Date of Patent: December 20, 2022
    Assignee: Mayo Foundation for Medical Education and Research
    Inventors: William R. Taylor, Jonathan J. Harrington, Patrick S. Quint, Hongzhi Zou, Harold R. Bergen, III, David I. Smith, David A. Ahlquist
  • Patent number: 11530387
    Abstract: The present invention provides a method for producing a unilocular adipocyte including inducing differentiation into unilocular adipocytes of mesenchymal cells having differentiation potency into adipocytes by culturing the mesenchymal cells in suspension in a liquid medium composition capable of culturing cells or tissues in suspension, wherein the liquid medium composition contains a polymer compound having an anionic functional group that binds via a divalent metal cation to form a structure capable of suspending cells or tissues, and the method wherein the polymer compound is polysaccharide, preferably polysaccharide containing a glucuronic acid moiety, more preferably deacylated gellan gum, diutan gum or xanthan gum or a salt thereof.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: December 20, 2022
    Assignee: NISSAN CHEMICAL CORPORATION
    Inventor: Tatsuro Kanaki
  • Patent number: 11531023
    Abstract: The present invention relates to a biomarker for diagnosis of overactive bladder (OAB) disease, and a method for screening a drug using the biomarker. The markers described in the present invention can effectively detect or diagnose the onset of OAB by distinguishing them from normal populations. In particular, OAB-specific protein markers released into urine enable simple and rapid OAB diagnosis in a non-invasive manner. In addition, by selecting an agent that changes, particularly normalizes the expression and activity of the markers selected in the present invention, more effective preventative or therapeutic agents of OAB disease can be screened.
    Type: Grant
    Filed: October 24, 2018
    Date of Patent: December 20, 2022
    Assignee: KOREA BASIC SCIENCE INSTITUTE
    Inventors: Gun H. Kim, Edmond C. Park, Seung I. Kim, Sang-Yeop Lee
  • Patent number: 11525162
    Abstract: The invention provides methods for simultaneously amplifying multiple nucleic acid regions of interest in one reaction volume as well as methods for selecting a library of primers for use in such amplification methods. The invention also provides library of primers with desirable characteristics, such as minimal formation of amplified primer dimers or other non-target amplicons.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: December 13, 2022
    Assignee: Natera, Inc.
    Inventors: Matthew Rabinowitz, Matthew Micah Hill, Bernhard Zimmermann, Johan Baner, George Gemelos, Milena Banjevic, Allison Ryan, Styrmir Sigurjonsson, Zachary Demko
  • Patent number: 11519031
    Abstract: Disclosed are methods for determining at least one sequence of interest of a fetus of a pregnant mother. In various embodiments, the method can determine one or more sequences of interest in a test sample that comprises a mixture of fetal cellular DNA and mother-and-fetus cfDNA. In some embodiments, methods are provided for determining whether the fetus has a genetic disease. In some embodiments, methods are provided for determining whether the fetus is homozygous in a disease causing allele when the mother is heterozygous of the same allele. In some embodiments, methods are provided for determining whether the fetus has a copy number variation (CNV) or a non-CNV genetic sequence anomaly.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: December 6, 2022
    Assignee: Illumina, Inc.
    Inventors: AmirAli Hajhossein Talasaz, Gordon M. Cann
  • Patent number: 11519042
    Abstract: The subject matter of the present invention is a method for the diagnosis or prognosis, in vitro, of lung cancer, which includes a step of detecting at least one expression product of at least one HERV nucleic acid sequence, a method for use of said nucleic acid sequences, which have been isolated, as a molecular marker or molecular markers, and a kit including at least one binding partner specific for at least one of the expression products of the HERV nucleic acid sequences.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: December 6, 2022
    Assignee: BIOMERIEUX
    Inventors: Philippe Perot, François Mallet, Cécile Montgiraud, Nathalie Mugnier
  • Patent number: 11519019
    Abstract: The disclosure provides methods for processing nucleic acid populations containing different forms (e.g., RNA and DNA, single-stranded or double-stranded) and/or extents of modification (e.g., cytosine methylation, association with proteins). These methods accommodate multiple forms and/or modifications of nucleic acid in a sample, such that sequence information can be obtained for multiple forms. The methods also preserve the identity of multiple forms or modified states through processing and analysis, such that analysis of sequence can be combined with epigenetic analysis.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: December 6, 2022
    Assignee: Guardant Health, Inc.
