THERAPEUTIC PACK
A therapeutic pack provides effective therapeutic heating or cooling to an area of a body. The therapeutic pack comprises a fabric bag and a plurality of therapeutic modules within the bag. The bag consists of taffeta or a spandex such that the bag drapes. The therapeutic modules are capable of freely moving within the bag relative to one another. The therapeutic modules may include a material that repeatedly provides a prolonged cooling or heating, such as a phase change material.
Latest Hometown Sports, LLC Patents:
The present application is a continuation of U.S. application Ser. No. 11/610,712, filed on Dec. 14, 2006, which is a continuation-in-part application of U.S. patent application Ser. No. 10/193,778, filed on Jul. 12, 2002, now abandoned and a continuation-in-part application of U.S. patent application Ser. No. 10/389,862, filed on Mar. 14, 2003, now abandoned.
FIELD OF THE INVENTIONThe field relates to therapeutic packs, for example, therapeutic packs, used for cooling or heating an area to be subjected to a therapeutic treatment, such as an injured area of a human body.
BACKGROUND OF THE INVENTIONConventional therapeutic packs may be used to provide a therapeutic treatment to an area of a living body to be subject to a cold or heat treatment. For example, therapeutic packs may be used to treat sports related injuries, by providing a cooling or heating temperature to the injured area.
It is believed that U.S. Pat. No. 4,044,773, which is expressly incorporated herein by reference, refers to a cold therapeutic package, in which water is sealed within an interior of a thin polyurethane bladder. The water is then frozen, resulting in the formation of a thin layer of ice within the bladder. After being exposed to a deforming force, such as a rolling or striking force, the layer of ice is divided into a plurality of small ice particles. These small ice particles may move at least substantially freely relative to one another when the cold therapeutic package is applied to an area to be subjected to a cold treatment, thereby promoting easier application of the cold package to the area. However, the thick materials of conventional cold pack bags do not conform readily to the complex, reentrant curves of the human body, because the bags must prevent leakage of water or other cooling medium.
SUMMARY OF THE INVENTIONIt is an object of the present invention to improve conventional therapeutic packs by providing a pack design that promotes the cooling or heating effects of the therapeutic pack and better conforms to an area to be subjected to a therapeutic treatment.
It is another object of the present invention to provide a therapeutic pack, which is better suited to provide a cooling or heating temperature to an area to be subjected to a therapeutic treatment.
It is another object of the present invention to provide a therapeutic pack, which does not require a substantial initial deforming force for subdividing a cooling medium, such as ice, into a plurality of smaller particles.
To achieve these objects, an exemplary therapeutic pack according to the present invention includes a container, also referred to herein as a bag, having an interior space and a plurality of therapeutic modules situated in the interior space of the container, in which the therapeutic modules move freely, or at least substantially freely, relative to one another without the need for a substantial initial deforming force.
In this manner, it is believed that the various exemplary therapeutic packs of the present invention may better treat an injury of a living body, for example, a sports related injury of a human body. It is also believed that the therapeutic packs of the present invention provide an advantageous solution for treating injuries in large scale treatment centers, such as hospitals.
One advantage of a fabric bag made of a taffeta or a spandex is that the user does not feel the initial shock of cold (i.e., freezer shock) even without using a towel or barrier and the pack prevents freezer burn, even if the bag is applied to bare skin directly after removing the bag from the freezer. Another advantage is that the bag drapes on the body, covering a larger surface area. Yet another advantage of a spandex fabric is that the stretchable material better conforms to the body, even when the bag is full of therapeutic modules. Still another advantage of a lightweight spandex is that the bag not only conforms and remains in place without slipping but also grips the body part holding the bag in place. Also, the fabric does not sweat as plastic surfaces do.
The examples described and the drawings rendered are illustrative and are not to be read as limiting the scope of the invention as it is defined by the appended claims.
Referring now to
The bag 110 may be made of a strong, durable material and should have a suitable thickness, such that the bag 110 conforms to the area to be subjected to a therapeutic treatment. For example, the material of the bag 110 may have a thickness of less than four thousandths of an inch, for example, approximately three and one half thousandths of an inch (i.e., 3½ mil). For example, a highly flexible plastic, a high density plastic film, such as a high density polyethylene, a polyurethane, a fabric such as a nylon taffeta, polyester taffeta, polyester/nylon taffeta and other materials may be used to form bag 110.
It is believed that the use of nylon taffeta in bag 110 is advantageous, since taffeta is less likely to irritate and/or burn the area to be subjected to a therapeutic treatment. It is also believed that taffeta exhibits good conductive properties for conducting the cooling or heating temperature to the area to be subjected to a therapeutic treatment, without causing an ice burn, for example.
