CROSS-REFERENCES TO RELATED APPLICATIONS This application is a continuation of application Ser. No. 11/779,759, filed Jul. 18, 2007, which is a continuation-in-part of application Ser. No. 10/579,029, filed Nov. 19, 2008, which is the National Stage of International Application No. PCT/US2006/002591, filed Jan. 25, 2006, which claims the benefit of Provisional Application No. 60/647,178, filed Jan. 25, 2005, all of which are incorporated herein by reference in their entirety.
STATEMENT REGARDING SEQUENCE LISTING The sequence listing associated with this application is provided in text format in lieu of a paper copy and is hereby incorporated by reference into the specification. The name of the text file containing the sequence listing is 37790_Sequence_Final.txt. The text file is 250 KB; was created on Sep. 20, 2011; and is being submitted via EFS-Web with the filing of the specification.
FIELD OF THE INVENTION The present invention relates to methods of amplifying and quantitating small RNA molecules.
BACKGROUND OF THE INVENTION RNA interference (RNAi) is an evolutionarily conserved process that functions to inhibit gene expression (Bernstein et al. (2001), Nature 409:363-6; Dykxhoorn et al. (2003) Nat. Rev. Mol. Cell. Biol. 4:457-67). The phenomenon of RNAi was first described in Caenorhabditis elegans, where injection of double-stranded RNA (dsRNA) led to efficient sequence-specific gene silencing of the mRNA that was complementary to the dsRNA (Fire et al. (1998) Nature 391:806-11). RNAi has also been described in plants as a phenomenon called post-transcriptional gene silencing (PTGS), which is likely used as a viral defense mechanism (Jorgensen (1990) Trends Biotechnol. 8:340-4; Brigneti et al. (1998) EMBO J. 17:6739-46; Hamilton & Baulcombe (1999) Science 286:950-2).
An early indication that the molecules that regulate PTGS were short RNAs processed from longer dsRNA was the identification of short 21 to 22 nucleotide dsRNA derived from the longer dsRNA in plants (Hamilton & Baulcombe (1999) Science 286:950-2). This observation was repeated in Drosophila embryo extracts where long dsRNA was found processed into 21-25 nucleotide short RNA by the RNase III type enzyme, Dicer (Elbashir et al. (2001) Nature 411:494-8; Elbashir et al. (2001) EMBO J. 20:6877-88; Elbashir et al. (2001) Genes Dev. 15:188-200). These observations led Elbashir et al. to test if synthetic 21-25 nucleotide synthetic dsRNAs function to specifically inhibit gene expression in Drosophila embryo lysates and mammalian cell culture (Elbashir et al. (2001) Nature 411:494-8; Elbashir et al. (2001) EMBO J. 20:6877-88; Elbashir et al. (2001) Genes Dev. 15:188-200). They demonstrated that small interfering RNAs (siRNAs) had the ability to specifically inhibit gene expression in mammalian cell culture without induction of the interferon response.
These observations led to the development of techniques for the reduction, or elimination, of expression of specific genes in mammalian cell culture, such as plasmid-based systems that generate hairpin siRNAs (Brummelkamp et al. (2002) Science 296:550-3; Paddison et al. (2002) Genes Dev. 16:948-58; Paddison et al. (2002) Proc. Natl. Acad. Sci. U.S.A. 99:1443-8; Paul et al. 2002) Nat. Biotechnol. 20:404-8). siRNA molecules can also be introduced into cells, in vivo, to inhibit the expression of specific proteins (see, e.g., Soutschek, J., et al., Nature 432 (7014):173-178 (2004)).
siRNA molecules have promise both as therapeutic agents for inhibiting the expression of specific proteins, and as targets for drugs that affect the activity of siRNA molecules that function to regulate the expression of proteins involved in a disease state. A first step in developing such therapeutic agents is to measure the amounts of specific siRNA molecules in different cell types within an organism, and thereby construct an “atlas” of siRNA expression within the body. Additionally, it will be useful to measure changes in the amount of specific siRNA molecules in specific cell types in response to a defined stimulus, or in a disease state.
Short RNA molecules are difficult to quantitate. For example, with respect to the use of PCR to amplify and measure the small RNA molecules, most PCR primers are longer than the small RNA molecules, and so it is difficult to design a primer that has significant overlap with a small RNA molecule, and that selectively hybridizes to the small RNA molecule at the temperatures used for primer extension and PCR amplification reactions.
SUMMARY OF THE INVENTION In one aspect, the present invention provides methods for amplifying a microRNA molecule to produce cDNA molecules. The methods include the steps of: (a) producing a first DNA molecule that is complementary to a target microRNA molecule using primer extension; and (b) amplifying the first DNA molecule to produce amplified DNA molecules using a universal forward primer and a reverse primer. In some embodiments of the method, at least one of the forward primer and the reverse primer comprise at least one locked nucleic acid molecule. It will be understood that, in the practice of the present invention, typically numerous (e.g., millions) of individual microRNA molecules are amplified in a sample (e.g., a solution of RNA molecules isolated from living cells).
In another aspect, the present invention provides methods for measuring the amount of a target microRNA in a sample from a living organism. The methods of this aspect of the invention include the step of measuring the amount of a target microRNA molecule in a multiplicity of different cell types within a living organism, wherein the amount of the target microRNA molecule is measured by a method including the steps of: (1) producing a first DNA molecule complementary to the target microRNA molecule in the sample using primer extension; (2) amplifying the first DNA molecule to produce amplified DNA molecules using a universal forward primer and a reverse primer; and (3) measuring the amount of the amplified DNA molecules. In some embodiments of the method, at least one of the forward primer and the reverse primer comprise at least one locked nucleic acid molecule.
In another aspect, the invention provides nucleic acid primer molecules consisting of sequence SEQ ID NO:1 to SEQ ID NO: 499, as shown in TABLE 1, TABLE 2, TABLE 6, and TABLE 7. The primer molecules of the invention can be used as primers for detecting mammalian microRNA target molecules, using the methods of the invention described herein.
In another aspect, the present invention provides kits for detecting at least one mammalian target microRNA, the kits comprising one or more primer sets specific for the detection of a target microRNA, each primer set comprising (1) an extension primer for producing a cDNA molecule complementary to a target microRNA, (2) a universal forward PCR primer for amplifying the cDNA molecule and (3) a reverse PCR primer for amplifying the cDNA molecule. The extension primer comprises a first portion that hybridizes to the target microRNA molecule and a second portion that includes a hybridization sequence for a universal forward PCR primer. The reverse PCR primer comprises a sequence selected to hybridize to a portion of the cDNA molecule. In some embodiments of the kit, at least one of the universal forward and reverse primers include at least one locked nucleic acid molecule. The kits of the invention may be used to practice various embodiments of the methods of the invention.
The present invention is useful, for example, for quantitating specific microRNA molecules within different types of cells in a living organism, or, for example, for measuring changes in the amount of specific microRNAs in living cells in response to a stimulus (e.g., in response to administration of a drug).
BRIEF DESCRIPTION OF THE DRAWINGS The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
FIG. 1 shows a flow chart of a representative method of the present invention;
FIG. 2 graphically illustrates the standard curves for assays specific for the detection of microRNA targets miR-95 and miR-424 as described in EXAMPLE 3;
FIG. 3A is a histogram plot showing the expression profile of miR-1 across a panel of total RNA isolated from twelve tissues as described in EXAMPLE 5;
FIG. 3B is a histogram plot showing the expression profile of miR-124 across a panel of total RNA isolated from twelve tissues as described in EXAMPLE 5; and
FIG. 3C is a histogram plot showing the expression profile of miR-150 across a panel of total RNA isolated from twelve tissues as described in EXAMPLE 5.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT In accordance with the foregoing, in one aspect, the present invention provides methods for amplifying a microRNA molecule to produce cDNA molecules. The methods include the steps of: (a) using primer extension to make a DNA molecule that is complementary to a target microRNA molecule; and (b) using a universal forward primer and a reverse primer to amplify the DNA molecule to produce amplified DNA molecules. In some embodiments of the method, at least one of the universal forward primer and the reverse primer comprises at least one locked nucleic acid molecule.
As used herein, the term “locked nucleic acid molecule” (abbreviated as LNA molecule) refers to a nucleic acid molecule that includes a 2′-0,4′-C-methylene-β-D-ribofuranosyl moiety. Exemplary 2′-0,4′-C-methylene-β-D-ribofuranosyl moieties, and exemplary LNAs including such moieties, are described, for example, in Petersen, M., and Wengel, J., Trends in Biotechnology 21(2):74-81 (2003) which publication is incorporated herein by reference in its entirety.
As used herein, the term “microRNA” refers to an RNA molecule that has a length in the range of from 21 nucleotides to 25 nucleotides. Some microRNA molecules (e.g., siRNA molecules) function in living cells to regulate gene expression.
Representative Method of the Invention. FIG. 1 shows a flowchart of a representative method of the present invention. In the method represented in FIG. 1, a microRNA is the template for synthesis of a complementary first DNA molecule. The synthesis of the first DNA molecule is primed by an extension primer, and so the first DNA molecule includes the extension primer and newly synthesized DNA (represented by a dotted line in FIG. 1). The synthesis of DNA is catalyzed by reverse transcriptase.
The extension primer includes a first portion (abbreviated as FP in FIG. 1) and a second portion (abbreviated as SP in FIG. 1). The first portion hybridizes to the microRNA target template, and the second portion includes a nucleic acid sequence that hybridizes with a universal forward primer, as described infra.
A quantitative polymerase chain reaction is used to make a second DNA molecule that is complementary to the first DNA molecule. The synthesis of the second DNA molecule is primed by the reverse primer that has a sequence that is selected to specifically hybridize to a portion of the target first DNA molecule. Thus, the reverse primer does not hybridize to nucleic acid molecules other than the first DNA molecule. The reverse primer may optionally include at least one LNA molecule located within the portion of the reverse primer that does not overlap with the extension primer. In FIG. 1, the LNA molecules are represented by shaded ovals.
A universal forward primer hybridizes to the 3′ end of the second DNA molecule and primes synthesis of a third DNA molecule. It will be understood that, although a single microRNA molecule, single first DNA molecule, single second DNA molecule, single third DNA molecule and single extension, forward and reverse primers are shown in FIG. 1, typically the practice of the present invention uses reaction mixtures that include numerous copies (e.g., millions of copies) of each of the foregoing nucleic acid molecules.
The steps of the methods of the present invention are now considered in more detail.
Preparation of microRNA Molecules Useful as Templates. microRNA molecules useful as templates in the methods of the invention can be isolated from any organism (e.g., eukaryote, such as a mammal) or part thereof, including organs, tissues, and/or individual cells (including cultured cells). Any suitable RNA preparation that includes microRNAs can be used, such as total cellular RNA.
RNA may be isolated from cells by procedures that involve lysis of the cells and denaturation of the proteins contained therein. Cells of interest include wild-type cells, drug-exposed wild-type cells, modified cells, and drug-exposed modified cells.
Additional steps may be employed to remove some or all of the DNA. Cell lysis may be accomplished with a nonionic detergent, followed by microcentrifugation to remove the nuclei and hence the bulk of the cellular DNA. In one embodiment, RNA is extracted from cells of the various types of interest using guanidinium thiocyanate lysis followed by CsCl centrifugation to separate the RNA from DNA (see, Chirgwin et al., 1979, Biochemistry 18:5294-5299). Separation of RNA from DNA can also be accomplished by organic extraction, for example, with hot phenol or phenol/chloroform/isoamyl alcohol.
If desired, RNase inhibitors may be added to the lysis buffer. Likewise, for certain cell types, it may be desirable to add a protein denaturation/digestion step to the protocol.
The sample of RNA can comprise a multiplicity of different microRNA molecules, each different microRNA molecule having a different nucleotide sequence. In a specific embodiment, the microRNA molecules in the RNA sample comprise at least 100 different nucleotide sequences. In other embodiments, the microRNA molecules of the RNA sample comprise at least 500, 1,000, 5,000, 10,000, 20,000, 30,000, 40,000, 50,000, 60,000, 70,000, 80,000 90,000, or 100,000 different nucleotide sequences.
The methods of the invention may be used to detect the presence of any microRNA. For example, the methods of the invention can be used to detect one or more of the microRNA targets described in a database such as “the miRBase sequence database” as described in Griffith-Jones et al. (2004), Nucleic Acids Research 32:D109-D111, and Griffith-Jones et al. (2006), Nucleic Acids Research 34:D140-D144, which is publicly accessible on the World Wide Web at the Wellcome Trust Sanger Institute website at http://microrna.sanger.ac.uk/sequences/. A list of exemplary microRNA targets is also described in the following references: Lagos-Quintana et al., Curr. Biol. 12(9):735-9 (2002).
Synthesis of DNA Molecules Using microRNA Molecules As Templates. In the practice of the methods of the invention, first DNA molecules are synthesized that are complementary to the microRNA target molecules, and that are composed of an extension primer and newly synthesized DNA (wherein the extension primer primes the synthesis of the newly synthesized DNA). Individual first DNA molecules can be complementary to a whole microRNA target molecule, or to a portion thereof; although typically an individual first DNA molecule is complementary to a whole microRNA target molecule. Thus, in the practice of the methods of the invention, a population of first DNA molecules is synthesized that includes individual DNA molecules that are each complementary to all, or to a portion, of a target microRNA molecule.
The synthesis of the first DNA molecules is catalyzed by reverse transcriptase. Any reverse transcriptase molecule can be used to synthesize the first DNA molecules, such as those derived from Moloney murine leukemia virus (MMLV-RT), avian myeloblastosis virus (AMV-RT), bovine leukemia virus (BLV-RT), Rous sarcoma virus (RSV) and human immunodeficiency virus (HIV-RT). A reverse transcriptase lacking RNaseH activity (e.g., SUPERSCRIPT III™ sold by Invitrogen, 1600 Faraday Avenue, P.O. Box 6482, Carlsbad, Calif. 92008) is preferred in order to minimize the amount of double-stranded cDNA synthesized at this stage. The reverse transcriptase molecule should also preferably be thermostable so that the DNA synthesis reaction can be conducted at as high a temperature as possible, while still permitting hybridization of primer to the microRNA target molecules.
Priming the Synthesis of the First DNA Molecules. The synthesis of the first DNA molecules is primed using an extension primer. Typically, the length of the extension primer is in the range of from 10 nucleotides to 100 nucleotides, such as 20 to 35 nucleotides. The nucleic acid sequence of the extension primer is incorporated into the sequence of each, synthesized, DNA molecule. The extension primer includes a first portion that hybridizes to a portion of the microRNA molecule. Typically the first portion of the extension primer includes the 3′-end of the extension primer. The first portion of the extension primer typically has a length in the range of from 6 nucleotides to 20 nucleotides, such as from 10 nucleotides to 12 nucleotides. In some embodiments, the first portion of the extension primer has a length in the range of from 3 nucleotides to 25 nucleotides.
The extension primer also includes a second portion that typically has a length of from 18 to 25 nucleotides. For example, the second portion of the extension primer can be 20 nucleotides long. The second portion of the extension primer is located 5′ to the first portion of the extension primer. The second portion of the extension primer includes at least a portion of the hybridization site for the universal forward primer. For example, the second portion of the extension primer can include all of the hybridization site for the universal forward primer, or, for example, can include as little as a single nucleotide of the hybridization site for the universal forward primer (the remaining portion of the hybridization site for the forward primer can, for example, be located in the first portion of the extension primer). An exemplary nucleic acid sequence of a second portion of an extension primer is 5′ CATGATCAGCTGGGCCAAGA 3′ (SEQ ID NO:1).
Amplification of the DNA Molecules. In the practice of the methods of the invention, the first DNA molecules are enzymatically amplified using the polymerase chain reaction. A universal forward primer and a reverse primer are used to prime the polymerase chain reaction. The reverse primer includes a nucleic acid sequence that is selected to specifically hybridize to a portion of a first DNA molecule.
The reverse primer typically has a length in the range of from 10 nucleotides to 100 nucleotides. In some embodiments, the reverse primer has a length in the range of from 12 nucleotides to 20 nucleotides. The nucleotide sequence of the reverse primer is selected to hybridize to a specific target nucleotide sequence under defined hybridization conditions. The reverse primer and extension primer are both present in the PCR reaction mixture, and so the reverse primer should be sufficiently long so that the melting temperature (Tm) is at least 50° C., but should not be so long that there is extensive overlap with the extension primer which may cause the formation of “primer dimers.” “Primer dimers” are formed when the reverse primer hybridizes to the extension primer, and uses the extension primer as a substrate for DNA synthesis, and the extension primer hybridizes to the reverse primer, and uses the reverse primer as a substrate for DNA synthesis. To avoid the formation of “primer dimers,” typically the reverse primer and the extension primer are designed so that they do not overlap with each other by more than 6 nucleotides. If it is not possible to make a reverse primer having a Tm of at least 50° C., and wherein the reverse primer and the extension primer do not overlap by more than 6 nucleotides, then it is preferable to lengthen the reverse primer (since Tm usually increases with increasing oligonucleotide length) and decrease the length of the extension primer.
The reverse primer primes the synthesis of a second DNA molecule that is complementary to the first DNA molecule. The universal forward primer hybridizes to the portion of the second DNA molecule that is complementary to the second portion of the extension primer which is incorporated into all of the first DNA molecules. The universal forward primer primes the synthesis of third DNA molecules. The universal forward primer typically has a length in the range of from 16 nucleotides to 100 nucleotides. In some embodiments, the universal forward primer has a length in the range of from 16 nucleotides to 30 nucleotides. The universal forward primer may include at least one locked nucleic acid molecule. In some embodiments, the universal forward primer includes from 1 to 25 locked nucleic acid molecules. The nucleic acid sequence of an exemplary universal forward primer is set forth in SEQ ID NO:13.
In general, the greater the number of amplification cycles during the polymerase chain reaction, the greater the amount of amplified DNA that is obtained. On the other hand, too many amplification cycles (e.g., more than 35 amplification cycles) may result in spurious and unintended amplification of non-target double-stranded DNA. Thus, in some embodiments, a desirable number of amplification cycles is between one and 45 amplification cycles, such as from one to 25 amplification cycles, or such as from five to 15 amplification cycles, or such as ten amplification cycles.
Use of LNA Molecules and Selection of Primer Hybridization Conditions. Hybridization conditions are selected that promote the specific hybridization of a primer molecule to the complementary sequence on a substrate molecule. With respect to the hybridization of a 12 nucleotide first portion of an extension primer to a microRNA, it has been found that specific hybridization occurs at a temperature of 50° C. Similarly, it has been found that hybridization of a 20 nucleotide universal forward primer to a complementary DNA molecule, and hybridization of a reverse primer (having a length in the range of from 12-20 nucleotides, such as from 14-16 nucleotides) to a complementary DNA molecule occurs at a temperature of 50° C. By way of example, it is often desirable to design extension, reverse and universal forward primers that each have a hybridization temperature in the range of from 50° C. to 60° C.
In some embodiments, LNA molecules can be incorporated into at least one of the extension primer, reverse primer, and universal forward primer to raise the Tm of one, or more, of the foregoing primers to at least 50° C. Incorporation of an LNA molecule into the portion of the reverse primer that hybridizes to the target first DNA molecule, but not to the extension primer, may be useful because this portion of the reverse primer is typically no more than 10 nucleotides in length. For example, the portion of the reverse primer that hybridizes to the target first DNA molecule, but not to the extension primer, may include at least one locked nucleic acid molecule (e.g., from 1 to 25 locked nucleic acid molecules). In some embodiments, two or three locked nucleic acid molecules are included within the first 8 nucleotides from the 5′ end of the reverse primer.
The number of LNA residues that must be incorporated into a specific primer to raise the Tm to a desired temperature mainly depends on the length of the primer and the nucleotide composition of the primer. A tool for determining the effect on Tm of one or more LNAs in a primer is available on the Internet Web site of Exiqon, Bygstubben 9, DK-2950 Vedbaek, Denmark.
Although one or more LNAs can be included in any of the primers used in the practice of the present invention, it has been found that the efficiency of synthesis of cDNA is low if an LNA is incorporated into the extension primer. While not wishing to be bound by theory, LNAs may inhibit the activity of reverse transcriptase.
Detecting and Measuring the Amount of the Amplified DNA Molecules. The amplified DNA molecules can be detected and quantitated by the presence of detectable marker molecules, such as fluorescent molecules. For example, the amplified DNA molecules can be detected and quantitated by the presence of a dye (e.g., SYBR green) that preferentially or exclusively binds to double stranded DNA during the PCR amplification step of the methods of the present invention. For example, Molecular Probes, Inc. (29851 Willow Creek Road, Eugene, Oreg. 97402) sells quantitative PCR reaction mixtures that include SYBR green dye. By way of further example, another dye (referred to as “BEBO”) that can be used to label double stranded DNA produced during real-time PCR is described by Bengtsson, M., et al., Nucleic Acids Research 3/(8):e45 (Apr. 15, 2003), which publication is incorporated herein by reference. Again by way of example, a forward and/or reverse primer that includes a fluorophore and quencher can be used to prime the PCR amplification step of the methods of the present invention. The physical separation of the fluorophore and quencher that occurs after extension of the labeled primer during PCR permits the fluorophore to fluoresce, and the fluorescence can be used to measure the amount of the PCR amplification products. Examples of commercially available primers that include a fluorophore and quencher include Scorpion primers and Uniprimers, which are both sold by Molecular Probes, Inc.
Representative Uses of the Present Invention. The present invention is useful for producing cDNA molecules from microRNA target molecules. The amount of the DNA molecules can be measured which provides a measurement of the amount of target microRNA molecules in the starting material. For example, the methods of the present invention can be used to measure the amount of specific microRNA molecules (e.g., specific siRNA molecules) in living cells. Again by way of example, the present invention can be used to measure the amount of specific microRNA molecules (e.g., specific siRNA molecules) in different cell types in a living body, thereby producing an “atlas” of the distribution of specific microRNA molecules within the body. Again by way of example, the present invention can be used to measure changes in the amount of specific microRNA molecules (e.g., specific siRNA molecules) in response to a stimulus, such as in response to treatment of a population of living cells with a drug.
Thus, in another aspect, the present invention provides methods for measuring the amount of a target microRNA in a multiplicity of different cell types within a living organism (e.g., to make a microRNA “atlas” of the organism). The methods of this aspect of the invention each include the step of measuring the amount of a target microRNA molecule in a multiplicity of different cell types within a living organism, wherein the amount of the target microRNA molecule is measured by a method comprising the steps of: (1) using primer extension to make a DNA molecule complementary to the target microRNA molecule isolated from a cell type of a living organism; (2) using a universal forward primer and a reverse primer to amplify the DNA molecule to produce amplified DNA molecules, and (3) measuring the amount of the amplified DNA molecules. In some embodiments of the methods, at least one of the forward primer and the reverse primer comprises at least one locked nucleic acid molecule. The measured amounts of amplified DNA molecules can, for example, be stored in an interrogatable database in electronic form, such as on a computer-readable medium (e.g., a floppy disc).
In some embodiments, the methods may be used to discriminate between two or more mammalian target microRNA that have a similar sequence in a sample from a living organism, the method comprising the steps of: (a) producing a first DNA molecule that is complementary to the first microRNA molecule using a first extension primer specific to the first microRNA molecule; (b) amplifying the first DNA molecule to produce a first population of amplified DNA molecules using a universal forward primer and a first reverse primer; (c) producing a second DNA molecule that is complementary to the second microRNA molecule using a second extension primer specific to the second microRNA molecule; (d) amplifying the second DNA molecule to produce a second population of amplified DNA molecules using a universal forward primer and a second reverse primer; (e) measuring the amount of the first and second population of amplified DNA molecules, wherein the first and second extension primers or the first and second reverse primers differ by one or more nucleotides in the portion that is complementary to the target microRNA. This method may be used to discriminate between microRNA targets that differ by one, two, three or more nucleotides, by designing the gene-specific region of the first and second extension primers to hybridize to the region of the microRNA targets that are not identical.
In another aspect, the invention provides nucleic acid primer molecules consisting of sequence SEQ ID NO:1 to SEQ ID NO: 499, as shown in TABLE 1, TABLE 2, TABLE 6, and TABLE 7. The primer molecules of the invention can be used as primers for detecting mammalian microRNA target molecules, using the methods of the invention described herein.
In another aspect, the invention provides sets of nucleic acid primers consisting of SEQ ID NO:500 to SEQ ID NO: 965, as shown in TABLE 8. The sets of primer molecules of the invention can be used for the detection of microRNA target molecules from human, mouse, and rat, using the methods of the invention described herein.
In another aspect, the present invention provides kits for detecting at least one mammalian target microRNA, the kits comprising one or more primer sets specific for the detection of a target microRNA, each primer set comprising (1) an extension primer for producing a cDNA molecule complementary to a target microRNA, (2) a universal forward PCR primer, and (3) a reverse PCR primer for amplifying the cDNA molecule. The extension primer comprises a first portion that hybridizes to the target microRNA molecule and a second portion that includes a hybridization sequence for a universal forward PCR primer. The reverse PCR primer comprises a sequence selected to hybridize to a portion of the cDNA molecule. In some embodiments of the kits, at least one of the universal forward and reverse primers includes at least one locked nucleic acid molecule.
The extension primer, universal forward and reverse primers for inclusion in the kit may be designed to detect any mammalian target microRNA in accordance with the methods described herein. Nonlimiting examples of human target microRNA target molecules and exemplary target-specific extension primers and reverse primers are listed below in TABLE 1, TABLE 2, and TABLE 6. Nonlimiting examples of murine target microRNA target molecules and exemplary target-specific extension primers and reverse primers are listed below in TABLE 7. A nonlimiting example of a universal forward primer is set forth as SEQ ID NO: 13.
In certain embodiments, the kit includes a set of primers comprising an extension primer, reverse and universal forward primers for a selected target microRNA molecule that each have a hybridization temperature in the range of from 50° C. to 60° C.
In certain embodiments, the kit includes a plurality of primer sets that may be used to detect a plurality of mammalian microRNA targets, such as two microRNA targets up to several hundred microRNA targets.
In certain embodiments, the kit comprises one or more primer sets capable of detecting at least one or more of the following human microRNA target templates: of miR-1, miR-7, miR-9*, miR-10a, miR-10b, miR-15a, miR-15b, miR-16, miR-17-3p, miR-17-5p, miR-18, miR-19a, miR-19b, miR-20, miR-21, miR-22, miR-23a, miR-23b, miR-24, miR-25, miR-26a, miR-26b, miR-27a, miR-28, miR-29a, miR-29b, miR-29c, miR-30a-5p, miR-30b, miR-30c, miR-30d, miR-30e-5p, miR-30e-3p, miR-31, miR-32, miR-33, miR-34a, miR-34b, miR-34c, miR-92, miR-93, miR-95, miR-96, miR-98, miR-99a, miR-99b, miR-100, miR-101, miR-103, miR-105, miR-106a, miR-107, miR-122, miR-122a, miR-124, miR-124, miR-124a, miR-125 a, miR-125b, miR-126, miR-126*, miR-127, miR-128a, miR-128b, miR-129, miR-130a, miR-130b, miR-132, miR-133a, miR-133b, miR-134, miR-135a, miR-135b, miR-136, miR-137, miR-138, miR-139, miR-140, miR-141, miR-142-3p, miR-143, miR-144, miR-145, miR-146, miR-147, miR-148a, miR-148b, miR-149, miR-150, miR-151, miR-152, miR-153, miR-154*, miR-154, miR-155, miR-181a, miR-181b, miR-181c, miR-182*, miR-182, miR-183, miR-184, miR-185, miR-186, miR-187, miR-188, miR-189, miR-190, miR-191, miR-192, miR-193, miR-194, miR-195, miR-196a, miR-196b, miR-197, miR-198, miR-199a*, miR-199a, miR-199b, miR-200a, miR-200b, miR-200c, miR-202, miR-203, miR-204, miR-205, miR-206, miR-208, miR-210, miR-211, miR-212, miR-213, miR-213, miR-214, miR-215, miR-216, miR-217, miR-218, miR-220, miR-221, miR-222, miR-223, miR-224, miR-296, miR-299, miR-301, miR-302a*, miR-302a, miR-302b*, miR-302b, miR-302d, miR-302c*, miR-302c, miR-320, miR-323, miR-324-3p, miR-324-5p, miR-325, miR-326, miR-328, miR-330, miR-331, miR-337, miR-338, miR-339, miR-340, miR-342, miR-345, miR-346, miR-363, miR-367, miR-368, miR-370, miR-371, miR-372, miR-373*, miR-373, miR-374, miR-375, miR-376b, miR-378, miR-379, miR-380-5p, miR-380-3p, miR-381, miR-382, miR-383, miR-410, miR-412, miR-422a, miR-422b, miR-423, miR-424, miR-425, miR-429, miR-431, miR-448, miR-449, miR-450, miR-451, let7a, let7b, let7c, let7d, let7e, let7f, let7g, let7i, miR-376a, and miR-377. The sequences of the above-mentioned microRNA targets are provided in “the miRBase sequence database” as described in Griffith-Jones et al. (2004), Nucleic Acids Research 32:D109-D111, and Griffith-Jones et al. (2006), Nucleic Acids Research 34:D140-D144, which is publicly accessible on the World Wide Web at the Wellcome Trust Sanger Institute website at http://microrna.sanger.ac.uk/sequences/.
