CATHETER WITH COMMON GUIDE WIRE AND INDICATOR LUMEN
A catheter for retrograde orientation in a blood flow is used to determine the blood flow rate by thermodilution measurements. The determination of the blood flow rate accommodates injectate induced thermal influences on a dilution thermal sensor, wherein the thermal influences can occur prior to introduction of the injectate into the blood flow.
Latest TRANSONIC SYSTEMS, INC. Patents:
- Calculating cardiac output of a patient undergoing veno-venous extracorporeal blood oxygenation
- Method and apparatus for assessing cardiac output in veno-arterial extracorporeal blood oxygenation
- Method and apparatus for assessing cardiac output in veno-venous extracorporeal blood oxygenation
- Terminal collared electrode assembly for a medical probe
- Circular suture retention pad
The present application is a divisional of U.S. patent application Ser. No. 10/657,829 filed Sep. 9, 2003, which is a continuation of U.S. patent application Ser. No. 10/079,006 filed Feb. 20, 2002, now U.S. Pat. No. 6,623,436.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENTThis invention was made with government support under Phase I SBIR (Small Business Innovative Research Grant #1 R43 DK55444-01A2 awarded by the National Institutes of Health. The government has certain rights in the invention.
BACKGROUND OF THE INVENTION Field of the InventionThe present invention relates to blood flow measurement by thermodilution measurement, and more particularly to compensating for an injectate induced thermal effect on a thermal sensor in a retrograde catheter.
In native A-V fistulae, any stenosis is often located at the arterial portion of the vascular access or A-V shunt. The existence of a stenosis in the vascular access typically requires intervention to restore sufficient flow, or at least reduce the rate of occlusion. A typical interventional procedure is angioplasty.
The purpose of the interventional procedures, such as angioplasty, is to restore the flow through the vessel. Interventional radiologists and cardiologists therefore have a need to measure the efficacy of the flow restoring procedure.
In the angioplasty procedure, an interventional radiologist will insert a sheath (introducer) for the angioplasty balloon catheter facing the stenosis location and thus facing the blood flow in the vessel such as an A-V shunt. It is procedurally convenient to use the same introducer (sheath) for flow measurement. This procedure will locate the thermodilution catheter facing the blood flow and the position, facing the flow, is termed as “retrograde” position. Also in clinical situations such as angioplasty of extremities, it is convenient to reach the stenosis location from a downstream cannulation site. In all these situations, the thermodilution catheter will be facing the flow, and thus in a retrograde position. Yet, there remains a need for determining the blood flow rate.
Another situation is related to the endovascular procedure of placement of transjugular intrahepatic portosystemic shunts (TIPS). During the TIPS procedure, a special shunt is created to connect the portal vein with hepatic vein. The TIPS procedure is usually done to decrease the portal hypertension. However, the amount of blood that is taken by the shunt is unknown. If the amount of blood flow through the shunt is too high, then the amount of blood passing through the liver to be filtered is too small, which can result in damage to the patient. Alternatively, if the amount of blood flowing through the shunt and thus shunted from the liver is small, then the effectiveness of the procedure is diminished. The need exists for determining the blood flow so that proper treatment can be administered.
Currently, blood flow measurements are performed not during intervention but later using color Doppler measurements of line velocity, but do not provide a blood flow measurement in ml/min.
Not withstanding, no practical, relatively quick, and low cost solution exists in the prior art for determining the relevant flow in these example procedures. Therefore, the need exists to measure blood flow using a catheter introduced into the vessel in retrograde direction. It is an object of the present invention to provide low cost flow measurement methods and devices for such measurements which solve the problems (and design constrains) of the retrograde thermodilution catheter.
SUMMARY OF THE INVENTIONThe present invention is generally directed to determining blood flow rates, and more particularly to indicator dilution techniques, wherein a signal is introduced into the blood upstream and a downstream dilution signal is sensed. Of the indicator dilution methods, thermodilution is applicable in the present disclosure. In thermodilution measurements, an injectate (having a different temperature than the blood flow to be determined) is introduced at an upstream location and a thermal sensor (or dilution thermal sensor) monitors passage of the injectate at a downstream location.
In a number of configurations, a thermodilution catheter is employed, wherein the catheter includes an injectate lumen for introducing the injectate into the relevant blood stream and a dilution thermal sensor for monitoring a downstream passage of the injectate in the blood stream. The catheter can also include an injectate thermal sensor for providing a signal corresponding to an injectate temperature prior to introduction of the injectate into the blood flow.
As a consequence of thermal transfer, such as conduction or radiation within the catheter, the dilution thermal sensor in the retrograde catheter will register temperature changes, or effects, both by the injectate (indicator) passing through the catheter and the diluted blood flowing past the catheter. In this case, inside cooling of the dilution thermal sensor falsely increases the area under the resulting dilution curve and thus decreases the accuracy of the measurement.
The present invention also provides for measurement of the blood flow during the TIPS procedure, wherein the measurements can be conveniently performed by a retrograde catheter, introduced for example through the jugular vein, through the vena cava, and through the hepatic vein.
The measurements can be performed before intervention, after the shunt construction, in the shunt and in the vena porto (portacaval shunt). In this case, the retrograde catheter can be introduced through the hepatic vein, through the shunt and into the vena porta. The advantage of a blood flow measurement during the intervention is the ability to change the shunt flow if the shunt flow is not adequate.
The present configurations are directed to improving blood flow measurement accuracy in thermodilution measurements in a retrograde catheter by accounting for the presence of the inside cooling effect. The present configurations include (i) the pre-calibration of the thermal conductive properties of the catheter to determine Ki over an intended range of operating conditions, wherein the calibration data is used to adjust thermal measurements; (ii) a plurality of injections of different volumes or different time length from which a cooling effect on the dilution thermal sensor from inside the catheter can be determined, and/or an injectate temperature can be calculated; (iii) a plurality of thermal sensors, where the magnitude of the inside cooling effect on the dilution thermal sensor is measured by an additional thermal sensor and compensated; (iv) a plurality of pre-calibrated thermal sensors, to simultaneously eliminate the necessity of measuring the injectate temperature and the inside cooling effect; (v) creating special construction of the retrograde catheter to enhance, or maximize the thermal isolation of the injectate lumen from the dilution thermal sensor; or (vi) employing any combination of i-v.
