METHOD AND APPARATUS FOR PROVIDING BRIGHTNESS CONTROL IN AN INTERFEROMETRIC MODULATOR (IMOD) DISPLAY
Methods and systems for providing brightness control in an interferometric modulator (IMOD) display are provided. In one embodiment, an interferometric modulator display pixel is provided that includes a microelectromechanical systems (MEMS) interferometric modulator having an associated first color spectrum, and a color absorber located substantially in front of the interferometric modulator display pixel, in which the color absorber has an associated second color spectrum. The micro electromechanical systems (MEMS) interferometric modulator is operable to shift the first color spectrum relative to the second color spectrum to control a visual brightness of the interferometric modulator display pixel independent of a color of the interferometric modulator display pixel.
Latest QUALCOMM MEMS TECHNOLOGIES, INC. Patents:
This application is a continuation of U.S. patent application Ser. No. 12/849,750, filed Aug. 3, 2010, entitled “METHOD AND APPARATUS FOR PROVIDING BRIGHTNESS CONTROL IN AN INTERFEROMETRIC MODULATOR (IMOD) DISPLAY,” which is a continuation of U.S. patent application Ser. No. 11/408,753, filed Apr. 21, 2006, now U.S. Pat. No. 8,004,743, entitled “METHOD AND APPARATUS FOR PROVIDING BRIGHTNESS CONTROL IN AN INTERFEROMETRIC MODULATOR (IMOD) DISPLAY,” and assigned to the assignee hereof. The entire disclosures of the prior applications are considered part of, and are incorporated by reference in, this disclosure.
TECHNICAL FIELDThe present invention relates generally to display devices, and more particularly to brightness control in interferometric modulator display devices.
BACKGROUNDMicroelectromechanical systems (MEMS) include micromechanical elements, actuators, and electronics. Micromechanical elements may be created using deposition, etching, and/or other micromachining processes that etch away parts of substrates and/or deposited material layers or that add layers to form electrical and electromechanical devices. One type of MEMS device is called an interferometric modulator. As used herein, the term interferometric modulator or interferometric light modulator refers to a device that selectively absorbs and/or reflects light using the principles of optical interference. In certain embodiments, an interferometric modulator may comprise a pair of conductive plates, one or both of which may be transparent and/or reflective in whole or part and capable of relative motion upon application of an appropriate electrical signal. In a particular embodiment, one plate may comprise a stationary layer deposited on a substrate and the other plate may comprise a metallic membrane separated from the stationary layer by a transparent medium (e.g., an air gap). As described herein in more detail, the position of one plate in relation to the other plate can change the optical interference of light incident on the interferometric modulator. Such devices have a wide range of applications, and it would be beneficial in the art to utilize and/or modify the characteristics of these types of devices so that their features can be exploited in improving existing products and creating new products that have not yet been developed.
An interferometric modulator display device generally comprises multiple pixels, in which each pixel is operable to provide a range of visual colors, for example, by changing the position of a corresponding plate (e.g., the metallic membrane) in relation to another plate (e.g., the stationary layer) to shift a color perceived by a user. Conventional interferometric modulator display devices, however, typically do not have a brightness control (for each pixel) that is independent of pixel color-i.e., in conventional interferometric modulator display devices the brightness of a pixel is usually controlled by shifting a color of the pixel to an unperceivable color. Consequently, brightness control in conventional interferometric modulator displays is generally limited.
Accordingly, what is needed is an improved technique for providing brightness control in an interferometric modulator display. The present invention addresses such a need.
SUMMARYIn general, in one aspect, this specification describes an interferometric modulator display pixel that includes a microelectromechanical systems (MEMS) interferometric modulator having an associated first color spectrum, and a color absorber located substantially in front of the interferometric modulator display pixel, in which the color absorber has an associated second color spectrum. The microelectromechanical systems (MEMS) interferometric modulator is operable to shift the first color spectrum relative to the second color spectrum to control a visual brightness of the interferometric modulator display pixel independent of a color of the interferometric modulator display pixel.
Implementations may provide one or more of the following advantages. An interferometric modulator display is provided that implements brightness control (for each pixel) that is independent of a color associated with a pixel. Accordingly, an interferometric modulator display can provide a greater visual display of color gradations and shade in comparison to conventional interferometric modulator displays. In addition, the range of colors of such a display changes less with changes in spectrum of the ambient illumination.
Like reference symbols in the various drawings indicate like elements.