Exemplary primers for use in accordance with this embodiment of the kit are provided in TABLE 1, TABLE 2, and TABLE 6 below.
In another embodiment, the kit comprises one or more primer sets capable of detecting at least one or more of the following human microRNA target templates: miR-1, miR-7, miR-10b, miR-26a, miR-26b, miR-29a, miR-30e-3p, miR-95, miR-107, miR-141, miR-143, miR-154*, miR-154, miR-155, miR-181a, miR-181b, miR-181c, miR-190, miR-193, miR-194, miR-195, miR-202, miR-206, miR-208, miR-212, miR-221, miR-222, miR-224, miR-296, miR-299, miR-302c*, miR-302c, miR-320, miR-339, miR363, miR-376b, miR379, miR410, miR412, miR424, miR429, miR431, miR449, miR451, let7a, let7b, let7c, let7d, let7e, let7f, let7g, and let7i. Exemplary primers for use in accordance with this embodiment of the kit are provided in TABLE 1, TABLE 2, and TABLE 6 below.
In another embodiment, the kit comprises one or more primer sets capable of detecting at least one or more of the following human, mouse or rat microRNA target templates: miR-1, miR-9, miR-18b, miR-20b, miR-92b, miR-146b, miR-181d, miR-193b, miR-194, miR-206, miR-291a-3p, miR-291b-3p, miR-301b, miR-329, miR-346, miR-351, miR-362, miR-362-3p, miR-369-5p, miR-384, miR-409-3p, miR-409-5p, miR-425-5p, miR-449b, miR-455, miR-483, miR-484, miR-485-3p, miR-485-5p, miR-486, miR-487b, miR-488, miR-489, miR-490, miR-491, miR-493-3p, miR-494, miR-495, miR-497, miR-499, miR-500, miR-501, miR-503, miR-505, miR-519a, miR-519b, miR-519c, miR-519d, miR-520a, miR-520b, miR-520d, miR-520e, miR-520f, miR-532, miR-539, miR-542-3p, miR-542-5p, miR-615, miR-652, miR-668, miR-671, miR-675-5p, miR-699, miR-721, and miR-758.
Exemplary primers for use in accordance with this embodiment of the kit are provided in TABLE 8.
In another embodiment, the kit comprises at least one oligonucleotide primer selected from the group consisting of SEQ ID NO: 2 to SEQ ID NO: 493, as shown in TABLE 1, TABLE 2, TABLE 6, and TABLE 7.
In another embodiment, the kit comprises at least one oligonucleotide primer selected from the group consisting of SEQ ID NO: 47, 48, 49, 50, 55, 56, 81, 82, 83, 84, 91, 92, 103, 104, 123, 124, 145, 146, 193, 194, 197, 198, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 239, 240, 247, 248, 253, 254, 255, 256, 257, 258, 277, 278, 285, 286, 287, 288, 293, 294, 301, 302, 309, 310, 311, 312, 315, 316, 317, 318, 319, 320, 333, 334, 335, 336, 337, 338, 359, 360, 369, 370, 389, 390, 393, 394, 405, 406, 407, 408, 415, 416, 419, 420, 421, 422, 425, 426, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 461 and 462, as shown in TABLE 6.
In another embodiment, the kit comprises at least one oligonucleotide primer selected from the group consisting of SEQ ID NO: 500 to SEQ ID NO: 965, as shown in TABLE 8.
A kit of the invention can also provide reagents for primer extension and amplification reactions. For example, in some embodiments, the kit may further include one or more of the following components: a reverse transcriptase enzyme, a DNA polymerase enzyme, a Tris buffer, a potassium salt (e.g., potassium chloride), a magnesium salt (e.g., magnesium chloride), a reducing agent (e.g., dithiothreitol), and deoxynucleoside triphosphates (dNTPs).
In various embodiments, the kit may include a detection reagent such as SYBR green dye or BEBO dye that preferentially or exclusively binds to double stranded DNA during a PCR amplification step. In other embodiments, the kit may include a forward and/or reverse primer that includes a fluorophore and quencher to measure the amount of the PCR amplification products.
The kit optionally includes instructions for using the kit in the detection and quantitation of one or more mammalian microRNA targets. The kit can also be optionally provided in a suitable housing that is preferably useful for robotic handling in a high throughput manner.
The following examples merely illustrate the best mode now contemplated for practicing the invention, but should not be construed to limit the invention.
Example 1 This Example describes a representative method of the invention for producing DNA molecules from microRNA target molecules.
Primer extension was conducted as follows (using InVitrogen SuperScript III® reverse transcriptase and following the guidelines that were provided with the enzyme). The following reaction mixture was prepared on ice:
-
- 1 μl of 10 mM dNTPs
- 1 μl of 21.1M extension primer
- 1-5 μl of target template
- 4 μl of “5×cDNA buffer”
- 1 μl of 0.1 M DTT
- 1 μl of RNAse OUT
- 1 μl of SuperScript III® enzyme
- water to 20
The mixture was incubated at 50° C. for 30 minutes, then 85° C. for 5 minutes, then cooled to room temperature and diluted 10-fold with TE (10 mM Tris, pH 7.6, 0.1 mM EDTA).
Real-time PCR was conducted using an ABI 7900 HTS detection system (Applied Biosystems, Foster City, Calif., U.S.A.) by monitoring SYBR® green fluorescence of double-stranded PCR amplicons as a function of PCR cycle number. A typical 101.11 PCR reaction mixture contained:
-
- 5 μl of 2×SYBR® green master mix (ABI)
- 0.8 μl of 10 μM universal forward primer
- 0.8 μl of 10 μM reverse primer
- 1.4 μl of water
- 2.0 μl of target template (10-fold diluted RT reaction)
The reaction was monitored through 40 cycles of standard “two cycle” PCR (95° C.-15 sec, 60° C.-60 sec) and the fluorescence of the PCR products was measured.
The foregoing method was successfully used in eleven primer extension PCR assays for quantitation of endogenous microRNAs present in a sample of total RNA. The DNA sequences of the extension primers, the universal forward primer sequence, and the LNA substituted reverse primers, used in these 11 assays are shown in TABLE 1.
TABLE 1
Target Primer Primer SEQ
microRNA number Name DNA sequence (5′ to 3′) ID NO
gene-specific extension primers1
humanb let7a 357 let7aP4 CATGATCAGCTGGGCCAAGAAACTATACAACCT 2
human miR-1 337 miR1P5 CATGATCAGCTGGGCCAAGATACATACTTCT 3
human miR-15a 344 miR15aP3 CATGATCAGCTGGGCCAAGACACAAACCATTATG 4
human miR-16 351 miR16P2 CATGATCAGCTGGGCCAAGACGCCAATATTTACGT 5
human miR-21 342 miR21P6 CATGATCAGCTGGGCCAAGATCAACATCAGT 6
human miR-24 350 miR24P5 CATGATCAGCTGGGCCAAGACTGTTCCTGCTG 7
human miR-122 222 122-E5F CATGATCAGCTGGGCCAAGAACAAACACCATTGTCA 8
human miR-124 226 124-E5F CATGATCAGCTGGGCCAAGATGGCATTCACCGCGTG 9
human miR-143 362 miR143P5 CATGATCAGCTGGGCCAAGATGAGCTACAGTG 10
human miR-145 305 miR145P2 CATGATCAGCTGGGCCAAGAAAGGGATTCCTGGGAA 11
human miR-155 367 miR155P3 CATGATCAGCTGGGCCAAGACCCCTATCACGAT 12
universal forward primer
230 E5F CATGATCAGCTGGGCCAAGA 13
RNA species-specific reverse primers2
human let7a 290 miRlet7a- TG+AGGT+AGTAGGTTG 14
1,2,3R
human miR-1 285 miR1-1,2R TG+GAA+TG+TAAAGAAGTA 15
human miR-15a 287 miR15aR TAG+CAG+CACATAATG 16
human miR-16 289 miR16-1,2R T+AGC+AGCACGTAAA 17
human miR-21 286 miR21R T+AG+CT+TATCAGACTGAT 18
human miR-24 288 miR24-1,2R TGG+CTCAGTTCAGC 19
human miR-122 234 122LNAR T+G+GAG+TGTGACAA 20
human miR-124 235 124LNAR T+TAA+GGCACGCG 21
human miR-143 291 miR143R TG+AGA+TGAAGCACTG 22
human miR-145 314 miR145R2 GT+CCAGTTTTCCCA 23
human miR-155 293 miR155R T+TAA+TG+CTAATCGTGA 24
1Universal forward primer binding sites are shown in italics. The overlap with the RNA-specific reverse primers are underlined.
2LNA molecules are preceded by a “+”. Region of overlap of the reverse primers with the corresponding extension primers are underlined.
The assay was capable of detecting microRNA in a concentration range of from 2 nM to 20 fM. The assays were linear at least up to a concentration of 2 nM of synthetic microRNA (>1,000,000 copies/cell).
Example 2 This Example describes the evaluation of the minimum sequence requirements for efficient primer-extension mediated cDNA synthesis using a series of extension primers for microRNA assays having gene specific regions that range in length from 12 to 3 base pairs.
Primer Extension Reactions. Primer extension was conducted using the target molecules miR-195 and miR-215 as follows. The target templates miR-195 and miR-215 were diluted to 1 nM RNA (100,000 copies/cell) in TE zero plus 100 ng/μl total yeast RNA. A no template control (NTC) was prepared with TE zero plus 100 ng/μl total yeast RNA.
The reverse transcriptase reactions were carried out as follows (using InVitrogen SuperScript III® reverse transcriptase and following the guidelines that were provided with the enzyme) using a series of extension primers for miR-195 (SEQ ID NO: 25-34) and a series of extension primers for miR-215 (SEQ ID NO: 35-44) the sequences of which are shown below in TABLE 2.
The following reaction mixtures were prepared on ice:
-
- Set 1: No Template Control
- 37.5 μl water
- 12.5 μl of 10 mM dNTPs
- 12.5 μl 0.1 mM DTT
- 50 μl of “5×cDNA buffer”
- 12.5 μl RNAse OUT
- 12.5 μl Superscript III® reverse transcriptase enzyme
- 12.5 μl 1 μg/μl Hela cell total RNA (Ambion)
- plus 50 μl of 2 μM extension primer
- plus 50 μl TEzero+yeast RNA
- Set 2: Spike-in Template
- 37.5 μl water
- 12.5 μl of 10 mM dNTPs
- 12.5 μl 0.1 mM DTT
- 50 μl of “5×cDNA buffer”
- 12.5 μl RNAse OUT
- 12.5 μl Superscript III® reverse transcriptase enzyme (InVitrogen)
- 12.5 μl 1 μg/μl Hela cell total RNA (Ambion)
- plus 50 μl of 2 μM extension primer
- plus 50 μl 1 nM RNA target template (miR-195 or miR-215)
- serially diluted in 10-fold increments
The reactions were incubated at 50° C. for 30 minutes, then 85° C. for 5 minutes, and cooled to 4° C. and diluted 10-fold with TE (10 mM Tris, pH 7.6, 0.1 mM EDTA).
Quantitative Real-Time PCR Reactions. Following reverse transcription, quadruplicate measurements of cDNA were made by quantitative real-time (qPCR) using an ABI 7900 HTS detection system (Applied Biosystems, Foster City, Calif., U.S.A.) by monitoring SYBR® green fluorescence of double-stranded PCR amplicons as a function of PCR cycle number. The following reaction mixture was prepared:
-
- 5 μl of 2×SYBR green master mix (ABI)
- 0.8 μl of 10 μM universal forward primer (SEQ ID NO: 13)
- 0.8 μl of 10 μM reverse primer (miR-195RP:SEQ ID NO: 45 or
- miR215RP: SEQ ID NO: 46)
- 1.4 μl of water
- 2.0 μl of target template (10-fold diluted miR-195 or miR-215 RT reaction)
Quantitative real-time PCR was performed for each sample in quadruplicate, using the manufacturer's recommended conditions. The reactions were monitored through 40 cycles of standard “two cycle” PCR (95° C.-15 sec, 60° C.-60 sec) and the fluorescence of the PCR products were measured and disassociation curves were generated. The DNA sequences of the extension primers, the universal forward primer sequence, and the LNA substituted reverse primers, used in the miR-195 and miR-215 assays are shown below in TABLE 2. The assay results for miR-195 are shown below in TABLE 3 and the assay results for miR-215 are shown below in TABLE 4.
TABLE 2
Target Primer SEQ ID
microRNA number Primer Name DNA sequence (5′ to 3′) NO:
gene-specific extension primers1
miR-195 646 mir195-GS1 CATGATCAGCTGGGCCAAGAGCCAATATTTCT 25
miR-195 647 mir195-GS2 CATGATCAGCTGGGCCAAGAGCCAATATTTC 26
miR-195 648 mir195-GS3 CATGATCAGCTGGGCCAAGAGCCAATATTT 27
miR-195 649 mir195-GS4 CATGATCAGCTGGGCCAAGAGCCAATATT 28
miR-195 650 mir195-GS5 CATGATCAGCTGGGCCAAGAGCCAATAT 29
miR-195 651 mir195-GS6 CATGATCAGCTGGGCCAAGAGCCAATA 30
miR-195 652 mir195-GS7 CATGATCAGCTGGGCCAAGAGCCAAT 31
miR-195 653 mir195-GS8 CATGATCAGCTGGGCCAAGAGCCAA 32
miR-195 654 mir195-GS9 CATGATCAGCTGGGCCAAGAGCCA 33
miR-195 655 mir195-GS10 CATGATCAGCTGGGCCAAGAGCC 34
miR-215 656 mir215-GS1 CATGATCAGCTGGGCCAAGAGTCTGTCAATTC 35
miR-215 657 mir215-GS2 CATGATCAGCTGGGCCAAGAGTCTGTCAATT 36
miR-215 658 mir215-GS3 CATGATCAGCTGGGCCAAGAGTCTGTCAAT 37
miR-215 659 mir215-GS4 CATGATCAGCTGGGCCAAGAGTCTGTCAA 38
miR-215 660 mir215-GS5 CATGATCAGCTGGGCCAAGAGTCTGTCA 39
miR-215 661 mir215-GS6 CATGATCAGCTGGGCCAAGAGTCTGTC 40
miR-215 662 mir215-GS7 CATGATCAGCTGGGCCAAGAGTCTGT 41
miR-215 663 mir215-GS8 CATGATCAGCTGGGCCAAGAGTCTG 42
miR-215 664 mir215-GS9 CATGATCAGCTGGGCCAAGAGTCT 43
miR-215 665 mir215-GS10 CATGATCAGCTGGGCCAAGAGTC 44
RNA species-specific reverse primers2
miR-195 442 mir195RP T+AGC+AGCACAGAAAT 45
miR-215 446 mir215RP A+T+GA+CCTATGAATTG 46
1Universal forward primer binding sites are shown in italics.
2The “+” symbol precedes the LNA molecules.
Results:
The sensitivity of each assay was measured by the cycle threshold (Ct) value which is defined as the cycle count at which fluorescence was detected in an assay containing microRNA target template. The lower this Ct value (e.g. the fewer number of cycles), the more sensitive was the assay. For microRNA samples, it was generally observed that while samples that contain template and no template controls both eventually cross the detection threshold, the samples with template do so at a much lower cycle number. The ΔCt value is the difference between the number of cycles (Ct) between template containing samples and no template controls, and serves as a measure of the dynamic range of the assay. Assays with a high dynamic range allow measurements of very low microRNA copy numbers. Accordingly, desirable characteristics of a microRNA detection assay include high sensitivity (low Ct value) and broad dynamic range (ΔCt≧12) between the signal of a sample containing target template and a no template background control sample.
The results of the miR195 and miR215 assays using extension primers having a gene specific portion ranging in size from 12 nucleotides to 3 nucleotides are shown below in TABLE 3 and TABLE 4, respectively. The results of these experiments unexpectedly demonstrate that gene-specific priming sequences as short as 3 nucleotides exhibit template specific priming. For both the miR-195 assay sets (shown in TABLE 3) and the miR-215 assay sets (shown in TABLE 4), the results demonstrate that the dynamic range (ΔCt) for both sets of assays are fairly consistent for extension primers having gene specific regions that are greater or equal to 8 nucleotides in length. The dynamic range of the assay (ΔCt) begins to decrease for extension primers having gene specific regions below 8 nucleotides, with a reduction in assay specificity below 7 nucleotides in the miR-195 assays, and below 6 nucleotides in the miR-215 assays. A melting point analysis of the miR-215 samples demonstrated that even at 3 nucleotides, there is specific PCR product present in the plus template samples (data not shown). Taken together, these data demonstrate that the gene specific region of extension primers is ideally ≧8 nucleotides, but can be as short as 3 nucleotides in length.
TABLE 3
MIR195 ASSAY RESULTS
GS Primer Ct: No Ct: Plus
Length Template Control Template Δ Ct
12 34.83 20.00 14.82
12 34.19 19.9 14.3
11 40.0 19.8 20.2
10 36.45 21.2 15.2
9 36.40 22.2 14.2
8 40.0 23.73 16.27
7 36.70 25.96 10.73
6 30.95 26.58 4.37
5 30.98 31.71 −0.732
4 32.92 33.28 −0.364
3 35.98 35.38 −0.605
Ct = the cycle count where the fluorescence exceeds the threshold of detection.
Δ Ct = the difference between the Ct value with template and no template.
TABLE 4
MIR215 ASSAY RESULTS
GS Primer Ct: No Ct: Plus
Length Template Control Template Δ Ct
12 33.4 13.57 19.83
12 33.93 14.15 19.77
11 35.51 15.76 19.75
10 35.33 15.49 19.84
9 36.02 16.84 19.18
8 35.79 17.07 18.72
7 32.29 17.58 14.71
6 34.38 20.62 13.75
5 34.41 28.65 5.75
4 36.36 33.92 2.44
3 35.09 33.38 1.70
Ct = the cycle count where the fluorescence exceeds the threshold of detection.
Δ Ct = the difference between the Ct value with template and no template.
Example 3 This Example describes assays and primer sets designed for quantitative analysis of human microRNA expression patterns.
Primer Design:
microRNA target templates: the sequence of the target templates as described herein are publicly available accessible on the World Wide Web at the Wellcome Trust Sanger Institute Web site in the “miRBase sequence database” as described in Griffith-Jones et al. (2004), Nucleic Acids Research 32:D109-D111, and Griffith-Jones et al. (2006), Nucleic Acids Research 34:D140-D144.
Extension primers: gene specific primers for primer extension of a microRNA to form a cDNA followed by quantitative PCR (qPCR) amplification were designed to (1) convert the RNA template into cDNA; (2) to introduce a “universal” PCR binding site (SEQ ID NO:1) to one end of the cDNA molecule; and (3) to extend the length of the cDNA to facilitate subsequent monitoring by qPCR.
Reverse primers: unmodified reverse primers and locked nucleic acid (LNA) containing reverse primers (RP) were designed to quantify the primer-extended, full length cDNA in combination with a generic universal forward primer (SEQ ID NO:13). For the locked nucleic acid containing reverse primers, two or three LNA modified bases were substituted within the first 8 nucleotides from the 5′ end of the reverse primer oligonucleotide, as shown below in the exemplary reverse primer sequences provided in TABLE 6. The LNA base substitutions were selected to raise the predicted Tm of the primer by the highest amount, and the final predicted Tm of the selected primers were specified to be preferably less than or equal to 55° C.
An example describing an assay utilizing an exemplary set of primers the detection of miR-95 and miR-424 is described below.
Primer Extension Reactions: primer extension was conducted using DNA templates corresponding to miR-95 and miR-424 as follows. The DNA templates were diluted to 0 nM, 1 nM, 100 pM, 10 pM, and 1 pM dilutions in TE zero (10 mM Tris pH 7.6, 0.1 mM EDTA) plus 100 ng/μl yeast total RNA (Ambion, Austin, Tex.).
The reverse transcriptase reactions were carried out using the following primers:
Extension primers: (diluted to 500 nM)
miR-95GSP
CATGATCAGCTGGGCCAAGATGCTCAATAA (SEQ ID NO: 123)
miR-424GSP
CATGATCAGCTGGGCCAAGATTCAAAACAT (SEQ ID NO: 415)
Reverse primers: (diluted to 10 mM)
miR-95_RP4
TT+CAAC+GGGTATTTATTGA (SEQ ID NO: 124)
miR-424RP2
C+AG+CAGCAATTCATGTTTT (SEQ ID NO: 416)
Reverse Transcription (per reaction):
2 μl water
2 μl of “5×cDNA buffer” (InVitrogen, Carlsbad, Calif.)
0.5 μl of 0.1 mM DTT (InVitrogen, Carlsbad, Calif.)
0.5 μl of 10 mM dNTPs (InVitrogen, Carlsbad, Calif.)
0.5 μl RNAse OUT (InVitrogen, Carlsbad, Calif.)
0.5 μl Superscript III® reverse transcriptase enzyme (InVitrogen, Carlsbad, Calif.)
2 μl of extension primer plus 2 μl of template dilution
The reactions were mixed and incubated at 50° C. for 30 minutes, then 85° C. for 5 minutes, and cooled to 4° C. and diluted 10-fold with TE zero.
Quantitative Real-Time PCR Reactions (per reaction):
-
- 5 μl 12×SYBR mix (Applied Biosystems, Foster City, Calif.)
- 1.4 μl water
- 0.8 μl universal primer (CATGATCAGCTGGGCCAAGA (SEQ ID NO: 13))
- 2.0 μl of diluted reverse transcription (RT) product from above.
Quantitative real-time PCR was performed for each sample in quadruplicate, using the manufacturer's recommended conditions. The reactions were monitored through 40 cycles of standard “two cycle” PCR (95° C.-15 sec, 60° C.-60 sec) and the fluorescence of the PCR products were measured and disassociation curves were generated. The DNA sequences of the extension primers, the universal forward primer sequence, and the LNA substituted reverse primers, used in the representative miR-95 and miR-424 assays as well as primer sets for 212 different human microRNA templates are shown below in TABLE 6. Primer sets for assays requiring extensive testing and design modification to achieve a sensitive assay with a high dynamic range are indicated in TABLE 6 with the symbol # following the primer name.
Results:
TABLE 5 shows the Ct values (averaged from four samples) from the miR-95 and miR-424 assays, which are plotted in the graph shown in FIG. 2. The results of these assays are provided as representative examples in order to explain the significance of the assay parameters shown in TABLE 6 designated as slope (column 6), intercept (column 7) and background (column 8).
As shown in TABLE 5, the Ct value for each template at various concentrations is provided. The Ct values (x-axis) are plotted as a function of template concentration (y-axis) to generate a standard curve for each assay, as shown in FIG. 2. The slope and intercept define the assay measurement characteristics that permit an estimation of number of copies/cell for each microRNA. For example, when the Ct values for 50 μg total RNA input for the miR-95 assay are plotted, a standard curve is generated with a slope and intercept of −0.03569 and 9.655, respectively. When these standard curve parameters are applied to the Ct of an unknown sample (x), they yield log 10 (copies/20 pg total RNA) (y). Because the average cell yields 20 pg of total RNA, these measurements equate to copies of microRNA/cell. The background provides an estimate of the minimum copy number that can be measured in a sample and is computed by inserting the no template control (NTC) value into this equation. In this example, as shown in TABLE 6, miR-95 yields a background of 1.68 copies/20 pg at 50 μg of RNA input.
As further shown in TABLE 6, reverse primers that do not contain LNA may also be used in accordance with the methods of the invention. See, e.g., SEQ ID NO:494-499. The sensitivity and dynamic range of the assays using non-LNA containing reverse primers SEQ ID NO:494-499, yielded similar results to the corresponding assays using LNA-containing reverse primers.