Referring to
In operation, the indicator passes along the catheter 10 through the injectate lumen 32 to be introduced into the A-V shunt 12 blood flow through the injection port 34. The dilution sensor 36 is typically connected to the controller via a lead or wire extending along the catheter 10.
It is important for the dilution sensor 36 inside the blood stream to avoid contact with the A-V shunt wall or influence of the A-V shunt wall. To reduce the likelihood of the dilution sensor 36 touching the wall, a special curvature of the catheter 10 as seen in
As the preferred configuration of the catheter 10 is directed to thermodilution, the dilution sensor 36 is a thermal sensor such as a thermistor. Preferably, the dilution sensor 36 has as small a volume as possible, so that the cross sectional area of the catheter 10 can be effectively minimized. However, it is understood the thermal sensor 36 can be any sensor that can measure temperature, for example, but not limited to thermistor, thermocouple, electrical impedance sensor (electrical impedance of blood changes with temperature change), ultrasound velocity sensor (blood ultrasound velocity changes with temperature), blood density sensor and analogous devices. In fact, any parameter of blood that changes with temperature can be used to obtain thermodilution measurements.
However, the present invention is particularly applicable to those thermal sensors having a performance that is temperature dependence. That is, those sensors that are effected by induced temperature fluctuations from exposure to a cooled or heated injectate (indicator) passing through the catheter. Temperature sensors are suited to the present invention, as the temperature of the sensor (and hence recorded temperature) can be effected by cooling or heating from the injectate prior to introduction of the injectate into the flow to be measured.
The dilution sensors 36 detect a blood parameter and particularly variations of a blood parameter. For example, the dilution sensors 36 may be electrical impedance sensors, or optical sensors, the particular sensors being dependent on the blood characteristics of interest. Ultrasound velocity sensors, as well as temperature sensors and optical density, density or electrical impedance sensors can be used to detect changes in blood parameters. The operating parameters of the particular system will substantially dictate the specific design characteristics of the dilution sensor 36, such as the particular sound velocity sensor. If a plurality of dilution sensors 36 is employed, the sensors can be identical components. Ultrasonic sensors measure sound velocity dilution as the indicator material is carried past the sensor by the bloodstream, and changes in sound velocity are plotted to permit calculation of various blood parameters. The time at which the indicator material (injectate) reaches the sensor 36 after injection, the area under the plotted curve representing the changes in sound velocity at the sensor, and the amplitude of the measurement all provide information concerning the blood flow.
The indicator includes, but is not limited to any of the known indicators including a temperature gradient indicator, such as a bolus of a continuous injection.
Preferably, the indicator is injectable through the injection port 34 and is thus an injectate. The injected (or introduced) indicator, injectate, thus forms an indicator bolus.
The injected indicator, a liquid, can be a solution that is preferably non detrimental or minimizes any detriment to the patient, the blood of the patient, any blood components, including blood, and is non-reactive with the material of the system, including the material of A-V shunt. A preferred indicator is a solution such as isotonic saline and dextrose (glucose). However, it is understood any of a variety of solutions can be employed. Further, the term solution is taken to include single component injections. For thermodilution measurements, the injectate has a different temperature than the blood flow into which the injectate is introduced.
The present analysis is set forth in terms of a reduced temperature indicator, such as an injectate. That is, the indicator has a temperature below the temperature of the blood flow to be measured. However, it is understood that an elevated temperature indicator can be employed. That is, a temperature that is above the temperature of the blood flow to be measured.
The present invention provides for the determination of a volumetric flow rate (“flow rate”) in an A-V shunt 12. The volumetric flow rate is a measure of the volume of liquid passing a cross-sectional area of the conduit per unit time, and may be expressed in units such as milliliters per min (ml/min) or liters per minute (I/min). A liquid flow having a flow rate also has a flow velocity, the distance traveled in a given time, such as millimeters per second (mm/s). Thus, for liquid flowing in an A-V shunt, there will be a flow rate (volumetric flow rate) having a flow velocity.
Blood flow rate (Q) can measured by thermodilution, using an indicator having a different temperature than the blood (typically through an injection of a liquid indicator (injectate)), wherein the blood flow rate Q can be presented by the following formula:
where Tb is blood temperature in the vessel prior to injection; Ti is the temperature of the injectate prior to it entering the blood stream; V [ml] is the volume of injected indicator (injectate); S [temp*time] is the area under the temperature versus time dilution curve resulting from the mixing of the injected indicator (injectate) and the blood; and k is a coefficient related to thermal capacity of blood and the injected indicator (injectate). Typically, k is taken to be 1.08.
For continuous injections in Equation 1, V [ml/time] is the speed (rate) of the continuous injection, S [temp] is the temperature change of the blood due to mixing with the indicator, wherein the indicator can be colder/warmer than the blood.
A major difference between the classic dilution measurements of cardiac output and the measurements of blood flow rate in A-V shunts 12, wherein the indicator is introduced and a corresponding measurement is taken within a given section of the A-V shunt, is the absence of a mixing chamber such as the heart. That is, in classic dilution measurements of cardiac output, the blood and the indicator flow through the heart, which sufficiently mixes the indicator (thermal change) with the blood to provide reliable measurements.
However, if the blood and the indicator do not travel through a mixing chamber such as the heart, the design of the measurement system must provide for adequate mixing of the indicator with the blood within the space between the indicator introduction (injection) and the site of resulting dilution measurement.
The adequacy of mixing can be judged by comparing results of the dilution measurement with a more accurate method like, for example, volumetric timed collection of flow on the bench. If other sources of errors are controlled, the discrepancy between the measurement results can be attributed to inadequate mixing conditions.
Whether the mixing is adequate depends on the requirements of the clinical users and the dynamic range of the measured parameters. For example, for an angioplasty restoring procedure in A-V lower arm shunts, an average increase of the blood flow after angioplasty procedure is approximately 300-400 ml/min from 400-600 ml/min to 700-1000 ml/min. A measurement method would reliably indicate such procedural changes in flow, if its absolute error of flow measurement is less than the larger of 60-100 ml/min or 10%.