    Inventors: Andrew Kennedy, Stefanie Ann Ward Mortimer, Helmy Eltoukhy, AmirAli Talasaz
  • Patent number: 11512356
    Abstract: Described herein are systems and methods for multiplexed analysis of two or more targets in a test sample including a first set of particles including a first set of target-specific reagents and a first optically detectable identifier capable of emitting a first wavelength indicative of a first target, and at least one second set of particles including a second set of target-specific reagents and a second optically detectable identifier capable of emitting a second wavelength indicative of a second target; and at least one optically detectable reporter probe capable of constitutively emitting a third wavelength in response to reaction of the first set of target-specific reagents with the first target in the test sample and/or reaction of the second set of target-specific reagents with the second target in the test sample, wherein the first wavelength, the second wavelength, and the third wavelength are optically discernable from one another.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: November 29, 2022
    Assignee: Tokitae LLC
    Inventors: Samantha A. Byrnes, Kevin Paul Flood Nichols, Bernhard Hans Weigl
  • Patent number: 11512348
    Abstract: Sequencing-by-synthesis (SBS) method is provided that includes providing a detection apparatus that includes an array of magnetically-responsive sensors. Each of the magnetically-responsive sensors is located proximate to a respective designated space to detect a magnetic property therefrom. The detection apparatus also includes a plurality of nucleic acid template strands located within corresponding designated spaces. The method also includes conducting a plurality of SBS events to grow a complementary strand by incorporating nucleotides along each template strand. At least some of the nucleotides are attached to corresponding magnetic particles having respective magnetic properties. Each of the plurality of SBS events includes detecting changes in electrical resistance at the magnetically-responsive sensors caused by the respective magnetic properties of the magnetic particles.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: November 29, 2022
    Assignee: Illumina, Inc.
    Inventors: Jeffrey G. Mandell, Lisa Kwok
  • Patent number: 11513118
    Abstract: Embodiments described herein generally relate to: sensing and/or authentication using luminescence imaging; diagnostic assays, systems, and related methods; temporal thermal sensing and related methods; and/or to emissive species, such as those excitable by white light, and related systems and methods.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: November 29, 2022
    Assignee: C2Sense, Inc.
    Inventors: Timothy Manning Swager, Jason R. Cox, Robert Deans
  • Patent number: 11512307
    Abstract: Provided herein is a 3-dimensional lattice microarray system for DNA sequence detection and analysis. The system has a plurality of bifunctional polymer linkers, on one end of which are attached nucleic acid probes where each have a sequence complementary to signature nucleotide sequences in pathogens, plants or animals. The other end of the bifunctional polymer linker is attached to a solid support by non-covalent or covalent means. Each of the nucleic acid probes have terminal thymidine bases at the 5? and 3? ends that permit attachment of the probes to the bifunctional polymer linkers. Also provided is a customizable microarray kit is provided that contains the solid support, linkers, probes, solvent mixture and instructions to use the kit.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: November 29, 2022
    Assignee: PathogenDX Inc
    Inventors: Michael Edward Hogan, Melissa Rose May, Frederick Henry Eggers
  • Patent number: 11512347
    Abstract: Provided herein are compositions, devices, systems and methods for the generation and use of biomolecule-based information for storage. Further described herein are highly efficient methods for long term data storage with 100% accuracy in the retention of information. Additionally, devices described herein for de novo synthesis of oligonucleic acids encoding information related to the original source information may have a flexible material for oligonucleic acids extension.