DETAILED DESCRIPTIONThe following detailed description is directed to certain specific embodiments of the invention. However, the invention can be embodied in a multitude of different ways. In this description, reference is made to the drawings wherein like parts are designated with like numerals throughout. As will be apparent from the following description, the embodiments may be implemented in any device that is configured to display an image, whether in motion (e.g., video) or stationary (e.g., still image), and whether textual or pictorial. More particularly, it is contemplated that the embodiments may be implemented in or associated with a variety of electronic devices such as, but not limited to, mobile telephones, wireless devices, personal data assistants (PDAs), hand-held or portable computers, GPS receivers/navigators, cameras, MP3 players, camcorders, game consoles, wrist watches, clocks, calculators, television monitors, flat panel displays, computer monitors, auto displays (e.g., odometer display, etc.), cockpit controls and/or displays, display of camera views (e.g., display of a rear view camera in a vehicle), electronic photographs, electronic billboards or signs, projectors, architectural structures, packaging, and aesthetic structures (e.g., display of images on a piece of jewelry). MEMS devices of similar structure to those described herein can also be used in non-display applications such as in electronic switching devices.
As discussed above, conventional interferometric modulator display devices typically do not have a brightness control (for each pixel) that is independent of pixel color. That is, in conventional interferometric modulator display devices the brightness of a pixel is usually controlled by shifting a color of the pixel to an unperceivable color. Thus, brightness control within conventional interferometric modulator display devices is generally limited. Accordingly, this specification describes an improved technique for providing brightness control in an interferometric modulator display. In one embodiment, an interferometric modulator display pixel is provided that includes a microelectromechanical systems (MEMS) interferometric modulator having an associated first color spectrum. The microelectromechanical systems (MEMS) interferometric modulator is operable to shift the first color spectrum relative to a second color spectrum to control a visual brightness of the interferometric modulator display pixel independent of a color of the interferometric modulator display pixel.
Firstly, a description of an interferometric modulator display embodiment will be described which has been conceived and reduced to practice by QUALCOMM Inc. This display operates effectively for its stated purpose. However, it is always desirable to improve on the performance thereof. To describe this modulator and its operation refer now to the following description in conjunction with the accompanying figures.
One interferometric modulator display embodiment comprising an interferometric MEMS display element is illustrated in
The depicted portion of the pixel array in
The optical stacks 16a and 16b (collectively referred to as optical stack 16), as referenced herein, typically comprise of several fused layers, which can include an electrode layer, such as indium tin oxide (ITO), a partially reflective layer, such as chromium, and a transparent dielectric. The optical stack 16 is thus electrically conductive, partially transparent and partially reflective, and may be fabricated, for example, by depositing one or more of the above layers onto a transparent substrate 20. The partially reflective layer can be formed from a variety of materials that are partially reflective such as various metals, semiconductors, and dielectrics. The partially reflective layer can be formed of one or more layers of materials, and each of the layers can be formed of a single material or a combination of materials.
In some embodiments, the layers of the optical stack 16 are patterned into parallel strips, and may form row electrodes in a display device as described further below. The movable reflective layers 14a, 14b may be formed as a series of parallel strips of a deposited metal layer or layers (orthogonal to the row electrodes of 16a, 16b) deposited on top of posts 18 and an intervening sacrificial material deposited between the posts 18. When the sacrificial material is etched away, the movable reflective layers 14a, 14b are separated from the optical stacks 16a, 16b by a defined gap 19. A highly conductive and reflective material such as aluminum may be used for the reflective layers 14, and these strips may form column electrodes in a display device.
With no applied voltage, the gap 19 remains between the movable reflective layer 14a and optical stack 16a, with the movable reflective layer 14a in a mechanically relaxed state, as illustrated by the pixel 12a in
In one embodiment, the processor 21 is also configured to communicate with an array driver 22. In one embodiment, the array driver 22 includes a row driver circuit 24 and a column driver circuit 26 that provide signals to a display array or panel 30. The cross section of the array illustrated in
For a display array having the hysteresis characteristics of
In typical applications, a display frame may be created by asserting the set of column electrodes in accordance with the desired set of actuated pixels in the first row. A row pulse is then applied to the row 1 electrode, actuating the pixels corresponding to the asserted column lines. The asserted set of column electrodes is then changed to correspond to the desired set of actuated pixels in the second row. A pulse is then applied to the row 2 electrode, actuating the appropriate pixels in row 2 in accordance with the asserted column electrodes. The row 1 pixels are unaffected by the row 2 pulse, and remain in the state they were set to during the row 1 pulse. This may be repeated for the entire series of rows in a sequential fashion to produce the frame. Generally, the frames are refreshed and/or updated with new display data by continually repeating this process at some desired number of frames per second. A wide variety of protocols for driving row and column electrodes of pixel arrays to produce display frames are also well known and may be used in conjunction with the present invention.