There are two different orientations for catheter placement in the A-V shunt 12. The A-V shunt 12 normally has a single flow direction, wherein blood flows from the arterial (upstream) side to the venous (downstream) side. Thus, the term downstream indicates directed with the flow, and the term upstream indicates directed against the flow.
1. Referring to
2. Referring to
To enhance the accuracy of the measurements of blood flow rates using thermodilution, the following problems associated with specifics of thermodilution blood flow measurement within the A-V shunt 12 should be addressed:
(i) Supporting mixing conditions; and
(ii) Reducing measurement errors resulting from the introduction of an indicator.
(i) Supporting Mixing Conditions
Various mechanisms can be implemented for enhancing the mixing conditions within the A-V shunt 12:
(a) Plurality of injection sites. To create a uniform indicator distribution throughout the cross section of the flow in the A-V shunt 12, a plurality (two or more) of injection ports 34 for indicator introduction can be used. These injection ports 34 can be located on the same level or at different levels within, or across the cross sectional profile of the A-V shunt. These injection ports 34 can be located to face the flow, be with the flow or have spiral form or other forms, locations and configurations. It is preferable that the indicator pass through the catheter 10 in a single lumen or channel 32, from which the indicator is distributed to the plurality of injection ports 34.
(b) Plurality of dilution sensors. To increase the accuracy of the measurements, especially in conditions where desired mixing may be difficult to achieve, a plurality of dilution thermal sensors 36 can be used. The plurality of dilution thermal sensors 36 are particularly applicable in conjunction with catheters having one port, a plurality ports, or a non volume indicator introduction such as the heating or cooling of the blood. In addition, a plurality of dilution sensors 36 can be employed when the indicator is introduced through a separate introducer, rather than the catheter on which the dilution sensors are located. Further, corresponding to the graph of
where n is the number of sensors. Alternatively, the area under the dilution curve associated with each sensor can be summed and averaged for determining the flow. As a further refinement, one could evaluate all individual sensor readings and discard one if its measurement indicates that the sensor is positioned against the vessel wall.
(c) Turbulent introduction of the indicator into the blood flow in the A-V shunt. The kinetic energy introduced into the initial blood flow Q by the injected indicator can enhance the mixing conditions by creating turbulence in the blood flow. This can be achieved by making the opening(s) 34 in the catheter 10 from where the indicator leaves the catheter and enters the blood stream sufficiently small so the indicator will “jet” into the flow at a higher velocity than the present blood velocity. The turbulence may be enhanced by angling these holes so the injection jet is directed against the direction of blood flow in the A-V shunt 12. The turbulence may be enhanced by the use of a plurality of holes spaced around the perimeter of the catheter, such as along a ring. However, for the jetting introduction, the injection ports 34 are sized to at least substantially preclude hemolysis in the A-V shunt 12.
(d) Use of a thermally conductive band. Placing a thermally conductive band 48 around the catheter at the site of the indicator dilution sensor 36 and in close thermal contact with the sensor. Such a band, typically constructed of metal, will assure that the dilution sensor 36 will average the temperatures of a larger cross sectional area of the blood flow, and will thus partly offset variations in blood temperature that result from inadequate mixing. As the sensing will be done around the full perimeter of the catheter 10, such a band 48 will also reduce the loss in measurement accuracy that results when an un-banded indicator dilution sensor is positioned against the wall of the A-V shunt 12.
The distance between the injection port 34 and the dilution thermal sensor 36 are preferably selected to provide sufficient mixing of the introduced indicator and the blood. For the catheter 10 facing the flow, the distance between the port 34 and the sensor 36 is approximately 2 to 4 cm. For the catheter 10 oriented with the flow, the distance between the injection port 34 and the sensor 36 is approximately 3 to 6 cm.
(ii) Reduce Measurement Errors Resulting from the Introduction of an Indicator.
The introduction of a volume of indicator at a flow rate Qi can change the initial flow rate Q. The effect of Q depends on the particulars of the hemodynamic resistance of the A-V shunt 12.
In the arterial environments, the major resistance to flow is downstream where the downstream resistance may well exceed the upstream resistance 20-100-fold. Thus, the injected flow does not change the initial flow at the site of the sensor. During the injection period, the arterial inflow into the measurement site will temporarily reduce in response to the introduced injection. In this case, the recorded dilution curve will represent the initial blood flow rate, and the measured blood flow rate Qm will be close to initial blood flow:
Qm=Q (Equation 3)
In the venous environments, the main flow resistance is upstream from the measuring site, where the flow resistance may exceed the downstream flow resistance 20-100-fold. In this situation, the dilution measurement Qm will represent the sum of initial flow and injected flow:
Qm=Q+Qi. (Equation 4)
In A-V shunt systems 12 the location and distribution of the resistances is unknown. That is, the resistance to flow can be downstream in which the volume of the introduced indicator will effectively not be seen. Alternatively, the resistance to the flow in the A-V shunt 12 can be upstream, in which case the measured flow will include at least a portion of the flow rate of the introduced indicator. In the A-V shunt 12, the flow resistances will depend on factors such as initial surgical anatomical construction of the shunt, locations of stenoses and placement of the catheter. Thus, contrary to the arterial and venous environment, the relationship of the measured flow rate Qm in A-V shunts to initial blood flow rate is unknown. The measured flow rate Qm will be somewhere between initial flow Q and the initial flow plus injection flow Q+Qi, depending on distribution of resistances in relation to the place of the injection. The range of uncertainty directly depends on the injection flow rate Qi. Therefore, while a larger Qi, is desirable for enhancing mixing conditions, the relatively large Qi may result in a less accurate flow measurement because of the unknown effect of Ql on the initial flow rate. The best flow rate Qi is a compromise: not too large, not too small. To minimize the error from the injection flow rate Qi being too large or too small, the following can be employed:
1. Calculating the flow rate Qc based on the injection flow rate Qi and on information of measurement conditions such as the type of the A-V shunt, the distribution of the resistances and the value of Qm itself.