Additionally, the bag 110 may include an antimicrobial and/or antifungal agent to prevent infection. For example, this may reduce the chance of introducing an infectious organism, if the area to be subjected to a temperature treatment includes an open cut and/or abrasion on a human body part. In one embodiment, an antifungal and antimicrobial agent permeates a polyester taffeta bag.
Furthermore, the bag 110 may be designed in any shape, such as oval, square, rectangular, etc. For example, the bag 110 may include a substantially rectangular bag dimensioned, for example, about 6½ inches by 9 inches, having a thickness of about 1¼ inches, when filled with therapeutic modules 120 and laid flat.
The bag 110 may permanently enclose the therapeutic modules 120 (i.e., the bag 110 may be a permanently sealed unit) or, as shown in
In one specific embodiment, the bag 110 is a polyester taffeta. In an alternative embodiment, the polyester taffeta is lined with a high density polyethylene thin film or some other water impermeable lining. Unlike stiffer materials, polyester taffeta drapes, as that term is used in the fashion industry, meaning that the material easily conforms to the human form under its weight.
The interior space 115 of the bag 110 between the therapeutic modules 120 may remain devoid of any material, or may include, for example, a filling medium 130, as shown in
It should be noted that the interior space 115 of the bag 110 between the temperature modules 120 may be completely filled with the filling medium 130 or, alternatively, may only be partially filled with the filling medium 130. In this manner, the bag 110 may permit the filling medium 130 to expand within the bag 110 while freezing or heating, without rupturing the bag 110. Alternatively, each shell 205, as shown in
The therapeutic modules 120 may be dimensioned, for example, to be approximately equal in volume or to be two or more different volumes to more densely fill the bag. In one preferred embodiment, each module 120 has a volume less than 0.4 cubic inches. Thus, the therapeutic pack 100 conforms to contours of the area to be subjected to a therapeutic treatment, more effectively promoting uniform application of heating or cooling, for example, as well as reducing the likelihood that the therapeutic pack 100 will slip off the area to be subjected to the therapeutic treatment. Further, since the individual therapeutic modules 120 may be small relative to the bag 110 and move substantially freely to one another, at least some of the therapeutic modules 120 may come to rest in an area of the therapeutic pack 100 adjacent to at least a portion of the area to be subjected to the temperature treatment. In this manner, more of the therapeutic modules 120 may individually contact the portion of a body needing treatment, thereby promoting a more effective treatment.
It should be noted that, although
The module shell 205 may be of any material operable to contain the therapeutic medium 210, for example, a rigid plastic, a flexible plastic, a sponge-like material, a composite material, an elastomeric material, a non-organic material, an organic material, or a synthetic material may be used. A shell of polyethylene or polypropylene is preferred for encapsulating phase change materials. Polypropylene is preferred for phase change materials having a phase transition of greater than 20° C.
The therapeutic medium 210 may include any material operable to provide a therapeutic treatment to the body such as heat or cold therapy. For example, the therapeutic medium 210 may include a liquid, a solid, and/or a gelatinous material. For example, the therapeutic medium 210 may be a phase change material, such as water, which provides therapeutic cooling to an area of the body during melting from its frozen state to its liquid state. The therapeutic pack 100 may provide repeated therapeutic treatment by refreezing the liquid water, for example, in a freezer compartment. Water is a convenient phase change material, because it undergoes a phase change at 0° C., a temperature easily achieved in an ordinary freezer compartment.
Also, water has a large heat of fusion, which provides prolonged cooling of the area of the body undergoing treatment, and water is non-toxic. Thus, water is safe and effective. Other phase change materials are known that are also safe and effective. For example, PCM are available having a range of phase transition temperatures from −31° C. to 90° C., such as the materials offered by TEAP Energy and other firms.
In addition to or in lieu of a liquid, the temperature medium 210 may include, for example, a chemical cooling or heating agent operable to provide the cooling or heating temperature via a chemical reaction, without the need for being externally cooled or heated.
It should be noted that the interior space 215 of the shell 205 may be completely filled with the temperature medium 210 or, alternatively, only be partially filled with the temperature medium 210. Partially filling the shell 205 with the temperature medium 210 may permit the temperature medium 210, for example, liquid water, to expand within the module container 205 while freezing or heating, without rupturing the shell 205.
It should also be noted that, although
Referring now to
Further, it is believed that the ability of the therapeutic pack 100 to conform to the area treated 305, helps the therapeutic pack 100 to stay on any area to be treated, for example, the injured portion of the human body. In addition, a bag 110 of a material that drapes under the weight of the therapeutic pack 100 itself allows the therapeutic medium to come to rest adjacent to the entire surface to be treated, including reentrant curvature on the surface, depending on the size and shape of each of the plurality of therapeutic modules 120.