TABLE 5
Ct Values (averaged from four samples)
Template concentration
10 nM 1 nM 0.1 nM 0.01 nM 0.001 nM NTC
copies/20 pg 500,000 50,000 5000 500 50
RNA (50 μg input)
copies/20 pg 5,000,000 500,000 50,000 5000 500
RNA (5 μg input)
miR-95 11.71572163 14.17978 17.46353 19.97259 23.33171 27.44383
miR-424 10.47708975 12.76806 15.69251 18.53729 21.56897 23.2813
log10 (copies 5.698970004 4.69897 3.69897 2.69897 1.69897
for 50 μg input)
TABLE 6
PRIMERS TO DETECT HUMAN MICRORNA TARGET TEMPLATES
Human
Target Background
micro RNA input
RNA Extension Primer Name Extension Primer Sequence Reverse Primer Name Reverse Primer Sequence Slope Intercept 50 ug 5 ug
miR-1 miR1GSP10# CATGATCAGCTGGGCCAAGATACATACTTC miR-1RP# T+G+GAA+TG+TAAAGAAGT −0.2758 8.3225 2.44 24.36
SEQ ID NO: 47 SEQ ID NO: 48
miR-7 miR-7GSP10# CATGATCAGCTGGGCCAAGACAACAAAATC miR-7_RP6# T+GGAA+GACTAGTGATTTT −0.2982 10.435 11.70 116.99
SEQ ID NO: 49 SEQ ID NO: 50
miR-9* miR-9*GSP CATGATCAGCTGGGCCAAGAACTTTCGGTT miR-9*RP TAAA+GCT+AGATAACCG −0.2405 8.9145 3.71 37.15
SEQ ID NO: 51 SEQ ID NO: 52
miR-10a miR-10aGSP CATGATCAGCTGGGCCAAGACACAAATTCG miR-10aRP T+AC+CCTGTAGATCCG −0.2755 8.6976 0.09 0.94
SEQ ID NO: 53 SEQ ID NO: 54
miR-10b miR- CATGATCAGCTGGGCCAAGAACAAATTCGGT miR- TA+CCC+TGT+AGAACCGA −0.3505 8.7109 0.55 5.52
10b_GSP11# SEQ ID NO: 55 10b_RP2# SEQ ID NO: 56
miR-15a miR-15aGSP CATGATCAGCTGGGCCAAGACACAAACCAT miR-15aRP T+AG+CAGCACATAATG −0.2831 8.4519 4.40 44.01
SEQ ID NO: 57 SEQ ID NO: 58
miR-15b miR-15bGSP2 CATGATCAGCTGGGCCAAGATGTAAACCA miR-15bRP T+AG+CAGCACATCAT −0.2903 8.4206 0.18 1.84
SEQ ID NO: 59 SEQ ID NO: 60
miR-16 miR-16GSP2 CATGATCAGCTGGGCCAAGACGCCAATAT miR-16RP T+AG+CAGCACGTAAA −0.2542 9.3689 1.64 16.42
SEQ ID NO: 61 SEQ ID NO: 62
miR-17- miR-17-3pGSP CATGATCAGCTGGGCCAAGAACAAGTGCCT miR-17-3pRP A+CT+GCAGTGAAGGC −0.2972 8.2625 1.08 10.78
3p SEQ ID NO: 63 SEQ ID NO: 64
miR-17- miR-17- CATGATCAGCTGGGCCAAGAACTACCTGC miR-17-5pRP C+AA+AGTGCTTACAGTG −0.2956 7.9101 0.13 1.32
5p 5pGSP2 SEQ ID NO: 65 SEQ ID NO: 66
miR-19a miR-19aGSP2 CATGATCAGCTGGGCCAAGATCAGTTTTG miR-19aRP TG+TG+CAAATCTATGC −0.2984 9.461 0.02 0.23
SEQ ID NO: 67 SEQ ID NO: 68
miR-19b miR-19bGSP CATGATCAGCTGGGCCAAGATCAGTTTTGC miR-19bRP TG+TG+CAAATCCATG −0.294 8.1434 2.26 22.55
SEQ ID NO: 69 SEQ ID NO: 70
miR-20 miR-20GSP3 CATGATCAGCTGGGCCAAGACTACCTGC miR-20RP T+AA+AGTGCTTATAGTGCA −0.2979 7.9929 0.16 1.60
SEQ ID NO: 71 SEQ ID NO: 72
miR-21 miR-21GSP2 CATGATCAGCTGGGCCAAGATCAACATCA miR-21RP T+AG+CTTATCAGACTGATG −0.2849 8.1624 1.80 17.99
SEQ ID NO: 73 SEQ ID NO: 74
miR-23a miR-23aGSP CATGATCAGCTGGGCCAAGAGGAAATCCCT miR-23aRP A+TC+ACATTGCCAGG −0.3172 9.4253 2.41 24.08
SEQ ID NO: 75 SEQ ID NO: 76
miR-23b miR-23bGSP CATGATCAGCTGGGCCAAGAGGTAATCCCT miR-23bRP A+TC+ACATTGCCAGG −0.2944 9.0985 5.39 53.85
SEQ ID NO: 77 SEQ ID NO: 78
miR-25 miR-25GSP CATGATCAGCTGGGCCAAGATCAGACCGAG miR-25RP C+AT+TGCACTTGTCTC −0.3009 8.2482 1.52 15.19
SEQ ID NO: 79 SEQ ID NO: 80
miR-26a miR-26aGSP9# CATGATCAGCTGGGCCAAGAGCCTATCCT miR- TT+CA+AGTAATCCAGGAT −0.2807 8.558 0.26 2.56
SEQ ID NO: 81 26aRP2# SEQ ID NO: 82
miR-26b miR-26bGSP9# CATGATCAGCTGGGCCAAGAAACCTATCC miR- TT+CA+AGT+AATTCAGGAT −0.2831 8.7885 0.37 3.67
SEQ ID NO: 83 26bRP2# SEQ ID NO: 84
miR-27a miR-27aGSP CATGATCAGCTGGGCCAAGAGCGGAACTTA miR-27aRP TT+CA+CAGTGGCTAA −0.2765 9.5239 5.15 51.51
SEQ ID NO: 85 SEQ ID NO: 86
miR-27b miR-27bGSP CATGATCAGCTGGGCCAAGAGCAGAACTTA miR-27bRP TT+CA+CAGTGGCTAA −0.28 9.5483 5.97 59.71
SEQ ID NO: 87 SEQ ID NO: 88
miR-28 miR-28GSP CATGATCAGCTGGGCCAAGACTCAATAGAC miR-28RP A+AG+GAGCTCACAGT −0.3226 10.071 7.19 71.87
SEQ ID NO: 89 SEQ ID NO: 90
miR-29a miR-29aGSP8# CATGATCAGCTGGGCCAAGAAACCGATT miR- T+AG+CACCATCTGAAAT −0.29 8.8731 0.04 0.38
SEQ ID NO: 91 29aRP2# SEQ ID NO: 92
miR-29b miR-29bGSP2 CATGATCAGCTGGGCCAAGAAACACTGAT miR-29bRP2 T+AG+CACCATTTGAAATCAG −0.3162 9.6276 3.56 35.57
SEQ ID NO: 93 SEQ ID NO: 94
miR-30a- miR-30a- CATGATCAGCTGGGCCAAGACTTCCAGTCG miR-30a- T+GT+AAACATCCTCGAC −0.2772 9.0694 1.92 19.16
5p 5pGSP SEQ ID NO: 95 5pRP SEQ ID NO: 96
miR-30b miR-30bGSP CATGATCAGCTGGGCCAAGAAGCTGAGTGT miR-30bRP TGT+AAA+CATCCTACACT −0.2621 8.5974 0.11 1.13
SEQ ID NO: 97 SEQ ID NO: 98
miR-30c miR-30cGSP CATGATCAGCTGGGCCAAGAGCTGAGAGTG miR-30cRP TGT+AAA+CATCCTACACT −0.2703 8.699 0.15 1.48
SEQ ID NO: 99 SEQ ID NO: 100
miR-30d miR-30dGSP CATGATCAGCTGGGCCAAGACTTCCAGTCG miR-30dRP T+GTAAA+CATCCCCG −0.2506 9.3875 0.23 2.31
SEQ ID NO: 101 SEQ ID NO: 102
miR-30e- miR-30e- CATGATCAGCTGGGCCAAGAGCTGTAAAC miR-30e- CTTT+CAGT+CGGATGTTT −0.325 11.144 6.37 63.70
3p 3pGSP9# SEQ ID NO: 103 3pRP5# SEQ ID NO: 104
miR-30e- miR-30e- CATGATCAGCTGGGCCAAGATCCAGTCAAG miR-30e- TG+TAAA+CATCCTTGAC −0.2732 8.1604 8.50 85.03
5p 5pGSP SEQ ID NO: 105 5pRP SEQ ID NO: 106
miR-31 miR-31GSP CATGATCAGCTGGGCCAAGACAGCTATGCC miR-31RP G+GC+AAGATGCTGGC −0.3068 8.2605 3.74 37.43
SEQ ID NO: 107 SEQ ID NO: 108
miR-32 miR-32GSP CATGATCAGCTGGGCCAAGAGCAACTTAGT miR-32RP TATTG+CA+CATTACTAAG −0.2785 8.9581 0.39 3.93
SEQ ID NO: 109 SEQ ID NO: 110
miR-33 miR-33GSP2 CATGATCAGCTGGGCCAAGACAATGCAAC miR-33RP G+TG+CATTGTAGTTGC −0.3031 8.42 2.81 28.14
SEQ ID NO: 111 SEQ ID NO: 112
miR-34a miR-34aGSP CATGATCAGCTGGGCCAAGAAACAACCAGC miR-34aRP T+GG+CAGTGTCTTAG −0.3062 9.1522 2.40 23.99
SEQ ID NO: 113 SEQ ID NO: 114
miR-34b miR-34bGSP CATGATCAGCTGGGCCAAGACAATCAGCTA miR-34bRP TA+GG+CAGTGTCATT −0.3208 9.054 0.04 0.37
SEQ ID NO: 115 SEQ ID NO: 116
miR-34c miR-34cGSP CATGATCAGCTGGGCCAAGAGCAATCAGCT miR-34cRP A+GG+CAGTGTAGTTA −0.2995 10.14 1.08 10.83
SEQ ID NO: 117 SEQ ID NO: 118
miR-92 miR-92GSP CATGATCAGCTGGGCCAAGACAGGCCGGGA miR-92RP T+AT+TGCACTTGTCCC −0.3012 8.6908 8.92 89.17
SEQ ID NO: 119 SEQ ID NO: 120
miR-93 miR-93GSP CATGATCAGCTGGGCCAAGACTACCTGCAC miR-93RP AA+AG+TGCTGTTCGT −0.3025 7.9933 4.63 46.30
SEQ ID NO: 121 SEQ ID NO: 122
miR-95 miR-95GSP# CATGATCAGCTGGGCCAAGATGCTCAATAA miR- TT+CAAC+GGGTATTTATTGA −0.3436 9.655 1.68 16.80
SEQ ID NO: 123 95_RP4# SEQ ID NO: 124
miR-96 miR-96GSP CATGATCAGCTGGGCCAAGAGCAAAAATGT miR-96RP T+TT+GGCACTAGCAC −0.2968 9.2611 0.00 0.05
SEQ ID NO: 125 SEQ ID NO: 126
miR-98 miR-98GSP CATGATCAGCTGGGCCAAGAAACAATACAA miR-98RP TGA+GGT+AGTAAGTTG −0.2797 9.5654 1.05 10.48
SEQ ID NO: 127 SEQ ID NO: 128
miR-99a miR-99aGSP CATGATCAGCTGGGCCAAGACACAAGATCG miR-99aRP A+AC+CCGTAGATCCG −0.2768 8.781 0.21 2.08
SEQ ID NO: 129 SEQ ID NO: 130
miR-99b miR-99bGSP CATGATCAGCTGGGCCAAGACGCAAGGTCG miR-99bRP C+AC+CCGTAGAACCG −0.2747 7.9855 0.25 2.53
SEQ ID NO: 131 SEQ ID NO: 132
miR-100 miR-100GSP CATGATCAGCTGGGCCAAGACACAAGTTCG miR-100RP A+AC+CCGTAGATCCG −0.2902 8.669 0.04 0.35
SEQ ID NO: 133 SEQ ID NO: 134
miR-101 miR-101GSP CATGATCAGCTGGGCCAAGACTTCAGTTAT miR-101RP TA+CAG+TACTGTGATAACT −0.3023 8.2976 0.46 4.63
SEQ ID NO: 135 SEQ ID NO: 136
miR-103 miR-103GSP CATGATCAGCTGGGCCAAGATCATAGCCCT miR-103RP A+GC+AGCATTGTACA −0.3107 8.5776 0.02 0.21
SEQ ID NO: 137 SEQ ID NO: 138
miR-105 miR-105GSP CATGATCAGCTGGGCCAAGAACAGGAGTCT miR-105RP T+CAAA+TGCTCAGACT −0.2667 8.9832 0.93 9.28
SEQ ID NO: 139 SEQ ID NO: 140
miR-106a miR-106aGSP CATGATCAGCTGGGCCAAGAGCTACCTGCA miR-106aRP AAA+AG+TGCTTACAGTG −0.3107 8.358 0.03 0.31
SEQ ID NO: 141 SEQ ID NO: 142
miR-106b miR-106bGSP CATGATCAGCTGGGCCAAGAATCTGCACTG miR-106bRP T+AAAG+TGCTGACAGT −0.2978 8.7838 0.10 1.04
SEQ ID NO: 143 SEQ ID NO: 144
miR-107 miR-107GSP8# CATGATCAGCTGGGCCAAGATGATAGCC miR- A+GC+AGCATTGTACAG −0.304 9.1666 0.34 3.41
SEQ ID NO: 145 107RP2# SEQ ID NO: 146
miR-122a miR-122aGSP CATGATCAGCTGGGCCAAGAACAAACACCA miR-122aRP T+GG+AGTGTGACAAT −0.3016 8.1479 0.06 0.58
SEQ ID NO: 147 SEQ ID NO: 148
miR-124a miR-124aGSP CATGATCAGCTGGGCCAAGATGGCATTCAC miR-124aRP T+TA+AGGCACGCGGT −0.3013 8.6906 0.56 5.63
SEQ ID NO: 149 SEQ ID NO: 150
miR-125a miR-125aGSP CATGATCAGCTGGGCCAAGACACAGGTTAA miR-125aRP T+CC+CTGAGACCCTT −0.2938 8.6754 0.09 0.91
SEQ ID NO: 151 SEQ ID NO: 152
miR-125b miR-125bGSP CATGATCAGCTGGGCCAAGATCACAAGTTA miR-125bRP T+CC+CTGAGACCCTA −0.283 8.1251 0.20 1.99
SEQ ID NO: 153 SEQ ID NO: 154
miR-126 miR-126GSP CATGATCAGCTGGGCCAAGAGCATTATTAC miR-126RP T+CG+TACCGTGAGTA −0.26 8.937 0.18 1.80
SEQ ID NO: 155 SEQ ID NO: 156
miR-126* miR-126*GSP3 CATGATCAGCTGGGCCAAGACGCGTACC miR-126*RP C+ATT+ATTA+CTTTTGGTACG −0.2969 8.184 3.58 35.78
SEQ ID NO: 157 SEQ ID NO: 158
miR-127 miR-127GSP CATGATCAGCTGGGCCAAGAAGCCAAGCTC miR-127RP T+CG+GATCCGTCTGA −0.2432 9.1013 1.11 11.13
SEQ ID NO: 159 SEQ ID NO: 160
miR-128a miR-128aGSP CATGATCAGCTGGGCCAAGAAAAAGAGACC miR-128aRP T+CA+CAGTGAACCGG −0.2866 8.0867 0.16 1.60
SEQ ID NO: 161 SEQ ID NO: 162
miR-128b miR-128bGSP CATGATCAGCTGGGCCAAGAGAAAGAGACC miR-128bRP T+CA+CAGTGAACCGG −0.2923 8.0608 0.07 0.74
SEQ ID NO: 163 SEQ ID NO: 164
miR-129 miR-129GSP CATGATCAGCTGGGCCAAGAGCAAGCCCAG miR-129RP CTTTT+TG+CGGTCTG −0.2942 9.7731 0.88 8.85
SEQ ID NO: 165 SEQ ID NO: 166
miR-130a miR-130aGSP CATGATCAGCTGGGCCAAGAATGCCCTTTT miR-130aRP C+AG+TGCAATGTTAAAAG −0.2943 8.7465 1.28 12.78
SEQ ID NO: 167 SEQ ID NO: 168
miR-130b miR-130bGSP CATGATCAGCTGGGCCAAGAATGCCCTTTC miR-130bRP C+AG+TGCAATGATGA −0.2377 9.1403 3.14 31.44
SEQ ID NO: 169 SEQ ID NO: 170
miR-132 miR-132GSP CATGATCAGCTGGGCCAAGACGACCATGGC miR-132RP T+AA+CAGTCTACAGCC −0.2948 8.1167 0.11 1.13
SEQ ID NO: 171 SEQ ID NO: 172
miR-133a miR-133aGSP CATGATCAGCTGGGCCAAGAACAGCTGGTT miR-133aRP T+TG+GTCCCCTTCAA −0.295 9.3679 0.10 1.04
SEQ ID NO: 173 SEQ ID NO: 174
miR-133b miR-133bGSP CATGATCAGCTGGGCCAAGATAGCTGGTTG miR-133bRP T+TG+GTCCCCTTCAA −0.3062 8.3649 0.02 0.18
SEQ ID NO: 175 SEQ ID NO: 176
miR-134 miR-134GSP CATGATCAGCTGGGCCAAGACCCTCTGGTC miR-134RP T+GT+GACTGGTTGAC −0.2965 9.0483 0.14 1.39
SEQ ID NO: 177 SEQ ID NO: 178
miR-135a miR-135aGSP CATGATCAGCTGGGCCAAGATCACATAGGA miR-135aRP T+AT+GGCTTTTTATTCCT −0.2914 8.092 1.75 17.50
SEQ ID NO: 179 SEQ ID NO: 180
miR-135b miR-135bGSP CATGATCAGCTGGGCCAAGACACATAGGAA miR-135bRP T+AT+GGCTTTTCATTCC −0.2962 7.8986 0.05 0.49
SEQ ID NO: 181 SEQ ID NO: 182
miR-136 miR-136GSP CATGATCAGCTGGGCCAAGATCCATCATCA miR-136RP A+CT+CCATTTGTTTTGATG −0.3616 10.229 0.68 6.77
SEQ ID NO: 183 SEQ ID NO: 184
miR-137 miR-137GSP CATGATCAGCTGGGCCAAGACTACGCGTAT miR-137RP T+AT+TGCTTAAGAATACGC −0.2876 8.234 8.57 85.71
SEQ ID NO: 185 SEQ ID NO: 186
miR-138 miR-138GSP2 CATGATCAGCTGGGCCAAGACGGCCTGAT miR-138RP A+GC+TGGTGTTGTGA −0.3023 9.0814 0.22 2.19
SEQ ID NO: 187 SEQ ID NO: 188
miR-139 miR-139GSP CATGATCAGCTGGGCCAAGAAGACACGTGC miR-139RP T+CT+ACAGTGCACGT −0.2983 8.1141 6.92 69.21
SEQ ID NO: 189 SEQ ID NO: 190
miR-140 miR-140GSP CATGATCAGCTGGGCCAAGACTACCATAGG miR-140RP A+GT+GGTTTTACCCT −0.2312 8.3231 0.13 1.34
SEQ ID NO: 191 SEQ ID NO: 192
miR-141 miR-141GSP9# CATGATCAGCTGGGCCAAGACCATCTTTA miR- TAA+CAC+TGTCTGGTAA −0.2805 9.6671 0.13 1.26
SEQ ID NO: 193 141RP2# SEQ ID NO: 194
miR-142- miR-142- CATGATCAGCTGGGCCAAGATCCATAAA miR-142- TGT+AG+TGTTTCCTACT −0.2976 8.4046 0.03 0.27
3p 3pGSP3 SEQ ID NO: 195 3pRP SEQ ID NO: 196
miR-143 miR-143GSP8# CATGATCAGCTGGGCCAAGATGAGCTAC miR- T+GA+GATGAAGCACTG −0.3008 9.2675 0.37 3.71
SEQ ID NO: 197 143RP2# SEQ ID NO: 198
miR-144 miR-144GSP2 CATGATCAGCTGGGCCAAGACTAGTACAT miR-144RP TA+CA+GTAT+AGATGATG −0.2407 9.4441 0.95 9.52
SEQ ID NO: 199 SEQ ID NO: 200
miR-145 miR-145GSP2 CATGATCAGCTGGGCCAAGAAAGGGATTC miR-145RP G+TC+CAGTTTTCCCA −0.2937 8.0791 0.39 3.86
SEQ ID NO: 201 SEQ ID NO: 202
miR-146 miR-146GSP3 CATGATCAGCTGGGCCAAGAAACCCATG miR-146RP T+GA+GAACTGAATTCCA −0.2861 8.8246 0.08 0.75
SEQ ID NO: 203 SEQ ID NO: 204
miR-147 miR-147GSP CATGATCAGCTGGGCCAAGAGCAGAAGCAT miR-147RP G+TG+TGTGGAAATGC −0.2989 8.8866 1.65 16.47
SEQ ID NO: 205 SEQ ID NO: 206
miR-148a miR-148aGSP2 CATGATCAGCTGGGCCAAGAACAAAGTTC miR- T+CA+GTGCACTACAGAACT −0.2928 9.4654 1.27 12.65
SEQ ID NO: 207 148aRP2 SEQ ID NO: 208
miR-148b miR-148bGSP2 CATGATCAGCTGGGCCAAGAACAAAGTTC miR-148bRP T+CA+GTGCATCACAG −0.2982 10.417 0.24 2.44
SEQ ID NO: 209 SEQ ID NO: 210
miR-149 miR-149GSP2 CATGATCAGCTGGGCCAAGAGGAGTGAAG miR-149RP T+CT+GGCTCCGTGTC −0.2996 8.3392 2.15 21.50
SEQ ID NO: 211 SEQ ID NO: 212
miR-150 miR-150GSP3 CATGATCAGCTGGGCCAAGACACTGGTA miR-150RP T+CT+CCCAACCCTTG −0.2943 8.3945 0.06 0.56
SEQ ID NO: 213 SEQ ID NO: 214
miR-151 miR-151GSP2 CATGATCAGCTGGGCCAAGACCTCAAGGA miR-151RP A+CT+AGACTGAAGCTC −0.2975 8.651 0.16 1.60
SEQ ID NO: 215 SEQ ID NO: 216
miR-152 miR-152GSP2 CATGATCAGCTGGGCCAAGACCCAAGTTC miR-152RP T+CA+GTGCATGACAG −0.2741 8.7404 0.33 3.25
SEQ ID NO: 217 SEQ ID NO: 218
miR-153 miR-153GSP2 CATGATCAGCTGGGCCAAGATCACTTTTG miR-153RP TTG+CAT+AGTCACAAAA −0.2723 9.5732 3.32 33.19
SEQ ID NO: 219 SEQ ID NO: 220
miR-154* miR- CATGATCAGCTGGGCCAAGAAATAGGTCA miR- AATCA+TA+CACGGTTGAC −0.3056 8.8502 0.07 0.74
154*GSP9# SEQ ID NO: 221 154*RP2# SEQ ID NO: 222
miR-154 miR-154GSP9# CATGATCAGCTGGGCCAAGACGAAGGCAA miR- TA+GGTTA+TCCGTGTT −0.3062 9.3947 0.10 0.96
SEQ ID NO: 223 154RP3# SEQ ID NO: 224
miR-155 miR-155GSP8# CATGATCAGCTGGGCCAAGACCCCTATC miR- TT+AA+TGCTAATCGTGATAGG −0.3201 8.474 5.49 54.91
SEQ ID NO: 225 155RP2# SEQ ID NO: 226
miR-181a miR- CATGATCAGCTGGGCCAAGAACTCACCGA miR- AA+CATT+CAACGCTGTC −0.2919 7.968 1.70 17.05
181aGSP9# SEQ ID NO: 227 181aRP2# SEQ ID NO: 228
miR-181c miR- CATGATCAGCTGGGCCAAGAACTCACCGA miR- AA+CATT+CAACCTGTCG −0.3102 7.9029 1.08 10.78
181cGSP9# SEQ ID NO: 229 181cRP2# SEQ ID NO: 230
miR-182* miR-182*GSP CATGATCAGCTGGGCCAAGATAGTTGGCAA miR-182*RP T+GG+TTCTAGACTTGC −0.2978 8.5876 4.25 42.47
SEQ ID NO: 231 SEQ ID NO: 232
miR-182 miR-182GSP2 CATGATCAGCTGGGCCAAGATGTGAGTTC miR-182RP TTT+GG+CAATGGTAG −0.2863 9.0854 1.52 15.20
SEQ ID NO: 233 SEQ ID NO: 234
miR-183 miR-183GSP2 CATGATCAGCTGGGCCAAGACAGTGAATT miR-183RP T+AT+GGCACTGGTAG −0.2774 9.9254 1.95 19.51
SEQ ID NO: 235 SEQ ID NO: 236
miR-184 miR-184GSP2 CATGATCAGCTGGGCCAAGAACCCTTATC miR-184RP T+GG+ACGGAGAACTG −0.2906 7.9585 0.05 0.49
SEQ ID NO: 237 SEQ ID NO: 238
miR-186 miR-186GSP9# CATGATCAGCTGGGCCAAGAAAGCCCAAA miR- CA+AA+GAATT+CTCCTTTTGG −0.2861 8.6152 0.32 3.18
SEQ ID NO: 239 186RP3# SEQ ID NO: 240
miR-187 miR-187GSP CATGATCAGCTGGGCCAAGACGGCTGCAAC miR-187RP T+CG+TGTCTTGTGTT −0.2953 7.9329 1.23 12.31
SEQ ID NO: 241 SEQ ID NO: 242
miR-188 miR-188GSP CATGATCAGCTGGGCCAAGAACCCTCCACC miR-188RP C+AT+CCCTTGCATGG −0.2925 8.0782 8.49 84.92
SEQ ID NO: 243 SEQ ID NO: 244
miR-189 miR-189GSP2 CATGATCAGCTGGGCCAAGAACTGATATC miR-189RP G+TG+CCTACTGAGCT −0.2981 8.8964 0.21 2.08
SEQ ID NO: 245 SEQ ID NO: 246
miR-190 miR-190GSP9# CATGATCAGCTGGGCCAAGAACCTAATAT miR- T+GA+TA+TGTTTGATATATT −0.3317 9.8766 0.43 4.34
SEQ ID NO: 247 190RP4# AG
SEQ ID NO: 248
miR-191 miR-191GSP2 CATGATCAGCTGGGCCAAGAAGCTGCTTT miR-191RP2 C+AA+CGGAATCCCAAAAG −0.299 9.0317 0.41 4.07
SEQ ID NO: 249 SEQ ID NO: 250
miR-192 miR-192GSP2 CATGATCAGCTGGGCCAAGAGGCTGTCAA miR-192RP C+TGA+CCTATGAATTGAC −0.2924 9.5012 1.10 10.98
SEQ ID NO: 251 SEQ ID NO: 252
miR-193 miR-193GSP9# CATGATCAGCTGGGCCAAGACTGGGACTT miR- AA+CT+GGCCTACAAAG −0.3183 8.9942 0.17 1.72
SEQ ID NO: 253 193RP2# SEQ ID NO: 254
miR-194 mir194GSP8# CATGATCAGCTGGGCCAAGATCCACATG mir194RP# TG+TAA+CAGCAACTCCA −0.3078 8.8045 0.37 3.69
SEQ ID NO: 255 SEQ ID NO: 256
miR-195 miR-195GSP9# CATGATCAGCTGGGCCAAGAGCCAATATT miR- T+AG+CAG+CACAGAAATA −0.2955 10.213 0.76 7.58
SEQ ID NO: 257 195RP3# SEQ ID NO: 258
miR-196b miR-196bGSP CATGATCAGCTGGGCCAAGACCAACAACAG miR-196bRP TA+GGT+AGTTTCCTGT −0.301 8.1641 1.47 14.66
SEQ ID NO: 259 SEQ ID NO: 260
miR-196a miR-196aGSP CATGATCAGCTGGGCCAAGACCAACAACAT miR-196aRP TA+GG+TAGTTTCATGTTG −0.2932 8.0448 8.04 80.37
SEQ ID NO: 261 SEQ ID NO: 262
miR-197 miR-197GSP2 CATGATCAGCTGGGCCAAGAGCTGGGTGG miR-197RP TT+CA+CCACCTTCTC −0.289 8.2822 0.71 7.10
SEQ ID NO: 263 SEQ ID NO: 264
miR-198 miR-198GSP3 CATGATCAGCTGGGCCAAGACCTATCTC miR-198RP G+GT+CCAGAGGGGAG −0.2986 8.1359 0.31 3.15
SEQ ID NO: 265 SEQ ID NO: 266
miR- miR- CATGATCAGCTGGGCCAAGAAACCAATGT miR- T+AC+AGTAGTCTGCAC −0.3029 9.0509 0.25 2.52
199a* 199a*GSP2 SEQ ID NO: 267 199a*RP SEQ ID NO: 268
miR-199a miR-199aGSP2 CATGATCAGCTGGGCCAAGAGAACAGGTA miR-199aRP C+CC+AGTGTTCAGAC −0.3187 9.2268 0.12 1.16
SEQ ID NO: 269 SEQ ID NO: 270
