CENTRIFUGE SYSTEM AND WORKFLOW
Systems, methods and apparatus are described for a centrifuge module of a laboratory analysis system. Specimen containers may be weighed, loaded into a centrifuge adapter, and transported to a centrifuge module by an adapter shuttle. A centrifuge adapter gripper may transport the centrifuge adapter into a centrifuge for centrifugation. The centrifuge adapter may be transported by the centrifuge adapter gripper to an adapter shuttle for unloading of the specimen containers, which may be performed by a specimen container gripper. A centrifuge drawer that allows a centrifuge to be extended from its installed position is also described. Additional embodiments pertain to a sequence for replacing, in a centrifuge, a set of centrifuge adapters that have been centrifuged with a set of centrifuge adapters that have not been centrifuged. A sequence for loading specimen containers into centrifuge adapters is also described.
Latest Beckman Coulter, Inc. Patents:
This application claims priority to U.S. Provisional Patent Application No. 61/556,667, filed Nov. 7, 2011 and entitled “Analytical System and Method for Processing Samples.” This application also claims priority to U.S. Provisional Patent Application No. 61/616,994, filed Mar. 28, 2012 and entitled “Analytical System and Method for Processing Samples.” This application further claims priority to U.S. Provisional Patent Application No. 61/680,066, filed Aug. 6, 2012 and entitled “Analytical System and Method for Processing Samples.” All of these applications are herein incorporated by reference in their entirety for all purposes.
BACKGROUNDConventional medical laboratory systems implement a variety of processes for analyzing medical specimens. These systems have become more efficient due to the increasing extent to which laboratory analysis processes have become automated. However, there remain several components of medical laboratory systems that can be automated. Automation can beneficially reduce the time required to analyze a sample, reduce the need for manual operation of the system, and reduce the space required by machinery.
Medical specimens may require centrifuging before analysis can be performed. A centrifuge may have one or more buckets capable of receiving a centrifuge adapter. A centrifuge adapter is a tray that can receive multiple specimen containers. Centrifuge imbalance may occur when centrifuge adapters are loaded unevenly. The weights of specimen containers to be inserted into centrifuge adapters may be used in determining how to balance centrifuge adapters.
A centrifuge may be mounted on a drawer to allow improved access to the centrifuge. However, centrifuge operation may be impeded or the centrifuge may be damaged if the centrifuge is operated when the drawer is partially or fully extended. Additionally, cables required for the operation of the centrifuge may be damaged by the operation of the drawer if they become entangled in components of the drawer.
Embodiments of the invention address these and other problems, individually and collectively.
BRIEF SUMMARYEmbodiments of the technology relate to systems and methods for efficiently processing patient samples.
A first embodiment is directed to a method for loading specimen containers into centrifuge adapters. A first specimen container gripper loads a plurality of specimen containers into a centrifuge adapter. The first specimen container gripper sequentially loads single specimen containers of the plurality of specimen containers into the centrifuge adapter until the plurality of specimen containers are loaded. The centrifuge adapter is transported to a centrifuge area by an adapter shuttle. A centrifuge adapter gripper transports the centrifuge adapter into a centrifuge. The centrifuge centrifuges the centrifuge adapter. The centrifuge adapter gripper transports the centrifuge adapter from the centrifuge to an adapter shuttle. A second specimen container gripper unloads the plurality of specimen containers from the centrifuge adapter. The second specimen container gripper sequentially unloads single specimen containers of the plurality of specimen containers until the plurality of specimen containers are unloaded.
In another embodiment, a method for replacing a set of centrifuged adapters with a set of uncentrifuged adapters is described. A centrifuge adapter gripper transports a first centrifuge adapter from which all specimen containers have been removed to a temporary holding area. The centrifuge adapter gripper transports a second centrifuge adapter containing previously centrifuged sample containers from a centrifuge to a first shuttle position. The centrifuge adapter gripper transports a third centrifuge adapter containing sample containers that have not been centrifuged from a second shuttle position to a centrifuge. The centrifuge adapter gripper transports a fourth centrifuge adapter from a temporary holding area to a second shuttle position, wherein the centrifuge adapter contains sample containers that have not been centrifuged.
