MAGNESIUM ALLOY AND METHOD OF MAKING THE SAME
A magnesium alloy includes about 7.2 to about 7.8 wt % aluminum, about 0.45 wt % to about 0.90 wt % zinc, about 0.17 wt % to about 0.40 wt % manganese, about 0.30 wt % to about 1.5 wt % rare earth elements, about 0.00050 wt % to about 0.0015 wt % beryllium, and the rest being magnesium and unavoidable impurities. A method of making the magnesium alloy is further provided.
Latest FOXCONN TECHNOLOGY CO., LTD. Patents:
- Method and system for controlling fan, and electronic device employing method
- Metal shell and manufacturing process method thereof
- Manufacturing method for metallic housing of electronic device
- Manufacturing method for metallic housing of electronic device
- Base with heat absorber and heat dissipating module having the base
1. Technical Field
The present disclosure relates to magnesium alloys, particularly to a magnesium alloy having good mechanical properties and a method of making the same.
2. Description of the Related Art
Magnesium alloys have low density, high mechanical strength, high thermal conductivity, high electrical conductivity, good electromagnetic interference shielding property, and good machining property, and have been widely used in the aerospace, automotive industries and consumer electronic devices. Due to consumer demand of thinner electronic devices, structure strength of the consumer electronic device cannot meet product needs when employing general-grade magnesium alloys.
Therefore, there is room for improvement within the art.
Many aspects of the embodiments can be better understood with reference to the following drawings.
An embodiment of a magnesium alloy contains the following: about 7.2 weight (wt) % to about 7.8 wt % aluminum (Al), about 0.45 wt % to about 0.90 wt % zinc (Zn), about 0.17 wt % to about 0.40 wt % manganese (Mn), about 0.30 wt % to about 1.5 wt % rare earth elements (RE), about 0.0005 wt % to about 0.0015 wt % beryllium (Be), and the rest being magnesium (Mg) and unavoidable impurities. RE is preferably one or more materials selected from the group consisting of cerium (Ce), lanthanum (La), praseodymium (Pr), neodymium (Nd), yttrium (Y) and any suitable combination thereof. The preferred range of RE is about 0.90 wt % to about 1.2 wt %. In the illustrated embodiment, RE contains the combination of La and Ce. Preferably, the weight ratio (in percent) of Ce to RE is about 65%, and the weight ratio (in percent) of La to RE is about 35%.
Referring to
In a first step S101, raw materials are provided. The raw materials contains: about 7.2 wt % to about 7.8 wt % Al, about 0.45 wt % to about 0.90 wt % Zn, about 0.17 wt % to about 0.40 wt % Mn, about 0.30 wt % to about 1.5 wt % RE, about 0.0005 wt % to about 0.0015 wt % Be, and the rest being Mg and impurities. Preferably, in the illustrated embodiment, the Al (composition) includes pure Al and an Al—Be inter-alloy, the Zn includes pure Zn, the Mn includes anhydrous manganese dichloride (MnCl2), the RE includes a Mg—RE inter-alloy, the Be includes an Al—Be inter-alloy, and the Mg includes pure Mg and a Mg—RE inter-alloy. The RE (composition) can be one or more materials selected from the group consisting of Ce, La, Pr, Nd, Y, and any suitable combination thereof.
In a second step S102, a raw Mg—Al—Zn alloy is formed. The pure Mg is melted, and the pure Al, the pure Zn, and the anhydrous MnCl2 are added into the melted Mg at a temperature of about 700 degrees Celsius, such that the raw Mg—Al—Zn alloy is obtained.
In a third step S103, a refined Mg—Al—Zn alloy is formed. A refining flux is added into the above-mentioned raw Mg—Al—Zn alloy to remove impurities at a temperature of about 720 degrees Celsius, and the temperature is maintained for 0.5 hours to obtain the refined Mg—Al—Zn alloy.
In a fourth step S 104, a Mg—Al—Zn—RE alloy is formed. The Mg—RE inter-alloy and the Al—Be inter-alloy are added into the refined Mg—Al—Zn alloy, and a mixture of the above-mentioned alloys is stirred for about 0.5 hours, cooled to a temperature of about 670 degrees Celsius, and then casted to obtain the Mg—Al—Zn—RE alloy. It is understood that the pure RE and the pure Be may be added instead of the Mg—RE inter-alloy and the Al—Be inter-alloy.