miR-199b miR-199bGSP CATGATCAGCTGGGCCAAGAGAACAGATAG miR-199bRP C+CC+AGTGTTTAGAC −0.3165 9.3935 2.00 20.04
SEQ ID NO: 271 SEQ ID NO: 272
miR-200a miR-200aGSP2 CATGATCAGCTGGGCCAAGAACATCGTTA miR-200aRP TAA+CAC+TGTCTGGT −0.2754 9.1227 0.08 0.78
SEQ ID NO: 273 SEQ ID NO: 274
miR-200b miR-200bGSP2 CATGATCAGCTGGGCCAAGAGTCATCATT miR-200bRP TAATA+CTG+CCTGGTAAT −0.2935 8.5461 0.08 0.85
SEQ ID NO: 275 SEQ ID NO: 276
miR-202 miR-202 CATGATCAGCTGGGCCAAGATTTTCCCATG miR-202RP# A+GA+GGTATA+GGGCAT −0.2684 9.056 0.25 2.48
GSP10# SEQ ID NO: 277 SEQ ID NO: 278
miR-203 miR-203GSP2 CATGATCAGCTGGGCCAAGACTAGTGGTC miR-203RP G+TG+AAATGTTTAGGACC −0.2852 8.1279 1.60 16.03
SEQ ID NO: 279 SEQ ID NO: 280
miR-204 miR-204GSP2 CATGATCAGCTGGGCCAAGAAGGCATAGG miR-204RP T+TC+CCTTTGTCATCC −0.2925 8.7648 0.16 1.59
SEQ ID NO: 281 SEQ ID NO: 282
miR-205 miR-205GSP CATGATCAGCTGGGCCAAGACAGACTCCGG miR-205RP T+CCTT+CATTCCACC −0.304 8.2407 9.21 92.15
SEQ ID NO: 283 SEQ ID NO: 284
miR-206 mir206GSP7# CATGATCAGCTGGGCCAAGACCACACA miR-206RP# T+G+GAA+TGTAAGGAAGTGT −0.2815 8.2206 0.29 2.86
SEQ ID NO: 285 SEQ ID NO: 286
miR-208 miR- CATGATCAGCTGGGCCAAGAACAAGCTTTTTGC miR- ATAA+GA+CG+AGCAAAAAG −0.2072 7.9097 57.75 577.52
208_GSP13# SEQ ID NO: 287 208_RP4# SEQ ID NO: 288
miR-210 miR-210GSP CATGATCAGCTGGGCCAAGATCAGCCGCTG miR-210RP C+TG+TGCGTGTGACA −0.2717 8.249 0.18 1.77
SEQ ID NO: 289 SEQ ID NO: 290
miR-211 miR-211GSP2 CATGATCAGCTGGGCCAAGAAGGCGAAGG miR-211RP T+TC+CCTTTGTCATCC −0.2926 8.3106 0.10 1.00
SEQ ID NO: 291 SEQ ID NO: 292
miR-212 miR-212GSP9# CATGATCAGCTGGGCCAAGAGGCCGTGAC miR- T+AA+CAGTCTCCAGTCA −0.2916 8.0745 0.59 5.86
SEQ ID NO: 293 212RP2# SEQ ID NO: 294
miR-213 miR-213GSP CATGATCAGCTGGGCCAAGAGGTACAATCA miR-213RP A+CC+ATCGACCGTTG −0.2934 8.1848 2.96 29.59
SEQ ID NO: 295 SEQ ID NO: 296
miR-214 miR-214GSP CATGATCAGCTGGGCCAAGACTGCCTGTCT miR-214RP A+CA+GCAGGCACAGA −0.2947 7.82 0.84 8.44
SEQ ID NO: 297 SEQ ID NO: 298
miR-215 miR-215GSP2 CATGATCAGCTGGGCCAAGAGTCTGTCAA miR-215RP A+TGA+CCTATGAATTGAC −0.2932 8.9273 1.51 15.05
SEQ ID NO: 299 SEQ ID NO: 300
miR-216 miR-216GSP9# CATGATCAGCTGGGCCAAGACACAGTTGC mir216RP# TAA+TCT+CAGCTGGCA −0.273 8.5829 0.95 9.50
SEQ ID NO: 301 SEQ ID NO: 302
miR-217 miR-217GSP2 CATGATCAGCTGGGCCAAGAATCCAATCA miR-217RP2 T+AC+TGCATCAGGAACTGA −0.3089 9.6502 0.07 0.71
SEQ ID NO: 303 SEQ ID NO: 304
miR-218 miR-218GSP2 CATGATCAGCTGGGCCAAGAACATGGTTA miR-218RP TTG+TGCTT+GATCTAAC −0.2778 8.4363 1.00 10.05
SEQ ID NO: 305 SEQ ID NO: 306
miR-220 miR-220GSP CATGATCAGCTGGGCCAAGAAAAGTGTCAG miR-220RP C+CA+CACCGTATCTG −0.2755 9.0728 8.88 88.75
SEQ ID NO: 307 SEQ ID NO: 308
miR-221 miR-221GSP9# CATGATCAGCTGGGCCAAGAGAAACCCAG miR-221RP# A+GC+TACATTGTCTGC −0.2886 8.5743 0.12 1.17
SEQ ID NO: 309 SEQ ID NO: 310
miR-222 miR-222GSP8# CATGATCAGCTGGGCCAAGAGAGACCCA miR-222RP# A+GC+TACATCTGGCT −0.283 8.91 1.64 16.41
SEQ ID NO: 311 SEQ ID NO: 312
miR-223 miR-223GSP CATGATCAGCTGGGCCAAGAGGGGTATTTG miR-223RP TG+TC+AGTTTGTCAAA −0.2998 8.6669 0.94 9.44
SEQ ID NO: 313 SEQ ID NO: 314
miR-224 miR-224GSP8# CATGATCAGCTGGGCCAAGATAAACGGA miR- C+AAG+TCACTAGTGGTT −0.2802 7.5575 0.56 5.63
SEQ ID NO: 315 224RP2# SEQ ID NO: 316
miR-296 miR-296GSP9# CATGATCAGCTGGGCCAAGAACAGGATTG miR- A+GG+GCCCCCCCTCAA −0.3178 8.3856 0.10 0.96
SEQ ID NO: 317 296RP2# SEQ ID NO: 318
miR-299 miR-299GSP9# CATGATCAGCTGGGCCAAGAATGTATGTG miR-299RP# T+GG+TTTACCGTCCC −0.3155 7.9383 1.30 12.96
SEQ ID NO: 319 SEQ ID NO: 320
miR-301 miR-301GSP CATGATCAGCTGGGCCAAGAGCTTTGACAA miR-301RP C+AG+TGCAATAGTATTGT −0.2839 8.314 2.55 25.52
SEQ ID NO: 321 SEQ ID NO: 322
miR- miR-302a*GSP CATGATCAGCTGGGCCAAGAAAAGCAAGTA miR- TAAA+CG+TGGATGTAC −0.2608 8.3921 0.04 0.41
302a* SEQ ID NO: 323 302a*RP SEQ ID NO: 324
miR-302a miR-302aGSP CATGATCAGCTGGGCCAAGATCACCAAAAC miR-302aRP T+AAG+TGCTTCCATGT −0.2577 9.6657 2.17 21.67
SEQ ID NO: 325 SEQ ID NO: 326
miR- miR-302b*GSP CATGATCAGCTGGGCCAAGAAGAAAGCACT miR- A+CTTTAA+CATGGAAGTG −0.2702 8.5153 0.02 0.24
302b* SEQ ID NO: 327 302b*RP SEQ ID NO: 328
miR-302b miR-302bGSP CATGATCAGCTGGGCCAAGACTACTAAAAC miR-302bRP T+AAG+TGCTTCCATGT −0.2398 9.1459 5.11 51.11
SEQ ID NO: 329 SEQ ID NO: 330
miR-302d miR-302dGSP CATGATCAGCTGGGCCAAGAACACTCAAAC miR-302dRP T+AAG+TGCTTCCATGT −0.2368 8.5602 5.98 59.78
SEQ ID NO: 331 SEQ ID NO: 332
miR- miR- CATGATCAGCTGGGCCAAGACAGCAGGTA miR- TT+TAA+CAT+GGGGGTACC −0.312 8.2904 0.33 3.28
302c* 302c*_GSP9# SEQ ID NO: 333 302c*_RP2# SEQ ID NO: 334
miR-302c miR- CATGATCAGCTGGGCCAAGACCACTGAAA miR- T+AAG+TGCTTCCATGTTTCA −0.2945 8.381 14.28 142.76
302cGSP9# SEQ ID NO: 335 302cRP5# SEQ ID NO: 336
miR-320 miR- CATGATCAGCTGGGCCAAGATTCGCCCT miR- AAAA+GCT+GGGTTGAGAGG −0.2677 7.8956 6.73 67.29
320_GSP8# SEQ ID NO: 337 320_RP3# SEQ ID NO: 338
miR-323 miR-323GSP CATGATCAGCTGGGCCAAGAAGAGGTCGAC miR-323RP G+CA+CATTACACGGT −0.2878 8.2546 0.19 1.92
SEQ ID NO: 339 SEQ ID NO: 340
miR-324- miR-324- CATGATCAGCTGGGCCAAGACCAGCAGCAC miR-324- C+CA+CTGCCCCAGGT −0.2698 8.5223 2.54 25.41
3p 3pGSP SEQ ID NO: 341 3pRP SEQ ID NO: 342
miR-324- miR-324- CATGATCAGCTGGGCCAAGAACACCAATGC miR-324- C+GC+ATCCCCTAGGG −0.2861 7.6865 0.06 0.62
5p 5pGSP SEQ ID NO: 343 5pRP SEQ ID NO: 344
miR-325 miR-325GSP CATGATCAGCTGGGCCAAGAACACTTACTG miR-325RP C+CT+AGTAGGTGTCC −0.2976 8.1925 0.01 0.14
SEQ ID NO: 345 SEQ ID NO: 346
miR-326 miR-326GSP CATGATCAGCTGGGCCAAGACTGGAGGAAG miR-326RP C+CT+CTGGGCCCTTC −0.2806 7.897 0.59 5.87
SEQ ID NO: 347 SEQ ID NO: 348
miR-328 miR-328GSP CATGATCAGCTGGGCCAAGAACGGAAGGGC miR-328RP C+TG+GCCCTCTCTGC −0.293 7.929 3.17 31.69
SEQ ID NO: 349 SEQ ID NO: 350
miR-330 miR-330GSP CATGATCAGCTGGGCCAAGATCTCTGCAGG miR-330RP G+CA+AAGCACACGGC −0.3009 7.7999 0.13 1.30
SEQ ID NO: 351 SEQ ID NO: 352
miR-331 miR-331GSP CATGATCAGCTGGGCCAAGATTCTAGGATA miR-331RP G+CC+CCTGGGCCTAT −0.2816 8.1643 0.45 4.54
SEQ ID NO: 353 SEQ ID NO: 354
miR-337 miR-337GSP CATGATCAGCTGGGCCAAGAAAAGGCATCA miR-337RP T+CC+AGCTCCTATATG −0.2968 8.7313 0.10 1.02
SEQ ID NO: 355 SEQ ID NO: 356
miR-338 miR-338GSP CATGATCAGCTGGGCCAAGATCAACAAAAT miR-338RP2 T+CC+AGCATCAGTGATTT −0.2768 8.5618 0.52 5.17
SEQ ID NO: 357 SEQ ID NO: 358
miR-339 miR-339GSP9# CATGATCAGCTGGGCCAAGATGAGCTCCT miR- T+CC+CTGTCCTCCAGG −0.303 8.4873 0.27 2.72
SEQ ID NO: 359 339RP2# SEQ ID NO: 360
miR-340 miR-340GSP CATGATCAGCTGGGCCAAGAGGCTATAAAG miR-340RP TC+CG+TCTCAGTTAC −0.2846 9.6673 0.15 1.45
SEQ ID NO: 361 SEQ ID NO: 362
miR-342 miR-342GSP3 CATGATCAGCTGGGCCAAGAGACGGGTG miR-342RP T+CT+CACACAGAAATCG −0.293 8.1553 4.69 46.85
SEQ ID NO: 363 SEQ ID NO: 364
miR-345 miR-345GSP CATGATCAGCTGGGCCAAGAGCCCTGGACT miR-345RP T+GC+TGACTCCTAGT −0.2909 8.468 0.04 0.40
SEQ ID NO: 365 SEQ ID NO: 366
miR-346 miR-346GSP CATGATCAGCTGGGCCAAGAAGAGGCAGGC miR-346RP T+GT+CTGCCCGCATG −0.2959 8.1958 0.25 2.54
SEQ ID NO: 367 SEQ ID NO: 368
miR-363 miR-363 CATGATCAGCTGGGCCAAGATACAGATGGA miR-363RP# AAT+TG+CAC+GGTATCC −0.2362 8.9762 0.44 4.36
GSP10# SEQ ID NO: 369 SEQ ID NO: 370
miR-367 miR-367GSP CATGATCAGCTGGGCCAAGATCACCATTGC miR-367RP AAT+TG+CACTTTAGCAAT −0.2819 8.6711 0.00 0.03
SEQ ID NO: 371 SEQ ID NO: 372
miR-368 miR-368GSP CATGATCAGCTGGGCCAAGAAAACGTGGAA miR-368RP2 A+CATAGA+GGAAATTCCAC −0.2953 8.0067 6.01 60.11
SEQ ID NO: 373 SEQ ID NO: 374
miR-370 miR-370GSP CATGATCAGCTGGGCCAAGACCAGGTTCCA miR-370RP G+CC+TGCTGGGGTGG −0.2825 8.3162 1.45 14.55
SEQ ID NO: 375 SEQ ID NO: 376
miR-371 miR-371GSP CATGATCAGCTGGGCCAAGAACACTCAAAA miR-371RP G+TG+CCGCCATCTTT −0.295 7.8812 2.51 25.12
SEQ ID NO: 377 SEQ ID NO: 378
miR-372 miR-372GSP CATGATCAGCTGGGCCAAGAACGCTCAAAT miR-372RP A+AA+GTGCTGCGACA −0.2984 8.9183 0.05 0.53
SEQ ID NO: 379 SEQ ID NO: 380
miR-373* miR-373*GSP CATGATCAGCTGGGCCAAGAGGAAAGCGCC miR-373*RP A+CT+CAAAATGGGGG −0.2705 8.4513 0.20 1.99
SEQ ID NO: 381 SEQ ID NO: 382
miR-373 miR-373GSP CATGATCAGCTGGGCCAAGAACACCCCAAA miR-373RP2 GA+AG+TGCTTCGATTTTGG −0.307 7.9056 9.13 91.32
SEQ ID NO: 383 SEQ ID NO: 384
miR-374 miR-374GSP2 CATGATCAGCTGGGCCAAGACACTTATCA miR-374RP TT+AT+AATA+CAACCTGATA −0.2655 9.3795 9.16 91.60
SEQ ID NO: 385 AG
SEQ ID NO: 386
miR-375 miR-375GSP CATGATCAGCTGGGCCAAGATCACGCGAGC miR-375RP TT+TG+TTCGTTCGGC −0.3041 8.1181 0.09 0.90
SEQ ID NO: 387 SEQ ID NO: 388
miR-376b miR-376b CATGATCAGCTGGGCCAAGAAACATGGA miR- AT+CAT+AGA+GGAAAATCCA −0.2934 9.0188 1.07 10.74
GSP8# SEQ ID NO: 389 376bRP# SEQ ID NO: 390
miR-378 miR-378GSP CATGATCAGCTGGGCCAAGAACACAGGACC miR-378RP C+TC+CTGACTCCAGG −0.2899 8.1467 0.07 0.73
SEQ ID NO: 391 SEQ ID NO: 392
miR-379 miR- CATGATCAGCTGGGCCAAGATACGTTC miR- T+GGT+AGACTATGGAACG −0.2902 8.2149 10.89 108.86
379_GSP7# SEQ ID NO: 393 379RP2# SEQ ID NO: 394
miR-380- miR-380- CATGATCAGCTGGGCCAAGAGCGCATGTTC miR-380- T+GGT+TGACCATAGA −0.2462 9.4324 1.30 13.04
5p 5pGSP SEQ ID NO: 395 5pRP SEQ ID NO: 396
miR-380- miR-380- CATGATCAGCTGGGCCAAGAAAGATGTGGA miR-380- TA+TG+TAATATGGTCCACA −0.3037 8.0356 3.69 36.89
3p 3pGSP SEQ ID NO: 397 3pRP SEQ ID NO: 398
miR-381 miR-381GSP2 CATGATCAGCTGGGCCAAGAACAGAGAGC miR-381RP2 TATA+CAA+GGGCAAGCT −0.3064 8.8704 1.72 17.16
SEQ ID NO: 399 SEQ ID NO: 400
miR-382 miR-382GSP CATGATCAGCTGGGCCAAGACGAATCCACC miR-382RP G+AA+GTTGTTCGTGGT −0.2803 7.6738 0.66 6.57
SEQ ID NO: 401 SEQ ID NO: 402
miR-383 miR-383GSP CATGATCAGCTGGGCCAAGAAGCCACAATC miR-383RP2 A+GATC+AGAAGGTGATTGT −0.2866 8.1463 0.54 5.45
SEQ ID NO: 403 SEQ ID NO: 404
miR-410 miR-410 CATGATCAGCTGGGCCAAGAACAGGCCAT miR-410RP# AA+TA+TAA+CA+CAGATGGC −0.2297 8.5166 4.27 42.71
GSP9# SEQ ID NO: 405 SEQ ID NO: 406
miR-412 miR-412 CATGATCAGCTGGGCCAAGAACGGCTAGTG miR-412RP# A+CTT+CACCTGGTCCACTA −0.3001 7.9099 4.24 42.37
GSP10# SEQ ID NO: 407 SEQ ID NO: 408
miR-422a miR-422aGSP CATGATCAGCTGGGCCAAGAGGCCTTCTGA miR-422aRP C+TG+GACTTAGGGTC −0.3079 9.3108 5.95 59.54
SEQ ID NO: 409 SEQ ID NO: 410
miR-422b miR-422bGSP CATGATCAGCTGGGCCAAGAGGCCTTCTGA miR-422bRP C+TG+GACTTGGAGTC −0.2993 8.9437 4.86 48.56
SEQ ID NO: 411 SEQ ID NO: 412
miR-423 miR-423GSP CATGATCAGCTGGGCCAAGACTGAGGGGCC miR-423RP A+GC+TCGGTCTGAGG −0.3408 9.2274 6.06 60.62
SEQ ID NO: 413 SEQ ID NO: 414
miR-424 miR-424GSP# CATGATCAGCTGGGCCAAGATTCAAAACAT miR- C+AG+CAGCAATTCATGTTTT −0.3569 9.3419 10.78 107.85
SEQ ID NO: 415 424RP2# SEQ ID NO: 416
miR-425 miR-425GSP CATGATCAGCTGGGCCAAGAGGCGGACACG miR-425RP A+TC+GGGAATGTCGT −0.2932 7.9786 0.39 3.93
SEQ ID NO: 417 SEQ ID NO: 418
miR-429 miR- CATGATCAGCTGGGCCAAGAACGGTTTTACC miR- T+AATAC+TG+TCTGGTAAAA −0.2458 8.2805 16.21 162.12
429_GSP11# SEQ ID NO: 419 429RP5# SEQ ID NO: 420
miR-431 miR-431 CATGATCAGCTGGGCCAAGATGCATGACGG miR-431RP# T+GT+CTTGCAGGCCG −0.3107 7.7127 7.00 70.05
GSP10# SEQ ID NO: 421 SEQ ID NO: 422
miR-448 miR-448GSP CATGATCAGCTGGGCCAAGAATGGGACATC miR-448RP TTG+CATA+TGTAGGATG −0.3001 8.4969 0.12 1.16
SEQ ID NO: 423 SEQ ID NO: 424
miR-449 miR- CATGATCAGCTGGGCCAAGAACCAGCTAAC miR- T+GG+CAGTGTATTGTTAGC −0.3225 8.4953 2.57 25.70
449GSP10# SEQ ID NO: 425 449RP2# SEQ ID NO: 426
miR-450 miR-450GSP CATGATCAGCTGGGCCAAGATATTAGGAAC miR-450RP TTTT+TG+CGATGTGTT −0.2906 8.1404 0.48 4.82
SEQ ID NO: 427 SEQ ID NO: 428
miR-451 miR-451 CATGATCAGCTGGGCCAAGAAAACTCAGTA miR-451RP# AAA+CCG+TTA+CCATTACTGA −0.2544 8.0291 1.73 17.35
GSP10# SEQ ID NO: 429 SEQ ID NO: 430
let7a let7a-GSP2# CATGATCAGCTGGGCCAAGAAACTATAC let7a-RP# T+GA+GGTAGTAGGTTG −0.3089 9.458 0.04 0.38
SEQ ID NO: 431 SEQ ID NO: 432
let7b let7b-GSP2# CATGATCAGCTGGGCCAAGAAACCACAC let7b-RP# T+GA+GGTAGTAGGTTG −0.2978 7.9144 0.05 0.54
SEQ ID NO: 433 SEQ ID NO: 432
let7c let7c-GSP2# CATGATCAGCTGGGCCAAGAAACCATAC let7c-RP# T+GA+GGTAGTAGGTTG −0.308 7.9854 0.01 0.14
SEQ ID NO: 434 SEQ ID NO: 432
let7d let7d-GSP2# CATGATCAGCTGGGCCAAGAACTATGCA let7d-RP# A+GA+GGTAGTAGGTTG −0.3238 8.3359 0.06 0.57
SEQ ID NO: 435 SEQ ID NO: 436
let7e let7e-GSP2# CATGATCAGCTGGGCCAAGAACTATACA let7e-RP# T+GA+GGTAGGAGGTTG −0.3284 9.7594 0.22 2.20
SEQ ID NO: 437 SEQ ID NO: 438
let7f let7f-GSP2# CATGATCAGCTGGGCCAAGAAACTATAC let7f-RP# T+GA+GGTAGTAGATTG −0.2901 11.107 0.32 3.18
SEQ ID NO: 439 SEQ ID NO: 440
let7g let7g-GSP2# CATGATCAGCTGGGCCAAGAACTGTACA let7g-RP# T+GA+GGTAGTAGTTTG −0.3469 9.8235 0.16 1.64
SEQ ID NO: 441 SEQ ID NO: 442
let7i let7i-GSP2# CATGATCAGCTGGGCCAAGAACAGCACA let7i-RP# T+GA+GGTAGTAGTTTG −0.321 10.82 0.20 1.99
SEQ ID NO: 443 SEQ ID NO: 444
miR-377 miR-377GSP CATGATCAGCTGGGCCAAGAACAAAAGTTG miR-377RP2 AT+CA+CACAAAGGCAAC −0.2979 10.612 13.45 134.48
SEQ ID NO: 445 SEQ ID NO: 446
miR-376a miR- CATGATCAGCTGGGCCAAGAACGTGGA miR- AT+CAT+AGA+GGAAAATCC −0.2938 10.045 63.00 630.00
376a_GSP7 SEQ ID NO: 447 376a_RP5 SEQ ID NO: 448
miR-22 miR-22GSP CATGATCAGCTGGGCCAAGAACAGTTCTTC miR-22RP A+AG+CTGCCAGTTGA −0.2862 8.883 20.46 204.58
SEQ ID NO: 449 SEQ ID NO: 450
miR-200c miR-200cGSP2 CATGATCAGCTGGGCCAAGACCATCATTA miR-200cRP T+AA+TACTGCCGGGT −0.3094 11.5 15.99 159.91
SEQ ID NO: 451 SEQ ID NO: 452
miR-24 miR-24GSP CATGATCAGCTGGGCCAAGACTGTTCCTGC miR-24RP T+GG+CTCAGTTCAGC −0.3123 8.6824 24.34 243.38
SEQ ID NO: 453 SEQ ID NO: 454
miR- miR-29cGSP10 CATGATCAGCTGGGCCAAGAACCGATTTCA miR-29cRP T+AG+CACCATTTGAAAT −0.2975 8.8441 23.22 232.17
29cDNA SEQ ID NO: 455 SEQ ID NO: 456
miR-18 miR-18GSP CATGATCAGCTGGGCCAAGATATCTGCACT miR-18RP T+AA+GGTGCATCTAGT −0.3209 9.0999 14.90 149.01
SEQ ID NO: 457 SEQ ID NO: 458
miR-185 miR-185GSP CATGATCAGCTGGGCCAAGAGAACTGCCTT miR-185RP T+GG+AGAGAAAGGCA −0.3081 8.9289 15.73 157.32
SEQ ID NO: 459 SEQ ID NO: 460
miR-181b miR- CATGATCAGCTGGGCCAAGACCCACCGA miR- AA+CATT+CATTGCTGTC −0.3115 10.846 15.87 158.67
181bGSP8# SEQ ID NO: 461 181bRP2# SEQ ID NO: 462
miR-128a miR-128aGSP CATGATCAGCTGGGCCAAGAAAAAGAGACC miR- TCACAGTGAACCGGT approx. approx. approx. approx.
SEQ ID NO: 161 128anLRP SEQ ID NO: 494 −0.2866 8.0867 0.16 1.60
miR-138 miR-138GSP2 CATGATCAGCTGGGCCAAGACGGCCTGAT miR- AGCTGGTGTTGTGAA approx. approx. approx. approx.
SEQ ID NO: 187 138nLRP SEQ ID NO: 495 −0.3023 9.0814 0.22 2.19
miR-143 miR-143GSP8# CATGATCAGCTGGGCCAAGATGAGCTAC miR- TGAGATGAAGCACTGT approx. approx. approx. approx.
SEQ ID NO: 197 143nLRP SEQ ID NO: 496 −0.3008 9.2675 0.37 3.71
miR-150 miR-150GSP3 CATGATCAGCTGGGCCAAGACACTGGTA miR- TCTCCCAACCCTTGTA approx. approx. approx. approx.
SEQ ID NO: 213 150nLRP SEQ ID NO: 497 −0.2943 8.3945 0.06 0.56
miR-181a miR- CATGATCAGCTGGGCCAAGAACTCACCGA miR- AACATTCAACGCTGT approx. approx. approx. approx.
181aGSP9# SEQ ID NO: 227 181anLRP SEQ ID NO: 498 −0.2919 7.968 1.70 17.05
miR-194 mir194GSP8# CATGATCAGCTGGGCCAAGATCCACATG miR- TGTAACAGCAACTCCA approx. approx. approx. approx.
SEQ ID NO: 255 194nLRP SEQ ID NO: 499 −0.3078 8.8045 0.37 3.69
#denotes primers for assays that required extensive testing and primer design modification to achieve optimal assay results including high sensitivity and high dynamic range.
Example 4 This Example describes assays and primers designed for quantitative analysis of murine miRNA expression patterns.
Methods: The representative murine microRNA target templates described in TABLE 7 are publicly available accessible on the World Wide Web at the Wellcome Trust Sanger Institute website in the “miRBase sequence database” as described in Griffith-Jones et al. (2004), Nucleic Acids Research 32:D109-D111 and Griffith-Jones et al. (2006), Nucleic Acids Research 34: D140-D144. As indicated below in TABLE 7, the murine microRNA templates are either totally identical to the corresponding human microRNA templates, identical in the overlapping sequence with differing ends, or contain one or more base pair changes as compared to the human microRNA sequence. The murine microRNA templates that are identical or that have identical overlapping sequence to the corresponding human templates can be assayed using the same primer sets designed for the human microRNA templates, as indicated in TABLE 7. For the murine microRNA templates with one or more base pair changes in comparison to the corresponding human templates, primer sets have been designed specifically for detection of the murine microRNA, and these primers are provided in TABLE 7. The extension primer reaction and quantitative PCR reactions for detection of the murine microRNA templates may be carried out as described in EXAMPLE 3.