In a further embodiment, a method for loading specimen containers into a set of centrifuge adapters is described. A specimen container gripper loads a first specimen container that is first in a sequential order into a first position of a first centrifuge adapter. The first position of the first centrifuge adapter is one of a first set of positions that are within a first distance from the center of the first centrifuge adapter. A specimen container gripper loads a second specimen container that is second in the sequential order into a first position of a second centrifuge adapter. The first position of the second centrifuge adapter is in a first set of positions that are within a first distance from the center of the second centrifuge adapter. A specimen container gripper a third specimen container that is third in the sequential order into a first position of a third centrifuge adapter. The first position of the third centrifuge adapter is in a first set of positions that are within a first distance from the center of the third centrifuge adapter. A specimen container gripper loads a fourth specimen container that is fourth in the sequential order into a first position of a fourth centrifuge adapter. The first position of the fourth centrifuge adapter is in a first set of positions that within a first distance from the center of the fourth centrifuge adapter. When all of the first set of positions that are within a first distance from the center of the first centrifuge adapter are filled, all of the first set of positions that are within a first distance from the center of the second centrifuge adapter are filled, all of the first set of positions that are within a first distance from the third centrifuge adapter are filled, and all of the first set of positions that are within a first distance from the center of the fourth centrifuge adapter are filled, a specimen container gripper loads a fifth specimen container into a second position of a first centrifuge adapter. The second position of the first centrifuge adapter is one of a second set of positions that are not within a first distance from the center of the first centrifuge adapter. The fifth specimen container follows a previously loaded specimen container in the sequential order. A specimen container gripper loads a sixth specimen container into a second position of a second centrifuge adapter. The second position of the second centrifuge adapter is one of a second set of positions that are not within a first distance from the center of the second centrifuge adapter. The sixth specimen container follows a previously loaded specimen container in the sequential order. A specimen container gripper loads a seventh specimen container into a second position of a third centrifuge adapter. The second position of the third centrifuge adapter is one of a second set of positions that are not within a first distance from the center of the third centrifuge adapter, wherein the seventh specimen container follows a previously loaded specimen container in the sequential order. A specimen container gripper loads an eighth specimen container into a second position of a fourth centrifuge adapter. The second position of the fourth centrifuge adapter is one of a second set of positions that are not within a first distance from the center of the fourth centrifuge adapter. The eighth specimen container follows a previously loaded specimen container in the sequential order.
Another embodiment is directed to a centrifuge drawer. The centrifuge drawer includes a platform coupled to a frame via telescoping rails. The platform is configured to support a centrifuge. The centrifuge drawer also includes a latch coupled to the platform.
An additional embodiment is directed to a method for installing a centrifuge in centrifuge drawer. The method includes applying a loading tool to a centrifuge. The loading tool includes a plurality of jacks and a plurality of wheels. The centrifuge is lifted by extending the plurality of jacks. The centrifuge is rolled to a position over centrifuge drawer using the plurality of wheels. The plurality of jacks is retracted until the centrifuge is supported by the centrifuge drawer. The loading tool is then removed from the centrifuge.
In a first embodiment directed to a tubular holder of a centrifuge adapter, a first end of the tubular holder is coupled to the centrifuge adapter and a second end of the tubular holder has an opening configured to receive a bolt. The tubular holder includes a first vertical groove on the interior of the tubular holder. The first vertical groove terminates at the opening of the tubular holder. The tubular holder also includes a second vertical groove on the interior of the tubular holder. The second vertical groove terminates at the opening of the tubular holder. The tubular holder also includes a first horizontal groove of the tubular holder. The first horizontal groove connects with the first vertical groove such that a first pin can enter the tubular holder via the first vertical groove and the first pin can travel from the first vertical groove into the first horizontal groove. The tubular holder also includes a second horizontal groove of the tubular holder. The second horizontal groove connects with the first vertical groove such that a second pin can enter the tubular holder via the second vertical groove and the second pin can travel from the second vertical groove into the second horizontal groove. The first pin and the second pin are coupled to the bolt and the bolt is coupled to a robotic arm.
In a second embodiment directed to a tubular holder of a centrifuge adapter a first end of the tubular holder is coupled to the centrifuge adapter and a second end of the tubular holder has an opening configured to receive a bolt. A first pin and a second are coupled to the bolt. The opening has a keyhole shape configured to match a cross-sectional profile of the bolt having the first pin and the second pin. The tubular holder includes a first vertical groove on the interior of the tubular holder. A first end of the first vertical groove terminates at the opening of the tubular holder and a second end of the first vertical groove terminates at a shelf. A first end of the second vertical groove terminates at the opening of the tubular holder and a second end of the second vertical groove terminates at the shelf. The shelf has a first notch and a second notch. The first vertical groove is configured to receive the first pin and the second vertical groove is configured to receive the second pin when the bolt descends through the opening of the tubular holder. the first notch is configured to receive the first pin and the second notch is configured to receive the second pin after the bolt has descended such that the first pin and the second pin are below the shelf and after the bolt has rotated such that first pin aligns with the first notch and the second pin aligns with the second notch.