2. Limiting the ability of operator to inject the indicator too quickly, while still providing sufficient ejection velocity to enhance mixing.
3. Rejecting the result of the flow measurement Qm, if the flow rate of the injection Qi is too high or too low.
4. Employing two injection flow rates to gain a further improvement in shunt flow measurement accuracy and to reveal the location of the hemodynamically significant stenosis in the A-V shunt.
1. Calculating Qc by Adjustment of the Measured Value of QmIn high-flow, well developed native fistula, the major flow resistance (between 50% and 100%) is located at the arterial anastamosis. This means that the flow resistance downstream from the injection is between 0 and 50% of the total flow resistance. For this case the flow measurement error is reduced by using a flow calculation algorithm, which places 75% of the flow resistance upstream from the point of indicator introduction, 25% downstream. The calculated flow Q will then be:
Qc=Qm−0.75Qi (Equation 5)
In this case the possible error introduced by the injection flow will be less than 25% of Qi.
In most well functioning lower arm artificial grafts, blood flow is in the range of 1000-1600 ml/min. The literature suggests again that the major flow resistance (between 50% and 100%) is located upstream from the catheter (arterial anastamosis, supplying artery). Therefore, equation 5 can be used.
Therefore, if the indicator dilution measurement of shunt flow is 1100-1200 ml/min or more the flow measurement device or controller may be configured to automatically use Equation 5.
On the other hand, flow limiting stenoses in artificial grafts generally develop in the venous outflow side of the A-V shunt. Therefore, if the angiogram reveals that such is the case, another measurement algorithm for such specific instances can be used. Assuming that at least 50% of the flow resistance is now on the venous side, the algorithm could now be:
Qc=Qm−0.25Qi (Equation 6)
In this case the possible error introduced by the injection flow will again be less than 25% of Qi.
In the general case when the distribution of hemodynamic resistances is unknown, one may minimize influence of injection flow on the flow reading reported to the operator through the use the following equation to calculate initial flow Qc:
In this case the error from the injected flow will be less than 50% of Qi.
The value of Qi can be estimated, for example, as a ratio of known injected indicator volume (V) and time of injection (t):
wherein the time of injection t can be estimated from the temperature curve of a thermal sensor. For example, the time t can be derived from the indicator dilution curve, from the width of that curve at its half height (
In practice, it is important to limit the ability of the operator to inject the indicator too quickly, thus introducing large flow changes. For example, in [Ganz 1964] the authors injected 5 ml of saline in 0.3-0.5 second, which results in an injected flow rate of Qi=600-1000 ml/min. This injected flow rate is unacceptable in A-V shunt flow measurements because the injected flow rate may exceed the actual flow in the shunt, thereby introducing large error. Thus, the speed of the indicator injection is a compromise between the need to achieve sufficient mixing (the higher injection flow the better chance of sufficient mixing) and the need to limit the flow rate of the indicator injection because of increase in error due to unknown distribution of resistances.
To limit the ability to inject too quickly, the indicator lumen 32 and/or injection port(s) 34 can be designed to be sufficiently small to increase the resistance to flow. That is, flow resistance of the indicator through the indicator lumen or the injection ports is selected to limit the injection rate.
For example the indicator lumen or the flow path of the indicator can include a tortuous flow path 52 which provides sufficient resistance to flow to preclude a injection flow rate greater than 200 ml/min. In a preferred configuration, the injection rate is between approximately 60 ml/min to 200 ml/min. The resistance is selected to provide the desired flow rate for, or within, normal anticipated pressures on the indicator. Also, the indicator may pass through a cellular structure 54 to create the desired flow resistance. It is also contemplated the injection port(s) 34 can be sized to create at least a portion of the flow resistance to limit the upper end of the indicator injection flow rate. In a preferred embodiment, the injection ports 34 of the catheter 10 may be dimensioned to serve this function.
As an alternate, flow-limitations may be programmed into an automated pump that provides controlled indicator injections. This pump can be programmed to repeat measurements if the pump rate is improper based on the measured rate of shunt flow, and repeat such measurements at a more optimal rate of pump flow.
3. Rejecting the Result of the Flow Measurement if the Injection Flow Rate is Too High or Too SmallThe rejection of the flow measurement if the introduced indicator flow rate is too small or too large can be accomplished by the controller operably connected to the sensor 36. The controller can include software for determining the length of time of the indicator injection and subsequently reject the measured flow rate, if the indicator flow rate was too great or too small. The controller can be configured to estimate an indicator injection rate, or rely upon an absolute time t of the injection. For example, if the 10 ml injection time t is less than 2 seconds (Qi>300 ml/min), the controller can reject the resulting measured flow rate. Further, if the if the injection time t is greater than 10 seconds (Qi<60 ml/min), the controller can reject the resulting measurement as the desired mixing may not have been achieved. Such controller may be structured to provide error warnings to the operator.
The window of injection times accepted by the controller can be selected to automatically take into account the A-V shunt flow reading. For instance, if the indicator dilution reading would be 2000 ml/min, an injection flow rate of 300 ml/min may still be acceptable. If the indicator dilution reading would be only 400 ml/min, the same 300 ml/min injection rate could create unacceptable measurement tolerances and an operator warning could be issued to redo the measurement at a slower injection rate.
4. Employing Two Injection Flow Rates.Two successive indicator dilution measurements performed at different injection flow rates can be made to further increase the A-V shunt flow measurement accuracy and/or gain knowledge on whether the flow limiting stenosis in the shunt is located on the arterial or on the venous side of the shunt.
Analogous to equations 5-8, two injections with different injection flow rate Qi1 and Qi2 will produce two measured flow rates Qm1 and Qm2:
Q=Qm1−pQi1 (Equation 9)
Q=Qm2−pQi2 (Equation 10)
where p is the portion of injection flow that adds to the initial flow and should be subtracted from measured flow.
Equations 9 and 10 can be solved for the two unknowns p and the initial shunt flow Q:
For accurate measurement of p and Q using Equations 11 and 12, the difference between the two injection rates, (Qi2−Qi1), should be as large as possible. That is, if Qi2 and Qi1 approach each other, the numerator becomes too large and thus introduces an unacceptable amount of error into the calculation.