TABLE 7
PRIMERS TO DETECT MURINE MICRORNA TARGET TEMPLATES
Mouse Target Mouse microRNA as compared
microRNA: Extension Primer Name Extension Primer Sequence Reverse Primer Name Reverse Primer Sequence to Human microRNA
miR-1 miR1GSP10 CATGATCAGCTGGGCCAAGATACATACTTC miR-1RP T+G+GAA+TG+TAAAGAAGT Identical
SEQ ID NO: 47 SEQ ID NO: 48
miR-7 miR-7GSP10 CATGATCAGCTGGGCCAAGAAACAAAATC miR-7_RP6 T+GGAA+GACTTGTGATTTT one or more base pairs differ
SEQ ID NO: 486 SEQ ID NO: 487
miR-9* miR-9*GSP CATGATCAGCTGGGCCAAGAACTTTCGGTT miR-9*RP TAAA+GCT+AGATAACCG Identical overlapping sequence,
SEQ ID NO: 51 SEQ ID NO: 52 ends differ
miR-10a miR-10aGSP CATGATCAGCTGGGCCAAGACACAAATTCG miR-10aRP T+AC+CCTGTAGATCCG Identical
SEQ ID NO: 53 SEQ ID NO: 54
miR-10b miR-10b_GSP11 CATGATCAGCTGGGCCAAGAACACAAATTCG miR-10b_RP2 C+CC+TGT+AGAACCGAAT one or more base pairs differ
SEQ ID NO: 492 SEQ ID NO: 493
miR-15a miR-15aGSP CATGATCAGCTGGGCCAAGACACAAACCAT miR-15aRP T+AG+CAGCACATAATG Identical
SEQ ID NO: 57 SEQ ID NO: 58
miR-15b miR-15bGSP2 CATGATCAGCTGGGCCAAGATGTAAACCA miR-15bRP T+AG+CAGCACATCAT Identical
SEQ ID NO: 59 SEQ ID NO: 60
miR-16 miR-16GSP2 CATGATCAGCTGGGCCAAGACGCCAATAT miR-16RP T+AG+CAGCACGTAAA Identical
SEQ ID NO: 61 SEQ ID NO: 62
miR-17-3p miR-17-3pGSP CATGATCAGCTGGGCCAAGAACAAGTGCCC miR-17-3pRP A+CT+GCAGTGAGGGC one or more base pairs differ
SEQ ID NO: 463 SEQ ID NO: 464
miR-17-5p miR-17-5pGSP2 CATGATCAGCTGGGCCAAGAACTACCTGC miR-17-5pRP C+AA+AGTGCTTACAGTG Identical
SEQ ID NO: 65 SEQ ID NO: 66
miR-19a miR-19aGSP2 CATGATCAGCTGGGCCAAGATCAGTTTTG miR-19aRP TG+TG+CAAATCTATGC Identical
SEQ ID NO: 67 SEQ ID NO: 68
miR-19b miR-19bGSP CATGATCAGCTGGGCCAAGATCAGTTTTGC miR-19bRP TG+TG+CAAATCCATG Identical
SEQ ID NO: 69 SEQ ID NO: 70
miR-20 miR-20GSP3 CATGATCAGCTGGGCCAAGACTACCTGC miR-20RP T+AA+AGTGCTTATAGTGCA Identical
SEQ ID NO: 71 SEQ ID NO: 72
miR-21 miR-21GSP2 CATGATCAGCTGGGCCAAGATCAACATCA miR-21RP T+AG+CTTATCAGACTGATG Identical
SEQ ID NO: 73 SEQ ID NO: 74
miR-23a miR-23aGSP CATGATCAGCTGGGCCAAGAGGAAATCCCT miR-23aRP A+TC+ACATTGCCAGG Identical
SEQ ID NO: 75 SEQ ID NO: 76
miR-23b miR-23bGSP CATGATCAGCTGGGCCAAGAGGTAATCCCT miR-23bRP A+TC+ACATTGCCAGG Identical
SEQ ID NO: 77 SEQ ID NO: 78
miR-24 miR-24P5 CATGATCAGCTGGGCCAAGACTGTTCCTGC miR24-1,2R TGG+CTCAGTTCAGC Identical
TG SEQ ID NO: 19
SEQ ID NO: 7
miR-25 miR-25GSP CATGATCAGCTGGGCCAAGATCAGACCGAG miR-25RP C+AT+TGCACTTGTCTC Identical
SEQ ID NO: 79 SEQ ID NO: 80
miR-26a miR-26aGSP9 CATGATCAGCTGGGCCAAGAGCCTATCCT miR-26aRP2 TT+CA+AGTAATCCAGGAT Identical
SEQ ID NO: 81 SEQ ID NO: 82
miR-26b miR-26bGSP9 CATGATCAGCTGGGCCAAGAAACCTATCC miR-26bRP2 TT+CA+AGT+AATTCAGGAT Identical
SEQ ID NO: 83 SEQ ID NO: 84
miR-27a miR-27aGSP CATGATCAGCTGGGCCAAGAGCGGAACTTA miR-27aRP TT+CA+CAGTGGCTAA Identical
SEQ ID NO: 85 SEQ ID NO: 86
miR-27b miR-27bGSP CATGATCAGCTGGGCCAAGAGCAGAACTTA miR-27bRP TT+CA+CAGTGGCTAA Identical
SEQ ID NO: 87 SEQ ID NO: 88
miR-28 miR-28GSP CATGATCAGCTGGGCCAAGACTCAATAGAC miR-28RP A+AG+GAGCTCACAGT Identical
SEQ ID NO: 89 SEQ ID NO: 90
miR-29a miR-29aGSP8 CATGATCAGCTGGGCCAAGAAACCGATT miR-29aRP2 T+AG+CACCATCTGAAAT Identical
SEQ ID NO: 91 SEQ ID NO: 92
miR-29b miR-29bGSP2 CATGATCAGCTGGGCCAAGAAACACTGAT miR-29bRP2 T+AG+CACCATTTGAAATCAG Identical
SEQ ID NO: 93 SEQ ID NO: 94
miR-30a-5p miR-30a-5pGSP CATGATCAGCTGGGCCAAGACTTCCAGTCG miR-30a-5pRP T+GT+AAACATCCTCGAC Identical
SEQ ID NO: 95 SEQ ID NO: 96
miR-30b miR-30bGSP CATGATCAGCTGGGCCAAGAAGCTGAGTGT miR-30bRP TGT+AAA+CATCCTACACT Identical
SEQ ID NO: 97 SEQ ID NO: 98
miR-30c miR-30cGSP CATGATCAGCTGGGCCAAGAGCTGAGAGTG miR-30cRP TGT+AAA+CATCCTACACT Identical
SEQ ID NO: 99 SEQ ID NO: 100
miR-30d miR-30dGSP CATGATCAGCTGGGCCAAGACTTCCAGTCG miR-30dRP T+GTAAA+CATCCCCG Identical
SEQ ID NO: 101 SEQ ID NO: 102
miR-30e-3p miR-30e-3pGSP9 CATGATCAGCTGGGCCAAGAGCTGTAAAC miR-30e-3pRP5 CTTT+CAGT+CGGATGTTT Identical
SEQ ID NO: 103 SEQ ID NO: 104
miR-31 miR-31GSP CATGATCAGCTGGGCCAAGACAGCTATGCC miR-31RP G+GC+AAGATGCTGGC Identical overlapping sequence,
SEQ ID NO: 107 SEQ ID NO: 108 ends differ
miR-32 miR-32GSP CATGATCAGCTGGGCCAAGAGCAACTTAGT miR-32RP TATTG+CA+CATTACTAAG Identical
SEQ ID NO: 109 SEQ ID NO: 110
miR-33 miR-33GSP2 CATGATCAGCTGGGCCAAGACAATGCAAC miR-33RP G+TG+CATTGTAGTTGC Identical
SEQ ID NO: 111 SEQ ID NO: 112
miR-34a miR-34aGSP CATGATCAGCTGGGCCAAGAAACAACCAGC miR-34aRP T+GG+CAGTGTCTTAG Identical
SEQ ID NO: 113 SEQ ID NO: 114
miR-34b miR-34bGSP CATGATCAGCTGGGCCAAGACAATCAGCTA miR-34bRP TA+GG+CAGTGTAATT one or more base pairs differ
SEQ ID NO: 115 SEQ ID NO: 482
miR-34c miR-34cGSP CATGATCAGCTGGGCCAAGAGCAATCAGCT miR-34cRP A+GG+CAGTGTAGTTA Identical
SEQ ID NO: 117 SEQ ID NO: 118
miR-92 miR-92GSP CATGATCAGCTGGGCCAAGACAGGCCGGGA miR-92RP T+AT+TGCACTTGTCCC Identical
SEQ ID NO: 119 SEQ ID NO: 120
miR-93 miR-93GSP CATGATCAGCTGGGCCAAGACTACCTGCAC miR-93RP AA+AG+TGCTGTTCGT Identical overlapping sequence,
SEQ ID NO: 121 SEQ ID NO: 122 ends differ
miR-96 miR-96GSP CATGATCAGCTGGGCCAAGAGCAAAAATGT miR-96RP T+TT+GGCACTAGCAC Identical overlapping sequence,
SEQ ID NO: 125 SEQ ID NO: 126 ends differ
miR-98 miR-98GSP CATGATCAGCTGGGCCAAGAAACAATACAA miR-98RP TGA+GGT+AGTAAGTTG Identical
SEQ ID NO: 127 SEQ ID NO: 128
miR-99a miR-99aGSP CATGATCAGCTGGGCCAAGACACAAGATCG miR-99aRP A+AC+CCGTAGATCCG Identical overlapping sequence,
SEQ ID NO: 129 SEQ ID NO: 130 ends differ
miR-99b miR-99bGSP CATGATCAGCTGGGCCAAGACGCAAGGTCG miR-99bRP C+AC+CCGTAGAACCG Identical
SEQ ID NO: 131 SEQ ID NO: 132
miR-100 miR-100GSP CATGATCAGCTGGGCCAAGACACAAGTTCG miR-100RP A+AC+CCGTAGATCCG Identical
SEQ ID NO: 133 SEQ ID NO: 134
miR-101 miR-101GSP CATGATCAGCTGGGCCAAGACTTCAGTTAT miR-101RP TA+CAG+TACTGTGATAACT Identical
SEQ ID NO: 135 SEQ ID NO: 136
miR-103 miR-103GSP CATGATCAGCTGGGCCAAGATCATAGCCCT miR-103RP A+GC+AGCATTGTACA Identical
SEQ ID NO: 137 SEQ ID NO: 138
miR-106a miR-106aGSP CATGATCAGCTGGGCCAAGATACCTGCAC miR-106aRP CAA+AG+TGCTAACAGTG one or more base pairs differ
SEQ ID NO: 472 SEQ ID NO: 473
miR-106b miR-106bGSP CATGATCAGCTGGGCCAAGAATCTGCACTG miR-106bRP T+AAAG+TGCTGACAGT Identical
SEQ ID NO: 143 SEQ ID NO: 144
miR-107 miR-107GSP8 CATGATCAGCTGGGCCAAGATGATAGCC miR-107RP2 A+GC+AGCATTGTACAG Identical
SEQ ID NO: 145 SEQ ID NO: 146
miR-122a miR-122aGSP CATGATCAGCTGGGCCAAGAACAAACACCA miR-122aRP T+GG+AGTGTGACAAT Identical
SEQ ID NO: 147 SEQ ID NO: 148
miR-124a miR-124aGSP CATGATCAGCTGGGCCAAGATGGCATTCAC miR-124aRP T+TA+AGGCACGCGGT Identical overlapping sequence,
SEQ ID NO: 149 SEQ ID NO: 150 ends differ
miR-125a miR-125aGSP CATGATCAGCTGGGCCAAGACACAGGTTAA miR-125aRP T+CC+CTGAGACCCTT Identical
SEQ ID NO: 151 SEQ ID NO: 152
miR-125b miR-125bGSP CATGATCAGCTGGGCCAAGATCACAAGTTA miR-125bRP T+CC+CTGAGACCCTA Identical
SEQ ID NO: 153 SEQ ID NO: 154
miR-126 miR-126GSP CATGATCAGCTGGGCCAAGAGCATTATTAC miR-126RP T+CG+TACCGTGAGTA Identical
SEQ ID NO: 155 SEQ ID NO: 156
miR-126* miR-126*GSP3 CATGATCAGCTGGGCCAAGACGCGTACC miR-126*RP C+ATT+ATTA+CTTTTGGTACG Identical
SEQ ID NO: 157 SEQ ID NO: 158
miR-127 miR-127GSP CATGATCAGCTGGGCCAAGAAGCCAAGCTC miR-127RP T+CG+GATCCGTCTGA Identical overlapping sequence,
SEQ ID NO: 159 SEQ ID NO: 160 ends differ
miR-128a miR-128aGSP CATGATCAGCTGGGCCAAGAAAAAGAGACC miR-128aRP T+CA+CAGTGAACCGG Identical
SEQ ID NO: 161 SEQ ID NO: 162
miR-128b miR-128bGSP CATGATCAGCTGGGCCAAGAGAAAGAGACC miR-128bRP T+CA+CAGTGAACCGG Identical
SEQ ID NO: 163 SEQ ID NO: 164
miR-130a miR-130aGSP CATGATCAGCTGGGCCAAGAATGCCCTTTT miR-130aRP C+AG+TGCAATGTTAAAAG Identical
SEQ ID NO: 167 SEQ ID NO: 168
miR-130b miR-130bGSP CATGATCAGCTGGGCCAAGAATGCCCTTTC miR-130bRP C+AG+TGCAATGATGA Identical
SEQ ID NO: 169 SEQ ID NO: 170
miR-132 miR-132GSP CATGATCAGCTGGGCCAAGACGACCATGGC miR-132RP T+AA+CAGTCTACAGCC Identical
SEQ ID NO: 171 SEQ ID NO: 172
miR-133a miR-133aGSP CATGATCAGCTGGGCCAAGAACAGCTGGTT miR-133aRP T+TG+GTCCCCTTCAA Identical
SEQ ID NO: 173 SEQ ID NO: 174
miR-133b miR-133bGSP CATGATCAGCTGGGCCAAGATAGCTGGTTG miR-133bRP T+TG+GTCCCCTTCAA Identical
SEQ ID NO: 175 SEQ ID NO: 176
miR-134 miR-134GSP CATGATCAGCTGGGCCAAGACCCTCTGGTC miR-134RP T+GT+GACTGGTTGAC Identical overlapping sequence,
SEQ ID NO: 177 SEQ ID NO: 178 ends differ
miR-135a miR-135aGSP CATGATCAGCTGGGCCAAGATCACATAGGA miR-135aRP T+AT+GGCTTTTTATTCCT Identical
SEQ ID NO: 179 SEQ ID NO: 180
miR-135b miR-135bGSP CATGATCAGCTGGGCCAAGACACATAGGAA miR-135bRP T+AT+GGCTTTTCATTCC Identical
SEQ ID NO: 181 SEQ ID NO: 182
miR-136 miR-136GSP CATGATCAGCTGGGCCAAGATCCATCATCA miR-136RP A+CT+CCATTTGTTTTGATG Identical
SEQ ID NO: 183 SEQ ID NO: 184
miR-137 miR-137GSP CATGATCAGCTGGGCCAAGACTACGCGTAT miR-137RP T+AT+TGCTTAAGAATACGC Identical overlapping sequence,
SEQ ID NO: 185 SEQ ID NO: 186 ends differ
miR-138 miR-138GSP2 CATGATCAGCTGGGCCAAGACGGCCTGAT miR-138RP A+GC+TGGTGTTGTGA Identical
SEQ ID NO: 187 SEQ ID NO: 188
miR-139 miR-139GSP CATGATCAGCTGGGCCAAGAAGACACGTGC miR-139RP T+CT+ACAGTGCACGT Identical
SEQ ID NO: 189 SEQ ID NO: 190
miR-140 miR-140GSP CATGATCAGCTGGGCCAAGACTACCATAGG miR-140RP A+GT+GGTTTTACCCT Identical overlapping sequence,
SEQ ID NO: 191 SEQ ID NO: 192 ends differ
miR-141 miR-141GSP9 CATGATCAGCTGGGCCAAGACCATCTTTA miR-141RP2 TAA+CAC+TGTCTGGTAA Identical
SEQ ID NO: 193 SEQ ID NO: 194
miR-142-3p miR-142-3pGSP3 CATGATCAGCTGGGCCAAGATCCATAAA miR-142-3pRP TGT+AG+TGTTTCCTACT Identical overlapping sequence,
SEQ ID NO: 195 SEQ ID NO: 196 ends differ
miR-143 miR-143GSP8 CATGATCAGCTGGGCCAAGATGAGCTAC miR-143RP2 T+GA+GATGAAGCACTG Identical
SEQ ID NO: 197 SEQ ID NO: 198
miR-144 miR-144GSP2 CATGATCAGCTGGGCCAAGACTAGTACAT miR-144RP TA+CA+GTAT+AGATGATG Identical
SEQ ID NO: 199 SEQ ID NO: 200
miR-145 miR-145GSP2 CATGATCAGCTGGGCCAAGAAAGGGATTC miR-145RP G+TC+CAGTTTTCCCA Identical
SEQ ID NO: 201 SEQ ID NO: 202
miR-146 miR-146GSP3 CATGATCAGCTGGGCCAAGAAACCCATG miR-146RP T+GA+GAACTGAATTCCA Identical
SEQ ID NO: 203 SEQ ID NO: 204
miR-148a miR-148aGSP2 CATGATCAGCTGGGCCAAGAACAAAGTTC miR-148aRP2 T+CA+GTGCACTACAGAACT Identical
SEQ ID NO: 207 SEQ ID NO: 208
miR-148b miR-148bGSP2 CATGATCAGCTGGGCCAAGAACAAAGTTC miR-148bRP T+CA+GTGCATCACAG Identical
SEQ ID NO: 209 SEQ ID NO: 210
miR-149 miR-149GSP2 CATGATCAGCTGGGCCAAGAGGAGTGAAG miR-149RP T+CT+GGCTCCGTGTC Identical
SEQ ID NO: 211 SEQ ID NO: 212
miR-150 miR-150GSP3 CATGATCAGCTGGGCCAAGACACTGGTA miR-150RP T+CT+CCCAACCCTTG Identical
SEQ ID NO: 213 SEQ ID NO: 214
miR-151 miR-151GSP2 CATGATCAGCTGGGCCAAGACCTCAAGGA miR-151RP A+CT+AGACTGAGGCTC one or more base pairs differ
SEQ ID NO: 215 SEQ ID NO: 477
miR-152 miR-152GSP2 CATGATCAGCTGGGCCAAGACCCAAGTTC miR-152RP T+CA+GTGCATGACAG Identical
SEQ ID NO: 217 SEQ ID NO: 218
miR-153 miR-153GSP2 CATGATCAGCTGGGCCAAGATCACTTTTG miR-153RP TTG+CAT+AGTCACAAAA Identical overlapping sequence,
SEQ ID NO: 219 SEQ ID NO: 220 ends differ
miR-154 miR-154GSP9 CATGATCAGCTGGGCCAAGACGAAGGCAA miR-154RP3 TA+GGTTA+TCCGTGTT Identical
SEQ ID NO: 223 SEQ ID NO: 224
miR-155 miR-155GSP8 CATGATCAGCTGGGCCAAGACCCCTATC miR-155RP2 TT+AA+TGCTAATTGTGATAGG one or more base pairs differ
SEQ ID NO: 225 SEQ ID NO: 489
miR-181a miR-181aGSP9 CATGATCAGCTGGGCCAAGAACTCACCGA miR-181aRP2 AA+CATT+CAACGCTGTC Identical
SEQ ID NO: 227 SEQ ID NO: 228
miR-181c miR-181cGSP9 CATGATCAGCTGGGCCAAGAACTCACCGA miR-181cRP2 AA+CATT+CAACCTGTCG Identical
SEQ ID NO: 229 SEQ ID NO: 230
miR-182 miR-182*GSP CATGATCAGCTGGGCCAAGATAGTTGGCAA miR-182*RP T+GG+TTCTAGACTTGC Identical
SEQ ID NO: 231 SEQ ID NO: 232
miR-183 miR-183GSP2 CATGATCAGCTGGGCCAAGACAGTGAATT miR-183RP T+AT+GGCACTGGTAG Identical
SEQ ID NO: 235 SEQ ID NO: 236
miR-184 miR-184GSP2 CATGATCAGCTGGGCCAAGAACCCTTATC miR-184RP T+GG+ACGGAGAACTG Identical
SEQ ID NO: 237 SEQ ID NO: 238
miR-186 miR-186GSP9 CATGATCAGCTGGGCCAAGAAAGCCCAAA miR-186RP3 CA+AA+GAATT+CTCCTTTTGG Identical
SEQ ID NO: 239 SEQ ID NO: 240
miR-187 miR-187GSP CATGATCAGCTGGGCCAAGACGGCTGCAAC miR-187RP T+CG+TGTCTTGTGTT Identical overlapping sequence,
SEQ ID NO: 241 SEQ ID NO: 242 ends differ
miR-188 miR-188GSP CATGATCAGCTGGGCCAAGAACCCTCCACC miR-188RP C+AT+CCCTTGCATGG Identical
SEQ ID NO: 243 SEQ ID NO: 244
miR-189 miR-189GSP2 CATGATCAGCTGGGCCAAGAACTGATATC miR-189RP G+TG+CCTACTGAGCT Identical
SEQ ID NO: 245 SEQ ID NO: 246
miR-190 miR-190GSP9 CATGATCAGCTGGGCCAAGAACCTAATAT miR-190RP4 T+GA+TA+TGTTTGATATATTAG Identical
SEQ ID NO: 247 SEQ ID NO: 248
miR-191 miR-191GSP2 CATGATCAGCTGGGCCAAGAAGCTGCTTT miR-191RP2 C+AA+CGGAATCCCAAAAG Identical
SEQ ID NO: 249 SEQ ID NO: 250
miR-192 miR-192GSP2 CATGATCAGCTGGGCCAAGAGGCTGTCAA miR-192RP C+TGA+CCTATGAATTGAC Identical overlapping sequence,
SEQ ID NO: 251 SEQ ID NO: 252 ends differ
miR-193 miR-193GSP9 CATGATCAGCTGGGCCAAGACTGGGACTT miR-193RP2 AA+CT+GGCCTACAAAG Identical
SEQ ID NO: 253 SEQ ID NO: 254
miR-194 mir194GSP8 CATGATCAGCTGGGCCAAGATCCACATG mir194RP TG+TAA+CAGCAACTCCA Identical
SEQ ID NO: 255 SEQ ID NO: 256
miR-195 miR-195GSP9 CATGATCAGCTGGGCCAAGAGCCAATATT miR-195RP3 T+AG+CAG+CACAGAAATA Identical
SEQ ID NO: 257 SEQ ID NO: 258
miR-196a miR-196aGSP CATGATCAGCTGGGCCAAGACCAACAACAT miR-196aRP TA+GG+TAGTTTCATGTTG Identical
SEQ ID NO: 261 SEQ ID NO: 262
miR-196b miR-196bGSP CATGATCAGCTGGGCCAAGACCAACAACAG miR-196bRP TA+GGT+AGTTTCCTGT Identical
SEQ ID NO: 259 SEQ ID NO: 260
miR-199a* miR-199a*GSP2 CATGATCAGCTGGGCCAAGAAACCAATGT miR-199a*RP T+AC+AGTAGTCTGCAC Identical
SEQ ID NO: 267 SEQ ID NO: 268
miR-199a miR-199aGSP2 CATGATCAGCTGGGCCAAGAGAACAGGTA miR-199aRP C+CC+AGTGTTCAGAC Identical
SEQ ID NO: 269 SEQ ID NO: 270
miR-199b miR-199bGSP CATGATCAGCTGGGCCAAGAGAACAGGTAG miR-199bRP C+CC+AGTGTTTAGAC one or more base pairs differ
SEQ ID NO: 475 SEQ ID NO: 272
miR-200a miR-200aGSP2 CATGATCAGCTGGGCCAAGAACATCGTTA miR-200aRP TAA+CAC+TGTCTGGT Identical
SEQ ID NO: 273 SEQ ID NO: 274
miR-200b miR-200bGSP2 CATGATCAGCTGGGCCAAGAGTCATCATT miR-200bRP TAATA+CTG+CCTGGTAAT Identical
SEQ ID NO: 275 SEQ ID NO: 276
miR-203 miR-203GSP2 CATGATCAGCTGGGCCAAGACTAGTGGTC miR-203RP G+TG+AAATGTTTAGGACC Identical overlapping sequence,
SEQ ID NO: 279 SEQ ID NO: 280 ends differ
miR-204 miR-204GSP2 CATGATCAGCTGGGCCAAGAAGGCATAGG miR-204RP T+TC+CCTTTGTCATCC Identical overlapping sequence,
SEQ ID NO: 281 SEQ ID NO: 282 ends differ
miR-205 miR-205GSP CATGATCAGCTGGGCCAAGACAGACTCCGG miR-205RP T+CCTT+CATTCCACC Identical
SEQ ID NO: 283 SEQ ID NO: 284
miR-206 mir206GSP7 CATGATCAGCTGGGCCAAGACCACACA miR-206RP T+G+GAA+TGTAAGGAAGTGT Identical
SEQ ID NO: 285 SEQ ID NO: 286
miR-208 miR-208_GSP13 CATGATCAGCTGGGCCAAGAACAAGCTTTT miR-208_RP4 ATAA+GA+CG+AGCAAAAAG Identical
TGC SEQ ID NO: 288
SEQ ID NO: 287
miR-210 miR-210GSP CATGATCAGCTGGGCCAAGATCAGCCGCTG miR-210RP C+TG+TGCGTGTGACA Identical
SEQ ID NO: 289 SEQ ID NO: 290
miR-211 miR-211GSP2 CATGATCAGCTGGGCCAAGAAGGCAAAGG miR-211RP T+TC+CCTTTGTCATCC one or more base pairs differ
SEQ ID NO: 491 SEQ ID NO: 292
miR-212 miR-212GSP9 CATGATCAGCTGGGCCAAGAGGCCGTGAC miR-212RP2 T+AA+CAGTCTCCAGTCA Identical
SEQ ID NO: 293 SEQ ID NO: 294
miR-213 miR-213GSP CATGATCAGCTGGGCCAAGAGGTACAATCA miR-213RP A+CC+ATCGACCGTTG Identical
SEQ ID NO: 295 SEQ ID NO: 296
miR-214 miR-214GSP CATGATCAGCTGGGCCAAGACTGCCTGTCT miR-214RP A+CA+GCAGGCACAGA Identical
SEQ ID NO: 297 SEQ ID NO: 298
miR-215 miR-215GSP2 CATGATCAGCTGGGCCAAGAGTCTGTCAA miR-215RP A+TGA+CCTATGATTTGAC one or more base pairs differ
SEQ ID NO: 299 SEQ ID NO: 469
miR-216 miR-216GSP9 CATGATCAGCTGGGCCAAGACACAGTTGC mir216RP TAA+TCT+CAGCTGGCA Identical
SEQ ID NO: 301 SEQ ID NO: 302
miR-217 miR-217GSP2 CATGATCAGCTGGGCCAAGAATCCAGTCA miR-217RP2 T+AC+TGCATCAGGAACTGA one or more base pairs differ
SEQ ID NO: 481 SEQ ID NO: 304
miR-218 miR-218GSP2 CATGATCAGCTGGGCCAAGAACATGGTTA miR-218RP TTG+TGCTT+GATCTAAC Identical
SEQ ID NO: 305 SEQ ID NO: 306
miR-221 miR-221GSP9 CATGATCAGCTGGGCCAAGAGAAACCCAG miR-221RP A+GC+TACATTGTCTGC Identical overlapping sequence,
SEQ ID NO: 309 SEQ ID NO: 310 ends differ
miR-222 miR-222GSP8 CATGATCAGCTGGGCCAAGAGAGACCCA miR-222RP A+GC+TACATCTGGCT Identical
SEQ ID NO: 311 SEQ ID NO: 312
miR-223 miR-223GSP CATGATCAGCTGGGCCAAGAGGGGTATTTG miR-223RP TG+TC+AGTTTGTCAAA Identical
SEQ ID NO: 313 SEQ ID NO: 314
miR-224 miR-224GSP8 CATGATCAGCTGGGCCAAGATAAACGGA miR-224RP2 C+AAG+TCACTAGTGGTT Identical overlapping sequence,
SEQ ID NO: 315 SEQ ID NO: 316 ends differ
miR-296 miR-296GSP9 CATGATCAGCTGGGCCAAGAACAGGATTG miR-296RP2 A+GG+GCCCCCCCTCAA Identical
SEQ ID NO: 317 SEQ ID NO: 318
miR-299 miR-299GSP9 CATGATCAGCTGGGCCAAGAATGTATGTG miR-299RP T+GG+TTTACCGTCCC Identical
SEQ ID NO: 319 SEQ ID NO: 320
miR-301 miR-301GSP CATGATCAGCTGGGCCAAGAGCTTTGACAA miR-301RP C+AG+TGCAATAGTATTGT Identical
SEQ ID NO: 321 SEQ ID NO: 322
miR-302a miR-302aGSP CATGATCAGCTGGGCCAAGATCACCAAAAC miR-302aRP T+AAG+TGCTTCCATGT Identical
SEQ ID NO: 325 SEQ ID NO: 326
miR-320 miR-320_GSP8 CATGATCAGCTGGGCCAAGATTCGCCCT miR-320_RP3 AAAA+GCT+GGGTTGAGAGG Identical
SEQ ID NO: 337 SEQ ID NO: 338
miR-323 miR-323GSP CATGATCAGCTGGGCCAAGAAGAGGTCGAC miR-323RP G+CA+CATTACACGGT Identical
SEQ ID NO: 339 SEQ ID NO: 340
miR-324-3p miR-324-3pGSP CATGATCAGCTGGGCCAAGACCAGCAGCAC miR-324-3pRP C+CA+CTGCCCCAGGT Identical
SEQ ID NO: 341 SEQ ID NO: 342
miR-324-5p miR-324-5pGSP CATGATCAGCTGGGCCAAGAACACCAATGC miR-324-5pRP C+GC+ATCCCCTAGGG Identical overlapping sequence,
SEQ ID NO: 343 SEQ ID NO: 344 ends differ
miR-325 miR-325GSP CATGATCAGCTGGGCCAAGAACACTTACTG miR-325RP C+CT+AGTAGGTGCTC one or more base pairs differ
SEQ ID NO: 345 SEQ ID NO: 476
miR-326 miR-326GSP CATGATCAGCTGGGCCAAGACTGGAGGAAG miR-326RP C+CT+CTGGGCCCTTC Identical overlapping sequence,
SEQ ID NO: 347 SEQ ID NO: 348 ends differ
miR-328 miR-328GSP CATGATCAGCTGGGCCAAGAACGGAAGGGC miR-328RP C+TG+GCCCTCTCTGC Identical
SEQ ID NO: 349 SEQ ID NO: 350
miR-330 miR-330GSP CATGATCAGCTGGGCCAAGATCTCTGCAGG miR-330RP G+CA+AAGCACAGGGC one or more base pairs differ
SEQ ID NO: 351 SEQ ID NO: 478
miR-331 miR-331GSP CATGATCAGCTGGGCCAAGATTCTAGGATA miR-331RP G+CC+CCTGGGCCTAT Identical
SEQ ID NO: 353 SEQ ID NO: 354
miR-337 miR-337GSP CATGATCAGCTGGGCCAAGAAAAGGCATCA miR-337RP T+TC+AGCTCCTATATG one or more base pairs differ
SEQ ID NO: 355 SEQ ID NO: 490
miR-338 miR-338GSP CATGATCAGCTGGGCCAAGATCAACAAAAT miR-338RP2 T+CC+AGCATCAGTGATTT Identical
SEQ ID NO: 357 SEQ ID NO: 358
miR-339 miR-339GSP9 CATGATCAGCTGGGCCAAGATGAGCTCCT miR-339RP2 T+CC+CTGTCCTCCAGG Identical
SEQ ID NO: 359 SEQ ID NO: 360
miR-340 miR-340GSP CATGATCAGCTGGGCCAAGAGGCTATAAAG miR-340RP TC+CG+TCTCAGTTAC Identical
SEQ ID NO: 361 SEQ ID NO: 362
miR-342 miR-342GSP3 CATGATCAGCTGGGCCAAGAGACGGGTG miR-342RP T+CT+CACACAGAAATCG Identical
SEQ ID NO: 363 SEQ ID NO: 364
miR-345 miR-345GSP CATGATCAGCTGGGCCAAGAGCACTGGACT miR-345RP T+GC+TGACCCCTAGT one or more base pairs differ
SEQ ID NO: 484 SEQ ID NO: 485
miR-346 miR-346GSP CATGATCAGCTGGGCCAAGAAGAGGCAGGC miR-346RP T+GT+CTGCCCGAGTG one or more base pairs differ
SEQ ID NO: 367 SEQ ID NO: 488
miR-363 miR-363 GSP10 CATGATCAGCTGGGCCAAGATACAGATGGA miR-363RP AAT+TG+CAC+GGTATCC Identical
SEQ ID NO: 369 SEQ ID NO: 370
miR-370 miR-370GSP CATGATCAGCTGGGCCAAGACCAGGTTCCA miR-370RP G+CC+TGCTGGGGTGG Identical overlapping sequence,
SEQ ID NO: 375 SEQ ID NO: 376 ends differ
miR-375 miR-375GSP CATGATCAGCTGGGCCAAGATCACGCGAGC miR-375RP TT+TG+TTCGTTCGGC Identical
SEQ ID NO: 387 SEQ ID NO: 388
miR-376a miR-376aGSP3 CATGATCAGCTGGGCCAAGAACGTGGAT miR-376aRP2 A+TCGTAGA+GGAAAATCCAC one or more base pairs differ
SEQ ID NO: 467 SEQ ID NO: 468
miR-378 miR-378GSP CATGATCAGCTGGGCCAAGAACACAGGACC miR-378RP C+TC+CTGACTCCAGG Identical
SEQ ID NO: 391 SEQ ID NO: 392
miR-379 miR-379_GSP7 CATGATCAGCTGGGCCAAGATACGTTC miR-379RP2 T+GGT+AGACTATGGAACG Identical overlapping sequence,
SEQ ID NO: 393 SEQ ID NO: 394 ends differ
miR-380-5p miR-380-5pGSP CATGATCAGCTGGGCCAAGAGCGCATGTTC miR-380-5pRP T+GGT+TGACCATAGA Identical
SEQ ID NO: 395 SEQ ID NO: 396
miR-380-3p miR-380-3pGSP CATGATCAGCTGGGCCAAGAAAGATGTGGA miR-380-3pRP TA+TG+TAGTATGGTCCACA one or more base pairs differ
SEQ ID NO: 395 SEQ ID NO: 483
miR-381 miR-381GSP2 CATGATCAGCTGGGCCAAGAACAGAGAGC miR-381RP2 TATA+CAA+GGGCAAGCT Identical
SEQ ID NO: 399 SEQ ID NO: 400
miR-382 miR-382GSP CATGATCAGCTGGGCCAAGACGAATCCACC miR-382RP G+AA+GTTGTTCGTGGT Identical
SEQ ID NO: 401 SEQ ID NO: 402
miR-383 miR-383GSP CATGATCAGCTGGGCCAAGAAGCCACAGTC miR-383RP2 A+GATC+AGAAGGTGACTGT one or more base pairs differ
SEQ ID NO: 465 SEQ ID NO: 466
miR-384 miR-384_GSP9 CATGATCAGCTGGGCCAAGATGTGAACAA miR-384_RP5 ATT+CCT+AG+AAATTGTTC one or more base pairs differ
SEQ ID NO: 470 SEQ ID NO: 471
miR-410 miR-410 GSP9 CATGATCAGCTGGGCCAAGAACAGGCCAT miR-410RP AA+TA+TAA+CA+CAGATGGC Identical
SEQ ID NO: 405 SEQ ID NO: 406
miR-412 miR-412 GSP10 CATGATCAGCTGGGCCAAGAACGGCTAGTG miR-412RP A+CTT+CACCTGGTCCACTA Identical
SEQ ID NO: 407 SEQ ID NO: 408
miR-424 miR-424GSP CATGATCAGCTGGGCCAAGATCCAAAACAT miR-424RP2 C+AG+CAGCAATTCATGTTTT one or more base pairs differ
SEQ ID NO: 474 SEQ ID NO: 414
miR-425 miR-425GSP CATGATCAGCTGGGCCAAGAGGCGGACACG miR-425RP A+TC+GGGAATGTCGT Identical
SEQ ID NO: 417 SEQ ID NO: 418
miR-429 miR-429_GSP11 CATGATCAGCTGGGCCAAGAACGGCATTACC miR-429RP5 T+AATAC+TG+TCTGGTAATG one or more base pairs differ
SEQ ID NO: 479 SEQ ID NO: 480
miR-431 miR-431 GSP10 CATGATCAGCTGGGCCAAGATGCATGACGG miR-431RP T+GT+CTTGCAGGCCG Identical overlapping sequence,
SEQ ID NO: 421 SEQ ID NO: 422 ends differ
miR-448 miR-448GSP CATGATCAGCTGGGCCAAGAATGGGACATC miR-448RP TTG+CATA+TGTAGGATG Identical
SEQ ID NO: 423 SEQ ID NO: 424
miR-449 miR-449GSP10 CATGATCAGCTGGGCCAAGAACCAGCTAAC miR-449RP2 T+GG+CAGTGTATTGTTAGC Identical
SEQ ID NO: 425 SEQ ID NO: 426
miR-450 miR-450GSP CATGATCAGCTGGGCCAAGATATTAGGAAC miR-450RP TTTT+TG+CGATGTGTT Identical
SEQ ID NO: 427 SEQ ID NO: 428
miR-451 miR-451 GSP10 CATGATCAGCTGGGCCAAGAAAACTCAGTA miR-451RP AAA+CCG+TTA+CCATTACTGA Identical overlapping sequence,
SEQ ID NO: 429 SEQ ID NO: 430 ends differ
let7a let7a-GSP2 CATGATCAGCTGGGCCAAGAAACTATAC let7a-RP T+GA+GGTAGTAGGTTG Identical overlapping sequence,
SEQ ID NO: 431 SEQ ID NO: 432 ends differ
let7b let7b-GSP2 CATGATCAGCTGGGCCAAGAAACCACAC let7b-RP T+GA+GGTAGTAGGTTG Identical
SEQ ID NO: 433 SEQ ID NO: 432
let7c let7c-GSP2 CATGATCAGCTGGGCCAAGAAACCATAC let7c-RP T+GA+GGTAGTAGGTTG Identical
SEQ ID NO: 434 SEQ ID NO: 432
let7d let7d-GSP2 CATGATCAGCTGGGCCAAGAACTATGCA let7d-RP A+GA+GGTAGTAGGTTG Identical
SEQ ID NO: 435 SEQ ID NO: 436
let7e let7e-GSP2 CATGATCAGCTGGGCCAAGAACTATACA let7e-RP T+GA+GGTAGGAGGTTG Identical
SEQ ID NO: 437 SEQ ID NO: 438
let7f let7f-GSP2 CATGATCAGCTGGGCCAAGAAACTATAC let7f-RP T+GA+GGTAGTAGATTG Identical overlapping sequence,
SEQ ID NO: 439 SEQ ID NO: 440 ends differ
let7g let7g-GSP2 CATGATCAGCTGGGCCAAGAACTGTACA let7g-RP T+GA+GGTAGTAGTTTG Identical
SEQ ID NO: 441 SEQ ID NO: 442
let7i let7i-GSP2 CATGATCAGCTGGGCCAAGAACAGCACA let7i-RP T+GA+GGTAGTAGTTTG Identical
SEQ ID NO: 443 SEQ ID NO: 444
Example 5 This Example describes the detection and analysis of expression profiles for three microRNAs in total RNA isolated from twelve different tissues using methods in accordance with an embodiment of the present invention.