In another embodiment, a method for gripping a centrifuge adapter is described. A bolt coupled to the robot arm is inserted by the downward movement of a robotic arm into a tubular holder coupled to a centrifuge adapter. The robot arm rotates the bolt with respect to the tubular holder. The bolt then enters a locking position within the tubular holder. The robotic arm lifts the centrifuge adapter until the upper surface of the tubular holder contacts the lower surface of the housing of the robotic arm. The contact between the tubular holder and the robot arm damps movement of the centrifuge adapter with respect to the robot arm.
In an additional embodiment, a first embodiment of centrifuge adapter shuttle is described. One or more hooks are movably coupled to the centrifuge adapter shuttle. The hooks are configured to mate with one or more openings in a centrifuge adapter. After a centrifuge adapter is loaded onto a centrifuge adapter shuttle, the hooks are moved laterally such that the hooks overhang a ledge of the openings. In this manner, the centrifuge adapter is restrained from being lifted away from the centrifuge adapter shuttle.
In a further embodiment, a second embodiment of a centrifuge adapter shuttle is described. The centrifuge adapter shuttle includes a controller, a power supply communicatively coupled to the controller, and an electromagnet mechanically coupled to a centrifuge adapter shuttle. The electromagnet receives power from the power supply. After a centrifuge adapter is loaded onto a centrifuge adapter shuttle, power is supplied to the electromagnet such that the electromagnet electromagnetically couples to a metal bar that is coupled to the centrifuge adapter.
These and other embodiments of the technology are described in further detail below.
A further understanding of the nature and advantages of the different embodiments may be realized by reference to the following drawings.
Embodiments of the present technology relate to an analytical medical laboratory system and method for processing medical specimens. These embodiments, as will be described in more detail below, are advantageous because they provide, among other advantages, greater speed, accuracy, efficiency, and prevention of contamination. As discussed above, many conventional laboratory systems may have a process that uses standalone units throughout the lab, requiring that specimens be manually transported between each standalone unit, while others may connect some of the units with a conveyance system to move the specimens from unit to unit. Additionally, as discussed above, sample tube sizes and equipment from different manufacturers may be constraints in conventional laboratory systems.
The laboratory system can operate a controlled process using a central controller or scheduler. By keeping the samples under the control of an intelligent scheduler, the system may provide efficient usage of every instrument. The system can maintain a consistent minimal turnaround time and maximize the throughput of the entire system by maintaining control of the process and only delivering samples to instruments when those instruments are ready and available.
In embodiments of the invention, a sample can be contained in a specimen container and processed by a laboratory automation system. A “specimen container,” also referred to as a “sample container,” “sample tube,” and “tube,” may have any suitable shape or form. In some embodiments, the specimen container may be in the form of a sample tube. An exemplary specimen container may be a sample tube with a closed bottom end and an open top end. Some sample tubes have an aspect ratio of 3:1 or greater. Specimen containers may be made of any suitable material including plastic, glass, etc. A cap that is structured to cover and attach to the open end of the sample tube body may be used with a sample tube.
In embodiments of the invention, one or more specimen containers may be inserted into a “sample carrier” (also referred to as a “carrier” or a “sample container holder”) for transport. A sample carrier may hold the one or more specimen containers in an upright position and provide stability as the carrier is transported along a conveyance system. In some embodiments, a sample carrier may be a puck or a cylindrical receptacle configured to receive a single specimen container. The sample carrier may have vertical slits to allow the contents of a specimen container to be viewed and analyzed. In some cases, the sample carrier may be in the form of a sample tube rack with an array of recesses for receiving specimen containers.
The laboratory system may further utilize one or more robotic gripper units mounted on robotic arms. Each robotic arm unit can have a robotic gripper for gripping sample tubes and may be equipped with one or more means for detecting information about sample tubes. The terms “gripper” and “robotic gripper” are used interchangeably herein. The means for detecting information about a sample tube may include a first imaging device, such as a camera, for identifying a sample tube among a plurality of sample tubes in a rack. The identified sample tube is gripped by the gripper. The means for detecting information about sample tubes may further include a second imaging device to obtain an image of the gripped sample tube. The level of liquid in the sample tube may be determined from the image obtained by the second imaging device or from a transmission measurement using emitter and receiver units coupled to the robotic arm unit. In comparison with prior art systems, which have a camera mounted on a track and thus require all sample tubes to be on the track before the tubes can be identified, the laboratory system described herein can identify a sample tube before it is placed on a conveyer track. As a result, samples that do not need to be transported on the conveyer are not placed on the conveyer merely for the purpose of sample tube identification. Further, urgent samples can have a prioritized placement on the conveyer track.