Both indicator introductions, or one of them may be performed from the same catheter where dilution sensor(s) is (are) located, or through another catheter or through the introducer, or through a needle. Injections of different rates also can be done by the dedicated pump. In one embodiment, a slow injection can be performed through the catheter where flow is restricted, a quick injection can be performed through the introducer of this catheter (the “sheath”). One may also use a catheter with two separate channels (lumens) with different resistances for injection at different flow rate. Alternatively, one can use a catheter with one injection lumen, where the injection into this lumen takes place via a flow restricting valve with at least two positions.
In instances where it is impractical to inject at two flow rates that are sufficiently different to yield accurate values for Q and p in Equations 11 and 12, the two-injection method can still be used to eliminate some of the influence of the injection flow rate on the measurement and thus improve measurement accuracy. In this instance, one would only employ Equation 12 to find a rough estimation of the value p. If p is well below 50% one can conclude that the main flow resistance is located in the shunt downstream from the injection port(s). Therefore, the use of Equation 6 is indicated to calculate shunt flow Qc; one should then calculate Qc using the indicator dilution measurement done at the lower injection flow rate. Conversely, if p is found to be substantially larger than 50%, the main flow resistance is likely located in the shunt upstream from the injection port(s). In this instance the use of Equation 5 is indicated for calculating Qc (again using the indicator dilution measurement made at the lower injection flow rate). If p is found to be near 50%, an intermediate injection flow correction (Qc=Qm−0.5 Qi) is appropriately used. In all these instances, the error introduced into the measurement of Q stemming from the injection flow is reduced to 25% of the injection flow.
The measurement of p in the above approach yields further information, helping the radiologist to select appropriate corrective procedures. As disclosed above, the value of p reveals whether the flow limiting stenosis is located upstream or downstream from the catheter's flow measurement site. It therefore informs the radiologist at which side of the shunts he/she should perform the flow-restoring procedure. At a small value of p and low shunt flow, the hemodynamically significant stenosis is located at the venous side of the shunt; for a large value of p and small shunt flow it is located at the arterial end.
Although the family of inventions disclosed herein is primarily described on the basis of a thermodilution catheter, the spirit of invention and equations 2-12 can be used for any dilution catheter. Further, the application need not be limited only to A-V shunts, but can be employed in any vessel, conduit or channel, where the amount of flow resistance and/or the location of the flow resistance in the flow path (relative to the injection site) is unknown. The flow measurement Qm can be made using any indicator dilution method without departing from the spirit of this invention. Measurement or determination of the injection flow Qi can be calculated from any dilution curve like (
When the thermodilution measurements are performed with the catheter facing the blood flow (in the retrograde position), as seen in
The cooling of the dilution thermal sensor resulting from the indicator (injectate) flowing through the injection (injectate) lumen 32 will hereafter sometimes be referred to as the “inside cooling” and the “inside cooling effect”. The inside cooling effect can introduce a significant error by a spurious increase in the area under dilution curve seen in the blood flow measurement (
The injectate thus creates a measurement (or signal) offset in the dilution sensor. That is, the dilution sensor would provide a different measurement or signal in the absence of the injectate travelling through the catheter (prior to introduction) into the blood stream. Typically, this measurement offset is a change in the temperature of the dilution sensor resulting from thermal exposure of the dilution sensor to the injectate in the catheter.
The blood flow rate (Qf) measured by the retrograde thermodilution catheter (facing the blood flow) will be:
where Sm—is the total area under dilution curve; Sc—is the portion of the area under dilution curve related to the inside cooling effect, Qi* adjustments for injection flow Qi. The Qi* correction term may be omitted in cases where it is a negligible portion of Qf and this term is not entered in later equations derived here from Equation 13. Nevertheless, those later equations should be read to include the Qi* correction term in cases where added measurement accuracy is desired.
The theory and the experiments show that the inside cooling effect that produces the temperature change ΔTi of the dilution sensor 36 (see also area Sc
ΔTi=Ki(Tb−Ti) Equation 14a; or
where Ki depends on the geometry, the material properties of the catheter, the flow rate of the injectate injection and the blood flow velocity in the vessel; Tb is the temperature of the blood flow, Ti is the temperature of the injectate; and ΔTi is the change in the dilution sensor temperature resulting from inside cooling by the injectate.
At a constant temperature difference (Tb−Ti) the value of Ki is found to be dependent on the speed of the indicator injection (
The pre calibration of a particular catheter or catheter style to minimize the effect of injectate induced temperature offset of a temperature dilution sensor can be accomplished by different coefficients and different procedures, wherein different equations can be derived, including equations corresponding to the equations set forth.
For example, the relationship of
At a constant temperature difference (Tb−Ti) the value of Ki is found to be dependent on the blood flow velocity (
It is understood that in different catheter constructions, the value of the blood flow velocity when measurements become independent of injection speed may be different.
The shape of the curve that forms the area under the dilution curve Sc (
For a rectangular approximation (
Sc1=ΔTi×t Equation 15a
where t—is the duration of the injection (for example, the time width of the curve at the half height (
From Equation 14a and Equation 15a:
Sc1=Ki×(Tb−Ti)×t Equation 15b
The value Ki can be precalibrated for any particular catheter for different injection flow rates and for different blood flow velocities in the blood flow to be measured. As it is clear from
The second possible approximation of Sc is the area Sc2 (
The third possible approximation of Sc is the area Sc3 (
where Am is the maximum of actual measured dilution curve (
In a further refinement, one could mathematically combine the calculated values of Sc1, Sc2 and Sc3 to produce an actual value of Sc that provides an optimal blood flow measurement accuracy. For example, the actual value of Sc can be considered as an average of Sc3 and Sc2:
It is understood different approximations and different combinations of the approximation presented above and others can be used to estimate Sc for use in Equation 13.