FIGS. 4 and 5A-5B illustrate one possible actuation protocol for creating a display frame on the 3×3 array of
In the frame shown in
In the above-identified modulators of
At equilibrium, the electrostatic and mechanical spring forces will be equal:
where A is the area of the pixel, and ε0 is the permittivity of space, εdielectric is the relative dielectric constant of the dielectric material, k is the spring constant, V is the applied voltage, and xair is the maximum thickness of the air gap.
A graph of this equilibrium equation is shown in
After differentiation and a little simplification, this becomes:
Accordingly, it has been found that approximately for ⅓ of the total distance between the two electrodes, the members can be controlled. The important point is that the control voltage may extend from 0 either positive or negative for small excursions, as long as the point of instability is not exceeded. If the voltage exceeds the instability voltage, then the moveable membrane will snap down to the dielectric, and there will no longer be a one-to-one correspondence between applied voltage and the membrane position (at least until the voltage is brought close to zero again).
Assuming the spring for this interferometric modulator is arranged so its force is zero at a gap of 540 nm, the point of instability is at 540 nm*(1⅓)=360 nm. Since the maximum brightness is at 440 nm, this interferometric modulator may be controlled in an analog fashion from minimum brightness (at 540 nm) to maximum brightness (at 440 nm) without concern for the snap-in instability point.
The interferometric modulator 700 also includes a color absorber 712, for example, to provide for brightness control. In general, the color absorber 712 substantially absorbs light except light at a peak color, or absorbs light except light within a pre-determined range of wavelengths. For example, referring to
For example, as shown in graph 800A, the interferometric modulator 700 in a relaxed position (ignoring the effect of the absorber 712), has a peak reflectance color of red (e.g., a color at a wavelength substantially near 700 nm). An associated color spectrum 806 centered at approximately 700 nm is illustrated. A visual brightness of color associated with the interferometric modulator 700 is a result of the combination of the color spectrum 804 (associated with the color absorber 712) and the color spectrum 806 (from the interferometric modulator 700 in a relaxed position and ignoring the effect of the absorber upon the interferometric modulator) as shown in graph 800B of
Referring to the example graphs of 802A and 804A of
Continuously variable control can be provided in a variety of ways. For example, referring again to
After deposition of the sacrificial layer, the process of forming the support posts for the mechanical layer begins. Accordingly, the sacrificial layer is etched (step 912). Referring to the example of
The display device 40 includes a housing 41, a display 30, an antenna 43, a speaker 45, an input device 48, and a microphone 46. The housing 41 is generally formed from any of a variety of manufacturing processes as are well known to those of skill in the art, including injection molding, and vacuum forming. In addition, the housing 41 may be made from any of a variety of materials, including but not limited to plastic, metal, glass, rubber, and ceramic, or a combination thereof. In one embodiment the housing 41 includes removable portions (not shown) that may be interchanged with other removable portions of different color, or containing different logos, pictures, or symbols.
The display 30 of exemplary display device 40 may be any of a variety of displays as described herein. In other embodiments, the display 30 includes a flat-panel display, such as plasma, EL, OLED, SIN LCD, or TFT LCD as described above, or a non-flat-panel display, such as a CRT or other tube device, as is well known to those of skill in the art. However, for purposes of describing the present embodiment, the display 30 includes an interferometric modulator display, as described herein.
The components of one embodiment of exemplary display device 40 are schematically illustrated in
The network interface 27 includes the antenna 43 and the transceiver 47 so that the exemplary display device 40 can communicate with one ore more devices over a network. In one embodiment the network interface 27 may also have some processing capabilities to relieve requirements of the processor 21. The antenna 43 is any antenna known to those of skill in the art for transmitting and receiving signals. In one embodiment, the antenna transmits and receives RF signals according to the IEEE 802.11 standard, including IEEE 802.11(a), (b), or (g). In another embodiment, the antenna transmits and receives RF signals according to the BLUETOOTH standard. In the case of a cellular telephone, the antenna is designed to receive CDMA, GSM, AMPS or other known signals that are used to communicate within a wireless cell phone network. The transceiver 47 pre-processes the signals received from the antenna 43 so that they may be received by and further manipulated by the processor 21. The transceiver 47 also processes signals received from the processor 21 so that they may be transmitted from the exemplary display device 40 via the antenna 43.