Use of a plurality of robotic gripper units in the laboratory system can also increase sample processing efficiency. An input module gripper can identify a sample tube and make data measurements as described above. After the input module gripper delivers the sample tube to a distribution area, a distribution area gripper (e.g., a first specimen container gripper) can deliver a sample tube to a subsequent module such as a centrifuge module or conveyor. For example, the distribution area gripper may load sample tubes into a centrifuge adapter. In the centrifuge module, a centrifuge tube gripper (e.g., a second specimen container gripper) can be used to, e.g., transport sample tubes, place sample tubes in centrifuge adapters, and/or unload sample tubes from centrifuge adapters. A centrifuge adapter gripper can be used to transport centrifuge adapters. The use of multiple grippers may increase processing efficiency relative to prior art systems that use a single gripper to transport sample tubes and centrifuge adapters.
The pre-analytical phase 104 can include preparing patient samples for analysis. During the pre-analytical phase 104, the patient and test information can be deciphered, the process for analysis can be planned, quality checks may be performed, the sample may be separated into its constituent components (e.g., centrifuged), the sample may be divided into multiple specimen containers (e.g., aliquotted), and/or the sample can be delivered to one or more analyzers and/or racks. The pre-analytical phase 104 can manage the flow of samples to different instruments and different analyzers within the lab system. This process management may permit the system to operate efficiently and with minimal instruments. Additionally, scheduling that occurs during the pre-analytical phase 104 enables efficient processing of samples.
Embodiments of the system can identify the patient samples as quickly as possible and determine the best scheduling of each sample to provide a consistent minimal turnaround time and maximum throughput of the analytical processes. The steps and organization of those steps in the process are designed to avoid accumulation of specimen containers at the input to the system or at other stations of the system. Modules of the laboratory system can operate at a throughput speed that allows processing of samples at the maximum throughput of the upstream processes. However, in some embodiments, at the aliquoter unit, the throughput may be managed by the introduction of samples upstream and by small queues at each aliquoting station.
The input module 202 shown in
In some embodiments, while the input module 202 is processing a drawer of samples, the user may be informed that the drawer should not be opened. For example an indicator such as a light on the drawer or a lock on the drawer may be used to warn the user. This may help maintain the process integrity and maximize throughput. When processing of the contents of the first drawer is complete, the drawer may be identified to the user as available, and the system may automatically begin processing another drawer. Additionally, the samples can be transferred to and from the drawers 216 of the input module 202 using an input module gripper 228.
In some embodiments of the invention, a “region” concept can be used. A “region” can be the basic abstraction for the usage of drawers, rack holders, trays and racks. For example, a region can be a set of tube positions within a rack in one embodiment of the invention. A region can be assigned either tube characteristics (e.g., STAT, sample type, pre-spun, cap type) or a single processing instruction. In embodiments of the invention, a tube characteristic or instruction can be assigned to one or more regions, which allows for a more robust routing scheme.
Distribution Area ModuleReferring again to
To protect the distribution area 204 from becoming filled with low priority tubes, a limit can be set on the number of tubes loaded into this area from the low priority input lanes. Moreover, the distribution area 204 may have a reserved area to ensure STAT samples have continuous access to the distribution area 204 from the STAT drawer in the input module 202.
The distribution area 204 can be the holding area which permits the system to access test information associated with the sample tube in the association phase 102 and plan the analysis process for the sample. This enables the system to schedule a sample tube's process with respect to the other sample tubes currently on the system. Scheduling enables the efficient processing of samples based upon priority without overloading any step in the overall system, permitting the optimization of turnaround time and throughput. Furthermore, the sample's schedule can be updated throughout the process as the system's activity or availability changes, providing real time active control of the sample.
Once the schedule is planned by the distribution area module 204, a robotic gripper 218 then selects the sample tube that is the next tube to be transferred to the next module based on the priority of the tubes within the distribution area 204. The selected sample tube is transported from the distribution area 204 to the conveyance system 220, to the centrifuge module 206, or to an error area 222 based on the analysis performed by the distribution area module 204.