Methods: Quantitative analysis of miR-1, miR-124 and miR-150 microRNA templates was determined using 0.5 μg of First Choice total RNA (Ambion, Inc.) per 10 μl primer extension reaction isolated from the following tissues: brain, heart, intestine, kidney, liver, lung, lymph, ovary, skeletal muscle, spleen, thymus and uterus. The primer extension enzyme and quantitative PCR reactions were carried out as described above in EXAMPLE 3, using the following PCR primers:
miR-1 Template:
extension primer:
(SEQ ID NO: 47)
CATGATCAGCTGGGCCAAGATACATACTTC
reverse primer:
(SEQ ID NO: 48)
T+G+GAA+TG+TAAAGAAGT
forward primer:
(SEQ ID NO: 13)
CATGATCAGCTGGGCCAAGA
miR-124 Template:
extension primer:
(SEQ ID NO: 149)
CATGATCAGCTGGGCCAAGATGGCATTCAC
reverse primer:
(SEQ ID NO: 150)
T+TA+AGGCACGCGGT
forward primer:
(SEQ ID NO: 13)
CATGATCAGCTGGGCCAAGA
miR-150 template:
extension primer:
(SEQ ID NO: 213)
CATGATCAGCTGGGCCAAGACACTGGTA
reverse primer:
(SEQ ID NO: 214)
T+CT+CCCAACCCTTG
forward primer:
(SEQ ID NO: 13)
CATGATCAGCTGGGCCAAGA
Results. The expression profiles for miR-1, miR-124 and miR-150 are shown in FIGS. 3A, 3B, and 3C, respectively. The data in FIGS. 3A-3C are presented in units of microRNA copies per 10 pg of total RNA (y-axis). These units were chosen since human cell lines typically yield ≦10 pg of total RNA per cell. Hence the data shown are estimates of microRNA copies per cell. The numbers on the x-axis correspond to the following tissues: (1) brain, (2) heart, (3) intestine, (4) kidney, (5) liver, (6) lung, (7) lymph, (8) ovary, (9) skeletal muscle, (10) spleen, (11) thymus and (12) uterus.
Consistent with previous reports, very high levels of striated muscle-specific expression were found for miR-1 (as shown in FIG. 3A), and high levels of brain expression were found for miR-124 (as shown in FIG. 3B) (see Lagos-Quintana et al., RNA 9:175-179, 2003). Quantitative analysis reveals that these microRNAs are present at tens to hundreds of thousands of copies per cell. These data are in agreement with quantitative Northern blot estimates of miR-1 and miR-124 levels (see Lim et al., Nature 433:769-773, 2005). As shown in FIG. 3C, miR-150 was found to be highly expressed in the immune-related lymph node, thymus and spleen samples which is also consistent with previous findings (see Baskerville et al., RNA 11:241-247, 2005).
Example 6 This Example describes the selection and validation of primers for detecting mammalian microRNAs of interest.
Rationale: In order to perform multiple assays to detect a plurality of microRNA targets in a single sample (i.e., multiplex PCR), it is important that the assays work under uniform reverse transcriptase and PCR cycling conditions in a common buffer system with a single universal primer. The following primer design principles and high throughput assays were utilized to identify useful primer sets for desired microRNA targets that work well under the designated reaction conditions.
Primer Design:
As described in Example 2, the sensitivity of an assay to detect mammalian microRNA targets using the methods of the invention may be measured by the cycle threshold (Ct) value. The lower the Ct value (e.g., the fewer number of cycles), the more sensitive is the assay. The ΔCt value is the difference between the number of cycles (Ct) between template containing samples and no template controls, and serves as a measure of the dynamic range of the assay. Assays with a high dynamic range allow measurements of very low microRNA copy numbers. Accordingly, desirable characteristics of a microRNA detection assay include high sensitivity (low Ct value) (preferably in the range of from about 5 to about 25, such as from about 10 to about 20), and broad dynamic range (preferably in the range of from about 10 and 35, such as ΔCt≧12) between the signal of a sample containing target template and a no template background control sample.
microRNA Target Templates: Representative mammalian microRNA target templates (h=human, r=rat, m=mouse) are provided in Table 9 (SEQ ID NO:966 to SEQ ID NO:1043) which are publicly available and accessible on the World Wide Web at the Wellcome Trust Sanger Institute website in the “miRBase sequence database” as described in Griffith-Jones et al. (2004), Nucleic Acids Research 32:D109-D111 and Griffith-Jones et al. (2006), Nucleic Acids Research 34:D140-D144.
Extension Primers:
Empirical data generated as described in Examples 1-5 suggests that gene specific (GS) extension primers are primarily responsible for the dynamic range of the assays for detecting mammalian microRNA targets using the methods described herein. As described in Example 2, it was determined that the dynamic range (ΔCt) and specificity of the assays tested decreased for extension primers having gene specific regions below 6 to 7 nucleotides. Therefore, in order to optimize microRNA detection assays, extension primers were designed that have 7 to 10 nucleotide overlap with the microRNA target of interest. Exemplary extension primers for the microRNA targets listed in TABLE 9 are provided in TABLE 8 (SEQ ID NO:500 to SEQ ID NO:965). These exemplary extension primers have a gene specific (GS) region from 7 to 10 nucleotide overlap with the microRNA target of interest.
Reverse Primers:
Unmodified and locked nucleic acid (LNA)-containing reverse primers were designed to quantify the primer-extended, full length cDNA in combination with a generic universal forward primer (SEQ ID NO:13). Based on the data generated as described in Examples 1-5, it was determined that the design of the reverse primers contributes to the efficiency of the PCR reactions, with the observation that the longer the reverse primer, the better the PCR performance. However, it was also observed that the longer the overlap with the extension primer, the higher the background. Therefore, the reverse primers were designed to be as long as possible while minimizing the overlap with the gene specific portion of the extension primer, in order to reduce the non-specific background signal.
In addition, as described in Example 3, LNA base substitutions may be selected to raise the predicted Tm of the primer, with two or three LNA base substitutions typically substituted within the first 8 nucleotides from the 5′ end of the reverse primer oligonucleotide. Exemplary reverse primers for the microRNA targets listed in TABLE 9 are provided in TABLE 8. While these exemplary reverse primers contain LNA base substitutions (the “+” symbol preceding a nucleotide designates an LNA substitution), this feature is optional and not required.
Selection and validation of primers for a desired target:
Assay oligonucleotide selection is made in two steps as follows:
1) Primer designs were determined using the principles described above. Typically, 4 extension primer candidates and 2 reverse primer candidates were designed for each microRNA target of interest. The extension primers in each set overlap the gene specific region by 7, 8, 9 and 10 nucleotides, respectively, at the 3′ end. Exemplary primers designed according to these design principles are provided in TABLE 8 for the microRNA targets listed in TABLE 9.
Assay design to validate the candidate primer sets (Assay #1)
microRNA Target:
Exemplary target microRNA miR-495 has an RNA target sequence (SEQ ID NO:966) that is conserved across human (h), mouse (m) and rat (r), as indicated by the designation “hmr”-miR-495 in TABLE 9. Therefore, the primer designed for this target sequence would be expected to be useful to detect miR-495 in samples obtained from human, mouse, and rat.
microRNA miR-495 target RNA sequence: 5′ AAACAAACAUGGUGCACUUCUU 3′ (SEQ ID NO:966)
Extension Primers (4 candidates)
(SEQ ID NO: 500)
hmr-miR-495GS10: 5′ CATGATCAGCTGGGCCAAGAAAGAAGTGCA
3′
(SEQ ID NO: 501)
hmr-miR-495GS9: 5′ CATGATCAGCTGGGCCAAGAAAGAAGTGC
3′
(SEQ ID NO: 502)
hmr-miR-495GS8: 5′ CATGATCAGCTGGGCCAAGAAAGAAGTG 3′
(SEQ ID NO: 503)
hmr-miR-495GS7: 5′ CATGATCAGCTGGGCCAAGAAAGAAGT
Reverse Primers (2 candidates)
(SEQ ID NO: 504)
hmr-miR-495RP1: 5′ AAA+CAAA+CA+TGGTGCAC 3′
(SEQ ID NO: 505)
hmr-miR-495RP2: 5′ AAA+C+AAA+CATGGTGC 3′
2) The primers designed as described above were tested to find pairs that showed both high sensitivity and high dynamic range in quantitative PCR assays, using the assay methods described in Example 2. The optimal combination of extension primer and reverse primer was determined for the target microRNA by testing all combinations of primers in the presence or absence of DNA template. It is preferable to use DNA rather than RNA template to test the oligo pairs because it is less likely to degrade than RNA. Degraded templates result in misleading assay data. Therefore, HPLC purified DNA template molecules are preferred.
TABLE 8 shows exemplary primer sets for use in detection assays for 78 microRNA targets (shown in TABLE 9). The candidate primers for use in these assays were designed to specifically detect human (h), mouse (m) and rat (r) microRNAs, or microRNAs from one or more species. For example, assays with the “hmr” prefix are designed to detect a perfectly conserved microRNA in all three species, whereas a “mr” prefix means the assay is designed to detect a microRNA conserved between mouse and rat, but not human. Nucleotides preceded by a plus (+) sign may be optionally locked (LNA). TABLE 9 shows the microRNA target sequence for each assay.
TABLE 8
EXEMPLARY PRIMER SETS FOR DETECTING MAMMALIAN MICRORNA TARGETS
Extension Reverse
Assay Number Target microRNA Primer Name Extension Primer Sequence Primer Name Reverse Primer Sequence Comments
1 hmr-miR-495 Hmr-miR- CATGATCAGCTGGGCCAAGAAAGAAGTGCA Hmr-miR- AAA+CAAA+CA+TGGTGCAC Conserved across all
495GS10 SEQ ID NO: 500 495RP1 SEQ ID NO: 504 three species
Hmr-miR- CATGATCAGCTGGGCCAAGAAAGAAGTGC Hmr-miR- AAA+C+AAA+CATGGTGC
495GS9 SEQ ID NO: 501 495RP2 SEQ ID NO: 505
Hmr-miR- CATGATCAGCTGGGCCAAGAAAGAAGTG
495GS8 SEQ ID NO: 502
Hmr-miR- CATGATCAGCTGGGCCAAGAAAGAAGT
495GS7 SEQ ID NO: 503
2 mr-miR-291a- mr-mIR- CATGATCAGCTGGGCCAAGAGGCACACAAA mr-mIR-291a- AA+AG+TGCTTCCACTTTGT Mouse/rat specific; seed
3p 291a- SEQ ID NO: 506 3pRP1 SEQ ID NO: 510 region ortholog to human
3pGS10 miR-371/2
mr-mIR- CATGATCAGCTGGGCCAAGAGGCACACAA mr-mIR-291a- AA+AG+TG+CTTCCACTTT
291a-3pGS9 SEQ ID NO: 507 3pRP2 SEQ ID NO: 511
mr-mIR- CATGATCAGCTGGGCCAAGAGGCACACA
291a-3pGS8 SEQ ID NO: 508
mr-mIR- CATGATCAGCTGGGCCAAGAGGCACAC
291a-3pGS7 SEQ ID NO: 509
3 m-miR-291b- m-mIR- CATGATCAGCTGGGCCAAGAGACAAACAAA m-mIR-291b- AA+AG+TG+CAT+CCATTTTGT Mouse specific; seed
3p 291b- SEQ ID NO: 512 3pRP1 SEQ ID NO: 516 region ortholog to human
3pGS10 miR-371/2
m-mIR- CATGATCAGCTGGGCCAAGAGACAAACAA m-mIR-291b- AA+AG+TG+CATCCATTTT
291b-3pGS9 SEQ ID NO: 513 3pRP2 SEQ ID NO: 517
m-mIR- CATGATCAGCTGGGCCAAGAGACAAACA
291b-3pGS8 SEQ ID NO: 514
m-mIR- CATGATCAGCTGGGCCAAGAGACAAAC
291b-3pGS7 SEQ ID NO: 515
4 h-miR-519a h-miR- CATGATCAGCTGGGCCAAGAGTAACACTCT h-miR- AA+AG+TG+CATCCTTTTAGAGT Human specific;
519aGS10 SEQ ID NO: 518 519aRP1 SEQ ID NO: 522 implicated in oncogenesis
h-miR- CATGATCAGCTGGGCCAAGAGTAACACTC h-miR- AA+AG+TG+CATCCTTTTAGA
519aGS9 SEQ ID NO: 519 519aRP2 SEQ ID NO: 523
h-miR- CATGATCAGCTGGGCCAAGAGTAACACT
519aGS8 SEQ ID NO: 520
h-miR- CATGATCAGCTGGGCCAAGAGTAACAC
519aGS7 SEQ ID NO: 521
5 h-miR-519b h-miR- CATGATCAGCTGGGCCAAGAAAACCTCTAA h-miR- AA+AG+TG+CATCCTTTTAG Human specific;
519bGS10 SEQ ID NO: 524 519bRP1 SEQ ID NO: 528 implicated in oncogenesis
h-miR- CATGATCAGCTGGGCCAAGAAAACCTCTA h-miR- AA+AG+TG+CATCCTTTT
519bGS9 SEQ ID NO: 525 519bRP2 SEQ ID NO: 529
h-miR- CATGATCAGCTGGGCCAAGAAAACCTCT
519bGS8 SEQ ID NO: 526
h-miR- CATGATCAGCTGGGCCAAGAAAACCTC
519bGS7 SEQ ID NO: 527
6 h-miR-519c h-miR- CATGATCAGCTGGGCCAAGAATCCTCTAAA h-miR- AA+AG+TG+CATCTTTTTAGA Human specific;
519cGS10 SEQ ID NO: 530 519cRP1 SEQ ID NO: 534 implicated in oncogenesis
h-miR- CATGATCAGCTGGGCCAAGAATCCTCTAA h-miR- AA+AG+TG+CATCTTTTTA
519cGS9 SEQ ID NO: 531 519cRP2 SEQ ID NO: 535
h-miR- CATGATCAGCTGGGCCAAGAATCCTCTA
519cGS8 SEQ ID NO: 532
h-miR- CATGATCAGCTGGGCCAAGAATCCTCT
519cGS7 SEQ ID NO: 533
7 h-miR-519d h-miR- CATGATCAGCTGGGCCAAGAACACTCTAAA h-miR- C+AAAG+TGCCTCCCTTTAG Human specific;
519dGS10 SEQ ID NO: 536 519dRP1 SEQ ID NO: 540 implicated in oncogenesis
h-miR- CATGATCAGCTGGGCCAAGAACACTCTAA h-miR- C+AA+AG+TGCCTCCCTTT
519dGS9 SEQ ID NO: 537 519dRP2 SEQ ID NO: 541
h-miR- CATGATCAGCTGGGCCAAGAACACTCTA
519dGS8 SEQ ID NO: 538
h-miR- CATGATCAGCTGGGCCAAGAACACTCT
519dGS7 SEQ ID NO: 539
8 h-miR-520a h-miR- CATGATCAGCTGGGCCAAGAACAGTCCAAA h-miR- AA+AG+TGCTTCCCTTTGG Human specific;
520aGS10 SEQ ID NO: 542 520aRP1 SEQ ID NO: 546 implicated in oncogenesis
h-miR- CATGATCAGCTGGGCCAAGAACAGTCCAA h-miR- AA+AG+T+GCTTCCCTTT
520aGS9 SEQ ID NO: 543 520aRP2 SEQ ID NO: 547
h-miR- CATGATCAGCTGGGCCAAGAACAGTCCA
520aGS8 SEQ ID NO: 544
h-miR- CATGATCAGCTGGGCCAAGAACAGTCC
520aGS7 SEQ ID NO: 545
9 h-miR-520b h-miR- CATGATCAGCTGGGCCAAGACCCTCTAAAA h-miR- AA+AG+T+GCTTCCTTTTAG Human specific;
520bGS10 SEQ ID NO: 548 520bRP1 SEQ ID NO: 552 implicated in oncogenesis
h-miR- CATGATCAGCTGGGCCAAGACCCTCTAAA h-miR- AA+AG+TG+CTTCCTTTTA
520bGS9 SEQ ID NO: 549 520bRP2 SEQ ID NO: 553
h-miR- CATGATCAGCTGGGCCAAGACCCTCTAA
520bGS8 SEQ ID NO: 550
h-miR- CATGATCAGCTGGGCCAAGACCCTCTA
520bGS7 SEQ ID NO: 551
10 h-miR-520d h-miR- CATGATCAGCTGGGCCAAGAAACCCACCAA h-miR- AA+AG+TGCTTCTCTTTGGT Human specific;
520dGS10 SEQ ID NO: 554 520dRP1 SEQ ID NO: 558 implicated in oncogenesis
h-miR- CATGATCAGCTGGGCCAAGAAACCCACCA h-miR- AA+AG+TG+CTTCTCTTTG
520dGS9 SEQ ID NO: 555 520dRP2 SEQ ID NO: 559
h-miR- CATGATCAGCTGGGCCAAGAAACCCACC
520dGS8 SEQ ID NO: 556
h-miR- CATGATCAGCTGGGCCAAGAAACCCAC
520dGS7 SEQ ID NO: 557
11 h-miR-520e h-miR- CATGATCAGCTGGGCCAAGACCCTCAAAAA h-miR- AA+AG+TGCTTCCTTTTTG Human specific;
520eGS10 SEQ ID NO: 560 520eRP1 SEQ ID NO: 564 implicated in
oncogenesis
h-miR- CATGATCAGCTGGGCCAAGACCCTCAAAA h-miR- AA+AG+T+GCTTCCTTTTT
520eGS9 SEQ ID NO: 561 520eRP2 SEQ ID NO: 565
h-miR- CATGATCAGCTGGGCCAAGACCCTCAAA
520eGS8 SEQ ID NO: 562
h-miR- CATGATCAGCTGGGCCAAGACCCTCAA
520eGS7 SEQ ID NO: 563
12 h-miR-520f h-miR- CATGATCAGCTGGGCCAAGAAACCCTCTAA h-miR- A+AG+TGCTTCCTTTTAGA Human specific;
520fGS10 SEQ ID NO: 566 520fRP1 SEQ ID NO: 570 implicated in oncogenesis
h-miR- CATGATCAGCTGGGCCAAGAAACCCTCTA h-miR- A+AG+T+GCTTCCTTTTA
520fGS9 SEQ ID NO: 567 520fRP2 SEQ ID NO: 571
h-miR- CATGATCAGCTGGGCCAAGAAACCCTCT
520fGS8 SEQ ID NO: 568
h-miR- CATGATCAGCTGGGCCAAGAAACCCTC
520fGS7 SEQ ID NO: 569
13 mr-miR-329 mr-miR- CATGATCAGCTGGGCCAAGAAAAAAGGTTA mr-miR- AA+CA+CACCCAGCTAACC Specific for mouse/rat
329G510 SEQ ID NO: 572 329RP1 SEQ ID NO: 576 ortholog
mr-miR- CATGATCAGCTGGGCCAAGAAAAAAGGTT mr-miR- AA+CA+CACCCAGCTAA
329GS9 SEQ ID NO: 573 329RP2 SEQ ID NO: 577
mr-miR- CATGATCAGCTGGGCCAAGAAAAAAGGT
329GS8 SEQ ID NO: 574
mr-miR- CATGATCAGCTGGGCCAAGAAAAAAGG
329GS7 SEQ ID NO: 575
14 hmr-miR- hmr-miR- CATGATCAGCTGGGCCAAGAAACCCACCGA hmr-miR- AA+CATT+CATTGTTGTCGGT Conserved across all
181d 181dGS10 SEQ ID NO: 578 181dRP1 SEQ ID NO: 582 three species
hmr-miR- CATGATCAGCTGGGCCAAGAAACCCACCG hmr-miR- AA+CA+TT+CATTGTTGTCG
181dGS9 SEQ ID NO: 579 181dRP2 SEQ ID NO: 583
hmr-miR- CATGATCAGCTGGGCCAAGAAACCCACC
181dGS8 SEQ ID NO: 580
hmr-miR- CATGATCAGCTGGGCCAAGAAACCCAC
181dGS7 SEQ ID NO: 581
15 has-miR-193b hmr-miR- CATGATCAGCTGGGCCAAGAAAAGCGGGAC hmr-miR- AA+CT+GGCCCTCAAAGTCCC Conserved across all
193bGS10 SEQ ID NO: 584 193bRP1 SEQ ID NO: 588 three species
hmr-miR- CATGATCAGCTGGGCCAAGAAAAGCGGGA hmr-miR- AA+CT+GGCCCTCAAAGTC
193bGS9 SEQ ID NO: 585 193bRP2 SEQ ID NO: 589
hmr-miR- CATGATCAGCTGGGCCAAGAAAAGCGGG
193bGS8 SEQ ID NO: 586
hmr-miR- CATGATCAGCTGGGCCAAGAAAAGCGG
193bGS7 SEQ ID NO: 587
16 h-miR-362 h-miR- CATGATCAGCTGGGCCAAGAACTCACACCT h-miR-362RP1 AAT+CCTT+GGAACCTAGGTG Assay specific for human
362GS10 SEQ ID NO: 590 SEQ ID NO: 594 ortholog
h-miR- CATGATCAGCTGGGCCAAGAACTCACACC h-miR-362RP2 AA+TC+CTT+GGAACCTAGG
362GS9 SEQ ID NO: 591 SEQ ID NO: 595
h-miR- CATGATCAGCTGGGCCAAGAACTCACAC
362GS8 SEQ ID NO: 592
h-miR- CATGATCAGCTGGGCCAAGAACTCACA
362GS7 SEQ ID NO: 593
17 mr-miR-362 mr-mIR- CATGATCAGCTGGGCCAAGATTCACACCTA mr-mIR-362- AA+TCCTT+GGAACCTAGGT Assay specific for rodent
362-3pGS10 SEQ ID NO: 596 3pRP1 SEQ ID NO: 600 ortholog
mr-mIR- CATGATCAGCTGGGCCAAGATTCACACCT mr-mIR-362- AA+TC+CTT+GGAACCTAG
362-3pGS9 SEQ ID NO: 597 3pRP2 SEQ ID NO: 601
mr-mIR- CATGATCAGCTGGGCCAAGATTCACACC
362-3pGS8 SEQ ID NO: 598
mr-mIR- CATGATCAGCTGGGCCAAGATTCACAC
362-3pGS7 SEQ ID NO: 599
18 h-miR-500 h-miR- CATGATCAGCTGGGCCAAGACAGAATCCTT h-miR-500RP1 A+TG+CACCTGGGCAAGGA Assay specific for human
500GS10 SEQ ID NO: 602 SEQ ID NO: 606 ortholog