In the illustrated embodiment, the RE contains the combination of La and Ce. Preferably, the weight ratio (in percent) of Ce to RE is about 65%, and the weight ratio (in percent) of La to RE is about 35%. It is understood that the RE can be one or more materials selected from the group consisting of Ce, La, Pr, Nd, Y, and any suitable combination thereof.
An example 1 of the method of making the magnesium alloy of the embodiment is as follows.
In a first step, a plurality of raw materials are provided. The raw materials contain about 7.2 wt % Al, about 0.68 wt % Zn, about 0.28 wt % Mn, about 0.30 wt % RE, about 0.0010 wt % Be, and the rest being Mg and unavoidable impurities. The Al (composition) includes pure Al and Al-Be inter-alloy, the Zn includes pure Zn, the Mn includes anhydrous manganese dichloride (MnCl2), the RE includes a Mg-RE inter-alloy, the Be includes an Al—Be inter-alloy, and the Mg includes pure Mg and a Mg—Ce—La inter-alloy. The RE contains the combination of Ce and La. The weight ratio (in percent) of Ce to RE is about 65%, and the weight ratio (in percent) of La to RE is about 35%. The total weight ratio (in percent) of Ce and La in the Mg—RE inter-alloy is about 20%. The weight ratio (in percent) of Be in the Al—Be inter-alloy is about 1%.
In a second step, a raw Mg—Al—Zn alloy is formed. The pure Mg is melted, and the pure Al, the pure Zn, and the anhydrous MnCl2 are added into the melted Mg at a temperature of about 700 degrees Celsius, such that the raw Mg—Al—Zn alloy is obtained.
In a third step, a refined Mg—Al—Zn alloy is formed. A refining flux is added into the above-mentioned raw Mg—Al—Zn alloy to remove impurities at a temperature of about 720 degrees Celsius, and the temperature is maintained for about 0.5 hours to obtain the refined Mg—Al—Zn alloy.
In a fourth step, a Mg—Al—Zn-RE alloy is formed. The Mg-RE inter-alloy and the Al—Be inter-alloy are added into the refined Mg—Al—Zn alloy, and a mixture of the above-mentioned alloys is stirred for about 0.5 hours, cooled to a temperature of about 670 degrees Celsius, and then casted to obtain the Mg—Al—Zn-RE alloy.
An example 2 of the method of making the magnesium alloy of the embodiment is similar to the example 1 of the method of making the magnesium alloy of the embodiment. However, for the example 2, in the first step, the raw materials contain about 7.5 wt % Al. Meanwhile, the Zn, Mn, RE, and Be have the same respective weight % or ratios as for the example 1, and the rest is Mg and unavoidable impurities.
An example 3 of the method of making the magnesium alloy of the embodiment is similar to the example 1 of the method of making the magnesium alloy of the embodiment. However, for the example 3, in the first step, the raw materials contain about 7.8 wt % Al. Meanwhile, the Zn, Mn, RE, and Be have the same respective weight % or ratios as for the example 1, and the rest is Mg and unavoidable impurities.
An example 4 of the method of making the magnesium alloy of the embodiment is similar to the example 1 of the method of making the magnesium alloy of the embodiment. However, for the example 4, in the first step, the raw materials contain about 1.0 wt % RE. Meanwhile, the Al, Zn, Mn, and Be have the same weight % or ratios as for the example 1, and the rest is Mg and unavoidable impurities.
An example 5 of the method of making the magnesium alloy of the embodiment is similar to the example 1 of the method of making the magnesium alloy of the embodiment. However, for the example 5, in the first step, the raw materials contain about 7.5 wt % Al, and about 1.0 wt % RE. In addition, the Zn, Mn, and Be have the same weight % or ratios as for the example 1, and the rest is Mg and unavoidable impurities.
An example 6 of the method of making the magnesium alloy of the embodiment is similar to the example 1 of the method of making the magnesium alloy of the embodiment. However, for the example 6, in the first step, the raw materials contain about 7.8 wt % Al, and about 1.0 wt % RE. The Zn, Mn, and Be have the same weight % or ratios as for the example 1, and the rest is Mg and unavoidable impurities.
An example 7 of the method of making the magnesium alloy of the embodiment is similar to the example 1 of the method of making the magnesium alloy of the embodiment. However, for the example 7, in the first step, the raw materials contain about 1.5 wt % RE. The Al, Zn, Mn, and Be have the same weight % or ratios as for the example 1, and the rest is Mg and unavoidable impurities.