If the sample tube is being moved to the centrifuge module 206, the tube can be placed into the appropriate centrifuge adapter based upon the earlier weight estimation to ensure proper balance of the centrifuge rotor. In other embodiments, the tube can be placed into a centrifuge adapter based on its priority. The centrifuge adapter is the component which carries the tubes upon a shuttle from the distribution area 204 to the centrifuge whereupon a robotic gripper transfers the centrifuge adapter with the tubes to a bucket of the centrifuge.
If the distribution area module 204 determines that the sample tube does not require centrifugation the distribution area robot gripper 218 places the sample into a carrier on the conveyance system 220 with the barcode label properly aligned to the carrier at the direction of the scheduler so as not to overload downstream processes
Centrifuge ModuleThe sample tube may be moved from the distribution area 204 of
When a sample tube is to be transported from the distribution area 204 to the centrifuge module 206, the sample tube can be loaded by the distribution area robot gripper 218 into a centrifuge adapter from the distribution area 204. The adapters may accommodate multiple tube sizes for centrifugation. The adapter may be seated on an adapter shuttle 224, 225 that moves between the distribution area 204 and the centrifuge module 206.
When adapters 1002 loaded with sample tubes arrive at the centrifuge module 206 from the distribution area 204 via the adapter shuttles 224, 225, the adapters 1002 are loaded into an available centrifuge bucket 502. In a preferred embodiment, each centrifuge can accept multiple adapters 1002, e.g., four adapters. In some embodiments, each adapter 1002 can hold a plurality of sample tubes, such as 14 sample tubes.
Of the adapters associated with centrifuges 206-1, 206-2, a subset of the associated adapters (e.g., two adapters) may reside on each adapter shuttle. In some embodiments, the following processes may occur simultaneously: distribution area gripper 218 loads tubes into an adapter, centrifuge tube gripper 226 unloads tubes from another adapter on an adapter shuttle and moves the unloaded sample tubes to sample carriers on conveyance system 220, centrifuge adapter gripper 227 swaps adapters for a centrifuge (e.g., 206-1), and a another centrifuge (e.g., 206-2) spins an adapter set. An adapter shuttle may transfer adapters to a centrifuge when one or more of the following occurs: a centrifuge is available, an adapter filling time is expired (which may depend on the scheduled starting time for a centrifuge), or adapters for unloading are empty.
The configuration of the adapters allows for simplified delivery of sample containers to and removal of sample containers from the centrifugation buckets. Once loaded into a centrifuge bucket, the adapters can be centrifuged.
Once centrifugation is complete, centrifuge adapter gripper 227 can remove the adapters from the centrifugation bucket. The adapter shuttle can then move back to the tube loading/unloading position. With the adapter shuttle at the loading/unloading position, centrifuge tube gripper 226 may remove sample tubes from the adapters and place the tubes in carriers on the conveyance system 220 for transport to the next module. Sample tubes may be removed from adapters and placed in a temporary buffer. For example, when a downstream module is temporarily non-operational or otherwise unavailable, the sample tubes may remain in the temporary buffer. When the downstream module becomes available, the sample may be removed from the buffer and placed on conveyance system 220. If the downstream module will be unavailable for an extended period of time, the sample can be placed on conveyance system 220 to be transported to error area 222.
The timing for loading tubes into an adapter at the distribution module 204, sending the tubes in the adapter to the centrifuge module 206 via the adapter shuttle 224, loading the adapter into a centrifuge bucket, centrifuging the samples, unloading the adapter from the centrifuge bucket, and unloading the tubes from the adapter can be established such that the process is continuous, allowing for the continual centrifugation of samples as they arrive at the centrifuge module 206 from the distribution area 204. As the centrifuge completes a spin cycle, the last tube in the distribution area 204 can be loaded by the distribution area gripper 218 into an adapter, and the shuttle 224 can move the adapter to a centrifuge in the centrifuge module 206. At the same time, an automated door on the centrifuge opens and provides access to a bucket as the rotor indexes into position at the doorway.
In one embodiment, a centrifuge adapter gripper 227 in the centrifuge module 206 can remove an empty adapter from the adapter shuttle and place the empty adapter on a deck of centrifuge module 206. Subsequently, the centrifuge adapter gripper 227 can remove an adapter that is in a centrifuge bucket. The centrifuge adapter gripper 227 can move the adapter that was removed from the centrifuge bucket to the area of adapter shuttle from which the empty adapter was removed. Next, the centrifuge adapter gripper 227 selects an adapter that has been recently loaded with tubes from the distribution area 204 and deposits it into the empty bucket. While the centrifuge rotor indexes to the next bucket, a previously emptied adapter is moved to the open position on the shuttle 224 for loading with tubes from the distribution area 204 when the shuttle 224 returns to the distribution area 204.