In an alternative embodiment, the transceiver 47 can be replaced by a receiver. In yet another alternative embodiment, network interface 27 can be replaced by an image source, which can store or generate image data to be sent to the processor 21. For example, the image source can be a digital video disc (DVD) or a hard-disc drive that contains image data, or a software module that generates image data.
Processor 21 generally controls the overall operation of the exemplary display device 40. The processor 21 receives data, such as compressed image data from the network interface 27 or an image source, and processes the data into raw image data or into a format that is readily processed into raw image data. The processor 21 then sends the processed data to the driver controller 29 or to frame buffer 28 for storage. Raw data typically refers to the information that identifies the image characteristics at each location within an image. For example, such image characteristics can include color, saturation, and gray-scale level.
In one embodiment, the processor 21 includes a microcontroller, CPU, or logic unit to control operation of the exemplary display device 40. Conditioning hardware 52 generally includes amplifiers and filters for transmitting signals to the speaker 45, and for receiving signals from the microphone 46. Conditioning hardware 52 may be discrete components within the exemplary display device 40, or may be incorporated within the processor 21 or other components.
The driver controller 29 takes the raw image data generated by the processor 21 either directly from the processor 21 or from the frame buffer 28 and reformats the raw image data appropriately for high speed transmission to the array driver 22. Specifically, the driver controller 29 reformats the raw image data into a data flow having a raster-like format, such that it has a time order suitable for scanning across the display array 30. Then the driver controller 29 sends the formatted information to the array driver 22. Although a driver controller 29, such as a LCD controller, is often associated with the system processor 21 as a stand-alone Integrated Circuit (IC), such controllers may be implemented in many ways. They may be embedded in the processor 21 as hardware, embedded in the processor 21 as software, or fully integrated in hardware with the array driver 22.
Typically, the array driver 22 receives the formatted information from the driver controller 29 and reformats the video data into a parallel set of waveforms that are applied many times per second to the hundreds and sometimes thousands of leads coming from the display's x-y matrix of pixels.
In one embodiment, the invention is intended to avoid the problems created by using a bi-stable display and bi-stable display driver. In one embodiment, the driver controller 29, array driver 22, and display array 30 are appropriate for any of the types of displays described herein. For example, in one embodiment, driver controller 29 is a conventional display controller (e.g., an interferometric modulator controller). In another embodiment, array driver 22 is a conventional driver (e.g., an interferometric modulator display driver). In one embodiment, a driver controller 29 is integrated with the array driver 22. Such an embodiment is common in highly integrated systems such as cellular phones, watches, and other small area displays. In yet another embodiment, display array 30 is a typical display array (e.g., a display including an array of interferometric modulators).
The input device 48 allows a user to control the operation of the exemplary display device 40. In one embodiment, input device 48 includes a keypad, such as a QWERTY keyboard or a telephone keypad, a button, a switch, a touch-sensitive screen, a pressure-or heat-sensitive membrane. In one embodiment, the microphone 46 is an input device for the exemplary display device 40. When the microphone 46 is used to input data to the device, voice commands may be provided by a user for controlling operations of the exemplary display device 40.
Power supply 50 can include a variety of energy storage devices as are well known in the art. For example, in one embodiment, power supply 50 is a rechargeable battery, such as a nickel-cadmium battery or a lithium ion battery. In another embodiment, power supply 50 is a renewable energy source, a capacitor, or a solar cell, including a plastic solar cell, and solar-cell paint. In another embodiment, power supply 50 is configured to receive power from a wall outlet.
In some embodiments control programmability resides, as described above, in a driver controller which can be located in several places in the electronic display system. In some cases control programmability resides in the array driver 22. Those of skill in the art will recognize that the above-described optimization may be implemented in any number of hardware and/or software components and in various configurations.
Various embodiments of an interferometric modulator display have been described. Nevertheless, one or ordinary skill in the art will readily recognize that various modifications may be made to the implementations, and any variation would be within the spirit and scope of the present invention. For example, process steps discussed above in connection with
Claims
1. A display pixel comprising:
- a reflective display element having an associated first color spectrum associated with a first color;
- a color filter having an associated second color spectrum associated with a second color that is different than the first color;
- wherein the display element is operable to tune the first color spectrum relative to the second color spectrum to provide multiple levels of brightness of the second color.