    Type: Grant
    Filed: September 21, 2016
    Date of Patent: November 29, 2022
    Assignee: Twist Bioscience Corporation
    Inventor: Bill James Peck
  • Patent number: 11504713
    Abstract: Viral filters include a filter member featuring a first surface and a second surface and having a thickness extending between the first and second surfaces in a first direction, and a plurality of channels formed in the filter member, each of the channels having a channel axis, where during use, a solution carrying a viral load flows in a direction parallel to the first surface, and at least a portion of the viral load enters the membrane through the first surface and propagates in the first direction, and where for at least 50% of the channels in the filter member, the channel axis is oriented at an angle of between 5 degrees and 85 degrees relative to the first direction.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: November 22, 2022
    Assignee: Genzyme Corporation
    Inventors: Tarl Vetter, Kevin Brower
  • Patent number: 11499185
    Abstract: The present disclosure provides compositions, methods and systems for sequencing a template nucleic acid using a polymerase based, nucleic acid binding reaction involving examination of the interaction between a polymerase and template nucleic acid in the presence of one or more unlabeled nucleotides. The methods rely, in part, on identifying a base of a template nucleic acid during nucleic acid synthesis by controlling the sequencing reaction conditions. Template nucleic acid bases may be identified during an examination step followed by an optional incorporation step.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: November 15, 2022
    Assignee: PACIFIC BIOSCIENCES OF CALIFORNIA, INC.
    Inventors: Kandaswamy Vijayan, Eugene Tu, Mark A. Bernard
  • Patent number: 11499193
    Abstract: Disclosed are formulations, including both liquid and lyophilized formulations, comprising a far-red dye probe and a non-linear surfactant or foamban. Also disclosed are related methods for preparing a lyophilized far-red dye probe formulation as well as related kits and diagnostic products.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: November 15, 2022
    Assignee: Gen-Probe Incorporated
    Inventors: Sheila Aubin-Walker, Mehrdad R. Majlessi, Jimmykim Pham, Joshua Bousquet
  • Patent number: 11493445
    Abstract: A system for monitoring reactions with a plurality of receptacle vessels that includes: an incubator; a movable receptacle carrier contained within a temperature-controlled chamber of the incubator; one or more fixed fluorometers configured to measure a fluorescent emission and positioned with respect to the receptacle carrier to measure fluorescent emissions from receptacle vessels carried on the receptacle carrier into an operative position with respect to each fluorometer; one or more fluorescent reference standards mounted on the receptacle carrier; and a controller configured to control operation of the receptacle carrier and the one or more fluorometers to determine if a fluorescent emission intensity of one or more of the fluorescent reference standards deviates from an expected fluorescent emission intensity.
    Type: Grant
    Filed: June 24, 2020
    Date of Patent: November 8, 2022
    Assignee: GEN-PROBE INCORPORATED
    Inventors: Haitao Li, David Opalsky, R. Eric Heinz, Norbert D. Hagen
  • Patent number: 11492660
    Abstract: Disclosed herein include methods and compositions for selectively amplifying and/or extending nucleic acid target molecules in a sample. The methods and compositions can, for example, reduce the amplification and/or extension of undesirable nucleic acid species in the sample, and/or allow selective removal of undesirable nucleic acid species in the sample.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: November 8, 2022
    Assignee: Becton, Dickinson and Company
    Inventor: Eleen Shum
  • Patent number: 11483160
    Abstract: Disclosed examples include accessing impression data collected at a media device by a collector installed with an application, the impression data including a first identifier, a second identifier, and a media identifier, the first identifier to identify at least one of the media device or a user of the media device to a first database proprietor, and the second identifier to identify the at least one of the media device or the user of the media device to a second database proprietor, the collector to obtain the first and second identifiers from a memory of the media device; requesting first demographic information from the first database proprietor based on the first identifier and second demographic information from the second database proprietor based on the second identifier; and storing at least some of the first or second demographic information in association with the media identifier in a data store.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: October 25, 2022
    Assignee: THE NIELSEN COMPANY (US), LLC
    Inventors: John R. Burbank, Madhusudhan Reddy Alla
  • Patent number: RE49304
    Abstract: Provided herein are compositions and methods for identifying or quantitating one or more analytes in sample. The composition can comprise an affinity molecule reversibly conjugated to a label moiety via a double-stranded nucleic acid linker or via an adaptor molecule. The affinity molecule and the label moiety can be linked to different strands of the double-stranded nucleic acid linker. Compositions can be used in any biological assays for detection, identification and/or quantification of target molecules or analytes, including multiplex staining for molecular profiling of individual cells or cellular populations. For example, the compositions can be adapted for use in immunofluorescence, fluorescence in situ hybridization, immunohistochemistry, western blot, and the like.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: November 22, 2022
    Assignee: University of Washington
    Inventors: Xiaohu Gao, Pavel Zrazhevskiy