After the final adapter is loaded into the centrifuge, the centrifuge door, which may be an automated door may be closed to allow the centrifuge cycle to begin. The empty adapter that was on the centrifuge module deck can be placed on the adapter shuttle. The adapter shuttle may move back to the distribution area 204, and a centrifuge tube gripper 226 begins to unload tubes from the adapters removed from the buckets into carriers on the conveyance system 220. As the tubes are moved from the adapter to the carrier, liquid level detection can be performed with centrifuge tube gripper 226. For example, a liquid level measurement can be performed as described in more detail below. In some embodiments, the heights of the sedimentation layers are measured and the barcode on the sample container is read and/or aligned for the carrier. If insufficient serum or plasma is present in a centrifuged sample container, the sample container may be sent to an error area located in the output module 214.
In an alternative embodiment, a shuttle can have additional space for one or more adapters. For example, the shuttle can have a number of positions for adapters that exceeds the numbers of adapters in an adapter set by one. The additional space may be located on the loading side of the shuttle. Rather than moving an empty adapter to a temporary location such as a centrifuge module deck, as described above, the adapter may be placed at the additional space on the shuttle.
If the scheduling algorithm predicts the overloading of an analyzer with samples from the centrifuge module 206, the centrifuge module gripper 226 can unload the samples and distribute the samples from the adapters to the conveyance system. In some embodiments, the full cycle time of the centrifuges can be greater than or equal to, e.g., 360 seconds. In order to ensure optimal turn-around time and throughput the centrifuges are kept, e.g., 180 seconds out of phase for a 360 seconds centrifugation cycle. In some embodiments, downstream processes do not prevent the unloading of samples from the centrifuge adapters. If all the remaining samples in an adapter are destined for unavailable process(es) and depending upon the unavailable process, sample tubes can either be moved to a buffer in the centrifuge instrument or moved to another buffer area elsewhere in the system.
The centrifuge module 206 may include an automated centrifuge controlled by a centrifuge controller. The automated centrifuge can be loaded with multiple centrifuge adapters or receptacles, each adapter receiving multiple sample tubes. The centrifuge includes a motor coupled to a spindle, a rotor assembly, a controller, a lid, and optionally, a lid drive. The centrifuge controller indexes or stops the spindle at selected positions for automated placement and removal of either tubes, adapters or buckets. The lid has a closed position and an open position, and the lid opens and closes in response to instructions from the centrifuge controller.
Various techniques may be used to balance the weight distribution among adapters that are to be loaded into a centrifuge. In some embodiments, the weight of a tube may be determined based on information stored in a database of tube weights. The weight of sample material contained in a tube may be determined based on a measured liquid level or liquid levels in a sample tube and a known density of the liquid or liquids. In another embodiment, sample tubes may be weighed by input module gripper 228 prior to being loaded into centrifuge adapters.
In another embodiment, specimen weights can be determined by one or more balances, for example, a balance located in the distribution area or a balance of a conveyor track. The balance can measure the combined weight of the sample tube and the sample contained in the tube. This may occur as the sample tubes are carried by a conveyor track. To obtain a weight of the sample, a known weight of the sample tube can be subtracted from the combined weight. The known weight can be stored in a database of known tube weights. The sample weight may be determined using a central controller associated with the laboratory system or by another controller of the system. The controller may be communicatively coupled to the database.
Alternatively, centrifuge module 206 may comprise a scale having sites for receiving and holding a plurality of adapters, and a balance controller for selectively depositing sample tubes in cavities of the adapters while correlating incremental weight changes with the locations of each deposit for equalizing weight in pairs of the adapters.
The balance controller can be implemented as a balance program within the central controller. The balance program maintains a database of sample container weights. When a container's weight is combined with the sample's weight, the balance program can determine the optimum adapter cavity in which to place it thereby maintaining a balanced rotor within a tolerance. Sample weights are the product of density estimates and the sample volumes calculated from liquid level measurements and container geometry obtained during the initial pick-up from the input. In some embodiments, balance system may also include a supply of dummy loads in buckets for limiting weight variations between buckets. The dummy loads may be weighted for limiting the weight variations to not greater than, e.g., 10 grams between members of each pair of buckets.