In still another example, a spandex material is used. For example, Lycra,® is a brand name of stretchable fibers used in spandex fabrics in which the fiber-forming substance is a long chain synthetic polymer comprised of at least 85 percent of a segmented polyurethane.1 For example, the spandex material may be a blend, such as a 82% nylon and 18% spandex tricot material. The blend of nylon spandex tricot allows lengthwise and crosswise stretch in the bag. In addition, the blend allows the bag to conform readily to the complex curves of the human body. The blend also allows the bag to absorb less water than a bag having material made of cotton. Yet another feature of such a bag is that it is very resistant to runs. 1 Lycra® is a registered trademark of Invista.
In one preferred embodiment, an 82% nylon and 18% spandex tricot fabric is selected having a fabric density of about 200 grams per square meter (200 g/m2). This preferred embodiment provides excellent reusability of the therapeutic bag through a multitude of freeze/thaw cycles, while allowing the material to breath and to drape over an area of the body. Furthermore, the feel of the material on the skin when applied immediately after removal from a freezer is comfortable, avoiding a sensation of freezer shock.
In one embodiment, the module shell is a low density polyethylene.
Alternative combinations and variations of the examples provided will become apparent based on this disclosure. It is not possible to provide specific examples for all of the many possible combinations and variations of the embodiments described, but such combinations and variations may be claims that eventually issue.
Claims
1. A therapeutic pack for providing therapeutic treatment to an area of a body comprising:
- a fabric bag consisting of a fabric, such that the bag drapes; and
- a plurality of therapeutic modules; wherein the therapeutic modules comprise a phase change material encapsulated by a module shell of a polyethylene or polypropylene, each of the plurality of therapeutic modules being enclosed within the bag, the therapeutic modules moving freely within the bag such that at least a plurality of the therapeutic modules directly contact the fabric of the bag as the bag drapes on the area of the body.
2. The therapeutic pack according to claim 1, wherein the bag is made of a nylon taffeta, a polyester taffeta, or a polyester nylon taffeta.
3. The therapeutic pack according to claim 2, wherein the bag consists of a nylon taffeta.
4. The therapeutic pack according to claim 1, wherein the bag consists of a spandex.
5. The therapeutic pack according to claim 4, wherein the bag consists of a spandex tricot.
6. The therapeutic pack according to claim 5, wherein the spandex tricot is a blend of 82% nylon and 18% spandex tricot.
7. The therapeutic pack according to claim 6, wherein a density of about 200 grams/square meter for the blend is selected.
8. The therapeutic pack according to claim 1, wherein the phase change material undergoes a phase transition at a temperature less than 20° C.
9. The therapeutic pack according to claim 1, wherein the phase change material undergoes a phase transition at a temperature greater than 20° C.
10. The therapeutic pack according to claim 9, wherein the plurality of therapeutic modules are microwaveable.
11. The therapeutic pack according to claim 1, wherein the plurality of therapeutic modules are less than one-half inch in diameter.
12. The therapeutic pack according to claim 1, wherein the bag includes a resealable opening, whereby access to the therapeutic modules is provided.
13. The therapeutic pack according to claim 1, wherein the module shell is of a polyethylene.
14. The therapeutic pack according to claim 13, wherein the module shell is of a low density polyethylene.
15. The therapeutic pack according to claim 1, wherein the module shell has an outer diameter of between about 11/32 inches and 13/32 inches.
16. The therapeutic pack according to claim 1, further comprising an antifungal agent or an anti-microbial agent incorporated in the fabric of the bag, the module shell, or both thereof.
17. A therapeutic pack for providing therapeutic treatment to an area of a body comprising:
- a fabric bag consisting of a fabric, such that the bag drapes; and
- a plurality of therapeutic modules; wherein the therapeutic modules comprise a phase change material encapsulated by a module shell of a polyethylene or polypropylene, each of the plurality of therapeutic modules being enclosed within the bag, the therapeutic modules moving freely within the bag such that at least a plurality of the therapeutic modules directly contact the fabric of the bag as the bag drapes on the area of the body, wherein the anti-microbial agent is incorporated in the module shell.
Type: Application
Filed: Jul 25, 2011
Publication Date: Nov 17, 2011
Applicant: Hometown Sports, LLC (Montclair, NJ)
Inventors: Kristen L. von Hoffmann (Montclair, NJ), Eric W. von Hoffmann (Montclair, NJ), Diana von Hoffmann (Montclair, NJ)
Application Number: 13/189,667
International Classification: A61F 7/00 (20060101);