An example 8 of the method of making the magnesium alloy of the embodiment is similar to the example 1 of the method of making the magnesium alloy of the embodiment. However, for the example 8, in the first step, the raw materials contain about 7.5 wt % Al, and about 1.5 wt %. RE. The Zn, Mn, and Be have the same weight % or ratios as for the example 1, and the rest is Mg and unavoidable impurities.
An example 9 of the method of making the magnesium alloy of the embodiment is similar to the example 1 of the method of making the magnesium alloy of the embodiment. However, for the example 9, in the first step, the raw materials contain about 7.8 wt % Al, and about 1.5 wt %. RE. The Zn, Mn, and Be have the same weight % or ratio as for the example 1, and the rest is Mg and unavoidable impurities.
The tensile strength, the percentage of elongation, and the yield strength of the magnesium alloy samples of the above examples and those of the AZ91D magnesium alloy sample were tested according to ASTM E8M-04 Standard Test Methods for Tension Testing of Metallic Materials. The impact toughness of the magnesium alloy samples of the above examples and those of the AZ91D magnesium alloy sample were tested according to ASTM E3-04 Standard Test Methods for Notched Bar Impact Testing of Metallic Materials. The results are shown in
Compared to the AZ91D magnesium alloy, the magnesium alloys of the embodiment of instant disclosure have a relatively low Al content, and contains RE element. As shown in
To further test the mechanical property of a consumer electronic device made of the magnesium alloy from the above examples for the embodiment, the drawing loads of camera housings made of the magnesium alloy from the example 5 and the AZ91D magnesium alloy were tested on a universal testing machine. A thickness of a drawing position is about 1.16 millimeters (mm) The test results are shown in
As shown in
The corrosion resistance of the magnesium alloys of the embodiments and the AZ91D magnesium alloy were tested by the salt spray test, according to the standard JIS Z 2371. The test results are shown in Table 3. In addition, the corrosion resistances of the magnesium alloys of the examples and the AZ91D magnesium alloy were further tested by a salt water dipping method. The salt water dipping method includes steps as follows: a magnesium alloy sample having a length of about 20 mm, a width of about 20 mm, and a thickness of about 5 mm is dipped into about 5 wt % sodium chloride solution for about 96 hours; the volume of hydrogen released during the time period is tested; and the corrosion weight per square centimeters of the sample is calculated according to the hydrogen volume. The test results are shown in
As shown in Table 3 and
Because of good mechanical properties and corrosion resistance, the magnesium alloys of the examples of the embodiment of instant disclosure are especially suitably or properly used in the manufacture of housings of consumer electronic devices.
It is to be understood, however, that even through numerous characteristics and advantages of the disclosure have been set forth in the foregoing description, together with details of the structure and function of the embodiments, the disclosure is illustrative only, and changes may be made in detail, especially in the matters of shape, size, and arrangement of parts within the principles of the embodiments to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Claims
1. A magnesium alloy containing: about 7.2 wt % to about 7.8 wt % aluminum, about 0.45 wt % to about 0.90 wt % zinc, about 0.17 wt % to about 0.40 wt % manganese, about 0.30 wt % to about 1.5 wt % rare earth elements, about 0.00050 wt % to about 0.0015 wt % beryllium, and the rest being magnesium and unavoidable impurities.
2. The magnesium alloy of claim 1, wherein the aluminum is about 7.5 wt % aluminum.
3. The magnesium alloy of claim 1, wherein the rare earth element is about 1.0 wt % rare earth element.
4. The magnesium alloy of claim 1, wherein the rare earth element is selected from the group consisting of cerium, lanthanum, praseodymium, neodymium, yttrium, and combinations thereof.
5. The magnesium alloy of claim 4, wherein the rare earth element is the combination of cerium and lanthanum.
6. The magnesium alloy of claim 5, wherein the weight ratio of cerium to rare earth element is about 65%, and the weight ratio of lanthanum to rare earth element is about 35%.
7-20. (canceled)
Type: Application
Filed: Oct 23, 2011
Publication Date: Oct 25, 2012
Applicants: FOXCONN TECHNOLOGY CO., LTD. (Tu-Cheng), FU ZHUN PRECISION INDUSTRY (SHEN ZHEN) CO., LTD. (Shenzhen City)
Inventors: HSIEN-TSUNG LI (Tu-Cheng), KAM-SHAU CHAN (Tu-Cheng), BIN-FEI WEI (Shenzhen City), JIE WANG (Shenzhen City), XIN DONG (Shenzhen City)
Application Number: 13/279,282
International Classification: C22C 23/06 (20060101); C22C 23/02 (20060101); B22D 27/00 (20060101);