The centrifuge controller may operate to perform a number of functions, such as receiving and storing centrifuge spin profiles including a rotor spindle speed and duration; indexing the rotor's sample stations into an access position, spinning the rotor in accordance with the cycle profile, stopping the rotor with a predetermined sample station at the access position, etc.
If two or more centrifuges are used in the pre-analytical system, the centrifuges may be synchronized and/or kept out of phase. For example, the starting time of a spinning cycle for centrifuge 206-1 may be scheduled at a different time from a spinning cycle for centrifuge 206-2. Because centrifuges 206-1 and 206-2 do not start spinning at the same time, high priority sample tubes may be processed quickly. In some embodiments, spin cycles for the centrifuges are scheduled such that at least one centrifuge is available to process a high priority sample tube at any time.
In an exemplary embodiment, the centrifuges may be run synchronized and out of phase on a fixed timetable such that a centrifuge is available at predetermined intervals. For example, a centrifuge cycle may have a six minute duration, which can include the time required to swap adapters out of and into the centrifuge. In a system with two centrifuges, the centrifuge cycles may be out of phase such that one of the centrifuges is available every three minutes. (e.g., one of two centrifuges is available every three minutes).
Centrifuge WorkflowAs the centrifuge cycle is ending for adapters already loaded into the centrifuge 206-1 or 206-2, the newly loaded centrifuge adapters 1002 are moved to the appropriate centrifuge 206-1 or 206-2. The adapters sit on an adapter shuttle (e.g., 224 or 225) that moves from centrifuge load position 1004, between the manager unit 700 and the centrifuge unit 304, to the appropriate centrifuge 206-1 or 206-2, as indicated at operation 1426. The adapter may be loaded by a robot gripper, such as centrifuge adapter gripper 227, into a centrifuge bucket 502, as indicated at operation 1428. The sample may be centrifuged, as indicated at operation 1430. A previously emptied adapter may be moved from a shuttle (e.g., 224, 225) to a temporary location to create a vacant space in the shuttle. The temporary location may be, e.g., a temporary holding area of a centrifuge area or a dedicated buffer region. The adapter may be removed from the centrifuge (e.g., removed from a centrifugation bucket), as indicated at operation 1432, and transferred to the vacant space in the shuttle, as indicated at operation 1434. When all adapters have been swapped and the shuttle is moved to the unload position, a sample tube may be removed from the centrifuge adapter 1002 by a robot gripper, such as centrifuge tube gripper 226, as indicated at operation 1436. The sample tube may be placed by centrifuge tube gripper 226 into a carrier on conveyance system 220, as indicated at operation 1438.
Centrifuge adapters 1002 that are loaded with sample tubes may be swapped with the adapters in the centrifuge unit 206-1 or 206-2 by centrifuge adapter gripper 227. The centrifuged adapters can then be removed from the centrifuge unit 206-1 or 206-2 and placed in a vacant space in the shuttle as indicated at 1432. For example, the centrifuged adapters may be placed in specific spots on the shuttle so that when the shuttle returns to the manager unit 700, the tubes can be unloaded by centrifuge tube gripper 226 from the adapters and placed onto the conveyance system 220. The newly loaded adapters 1002 from the manager unit 700 are placed inside the centrifuge 206-1 or 206-2. After the centrifuge adapter has been loaded into the centrifuge rotor, the centrifuge rotor may index to allow loading of a subsequent uncentrifuged centrifuge adapter. An adapter which was previously emptied of its sample tubes may be moved by the centrifuge adapter gripper 227 from an unloading spot on the shuttle to a vacant spot on the shuttle. For example, for a shuttle such as the illustrative shuttle of
The shuttle may return to its home position where adapters can be loaded with sample tubes by distribution gripper 218 and/or unloaded by centrifuge tube gripper 226. When samples are unloaded from the adapters and transferred to a carrier on the transport by the centrifuge tube gripper, a barcode label on the sample tube may be aligned to the carrier and a liquid level measurement may be made to ensure that the tests required for the sample can be completed. Thus, the centrifuge tube gripper 226 may have a liquid level detection functionality as described with reference to input module gripper 228. If insufficient sample material is present for further processing of the sample, the tube can be processed according to procedures established for insufficient sample material conditions. For example, the sample tube may be processed according to predefined rules which dictate the tests to complete or the sample may be sent to a Sample in Question (SIQ) rack in output module 214.
While adapters are being swapped in the centrifuge unit 304, the scheduler may direct tubes that do not require centrifugation to be moved by the distribution area gripper 218 from the distribution area 204 to the conveyance system 220, bypassing the centrifugation unit 304, as indicated at operation 1440.