2. The display pixel of claim 1, wherein the display pixel is configured to display at least part of an image by reflecting incident ambient light.
3. The display pixel of claim 1, wherein the display element includes an interferometric modulator.
4. The display pixel of claim 1, wherein the color filter includes a color absorber located substantially in front of the display element, the color absorber having the second color spectrum.
5. The display pixel of claim 1, wherein the first color spectrum has a first peak wavelength and the second color spectrum has a second peak wavelength, and
- wherein the display element shifts the first peak wavelength relative to the second peak wavelength to provide the multiple levels of brightness of the second color.
6. The display pixel of claim 1, wherein the visual brightness of the display pixel increases with greater overlap between the first color spectrum and the second color spectrum, and decreases with less overlap between the first color spectrum and the second color spectrum.
7. The display pixel of claim 1, further comprising one or more light sources to provide light to the color filter.
8. The display pixel of claim 7, wherein a combination of the one or more light sources and the color filter provides light at the second color spectrum.
9. The display pixel of claim 7, wherein the one or more light sources includes at least one of a laser, a light-emitting diode (LED), a high pressure mercury lamp, and a carbon arc lamp.
10. The display pixel of claim 1, wherein the display element includes a reflective surface movable between a first position and a second position to tune the first color spectrum relative to the second color spectrum.
11. The display pixel of claim 1, wherein the brightness is a visual brightness.
12. A display comprising the display pixel of claim 1, the display further comprising:
- a processor that is in electrical communication with the display pixel, the processor being configured to process image data; and
- a memory device in electrical communication with the processor.
13. The display of claim 12, further comprising:
- a first controller configured to send at least one signal to the display pixel; and
- a second controller configured to send at least a portion of the image data to the first controller.
14. The display of claim 12, further comprising an image source module configured to send the image data to the processor.
15. The display of claim 14, wherein the image source module includes at least one of a receiver, transceiver, and transmitter.
16. The display of claim 12, further comprising an input device configured to receive input data and to communicate the input data to the processor.
17. A display pixel comprising:
- means for reflecting light having an associated first color spectrum associated with a first color; and
- means for filtering light having an associated second color spectrum associated with a second color that is different than the first color;
- wherein the reflecting means is operable to tune the first color spectrum relative to the second color spectrum to provide multiple levels of brightness of the second color.
18. The display pixel of claim 17, wherein the reflecting means includes an interferometric modulator configured to display at least part of an image by reflecting incident ambient light.
19. The display pixel of claim 17, wherein the reflecting means includes a reflective surface movable between a first position and a second position to tune the first color spectrum relative to the second color spectrum.
20. The display pixel of claim 17, wherein the filtering means includes a color absorber located substantially in front of the reflecting means, the color absorber having the second color spectrum.
21. The display pixel of claim 17, further comprising one or more light sources to provide light to the filtering means.
22. The display pixel of claim 21, wherein a combination of the one or more light sources and the filtering means provides light at the second color spectrum.
23. The display pixel of claim 17, wherein the brightness is a visual brightness.
24. A method of making a display pixel, the method comprising:
- forming a reflective display element having an associated first color spectrum associated with a first color; and
- providing a color filter having an associated second color spectrum associated with a second color that is different than the first color;
- wherein the display element is operable to tune the first color spectrum relative to the second color spectrum to provide multiple levels of brightness of the second color.
25. The method of claim 24, wherein forming a display element includes forming on an interferometric modulator configured to display at least part of an image by reflecting incident ambient light
26. The method of claim 24, wherein providing a color filter includes forming a color absorber substantially in front of the display element.
27. The method of claim 24, wherein forming a display element includes:
- forming a reflective surface movable between a first position and a second position to tune the first color spectrum relative to the second color spectrum.
28. The method of claim 24, further comprising:
- providing one or more light sources to provide light to the color filter, wherein a combination of the one or more light sources and the color filter provides light at the second color spectrum.
Type: Application
Filed: Nov 21, 2011
Publication Date: Mar 15, 2012
Applicant: QUALCOMM MEMS TECHNOLOGIES, INC. (San Diego, CA)
Inventor: Marc Maurice Mignard (San Jose, CA)
Application Number: 13/301,530
International Classification: G06T 1/00 (20060101); G02B 26/02 (20060101); B23P 11/00 (20060101); G02F 1/01 (20060101);