Referring to
In the case of continuous infusion of the indicator, Equation 13 may be rewritten as:
where q—rate of indicator infusion in ml/min; Hm—is the total change in the temperature; ΔTi—is the portion of the change related to the inside cooling effect (
The above and other theoretical and experimental observations show that the following primary ways can be used to improve blood flow measurement accuracy of the retrograde catheter in the presence of the inside cooling effect:
-
- 1. Pre-calibration of the thermal conductive properties of the catheter to determine Ki over the range of user conditions, and use of this data to adjust recorded signals from the thermal sensors;
- 2. A plurality of injections of different volumes or different time length from which the inside cooling effect on the dilution thermal sensor and/or the injectate temperature can be calculated;
- 3. A plurality of thermal sensors, where the magnitude of the inside cooling effect on the dilution thermal sensor is measured by an additional thermal sensor and compensated;
- 4. A plurality of pre calibrated thermal sensors, are used to simultaneously eliminate the necessity of measuring the injectate temperature and the effect of inside cooling.
- 5. Creating special construction of the catheter that will enhance or maximize the thermal isolation of the injectate lumen from the dilution thermal sensor;
- 6. Any combination of the above.
1. Pre-Calibration of the Thermal Conductive Properties of the Catheter to Determine Ki Over the Range of User Conditions and Use of this Data to Adjust Recorded Signals from the Dilution Sensor.
As seen from
The equation for measuring blood flow using such a pre-calibrated sensor for example for rectangular approximation (
In this expression k, and Ki are known from pre-calibration; Tb, Ti, Sm and t are measured from the dilution curve and injectate sensor, and V is the predetermined volume of injection. The value of Qf can thus be determined.
2. a Plurality of Injections of Different Volumes or Different Time Length from Which the Inside Cooling Effect on the Thermal Dilution Sensor and/or Injectate Temperature can be Calculated.
The area under the measured indicator dilution curve Sm is again considered to consists of two parts (Sm=Sdil+Sc) (see
For two injections of different volumes, Vi and V2, made at different times, Equation 17 yields, for example for rectangular approximation, Equation 15b):
where Sm1 and Sm2 are the measured areas under the dilution curves from the first and second injections, respectively, and t1 and t2 are the length of the first and the second injections, respectively.
In Equations 18a and 18b the values: Sm1, Sm2, t1, t2, and Tb are measured from the dilution curves, and the values: V1, V2, k, and Ti are known. Thus, having two equations with two unknowns, Qf and Ki, provides that the equations can be solved to measure blood flow Qf with no pre-calibration procedure.
Alternatively, if Ki is known from pre-calibrations, but the temperature of injection Ti is unknown (i.e., using a configuration without injectate temperature sensor), then again Qf can be calculated from these same equations.
3. A Plurality of Thermal Dilution Sensors where the Magnitude of the Dilution Sensor Inside Cooling Effect is Measured by an Additional Thermal Sensor and Compensated.
The basis of this approach is that the catheter 10 can be designed to have two or more thermal dilution sensors 36 that are in different conditions regarding the inside cooling effect and the outside diluted blood cooling. Readings from these thermal sensors can be compared to compensate or minimize the inside cooling effect on the accuracy of blood flow measurement. For example, the catheter 10 can be designed such that one sensor is influenced by both inside cooling and blood dilution cooling. The second thermal sensor is influenced dominantly only by inside cooling (
In
where Smp and Sd are the areas under dilution curves from the proximal and distal sensor, respectively.
It may be useful to design the catheter 10 such that the indicator injection will introduce turbulence into the channel within catheter and/or the measured blood flow. This turbulence will create circulation in the dead zone (
An alternative way of compensation is presented in
The distal thermal dilution sensor 36d will be cooled by two sources, firstly from the inside, while the volume (a×V) passes; and secondly by the blood cooled by volume a×V from the outside of the catheter after mixing with blood:
where Smd is the total area under dilution curve of the distal thermal sensor. The second part of the sum in denominator is related to the area under dilution curve on the distal thermal dilution sensor due to the indicator passing through the lumen inside the catheter; where index “d” means distal sensor.
The proximal dilution sensor 36c will be also cooled by two sources, firstly from the inside while the volume (V) passes; and secondly by the blood cooled by volume V from the outside of the catheter after mixing with blood:
Both these effects are caused by same total injected volume V.
where Smp is the total area under dilution curve of the proximal sensor. The second part of the sum in denominator is related to the area under dilution curve on the proximal thermal dilution sensor due to the indicator passing through the lumen inside the catheter; where index “p” means proximal thermal sensor.
Subtracting the temperature readings of these two thermal sensors and considering that the inside cooling effect is the same on both sensors, Equations 20 and 21 yield:
This approach offers the advantage that Ki is eliminated from the flow equation; therefore no pre-calibration value Ki for both thermal sensors is determined. In practice, if the inside cooling effect is not the same for these two sensors (making Kip not equal to Kid) this difference should be considered while combining Equation 21 from Equation 20.
4. A Plurality of Pre-Calibrated Thermal Sensors, to Simultaneously Eliminate the Necessity of Measuring the Injectate Temperature and the Inside Cooling Effect.The basis of this approach is that two thermal dilution sensors are employed in a catheter construction, where the sensors exhibit different sensitivity to the inside cooling effect from the injectate and the outside blood dilution cooling. Comparing the data from these thermal sensors helps to eliminate the influence of the injection (injectate) temperature and effect of inside cooling.
Equation 17, and Equation 14 can be written for two thermal sensors “1” and “2”:
where Sm1 and Sm2 are known areas under dilution curves from the first and second sensor; Ki1 and Ki2 are pre-calibrated coefficients for first and second thermal sensor respectively (see Equation 21), (
As is seen from the above equation, this approach eliminates the necessity of a separate thermal sensor for injectate temperature measurement.
5. Creating a Special Construction of the Catheter that Will Enhance and/or Maximize the Thermal Isolation of the Injection Lumen from the Thermal Dilution Sensor.