h-miR- CATGATCAGCTGGGCCAAGACAGAATCCT h-miR-500RP2 A+TG+CACCTGGGCAAG
500GS9 SEQ ID NO: 603 SEQ ID NO: 607
h-miR- CATGATCAGCTGGGCCAAGACAGAATCC
500GS8 SEQ ID NO: 604
h-miR- CATGATCAGCTGGGCCAAGACAGAATC
500GS7 SEQ ID NO: 605
19 mmu-miR- mr-miR- CATGATCAGCTGGGCCAAGACTGAACCCTT mr-miR- A+TGCA+CCTGGGCAAGGG Assay specific for rodent
500 500GS10 SEQ ID NO: 608 500RP1 SEQ ID NO: 612 ortholog
mr-miR- CATGATCAGCTGGGCCAAGACTGAACCCT mr-miR- A+TGCA+CCTGGGCAAG
500GS9 SEQ ID NO: 609 500RP2 SEQ ID NO: 613
mr-miR- CATGATCAGCTGGGCCAAGACTGAACCC
500GS8 SEQ ID NO: 610
mr-miR- CATGATCAGCTGGGCCAAGACTGAACC
500GS7 SEQ ID NO: 611
20 h-miR-501 h-miR- CATGATCAGCTGGGCCAAGATCTCACCCAG h-miR-501RP1 AA+T+CCTT+TGTCCCTGGG Assay specific for human
501GS10 SEQ ID NO: 614 SEQ ID NO: 618 ortholog
h-miR- CATGATCAGCTGGGCCAAGATCTCACCCA h-miR-501RP2 AAT+CCTT+TGTCCCTGG
501GS9 SEQ ID NO: 615 SEQ ID NO: 619
h-miR- CATGATCAGCTGGGCCAAGATCTCACCC
501GS8 SEQ ID NO: 616
h-miR- CATGATCAGCTGGGCCAAGATCTCACC
501GS7 SEQ ID NO: 617
21 mr-miR-501 mr-miR- CATGATCAGCTGGGCCAAGATTTCACCCAG mr-miR- AA+T+CC+TTTGTCCCTGGG Assay specific for rodent
501GS10 SEQ ID NO: 620 501RP1 SEQ ID NO: 624 ortholog
mr-miR- CATGATCAGCTGGGCCAAGATTTCACCCA mr-miR- AA+T+CC+TTTGTCCCTG
501GS9 SEQ ID NO: 621 501RP2 SEQ ID NO: 625
mr-miR- CATGATCAGCTGGGCCAAGATTTCACCC
501GS8 SEQ ID NO: 622
mr-miR- CATGATCAGCTGGGCCAAGATTTCACC
501GS7 SEQ ID NO: 623
22 hmr-miR- hmr-miR- CATGATCAGCTGGGCCAAGAAGTGGATGAC hmr-miR- AAT+CG+TACAGGGTCAT Conserved across all
487b 487bGS10 SEQ ID NO: 626 487bRP1 SEQ ID NO: 630 three species
hmr-miR- CATGATCAGCTGGGCCAAGAAGTGGATGA hmr-miR- A+AT+CG+TACAGGGTC
487bGS9 SEQ ID NO: 627 487bRP2 SEQ ID NO: 631
hmr-miR- CATGATCAGCTGGGCCAAGAAGTGGATG
487bGS8 SEQ ID NO: 628
hmr-miR- CATGATCAGCTGGGCCAAGAAGTGGAT
487bGS7 SEQ ID NO: 629
23 h-miR-489 h-miR- CATGATCAGCTGGGCCAAGAGCTGCCGTAT h-miR-489RP1 AG+TGA+CATCACATATACG Assay specific for human
489GS10 SEQ ID NO: 632 SEQ ID NO: 636 ortholog
h-miR- CATGATCAGCTGGGCCAAGAGCTGCCGTA h-miR-489RP2 A+G+TGA+CATCACATATAC
489GS9 SEQ ID NO: 633 SEQ ID NO: 637
h-miR- CATGATCAGCTGGGCCAAGAGCTGCCGT
489GS8 SEQ ID NO: 634
h-miR- CATGATCAGCTGGGCCAAGAGCTGCCG
489GS7 SEQ ID NO: 635
24 m-miR-489 m-miR- CATGATCAGCTGGGCCAAGAGCTGCCATAT m-miR-489RP1 AATGA+CA+CCACATATATG Assay specific for mouse
489GS10 SEQ ID NO: 638 SEQ ID NO: 642 ortholog
m-miR- CATGATCAGCTGGGCCAAGAGCTGCCATA m-miR-489RP2 AA+TGA+CA+CCACATAT
489GS9 SEQ ID NO: 639 SEQ ID NO: 643
m-miR- CATGATCAGCTGGGCCAAGAGCTGCCAT
489GS8 SEQ ID NO: 640
m-miR- CATGATCAGCTGGGCCAAGAGCTGCCA
489GS7 SEQ ID NO: 641
25 r-miR-489 r-miR- CATGATCAGCTGGGCCAAGAGCTGCCATAT r-miR-489RP1 AA+TGA+CA+TCACATATATG Assay specific for rat
489GS10 SEQ ID NO: 644 SEQ ID NO: 648 ortholog
r-miR- CATGATCAGCTGGGCCAAGAGCTGCCATA r-miR-489RP2 AAT+GA+CA+TCACATATAT
489GS9 SEQ ID NO: 645 SEQ ID NO: 649
r-miR- CATGATCAGCTGGGCCAAGAGCTGCCAT
489GS8 SEQ ID NO: 646
r-miR- CATGATCAGCTGGGCCAAGAGCTGCCA
489GS7 SEQ ID NO: 647
26 hmr-miR- hmr-miR- CATGATCAGCTGGGCCAAGATCAACGGGAG hmr-miR-425- AA+TGA+CACGATCACTCCC Conserved across all
425-5p 425-5pGS10 SEQ ID NO: 650 5pRP1 SEQ ID NO: 654 three species
hmr-miR- CATGATCAGCTGGGCCAAGATCAACGGGA hmr-miR-425- AA+T+GA+CACGATCACTC
425-5pGS9 SEQ ID NO: 651 5pRP2 SEQ ID NO: 655
hmr-miR- CATGATCAGCTGGGCCAAGATCAACGGG
425-5pGS8 SEQ ID NO: 652
hmr-miR- CATGATCAGCTGGGCCAAGATCAACGG
425-5pGS7 SEQ ID NO: 653
27 hmr-miR-652 hmr-miR- CATGATCAGCTGGGCCAAGATGCACAACCC hmr-miR- AAT+GGCGCCACTAGGGTT Conserved across all
652GS10 SEQ ID NO: 656 652RP1 SEQ ID NO: 660 three species
hmr-miR- CATGATCAGCTGGGCCAAGATGCACAACC hmr-miR- AAT+GG+CGCCACTAGGG
652GS9 SEQ ID NO: 657 652RP2 SEQ ID NO: 661
hmr-miR- CATGATCAGCTGGGCCAAGATGCACAAC
652GS8 SEQ ID NO: 658
hmr-miR- CATGATCAGCTGGGCCAAGATGCACAA
652GS7 SEQ ID NO: 659
28 hmr-miR- hmr-miR- CATGATCAGCTGGGCCAAGAGAATTCATCA hmr-miR-485- AGA+GGCTGGCCGTGATG Conserved across all
485-5p 485-5pGS10 SEQ ID NO: 662 5pRP1 SEQ ID NO: 666 three species
hmr-miR- CATGATCAGCTGGGCCAAGAGAATTCATC hmr-miR-485- AGA+GGCTGGCCGTGA
485-5pGS9 SEQ ID NO: 663 5pRP2 SEQ ID NO: 667
hmr-miR- CATGATCAGCTGGGCCAAGAGAATTCAT
485-5pGS8 SEQ ID NO: 664
hmr-miR- CATGATCAGCTGGGCCAAGAGAATTCA
485-5pGS7 SEQ ID NO: 665
29 has-miR-485- hmr-miR- CATGATCAGCTGGGCCAAGAAGAGAGGAGA hmr-miR-485- AG+TCATA+CACGGCTCTCC Conserved across all
3p 485-3pGS10 SEQ ID NO: 668 3pRP1 SEQ ID NO: 672 three species
hmr-miR- CATGATCAGCTGGGCCAAGAAGAGAGGAG hmr-miR-485- AG+TC+ATACACGGCTCT
485-3pGS9 SEQ ID NO: 669 3pRP2 SEQ ID NO: 673
hmr-miR- CATGATCAGCTGGGCCAAGAAGAGAGGA
485-3pGS8 SEQ ID NO: 670
hmr-miR- CATGATCAGCTGGGCCAAGAAGAGAGG
485-3pGS7 SEQ ID NO: 671
30 hmr-miR- hmr-miR- CATGATCAGCTGGGCCAAGACGAATATAAC hmr-miR-369- A+GA+TC+GACCGTGTTAT Conserved across all
369-5p 369-5pGS10 SEQ ID NO: 674 5pRP1 SEQ ID NO: 678 three species
hmr-miR- CATGATCAGCTGGGCCAAGACGAATATAA hmr-miR-369- A+GA+TCGACCGTGTT
369-5pGS9 SEQ ID NO: 675 5pRP2 SEQ ID NO: 679
hmr-miR- CATGATCAGCTGGGCCAAGACGAATATA
369-5pGS8 SEQ ID NO: 676
hmr-miR- CATGATCAGCTGGGCCAAGACGAATAT
369-5pGS7 SEQ ID NO: 677
31 hmr-miR-671 hmr-miR- CATGATCAGCTGGGCCAAGACCTCCAGCCC hmr-miR- A+GGAAGCCCTGGAGGGGCT Conserved across all
671GS10 SEQ ID NO: 680 671RP1 SEQ ID NO: 684 three species
hmr-miR- CATGATCAGCTGGGCCAAGACCTCCAGCC hmr-miR- A+GGAAGCCCTGGAGGGG
671GS9 SEQ ID NO: 681 671RP2 SEQ ID NO: 685
hmr-miR- CATGATCAGCTGGGCCAAGACCTCCAGC
671GS8 SEQ ID NO: 682
hmr-miR- CATGATCAGCTGGGCCAAGACCTCCAG
671GS7 SEQ ID NO: 683
32 h-miR-449b h-miR- CATGATCAGCTGGGCCAAGAGCCAGCTAAC h-miR- A+GGC+AGTGTATTGTTAG Assay specific for human
449bGS10 SEQ ID NO: 686 449bRP1 SEQ ID NO: 690 ortholog
h-miR- CATGATCAGCTGGGCCAAGAGCCAGCTAA h-miR- AG+GC+AG+TGTATTGTT
449bGS9 SEQ ID NO: 687 449bRP2 SEQ ID NO: 691
h-miR- CATGATCAGCTGGGCCAAGAGCCAGCTA
449bGS8 SEQ ID NO: 688
h-miR- CATGATCAGCTGGGCCAAGAGCCAGCT
449bGS7 SEQ ID NO: 689
33 mr-miR-449b mr-miR- CATGATCAGCTGGGCCAAGACCAGCTAGCA mr-miR- A+GGC+AGTGCATTGCTA Assay specific for rodent
449bGS10 SEQ ID NO: 692 449bRP1 SEQ ID NO: 696 ortholog
mr-miR- CATGATCAGCTGGGCCAAGACCAGCTAGC mr-miR- A+GG+CAGTGCATTGC
449bGS9 SEQ ID NO: 693 449bRP2 SEQ ID NO: 697
mr-miR- CATGATCAGCTGGGCCAAGACCAGCTAG
449bGS8 SEQ ID NO: 694
mr-miR- CATGATCAGCTGGGCCAAGACCAGCTA
449bGS7 SEQ ID NO: 695
34 m-miR-699 m-miR- CATGATCAGCTGGGCCAAGACGAGCCAGGT m-miR-699RP1 A+GGCAGTGCGACCTG Mouse specific; ortholog
699GS10 SEQ ID NO: 698 SEQ ID NO: 702 to miR-34c
m-miR- CATGATCAGCTGGGCCAAGACGAGCCAGG m-miR-699RP2 A+GG+CAGTGCGACC
699GS9 SEQ ID NO: 699 SEQ ID NO: 703
m-miR- CATGATCAGCTGGGCCAAGACGAGCCAG
699GS8 SEQ ID NO: 700
m-miR- CATGATCAGCTGGGCCAAGACGAGCCA
699GS7 SEQ ID NO: 701
35 hmr-miR- hmr-miR- CATGATCAGCTGGGCCAAGACAAAGTTGCT hmr-miR-409- A+GGT+TACCCGAGCAACT Conserved across all
409-5p 409-5pGS10 SEQ ID NO: 704 5pRP1 SEQ ID NO: 708 three species
hmr-miR- CATGATCAGCTGGGCCAAGACAAAGTTGC hmr-miR-409- A+GG+TTACCCGAGCAA
409-5pGS9 SEQ ID NO: 705 5pRP2 SEQ ID NO: 709
hmr-miR- CATGATCAGCTGGGCCAAGACAAAGTTG
409-5pGS8 SEQ ID NO: 706
hmr-miR- CATGATCAGCTGGGCCAAGACAAAGTT
409-5pGS7 SEQ ID NO: 707
36 hmr-miR- hmr-miR- CATGATCAGCTGGGCCAAGAAAGGGGTTCA hmr-miR-409- G+AA+TGTTGCTCGGTGAAC Conserved across all
409-3p 409-3pGS10 SEQ ID NO: 710 3pRP1 SEQ ID NO: 714 three species
hmr-miR- CATGATCAGCTGGGCCAAGAAAGGGGTTC hmr-miR-409- G+AA+TGTTGCTCGGTGA
409-3pGS9 SEQ ID NO: 711 3pRP2 SEQ ID NO: 715
hmr-miR- CATGATCAGCTGGGCCAAGAAAGGGGTT
409-3pGS8 SEQ ID NO: 712
hmr-miR- CATGATCAGCTGGGCCAAGAAAGGGGT
409-3pGS7 SEQ ID NO: 713
37 hmr-miR-491 hmr-miR- CATGATCAGCTGGGCCAAGACCTCATGGAA hmr-miR- AG+TGG+GGAACCCTTCCA Conserved across all
491GS10 SEQ ID NO: 716 491RP1 SEQ ID NO: 720 three species
hmr-miR- CATGATCAGCTGGGCCAAGACCTCATGGA hmr-miR- AG+TG+GGGAACCCTTC
491GS9 SEQ ID NO: 717 491RP2 SEQ ID NO: 721
hmr-miR- CATGATCAGCTGGGCCAAGACCTCATGG
491GS8 SEQ ID NO: 718
hmr-miR- CATGATCAGCTGGGCCAAGACCTCATG
491GS7 SEQ ID NO: 719
38 h-miR-384 h-miR- CATGATCAGCTGGGCCAAGATATGAACAAT h-miR-384RP1 A+TT+CCT+AGAAATTGTTC Assay specific for human
384GS10 SEQ ID NO: 722 SEQ ID NO: 726 ortholog
h-miR- CATGATCAGCTGGGCCAAGATATGAACAA h-miR-384RP2 A+TT+CCT+AG+AAATTGT
384GS9 SEQ ID NO: 723 SEQ ID NO: 727
h-miR- CATGATCAGCTGGGCCAAGATATGAACA
384GS8 SEQ ID NO: 724
h-miR- CATGATCAGCTGGGCCAAGATATGAAC
384GS7 SEQ ID NO: 725
39 mr-miR-384 mr-miR- CATGATCAGCTGGGCCAAGATGTGAACAAT mr-miR- A+TT+CCT+AGAAATTGTT Assay specific for rodent
384GS10 SEQ ID NO: 728 384RP1 SEQ ID NO: 732 ortholog
mr-miR- CATGATCAGCTGGGCCAAGATGTGAACAA mr-miR- A+TT+CCT+AG+AAATTGTT
384GS9 SEQ ID NO: 729 384RP2 SEQ ID NO: 733
mr-miR- CATGATCAGCTGGGCCAAGATGTGAACA
384GS8 SEQ ID NO: 730
mr-miR- CATGATCAGCTGGGCCAAGATGTGAAC
384GS7 SEQ ID NO: 731
40 hmr-miR-20b hmr-miR- CATGATCAGCTGGGCCAAGAACCTGCACTA hmr-miR- C+AA+AG+TGCTCATAGTGCA Conserved across all
20bGS10 SEQ ID NO: 734 20bRP1 SEQ ID NO: 738 three species
hmr-miR- CATGATCAGCTGGGCCAAGAACCTGCACT hmr-miR- CAA+AG+TG+CTCATAGTG
20bGS9 SEQ ID NO: 735 20bRP2 SEQ ID NO: 739
hmr-miR- CATGATCAGCTGGGCCAAGAACCTGCAC
20bGS8 SEQ ID NO: 736
hmr-miR- CATGATCAGCTGGGCCAAGAACCTGCA
20bGS7 SEQ ID NO: 737
41 hmr-miR-490 hmr-miR- CATGATCAGCTGGGCCAAGACAGCATGGAG hmr-miR- C+AA+CCTGGAGGACTCCA Conserved across all
490GS10 SEQ ID NO: 740 490RP1 SEQ ID NO: 744 three species
hmr-miR- CATGATCAGCTGGGCCAAGACAGCATGGA hmr-miR- CAA+CCT+GGAGGACTC
490GS9 SEQ ID NO: 741 490RP2 SEQ ID NO: 745
hmr-miR- CATGATCAGCTGGGCCAAGACAGCATGG
490GS8 SEQ ID NO: 742
hmr-miR- CATGATCAGCTGGGCCAAGACAGCATG
490GS7 SEQ ID NO: 743
42 hmr-miR-497 hmr-miR- CATGATCAGCTGGGCCAAGAACAAACCACA hmr-miR- C+AG+CAGCACACTGTGG Conserved across all
497GS10 SEQ ID NO: 746 497RP1 SEQ ID NO: 750 three species
hmr-miR- CATGATCAGCTGGGCCAAGAACAAACCAC hmr-miR- C+AG+CAGCACACTGTG
497GS9 SEQ ID NO: 747 497RP2 SEQ ID NO: 751
hmr-miR- CATGATCAGCTGGGCCAAGAACAAACCA
497GS8 SEQ ID NO: 748
hmr-miR- CATGATCAGCTGGGCCAAGAACAAACC
497GS7 SEQ ID NO: 749
43 h-miR-301b h-miR- CATGATCAGCTGGGCCAAGATGCTTTGACA h-miR- C+AG+TG+CAATGATATTGTCA Assay specific for human
301bGS10 SEQ ID NO: 752 301bRP1 SEQ ID NO: 756 ortholog
h-miR- CATGATCAGCTGGGCCAAGATGCTTTGAC h-miR- C+AG+TG+CAATGATATTGT
301bGS9 SEQ ID NO: 753 301bRP2 SEQ ID NO: 757
h-miR- CATGATCAGCTGGGCCAAGATGCTTTGA
301bGS8 SEQ ID NO: 754
h-miR- CATGATCAGCTGGGCCAAGATGCTTTG
301bGS7 SEQ ID NO: 755
44 mr-miR-301b mr-miR- CATGATCAGCTGGGCCAAGATGCTTTGACA mr-miR- C+AG+TG+CAATGGTATTGTCA Assay specific for rodent
301bGS10 SEQ ID NO: 758 301bRP1 SEQ ID NO: 762 ortholog
mr-miR- CATGATCAGCTGGGCCAAGATGCTTTGAC mr-miR- C+AG+TG+CAATGGTATTGT
301bGS9 SEQ ID NO: 759 301bRP2 SEQ ID NO: 763
mr-miR- CATGATCAGCTGGGCCAAGATGCTTTGA
301bGS8 SEQ ID NO: 760
mr-miR- CATGATCAGCTGGGCCAAGATGCTTTG
301bGS7 SEQ ID NO: 761
45 hmr-miR-721 hmr-miR- CATGATCAGCTGGGCCAAGATTCCCCCTTT hmr-miR- C+AG+TG+CAATTAAAAGGG Conserved across all
721GS10 SEQ ID NO: 764 721RP1 SEQ ID NO: 768 three species
hmr-miR- CATGATCAGCTGGGCCAAGATTCCCCCTT hmr-miR- C+AG+TG+CAATTAAAAG
721GS9 SEQ ID NO: 765 721RP2 SEQ ID NO: 769
hmr-miR- CATGATCAGCTGGGCCAAGATTCCCCCT
721GS8 SEQ ID NO: 766
hmr-miR- CATGATCAGCTGGGCCAAGATTCCCCC
721GS7 SEQ ID NO: 767
46 hmr-miR-532 hmr-miR- CATGATCAGCTGGGCCAAGAACGGTCCTAC hmr-miR- CA+TG+CCTTGAGTGTAGG Conserved across all
532GS10 SEQ ID NO: 770 532RP1 SEQ ID NO: 774 three species
hmr-miR- CATGATCAGCTGGGCCAAGAACGGTCCTA hmr-miR- CA+TG+CCTTGAGTGTA
532GS9 SEQ ID NO: 771 532RP2 SEQ ID NO: 775
hmr-miR- CATGATCAGCTGGGCCAAGAACGGTCCT
532GS8 SEQ ID NO: 772
hmr-miR- CATGATCAGCTGGGCCAAGAACGGTCC
532GS7 SEQ ID NO: 773
47 h-miR-488 h-miR- CATGATCAGCTGGGCCAAGATTGAGAGTGC h-miR-488RP1 C+CCA+GATAATGGCACT Assay specific for human
488GS10 SEQ ID NO: 776 SEQ ID NO: 780 ortholog
h-miR- CATGATCAGCTGGGCCAAGATTGAGAGTG h-miR-488RP2 C+CC+A+GATAATGGCA
488GS9 SEQ ID NO: 777 SEQ ID NO: 781
h-miR- CATGATCAGCTGGGCCAAGATTGAGAGT
488GS8 SEQ ID NO: 778
h-miR- CATGATCAGCTGGGCCAAGATTGAGAG
488GS7 SEQ ID NO: 779
48 mr-miR-488 mr-miR- CATGATCAGCTGGGCCAAGATTGAGAGTGC mr-miR- C+CCA+GATAATAGCACT Assay specific for rodent
488GS10 SEQ ID NO: 782 488RP1 SEQ ID NO: 786 ortholog
mr-miR- CATGATCAGCTGGGCCAAGATTGAGAGTG mr-miR- C+CC+A+GATAATAGCA
488GS9 SEQ ID NO: 783 488RP2 SEQ ID NO: 787
mr-miR- CATGATCAGCTGGGCCAAGATTGAGAGT
488GS8 SEQ ID NO: 784
mr-miR- CATGATCAGCTGGGCCAAGATTGAGAG
488GS7 SEQ ID NO: 785
49 hmr-miR-539 hmr-miR- CATGATCAGCTGGGCCAAGAACACACCAAG hmr-miR- GG+AG+AAATTATCCTTGGT Conserved across all
539GS10 SEQ ID NO: 788 539RP1 SEQ ID NO: 792 three species
hmr-miR- CATGATCAGCTGGGCCAAGAACACACCAA hmr-miR- G+GA+G+AAATTATCCTTGG
539GS9 SEQ ID NO: 789 539RP2 SEQ ID NO: 793
hmr-miR- CATGATCAGCTGGGCCAAGAACACACCA
539GS8 SEQ ID NO: 790
hmr-miR- CATGATCAGCTGGGCCAAGAACACACC
539GS7 SEQ ID NO: 791
50 h-miR-505 h-miR- CATGATCAGCTGGGCCAAGAGAGGAAACCA h-miR-505RP1 GT+CAA+CACTTGCTGGTT Assay specific for human
505GS10 SEQ ID NO: 794 SEQ ID NO: 798 ortholog
h-miR- CATGATCAGCTGGGCCAAGAGAGGAAACC h-miR-505RP2 G+T+CAA+CACTTGCTGG
505GS9 SEQ ID NO: 795 SEQ ID NO: 799
h-miR- CATGATCAGCTGGGCCAAGAGAGGAAAC
505GS8 SEQ ID NO: 796
h-miR- CATGATCAGCTGGGCCAAGAGAGGAAA
505GS7 SEQ ID NO: 797
51 mr-miR-505 mr-miR- CATGATCAGCTGGGCCAAGAGGAAACCAGC mr-miR- CG+T+CAA+CA+CTTGCTGGT Assay specific for rodent
505GS10 SEQ ID NO: 800 505RP1 SEQ ID NO: 804 ortholog
mr-miR- CATGATCAGCTGGGCCAAGAGGAAACCAG mr-miR- CG+T+CAA+CA+CTTGCTG
505GS9 SEQ ID NO: 801 505RP2 SEQ ID NO: 805
mr-miR- CATGATCAGCTGGGCCAAGAGGAAACCA
505GS8 SEQ ID NO: 802
mr-miR- CATGATCAGCTGGGCCAAGAGGAAACC
505GS7 SEQ ID NO: 803
52 h-miR-18b h-miR- CATGATCAGCTGGGCCAAGATAACTGCACT h-miR-18bRP1 TAA+GG+TGCATCTAGTGC Assay specific for human
18bGS10 SEQ ID NO: 806 SEQ ID NO: 810 ortholog
h-miR- CATGATCAGCTGGGCCAAGATAACTGCAC h-miR-18bRP2 T+AA+GG+TGCATCTAGT
18bGS9 SEQ ID NO: 807 SEQ ID NO: 811
h-miR- CATGATCAGCTGGGCCAAGATAACTGCA
18bGS8 SEQ ID NO: 808
h-miR- CATGATCAGCTGGGCCAAGATAACTGC
18bGS7 SEQ ID NO: 809
53 mr-miR-18b mr-miR- CATGATCAGCTGGGCCAAGATAACAGCACT mr-miR- T+AA+GG+TGCATCTAGTGC Assay specific for rodent
18bGS10 SEQ ID NO: 812 18bRP1 SEQ ID NO: 816 ortholog
mr-miR- CATGATCAGCTGGGCCAAGATAACAGCAC mr-miR- TAA+GG+TG+CATCTAGT
18bGS9 SEQ ID NO: 813 18bRP2 SEQ ID NO: 817
mr-miR- CATGATCAGCTGGGCCAAGATAACAGCA
18bGS8 SEQ ID NO: 814
mr-miR- CATGATCAGCTGGGCCAAGATAACAGC
18bGS7 SEQ ID NO: 815
54 hmr-miR-503 hmr-miR- CATGATCAGCTGGGCCAAGACAGTACTGTT hmr-miR- T+AGC+AGCGGGAACAGT Conserved across all
503GS10 SEQ ID NO: 818 503RP1 SEQ ID NO: 822 three species
hmr-miR- CATGATCAGCTGGGCCAAGACAGTACTGT hmr-miR- T+AGC+AGCGGGAACA
503GS9 SEQ ID NO: 819 503RP2 SEQ ID NO: 823
hmr-miR- CATGATCAGCTGGGCCAAGACAGTACTG
503GS8 SEQ ID NO: 820
hmr-miR- CATGATCAGCTGGGCCAAGACAGTACT
503GS7 SEQ ID NO: 821
55 hmr-miR-455 hmr-miR- CATGATCAGCTGGGCCAAGACGATGTAGTC hmr-miR- TA+TG+TGCCTTTGGACTA Conserved across all
455GS10 SEQ ID NO: 824 455RP1 SEQ ID NO: 828 three species
hmr-miR- CATGATCAGCTGGGCCAAGACGATGTAGT hmr-miR- TA+TG+TGCCTTTGGAC
455GS9 SEQ ID NO: 825 455RP2 SEQ ID NO: 829
hmr-miR- CATGATCAGCTGGGCCAAGACGATGTAG
455GS8 SEQ ID NO: 826
hmr-miR- CATGATCAGCTGGGCCAAGACGATGTA
455GS7 SEQ ID NO: 827
56 hmr-miR-92b hmr-miR- CATGATCAGCTGGGCCAAGAGAGGCCGGGA hmr-miR- TAT+TG+CACTCGTCCCG Conserved across all
92bGS10 SEQ ID NO: 830 92bRP1 SEQ ID NO: 834 three species
hmr-miR- CATGATCAGCTGGGCCAAGAGAGGCCGGG hmr-miR- TAT+TG+CACTCGTCCC
92bGS9 SEQ ID NO: 831 92bRP2 SEQ ID NO: 835
hmr-miR- CATGATCAGCTGGGCCAAGAGAGGCCGG
92bGS8 SEQ ID NO: 832
hmr-miR- CATGATCAGCTGGGCCAAGAGAGGCCG
92bGS7 SEQ ID NO: 833
57 h-miR-483 h-miR- CATGATCAGCTGGGCCAAGAAGAAGACGGG h-miR-483RP1 T+CAC+TCCTCTCCTCCCGT Assay specific for human
483GS10 SEQ ID NO: 836 SEQ ID NO: 840 ortholog
h-miR- CATGATCAGCTGGGCCAAGAAGAAGACGG h-miR-483RP2 T+CAC+TCCTCTCCTCCC
483GS9 SEQ ID NO: 837 SEQ ID NO: 841
h-miR- CATGATCAGCTGGGCCAAGAAGAAGACG
483GS8 SEQ ID NO: 838
h-miR- CATGATCAGCTGGGCCAAGAAGAAGAC
483GS7 SEQ ID NO: 839
58 mr-miR-483 mr-miR- CATGATCAGCTGGGCCAAGAACAAGACGGG mr-miR- TC+ACTCCTCCCCTCCCGT Assay specific for rodent
483GS10 SEQ ID NO: 842 483RP1 SEQ ID NO: 846 ortholog
mr-miR- CATGATCAGCTGGGCCAAGAACAAGACGG mr-miR- TC+ACTCCTCCCCTCCC
483GS9 SEQ ID NO: 843 483RP2 SEQ ID NO: 847
mr-miR- CATGATCAGCTGGGCCAAGAACAAGACG
483GS8 SEQ ID NO: 844
mr-miR- CATGATCAGCTGGGCCAAGAACAAGAC
483GS7 SEQ ID NO: 845
59 hmr-miR-484 hmr-miR- CATGATCAGCTGGGCCAAGAATCGGGAGGG hmr-miR- TCA+GGCTCAGTCCCCTC Conserved across all
484GS10 SEQ ID NO: 848 484RP1 SEQ ID NO: 852 three species
hmr-miR- CATGATCAGCTGGGCCAAGAATCGGGAGG hmr-miR- TC+AGGCTCAGTCCCC
484GS9 SEQ ID NO: 849 484RP2 SEQ ID NO: 853
hmr-miR- CATGATCAGCTGGGCCAAGAATCGGGAG
484GS8 SEQ ID NO: 850
hmr-miR- CATGATCAGCTGGGCCAAGAATCGGGA
484GS7 SEQ ID NO: 851
60 mmu-miR- hmr-miR- CATGATCAGCTGGGCCAAGACAGGCTCAAA hmr-miR- TC+CCTGAGGAGCCCTTTGA Rodent specific; ortholog
351 351GS10 SEQ ID NO: 854 351RP1 SEQ ID NO: 858 to human miR-125
hmr-miR- CATGATCAGCTGGGCCAAGACAGGCTCAA hmr-miR- TC+CCTGAGGAGCCCTTT
351GS9 SEQ ID NO: 855 351RP2 SEQ ID NO: 859