Another way to minimize the influence of the temperature of injected indicator (injectate) is to thermally separate the injection (injectate) lumen as far as possible from the thermal dilution sensor 36 as seen in
A thermal insulating gap such as an inside air lumen can be used to place the injection (injectate) temperature sensor (
The thermal isolation is directed to thermally separating the thermal dilution sensor from the indicator (injectate) temperature. Therefore, the present construction is in contrast to the prior constructions of a coaxial catheter which is not retrograde, as the inside catheter was used to inject indicator that will have maximum isolation from the outside blood so as not to be heated prior entering blood. That is, in the prior construction of a coaxial catheter, wherein the entire indicator lumen is thermally spaced from the surrounding blood flow, the present catheter thermally isolates the thermal dilution sensor 36 from injectate flow through the injectate (indicator) lumen, maximizing the thermal resistance between the injectate in the catheter and the thermal sensor. Specifically, in prior coaxial constructions having a radial dimension of the annulus between the injectate and the thermal sensor, the present construction allows effectively twice the radial dimension of the coaxial construction to be disposed intermediate the injectate in the catheter and the temperature sensor. That is, the entire cross sectional area of the thermally insulating spacer, gap, is located intermediate the injectate lumen and the temperature (thermal dilution) sensor. The present construction allows a reduced catheter cross sectional area with enhanced thermal insulation between the thermal dilution sensor and the injectate lumen, and thus allows the catheter to be employed with less adverse effect on the measured flow.
For example, the catheter 10 can have an insulating lumen intermediate the dilution sensor and the injectate lumen. In this construction it is also possible to locate the injectate temperature sensor within the insulating lumen, thereby exposing the injectate temperature sensor to the thermal effect of the injectate passing within the catheter, and the dilution sensor is located to dispose the insulating lumen intermediate the injectate lumen and the dilution sensor. This creates differing thermal conductive properties between the dilution sensor and the injectate sensor.
Alternatively, the injectate temperature sensor can be located at a position spaced from the insulating lumen, wherein a portion of the insulating lumen includes a thermal conductor to thermally link the injectate temperature sensor and the injectate lumen.
In a catheter having a generally circular cross section, the thermal dilution sensor is spaced from the injectate lumen by a radius of the cross section. In one configuration, the cross sectional area of the catheter intermediate the thermal dilution sensor and the injectate lumen is maximized. It is also understood, at least 50% of a cross sectional dimension of the catheter can be located intermediate the injectate lumen and the thermal sensor, with a preferred construction providing at least 70% of catheter cross section dimension being located intermediate the thermal dilution sensor and the injectate lumen. However, as much as 90 to 95% of the cross sectional dimension could be located intermediate the thermal dilution sensor and the injectate lumen.
An alternative construction locates the insulating lumen intermediate the thermal dilution sensor and the injectate lumen so that along a given chord of the catheter cross section, the insulating lumen defines a greater portion of the chord than the material of the catheter. In a preferred construction the insulating lumen defines at least 50% of the chord length, with a more preferred construction having the insulating lumen define at least 75% of the chord length, with a more preferred insulating lumen defining 80% of the chord length. By increasing the percentage of a chord length defined by the insulating lumen, the thermal isolation of the thermal dilution sensor can be increased. That is, the amount relatively thermally conductive material of the catheter available for heat transfer is minimized.
6. Any Combination of the Above.The accuracy of blood flow measurements by a retrograde catheter by compensation of inside cooling (or heating) from injectate flow through the catheter can be improved by employing any of (i) the precalibration of the thermal conductive properties of the catheter; (ii) employing a plurality of different injections; (iii) employing a plurality of dilution sensors; (iv) employing pre-calibrated thermal sensors or (v) thermally isolating the dilution sensor from injectate flowing within the catheter.
(ii) Measuring the Temperature of Injected IndicatorIn thermodilution measurements of cardiac output, a first distal thermal sensor is located in the pulmonary artery and produces dilution curves, and a second thermal sensor is located in the central vein, in the aperture (or within the aperture) through which indicator solution enters the blood stream. In this way, the second thermal sensor measures the temperature of the solution (injectate) entering the blood. In the present case, the existence of multiple small injection ports increases the technological difficulty locating a thermal sensor within the space of the introduction port. If the thermal sensor is not located immediately near or adjacent the introduction port, the temperature of the thermal sensor will be influenced by both the injected indicator (injectate) and the blood temperature, thereby decreasing the accuracy of the resulting measurement.
To solve this problem of measuring Ti, a second proximal thermal sensor 36a (
The thermal sensor 36a measuring the injection (injectate) temperature can be also located out of the body of the catheter 10, such as on the tubing leading to manifold or inside manifold (
Attaching the thermal sensor 36a (
The plastic or catheter material between the injection lumen and the injection thermal sensor (thermistor) does not reach the temperature of the indicator, for some period of time. In some cases, while the operator is waiting for the injection of the indicator (injectate), blood migrates up through injection channel (lumen) and reaches the injection thermal sensor and heats the thermal sensor and the surrounding material of the catheter prior to injection. To minimize these errors, the minimal temperature is chosen to be Ti during injection time (taken from the distal sensor in the blood).
In a further configuration, the catheter body includes a thermal dilution sensor lumen, which can receive electrical leads to the thermal dilution sensor as well as the thermal dilution sensor. The catheter body also includes the injectate lumen and the thermal insulating lumen. The catheter body can include the thermal insulator including a portion of the thermal insulating lumen, thereby effectively receiving a corresponding length of the insulating lumen. The thermal injectate sensor can be located adjacent the thermal conductor to thereby respond to the temperature of the injectate in the injectate lumen. The thermal injectate sensor can be located in the insulating lumen, the catheter body or the thermal dilution sensor lumen to be adjacent the thermal insulator (in the thermal insulating lumen), and thereby provide a signal corresponding to the temperature of the injectate in the injectate lumen.
1. Thermodilution Catheter Placed with the Blood Flow
Measuring blood flow in the peripheral arteries, such as the kidney artery requires minimization of the catheter size to eliminate the influence on initial blood flow. The relatively large size of a catheter, especially located in the narrowing site of the blood vessel may decrease the blood flow and introduce inaccuracies into measurements. In this situation, it is beneficial to minimize the constructive elements of the catheter. For example, it is advantageous to use the lumen that is used for the guide wire as a lumen for injection of the indicator, as seen in
where “a” is the portion of indicator that passes from the catheter through the distal aperture in the guide wire lumen.
Measurements while the guide wire is inside the catheter 10 will substantially reduce the error because the distal aperture will be substantially blocked by the guide wire. The value of “a” for this situation must be separately evaluated in the bench studies. An additional source of error may appear due to the fact that while the indicator is passing the thermal sensor, the indicator may cool the thermal sensor from inside, thereby introducing error in the measurements:
where Sm—is the total area under the dilution curve; and Sm—the part of the area under dilution curve related to the cooling of the distal sensor from the inside of the catheter.
While a preferred embodiment of the invention has been shown and described with particularity, it will be appreciated that various changes in design and formulas and modifications may suggest themselves to one having ordinary skill in the art upon being apprised of the present invention. It is intended to encompass all such changes and modifications as fall within the scope and spirit of the appended claims.
Claims
1. A catheter comprising:
- (a) an elongate catheter body having a proximal end and a distal end, the elongate catheter body including an indicator lumen extending from the proximal end to the distal end, the indicator lumen having (i) a terminal opening at the distal end, the terminal opening having a restricted cross sectional area and (ii) a radial injection port longitudinally intermediate the proximal end and the terminal opening;
- (b) a dilution sensor connected to the elongate catheter body longitudinally intermediate the proximal end and the distal end; and
- (c) a guide wire extending through the indicator lumen from the proximal end to the distal end and through the terminal opening to project from the distal end of the elongate catheter body, and define a gap between the guide wire and the elongate catheter body at the terminal opening, the gap passing a portion of an indicator from the indicator lumen.
2. The catheter of claim 1, wherein the dilution sensor is a thermistor.
3. The catheter of claim 1, further comprising a controller connected to the dilution sensor, the controller configured to determine a blood flow rate corresponding to passage of the indicator through the indicator lumen.
4. The catheter of claim 1, wherein the catheter body is configured as a retrograde catheter.
5. The catheter of claim 1, further comprising a controller connected to the dilution sensor, the controller configured to determine a blood flow rate corresponding to a relationship Q = k ( T b - T i ) · V ( 1 - a ) S, where Q is the blood flow rate, k is a coefficient related to thermal capacity of a measured flow and the indicator, Tb is a temperature of a measured flow prior to injection of the indicator, Ti is a temperature of the indicator prior to entering the measured flow, V is a volume of the indicator, S is an area under a temperature versus time curve resulting from a mixing of the indicator, and a is a portion of the indicator passing through the terminal opening.
6. The catheter of claim 1, further comprising a controller connected to the dilution sensor, the controller configured to determine a blood flow rate corresponding to a relationship Q = k ( T b - T i ) · V ( 1 - a ) ( S m - S in ), where Q is a blood flow rate, k is a coefficient related to thermal capacity of a measured flow and the indicator, Tb is the temperature of the measured flow prior to injection, Ti is the temperature of the indicator prior to entering the measured flow, V is the volume of the indicator, Sm is the total area under the temperature versus time curve resulting from a mixing of the indicator with the blood flow, Sin is the part of the area under the dilution curve related to a cooling thermal change of a sensor inside the catheter body and a is the portion of the indicator passing through the terminal opening.
7. The catheter of claim 1, wherein the dilution sensor is longitudinally intermediate the terminal opening and the radial injection port.
8. A catheter assembly comprising:
- (a) an elongate catheter body having a proximal end and a distal end, the elongate catheter body including an indicator lumen extending from the proximal end to the distal end, the indicator lumen having a terminal opening at the distal end, the terminal opening defined by a reduced cross sectional area, the elongate catheter body having a radial injection port longitudinally intermediate the terminal opening and the proximal end of the catheter body;
- (b) a guide wire extending through the indicator lumen from the proximal end to the distal end and through the terminal opening, the guide wire is sized to be slideably received through the reduced cross sectional area; and
- (c) a controller connected to the catheter body, the controller configured to calculate a blood flow corresponding to a passage of indicator from the indicator lumen.
9. The catheter assembly of claim 8, wherein the indicator lumen has a reduced cross sectional area adjacent the distal end and the guide wire is sized to reduce passage of the indicator through the reduced cross sectional area.
10. The catheter assembly of claim 8, wherein the indicator lumen terminates at the distal end of the catheter body.
11. The catheter assembly of claim 8, further comprising a dilution sensor connected to the elongate catheter body.
12. The catheter assembly of claim 11, wherein the dilution sensor is a thermistor.
13. The catheter assembly of claim 8, further comprising a dilution sensor connected to the elongate catheter body, the dilution sensor located longitudinally intermediate the radial injection port and the terminal opening.
14. The catheter assembly of claim 8, wherein a portion of the guide wire is disposed in the terminal port and the controller is selected to compensate for passage of the indicator through the terminal port.
15. The catheter assembly of claim 8, wherein the controller is selected to compensate for passage of a volume of the indicator through the terminal opening corresponding to the relationship Q = k ( T b - T i ) · V ( 1 - a ) S, where Q is a blood flow rate, k is a coefficient related to thermal capacity of a measured flow and the indicator, Tb is the temperature of the measured flow prior to injection, Ti is the temperature of the indicator prior to entering the measured flow, V is the volume of the indicator, S is the area under the temperature versus time curve resulting from the mixing of the indicator and a is the portion of the indicator passing through the terminal opening.
16. The catheter assembly of claim 8, wherein the controller is selected to compensate for passage of a volume of the indicator through the terminal opening corresponding to the relationship Q = k ( T b - T i ) · V ( 1 - a ) ( S m - S in ), where Q is a blood flow rate, k is a coefficient related to thermal capacity of a measured flow and the indicator, Tb is the temperature of the measured flow prior to injection, Ti is the temperature of the indicator prior to entering the measured flow, V is the volume of the indicator, Sm is the total area under the temperature versus time curve resulting from the mixing of the indicator, Sin is the part of the area under the dilution curve related to a cooling of a sensor inside the catheter body and a is the portion of the indicator passing through the terminal opening.
Type: Application
Filed: Feb 27, 2012
Publication Date: Jun 28, 2012
Applicant: TRANSONIC SYSTEMS, INC. (Ithaca, NY)
Inventors: Nikolai M. Krivitski (Ithaca, NY), Victor V. Kislukhin (Ithaca, NY)
Application Number: 13/405,835
International Classification: A61B 5/028 (20060101);