hmr-miR- CATGATCAGCTGGGCCAAGACAGGCTCA
351GS8 SEQ ID NO: 856
hmr-miR- CATGATCAGCTGGGCCAAGACAGGCTC
351GS7 SEQ ID NO: 857
61 hmr-miR-615 hmr-miR- CATGATCAGCTGGGCCAAGAAGAGGGAGAC hmr-miR- TC+CGAGCCTGGGTCTC Conserved across all
615GS10 SEQ ID NO: 860 615RP1 SEQ ID NO: 864 three species
hmr-miR- CATGATCAGCTGGGCCAAGAAGAGGGAGA hmr-miR- TC+CGAGCCTGGGTC
615GS9 SEQ ID NO: 861 615RP2 SEQ ID NO: 865
hmr-miR- CATGATCAGCTGGGCCAAGAAGAGGGAG
615GS8 SEQ ID NO: 862
hmr-miR- CATGATCAGCTGGGCCAAGAAGAGGGA
615GS7 SEQ ID NO: 863
62 hmr-miR-486 hmr-miR- CATGATCAGCTGGGCCAAGACTCGGGGCAG hmr-miR- T+CC+TGTACTGAGCTGCC Conserved across all
486GS10 SEQ ID NO: 866 486RP1 SEQ ID NO: 870 three species
hmr-miR- CATGATCAGCTGGGCCAAGACTCGGGGCA hmr-miR- T+CC+TGTACTGAGCTG
486GS9 SEQ ID NO: 867 486RP2 SEQ ID NO: 871
hmr-miR- CATGATCAGCTGGGCCAAGACTCGGGGC
486GS8 SEQ ID NO: 868
hmr-miR- CATGATCAGCTGGGCCAAGACTCGGGG
486GS7 SEQ ID NO: 869
63 hmr-miR-494 hmr-miR- CATGATCAGCTGGGCCAAGAAGGTTTCCCG hmr-miR- T+GA+AA+CATACACGGGA Conserved across all
494GS10 SEQ ID NO: 872 494RP1 SEQ ID NO: 876 three species
hmr-miR- CATGATCAGCTGGGCCAAGAAGGTTTCCC hmr-miR- T+GA+AA+CATACACGG
494GS9 SEQ ID NO: 873 494RP2 SEQ ID NO: 877
hmr-miR- CATGATCAGCTGGGCCAAGAAGGTTTCC
494GS8 SEQ ID NO: 874
hmr-miR- CATGATCAGCTGGGCCAAGAAGGTTTC
494GS7 SEQ ID NO: 875
64 hmr-miR- hmr-miR- CATGATCAGCTGGGCCAAGACTGGCACACA hmr-miR-493- T+GAA+GGTCTACTGTG Conserved across all
493-3p 493-3pGS10 SEQ ID NO: 878 3pRP1 SEQ ID NO: 882 three species
hmr-miR- CATGATCAGCTGGGCCAAGACTGGCACAC hmr-miR-493- T+GAA+GGTCTACTGT
493-3pGS9 SEQ ID NO: 879 3pRP2 SEQ ID NO: 883
hmr-miR- CATGATCAGCTGGGCCAAGACTGGCACA
493-3pGS8 SEQ ID NO: 880
hmr-miR- CATGATCAGCTGGGCCAAGACTGGCAC
493-3pGS7 SEQ ID NO: 881
65 hmr-miR- hmr-miR- CATGATCAGCTGGGCCAAGAAGCCTATGGA hmr-miR- T+GA+GAAC+TGAATTCCATA Conserved across all
146b 146bGS10 SEQ ID NO: 884 146bRP1 SEQ ID NO: 888 three species
hmr-miR- CATGATCAGCTGGGCCAAGAAGCCTATGG hmr-miR- T+GA+GAAC+TGAATTCCA
146bGS9 SEQ ID NO: 885 146bRP2 SEQ ID NO: 889
hmr-miR- CATGATCAGCTGGGCCAAGAAGCCTATG
146bGS8 SEQ ID NO: 886
hmr-miR- CATGATCAGCTGGGCCAAGAAGCCTAT
146bGS7 SEQ ID NO: 887
66 r-miR-1 r-miR- CATGATCAGCTGGGCCAAGATACACACTTC r-miR-1RP1 T+G+GAA+TGTAAAGAAGTG Assay specific for rat
1GS10 SEQ ID NO: 890 SEQ ID NO: 894 ortholog
r-miR-1GS9 CATGATCAGCTGGGCCAAGATACACACTT r-miR-1RP2 T+G+GAA+TGTAAAGAAG
SEQ ID NO: 891 SEQ ID NO: 895
r-miR-1GS8 CATGATCAGCTGGGCCAAGATACACACT
SEQ ID NO: 892
r-miR-1GS7 CATGATCAGCTGGGCCAAGATACACAC
SEQ ID NO: 893
67 h-miR-675-5p h-miR-675- CATGATCAGCTGGGCCAAGACACTGTGGGC h-miR-675- T+GGTGCGGAGAGGGCCCA Assay specific for human
5pGS10 SEQ ID NO: 896 5pRP1 SEQ ID NO: 900 ortholog
h-miR-675- CATGATCAGCTGGGCCAAGACACTGTGGG h-miR-675- T+GGTGCGGAGAGGGC
5pGS9 SEQ ID NO: 897 5pRP2 SEQ ID NO: 901
h-miR-675- CATGATCAGCTGGGCCAAGACACTGTGG
5pGS8 SEQ ID NO: 898
h-miR-675- CATGATCAGCTGGGCCAAGACACTGTG
5pGS7 SEQ ID NO: 899
68 mr-miR-675- mr-miR- CATGATCAGCTGGGCCAAGAACTGTGGGCC mr-miR-675- T+GGTGCGGAAAGGGCC Assay specific for rodent
5p 675-5pGS10 SEQ ID NO: 902 5pRP1 SEQ ID NO: 906 ortholog
mr-miR- CATGATCAGCTGGGCCAAGAACTGTGGGC mr-miR-675- T+GGTGCGGAAAGGG
675-5pGS9 SEQ ID NO: 903 5pRP2 SEQ ID NO: 907
mr-miR- CATGATCAGCTGGGCCAAGAACTGTGGG
675-5pGS8 SEQ ID NO: 904
mr-miR- CATGATCAGCTGGGCCAAGAACTGTGG
675-5pGS7 SEQ ID NO: 905
69 hmr-miR-668 hmr-miR- CATGATCAGCTGGGCCAAGAGTAGTGGGCC hmr-miR- TG+TCACTCGGCTCGGCC Conserved across all
668GS10 SEQ ID NO: 908 668RP1 SEQ ID NO: 912 three species
hmr-miR- CATGATCAGCTGGGCCAAGAGTAGTGGGC hmr-miR- TG+TCACTCGGCTCGG
668GS9 SEQ ID NO: 909 668RP2 SEQ ID NO: 913
hmr-miR- CATGATCAGCTGGGCCAAGAGTAGTGGG
668GS8 SEQ ID NO: 910
hmr-miR- CATGATCAGCTGGGCCAAGAGTAGTGG
668GS7 SEQ ID NO: 911
70 r-miR-346 r-miR- CATGATCAGCTGGGCCAAGAAGAGGCAGGC r-miR-346RP1 TGTC+TGCCTGAGTGCCTG Assay specific for rat
346GS10 SEQ ID NO: 914 SEQ ID NO: 918 ortholog
r-miR- CATGATCAGCTGGGCCAAGAAGAGGCAGG r-miR-346RP2 TGTC+TGCCTGAGTGCC
346GS9 SEQ ID NO: 915 SEQ ID NO: 919
r-miR- CATGATCAGCTGGGCCAAGAAGAGGCAG
346GS8 SEQ ID NO: 916
r-miR- CATGATCAGCTGGGCCAAGAAGAGGCA
346GS7 SEQ ID NO: 917
71 hmr-miR- hmr-miR- CATGATCAGCTGGGCCAAGATTCAGTTATC hmr-miR-542- TG+TGA+CAGATTGATAACT Conserved across all
542-3p 542-3pGS10 SEQ ID NO: 920 3pRP1 SEQ ID NO: 924 three species
hmr-miR- CATGATCAGCTGGGCCAAGATTCAGTTAT hmr-miR-542- TG+T+GA+CAGATTGATAA
542-3pGS9 SEQ ID NO: 921 3pRP2 SEQ ID NO: 925
hmr-miR- CATGATCAGCTGGGCCAAGATTCAGTTA
542-3pGS8 SEQ ID NO: 922
hmr-miR- CATGATCAGCTGGGCCAAGATTCAGTT
542-3pGS7 SEQ ID NO: 923
72 hmr-miR- hmr-miR- CATGATCAGCTGGGCCAAGACGTGACATGATG hmr-miR-542- CTC+GG+GGATCATCATG Conserved across all
542-5p 542-5pGS10 SEQ ID NO: 926 5pRP1 SEQ ID NO: 930 three species
hmr-miR- CATGATCAGCTGGGCCAAGACGTGACATG hmr-miR-542- C+TC+GGGGATCATCAT
542-5pGS9 SEQ ID NO: 927 5pRP2 SEQ ID NO: 931
hmr-miR- CATGATCAGCTGGGCCAAGACGTGACAT
542-5pGS8 SEQ ID NO: 928
hmr-miR- CATGATCAGCTGGGCCAAGACGTGACA
542-5pGS7 SEQ ID NO: 929
73 hmr-miR-499 hmr-miR- CATGATCAGCTGGGCCAAGAAAACATCACT hmr-miR- T+TAA+GA+CTTGCAGTGAT Conserved across all
499G510 SEQ ID NO: 932 499RP1 SEQ ID NO: 936 three species
hmr-miR- CATGATCAGCTGGGCCAAGAAAACATCAC hmr-miR- T+TAA+GA+CTTGCAGTG
499GS9 SEQ ID NO: 933 499RP2 SEQ ID NO: 937
hmr-miR- CATGATCAGCTGGGCCAAGAAAACATCA
499GS8 SEQ ID NO: 934
hmr-miR- CATGATCAGCTGGGCCAAGAAAACATC
499GS7 SEQ ID NO: 935
74 hmr-miR-758 hmr-miR- CATGATCAGCTGGGCCAAGAGTTAGTGGAC hmr-miR- TT+TG+TGACCTGGTCCAC Conserved across all
758GS10 SEQ ID NO: 938 758RP1 SEQ ID NO: 942 three species
hmr-miR- CATGATCAGCTGGGCCAAGAGTTAGTGGA hmr-miR- TT+TG+T+GACCTGGTCC
758GS9 SEQ ID NO: 939 758RP2 SEQ ID NO: 943
hmr-miR- CATGATCAGCTGGGCCAAGAGTTAGTGG
758GS8 SEQ ID NO: 940
hmr-miR- CATGATCAGCTGGGCCAAGAGTTAGTG
758GS7 SEQ ID NO: 941
75 hmr-miR-194 miR- CATGATCAGCTGGGCCAAGATCCACATGGA miR-194RP1 TG+TAA+CAGCAACTCCA Conserved across all
194GSP10 SEQ ID NO: 944 SEQ ID NO: 948 three species
miR- CATGATCAGCTGGGCCAAGATCCACATGG miR-RP2 TG+TAA+CA+GCAACTCCAT
194GSP9 SEQ ID NO: 945 SEQ ID NO: 949
miR- CATGATCAGCTGGGCCAAGATCCACATG
194GSP8 SEQ ID NO: 946
miR- CATGATCAGCTGGGCCAAGATCCACAT
194GSP7 SEQ ID NO: 947
76 hmr-miR-206 mir- CATGATCAGCTGGGCCAAGACCACACACTT mir-206RP1 T+GGAA+TGTAAGGAAGT Conserved across all
206GSP10 SEQ ID NO: 950 SEQ ID NO: 954 three species
mir- CATGATCAGCTGGGCCAAGACCACACACT miR-206RP2 T+G+GAA+TGTAAGGAAGTGT
206GSP9 SEQ ID NO: 951 SEQ ID NO: 955
mir- CATGATCAGCTGGGCCAAGACCACACAC
206GSP8 SEQ ID NO: 952
mir- CATGATCAGCTGGGCCAAGACCACACA
206GSP7 SEQ ID NO: 953
77 hmr-miR-1 miR-1GS10 CATGATCAGCTGGGCCAAGATACATACTTC miR-1RP1 TG+GAA+TG+TAAAGAAGTA Conserved across all
(SEQ ID NO: 47) (SEQ ID NO: 959) three species
miR-1GS9 CATGATCAGCTGGGCCAAGATACATACTT (SEQ miR-1RP2 T+G+GAA+TG+TAAAGAAGT
ID NO: 956) (SEQ ID NO: 48)
miR-1GS8 CATGATCAGCTGGGCCAAGATACATACT (SEQ
ID NO: 957)
miR-1GS7 CATGATCAGCTGGGCCAAGATACATAC (SEQ ID
NO: 958)
78 hmr-miR-9 miR-9GS10 CATGATCAGCTGGGCCAAGATCATACAGCT miR-9RP1 T+CTTT+GGTTATCTAGCT (SEQ Conserved across all
(SEQ ID NO: 960) ID NO: 964) three species
miR-9G59 CATGATCAGCTGGGCCAAGATCATACAGC (SEQ miR-9RP2 TC+TTT+GGTT+ATCTAGCTGTA
ID NO: 961) (SEQ ID NO: 965)
miR-9G58 CATGATCAGCTGGGCCAAGATCATACAG (SEQ
ID NO: 962)
miR-9G57 CATGATCAGCTGGGCCAAGATCATACA (SEQ ID
NO: 963)
TABLE 9
SEQ
Assay Target ID
Number MicroRNA Name RNA target sequence NO:
1. hmr-miR-495 AAACAAACAUGGUGCACUUCUU 966
2. mr-miR-291a- AAAGUGCUUCCACUUUGUGUGCC 967
3p
3. m-mIR-291b-3p AAAGUGCAUCCAUUUUGUUUGUC 968
4. h-miR-519a AAAGUGCAUCCUUUUAGAGUGUUAC 969
5. h-miR-519b AAAGUGCAUCCUUUUAGAGGUUU 970
6. h-miR-519c AAAGUGCAUCUUUUUAGAGGAU 971
7. h-miR-519d CAAAGUGCCUCCCUUUAGAGUGU 972
8. h-miR-520a AAAGUGCUUCCCUUUGGACUGU 973
9. h-miR-520b AAAGUGCUUCCUUUUAGAGGG 974
10. h-miR-520d AAAGUGCUUCUCUUUGGUGGGUU 975
11. h-miR-520e AAAGUGCUUCCUUUUUGAGGG 976
12. h-miR-520f AAGUGCUUCCUUUUAGAGGGUU 977
13. mr-miR-329 AACACACCCAGCUAACCUUUUU 978
14. hmr-miR-181d AACAUUCAUUGUUGUCGGUGGGUU 979
15. hmr-miR-193b AACUGGCCCUCAAAGUCCCGCUUU 980
16. h-miR-362 AAUCCUUGGAACCUAGGUGUGAGU 981
17. mr-mIR-362-3p AAUCCUUGGAACCUAGGUGUGAA 982
18. h-miR-500 AUGCACCUGGGCAAGGAUUCUG 983
19. mr-miR-500 AUGCACCUGGGCAAGGGUUCAG 984
20. h-miR-501 AAUCCUUUGUCCCUGGGUGAGA 985
21. mr-miR-501 AAUCCUUUGUCCCUGGGUGAAA 986
22. hmr-miR-487b AAUCGUACAGGGUCAUCCACU 987
23. h-miR-489 AGUGACAUCACAUAUACGGCAGC 988
24. m-miR-489 AAUGACACCACAUAUAUGGCAGC 989
25. r-miR-489 AAUGACAUCACAUAUAUGGCAGC 990
26. hmr-miR-425- AAUGACACGAUCACUCCCGUUGA 991
5p
27. hmr-miR-652 AAUGGCGCCACUAGGGUUGUGCA 992
28. hmr-miR-485 AGAGGCUGGCCGUGAUGAAUUC 993
-5p
29. hmr-miR-485 AGUCAUACACGGCUCUCCUCUCU 994
-3p
30. hmr-miR-369 AGAUCGACCGUGUUAUAUUCG 995
-5p
31. hmr-miR-671 AGGAAGCCCUGGAGGGGCUGGAGG 996
32. h-miR-449b AGGCAGUGUAUUGUUAGCUGGC 997
33. mr-miR-449b AGGCAGUGCAUUGCUAGCUGG 998
34. m-miR-699 AGGCAGUGCGACCUGGCUCG 999
35. hmr-miR-409- AGGUUACCCGAGCAACUUUGCA 1000
5p
36. hmr-miR-409- GAAUGUUGCUCGGUGAACCCCUU 1001
3p
37. hmr-miR-491 AGUGGGGAACCCUUCCAUGAGG 1002
38. h-miR-384 AUUCCUAGAAAUUGUUCAUA 1003
39. mr-miR-384 AUUCCUAGAAAUUGUUCACA 1004
40. hmr-miR-20b CAAAGUGCUCAUAGUGCAGGUAG 1005
41. hmr-miR-490 CAACCUGGAGGACUCCAUGCUG 1006
42. hmr-miR-497 CAGCAGCACACUGUGGUUUGU 1007
43. h-miR-301b CAGUGCAAUGAUAUUGUCAAAGCA 1008
44. mr-miR-301b CAGUGCAAUGGUAUUGUCAAAGCA 1009
45. hmr-miR-721 CAGUGCAAUUAAAAGGGGGAA 1010
46. hmr-miR-532 CAUGCCUUGAGUGUAGGACCGU 1011
47. h-miR-488 CCCAGAUAAUGGCACUCUCAA 1012
48. mr-miR-488 CCCAGAUAAUAGCACUCUCAA 1013
49. hmr-miR-539 GGAGAAAUUAUCCUUGGUGUGU 1014
50. h-miR-505 GUCAACACUUGCUGGUUUCCUC 1015
51. mr-miR-505 CGUCAACACUUGCUGGUUUUCU 1016
52. h-miR-18b UAAGGUGCAUCUAGUGCAGUUA 1017
53. mr-miR-18b UAAGGUGCAUCUAGUGCUGUUA 1018
54. hmr-miR-503 UAGCAGCGGGAACAGUACUGC 1019
55. hmr-miR-455 UAUGUGCCUUUGGACUACAUCG 1020
56. hmr-miR-92b UAUUGCACUCGUCCCGGCCUC 1021
57. h-miR-483 UCACUCCUCUCCUCCCGUCUUCU 1022
58. mr-miR-483 UCACUCCUCCCCUCCCGUCUUGU 1023
59. hmr-miR-484 UCAGGCUCAGUCCCCUCCCGAU 1024
60. hmr-miR-351 UCCCUGAGGAGCCCUUUGAGCCUG 1025
61. hmr-miR-615 UCCGAGCCUGGGUCUCCCUCU 1026
62. hmr-miR-486 UCCUGUACUGAGCUGCCCCGAG 1027
63. hmr-miR-494 UGAAACAUACACGGGAAACCU 1028
64. hmr-miR-493- UGAAGGUCUACUGUGUGCCAG 1029
3p
65. hmr-miR-146b UGAGAACUGAAUUCCAUAGGCU 1030
66. r-miR-1 UGGAAUGUAAAGAAGUGUGUA 1031
67. h-miR-675-5p UGGUGCGGAGAGGGCCCACAGUG 1032
68. mr-miR-675-5p UGGUGCGGAAAGGGCCCACAGU 1033
69. hmr-miR-668 UGUCACUCGGCUCGGCCCACUAC 1034
70. r-miR-346 UGUCUGCCUGAGUGCCUGCCUCU 1035
71. hmr-miR-542- UGUGACAGAUUGAUAACUGAAA 1036
3p
72. hmr-miR-542- CUCGGGGAUCAUCAUGUCACG 1037
5p
73. hmr-miR-499 UUAAGACUUGCAGUGAUGUUU 1038
74. hmr-miR-758 UUUGUGACCUGGUCCACUAACC 1039
75. hmiR-194 UGUAACAGCAACUCCAUGUGGA 1040
76. hmiR-206 UGGAAUGUAAGGAAGUGUGUGG 1041
77. hmiR-1 UGGAAUGUAAAGAAGUAUGUA 1042
78. hmiR-9 UCUUUGGUUAUCUAGCUGUAUGA 1043
Assay Format:
Several candidate primer sets shown above in TABLE 8 were tested in a high-throughput assay testing format as follows:
Each test assay (e.g., assay #75, #76, #77 and #78 listed in TABLE 8) was run in 4×4 wells of a 96 well plate, with 6 assays per 96 well plate, thereby allowing for rapid determination of the optimal primer pair for each target.
For each assay, each of the 4 candidate extension (GS) primers were tested in a separate row of the 96 well plate. Each of the 2 reverse primers were tested plus (1 nM DNA) or minus template (10 mM Tris pH 7.6, 0.1 mM EDTA, 100 ng/ul yeast total RNA).
Following reverse transcription, one set of duplicate non-template control and template samples was tested against reverse primer 1 (RP1) and the other against reverse primer 2 (RP2).
Reverse Transcriptase Assay Conditions:
-
- 6 μl of RT master mix was added to all 96 wells
- 2 μl of 0.5 μM GS primers was added to four successive wells
- yeast RNA in TE (10 mM Tris pH 7.6, 0.1 mM EDTA) was added to all odd-numbered wells and pre-diluted DNA templates was added to even-numbered wells
Samples were mixed well and the reverse transcriptase step was carried out, followed by dilution with 80 μl TE (10 mM Tris pH 7.6, 0.1 mM EDTA).
2 μl of the reverse transcription mixture was transferred into quadruplicate wells of a 384 well PCR plate preloaded with 80 PCR mix per well containing universal primer plus the appropriate reverse primers.
The quantitative PCR reaction results were evaluated on a real-time PCR instrument compatible with 384 well plates.
Ct values for the PCR reactions were determined based on a baseline threshold of 0.01. The sensitivity (Ct value of 1 nM template) and dynamic range (Ct of no-template control minus the Ct of the 1 nM template) were determined for each primer pair in each assay. The results of exemplary assays #75, #76, #77 and #78, listed in TABLE 8, are shown in TABLE 10 below.
TABLE 10
ASSAY RESULTS USING CANDIDATE PRIMER SETS FOR
DETECTING MIR-1, MIR-9; MIR-194 AND MIR-206
Selected
microRNA Dynamic for use in
target Extension primer Reverse primer Sensitivity Range profiling
miR-9 miR-9GS10 miR-9 RP1 13 9 −
(SEQ ID NO: 1043) (SEQ ID NO: 960) (SEQ ID NO: 964)
miR-9GS9 miR-9 RP1 13 4 −
(SEQ ID NO: 961) (SEQ ID NO: 964)
miR-9GS8 miR-9 RP1 10 0 −
(SEQ ID NO:962) (SEQ ID NO: 964)
miR-9GS7 miR-9 RP1 16 8 −
(SEQ ID NO: 963) (SEQ ID NO: 964)
miR-9GS10 miR-9 RP2 13 5 −
(SEQ ID NO: 960) (SEQ ID NO: 965)
miR-9GS9 miR-9 RP2 14 4 −
(SEQ ID NO: 961) (SEQ ID NO: 965)
miR-9GS8 miR-9 RP2 10 0 −
(SEQ ID NO: 962) (SEQ ID NO: 965)
miR-9GS7 miR-9 RP2 17 8 −
(SEQ ID NO: 963) (SEQ ID NO: 965)
miR-194 miR-194GS10 miR-194RP1 9 6 −
(SEQ ID NO: 1040) (SEQ ID NO: 944) (SEQ ID NO: 948)
miR-194GS9 miR-194RP1 11 5 −
(SEQ ID NO: 945) (SEQ ID NO: 948)
miR-194GS8 miR-194RP1 13 17 +
(SEQ ID NO: 946) (SEQ ID NO: 948)
miR-194GS7 miR-194RP1 15 17 −
(SEQ ID NO: 947) (SEQ ID NO: 948)
miR-194GS10 miR-194RP2 10 6 −
(SEQ ID NO: 944) (SEQ ID NO: 949)
miR-194GS9 miR-194RP2 11 6 −
(SEQ ID NO: 945) (SEQ ID NO: 949)
miR-194GS8 miR-194RP2 13 16 −
(SEQ ID NO: 946) (SEQ ID NO: 949)
miR-194GS7 miR-194RP2 17 16 −
(SEQ ID NO: 947) (SEQ ID NO: 949)
miR-1 miR-1 GS10 miR-1 RP1 15 15 −
(SEQ ID NO: 1042) (SEQ ID NO: 47) (SEQ ID NO: 959)
miR-1 GS9 miR-1 RP1 17 8 −
(SEQ ID NO: 956) (SEQ ID NO: 959)
miR-1 GS8 miR-1 RP1 19 11 −
(SEQ ID NO: 957) (SEQ ID NO: 959)
miR-1 GS7 miR-1 RP1 22 11 −
(SEQ ID NO: 958) (SEQ ID NO: 959)
miR-1 GS10 miR-1 RP2 13 15 +
(SEQ ID NO: 47) (SEQ ID NO: 48)
miR-1 GS9 miR-1 RP2 15 8 −
(SEQ ID NO: 956) (SEQ ID NO: 48)
miR-1 GS8 miR-1 RP2 17 11 −
(SEQ ID NO: 957) (SEQ ID NO: 48)
miR-1 GS7 miR-1 RP2 19 10 −
(SEQ ID NO: 958) (SEQ ID NO: 48)
miR-206 miR-206 GS10 miR-206RP1 15 10 −
(SEQ ID NO: 1041) (SEQ ID NO: 950) (SEQ ID NO: 954)
miR-206 GS9 miR-206RP1 16 10 −
(SEQ ID NO: 951) (SEQ ID NO: 954)
miR-206 GS8 miR-206RP1 17 14 −
(SEQ ID NO: 952) (SEQ ID NO: 954)
miR-206 GS7 miR-206RP1 20 20 −
(SEQ ID NO: 953) (SEQ ID NO: 954)
miR-206 GS10 miR-206RP2 10 8 −
(SEQ ID NO: 950) (SEQ ID NO: 955)
miR-206 GS9 miR-206RP2 11 9 −
(SEQ ID NO: 951) (SEQ ID NO: 955)
miR-206 GS8 miR-206RP2 11 11 −
(SEQ ID NO: 952) (SEQ ID NO: 955)
miR-206 GS7 miR-206RP2 13 20 +
(SEQ ID NO: 953) (SEQ ID NO: 955)
Optimal primer pairs were identified based on superior sensitivity (e.g., a preferred range between 5 and 25) and dynamic range (e.g., a preferred range between 10 and 35) characteristics. As shown above in TABLE 10, an optimal primer pair was identified for miR-194: GS8 (SEQ ID NO:946) and RP1 (SEQ ID NO:948) with a sensitivity of 13 and a dynamic range of 17. An optimal primer pair was identified for miR-1: GS10 (SEQ ID NO:47) and RP2 (SEQ ID NO:48) with a sensitivity of 13 and a dynamic range of 15. An optimal primer pair was identified for miR-206: GS7 (SEQ ID NO:953) and RP2 (SEQ ID NO:955) with a sensitivity of 13 and a dynamic range of 20. As also shown in TABLE 10, the GS primers control specificity, as shown by the significant increase in dynamic range (driven by a decrease in background) in going from GS9 to GS8 (see, e.g., miR-194).
Candidate primers designed based on the principles described above, such as the additional exemplary primers listed in TABLE 8, or other candidate primers designed using the design principles described herein, may be tested using the screening methods described above. The assays may be further optimized by using HPLC purified templates to avoid problems associated with degraded templates.
It has also been determined that microRNAs that differ from each other in sequence by only 1, 2 or 3 nucleotide changes can be readily distinguished from one another through the use of the primers designed according to the design principles and methods described herein.
While the preferred embodiment of the invention has been illustrated and described, it will be appreciated that various changes can be made therein without departing from the spirit and scope of the invention.