Centrifuge Adapter Swap SequenceSubsequently, a previously emptied centrifuge adapter is moved by centrifuge adapter gripper 227 from shuttle position D to shuttle position C. A previously spun centrifuge adapter is moved by centrifuge adapter gripper 227 from area E of centrifuge 206 to the vacant space on shuttle position D. An adapter loaded with samples that have not been centrifuged is moved by centrifuge adapter gripper 227 from shuttle F to area E of the centrifuge 206.
The sequence continues with a previously emptied centrifuge adapter moved by centrifuge adapter gripper 227 from shuttle position G to shuttle position F. A previously spun centrifuge adapter is moved by centrifuge adapter gripper 227 from area H of centrifuge 206 to the vacant space on shuttle position G. An adapter loaded with samples that have not been centrifuged is moved by centrifuge adapter gripper 227 from shuttle Ito the area H of the centrifuge 1680.
Next, a previously emptied centrifuge adapter is moved by centrifuge adapter gripper 227 from shuttle position J to shuttle position I. A previously spun centrifuge adapter is moved by centrifuge adapter gripper 227 from area K of centrifuge 206 to the vacant space on shuttle position J. An adapter loaded with samples that have not been centrifuged is moved by centrifuge adapter gripper 227 from shuttle position L to the area K of the centrifuge 206 indicated at K. The adapter that was moved to temporary holding area M is moved to the vacant space in shuttle position L, as indicated at operation 716.
In this way, spun adapters are swapped out of a centrifuge and unspun adapters are swapped into the centrifuge.
The scheduler determines the order that samples are removed from the adapters and unspun samples are removed from the distribution area. High priority samples (STAT) may be removed first. If a downstream process such as aliquoting in aliquoter unit 212 is unable to handle the flow of samples and the next centrifuge cycle is ready to begin, the samples can be removed from the adapters and placed into a buffer at the back of the centrifuge 206. In some embodiments, the lowest priority samples are removed first to allow more time for the higher priority samples to advance. The scheduler may advance samples from the buffer when downstream processes become available and according to established priorities. If a sample requires another spin cycle, the sample may remain in the adapter to be spun again.
Centrifuge Adapter Loading SequenceThe centrifuge can be loaded according to the following sequence. A first sample tube with a highest centrifugation priority can be identified by the scheduler in the distribution area 204. Adapter A1 (1708) can be loaded with the first sample tube from distribution area 204 in a position closest to the center position of adapter A1 (1708). A second sample tube with comparable weight to the first sample tube can be selected by the scheduler from distribution area 204 and loaded into a position of A3 (1712) that is the same position occupied by the first sample tube in A1(1708). A sample tube with the second highest centrifugation priority is identified by the scheduler in distribution area 204 to be the third sample tube. The third sample tube is loaded into a position in adapter A2 (1710) that is closest to the center of A2 (1710). A fourth sample tube with comparable weight to the third sample tube can be selected by the scheduler from distribution area 204 and loaded into a position of A4 (1714) that is the same position occupied by the third sample tube in A2 (1710). The process continues with filling open positions in the adapters A1-A4 (1708-1714) with a first sample tube, a second sample tube, a third sample tube and a fourth sample tube, as described above, to fill the positions indicated in green (1700), then the positions indicated in yellow (1702), then the positions indicated in blue (1704), and then the positions indicated in red (1706), until all adapters are filled. In some embodiments, if a centrifuge cycle is nearing completion (e.g., within 30 seconds of completion), the loading of adapters may halt before all adapters are filled and the centrifuge may be loaded with adapters that have not been filled to capacity.
In some embodiments, a sample tube is loaded into an adapter only if its weight is available. The sample tube weight may be determined, for example, based on a liquid level detection performed by input module gripper 228 cross referenced with a table stored in a memory of a laboratory information system (LIS). If the weight of a sample tube is not available, centrifugation may not be performed for the sample tube. For example, the sample tube may be placed in an error rack rather than being loaded into an adapter.
In an alternative embodiment, sample tubes may be loaded into adapters according to priority order. The sample tubes may be loaded according to the order described above with reference to
In some embodiments, a request for immediate centrifugation may be issued by the scheduler, in which case adapters that are not completely filled may be centrifuged. For example, if a loaded sample tube is a STAT tube or if the adapter filling time for a centrifuge is expired, the adapter may be centrifuged immediately.
Robotic GrippersAs discussed above, a robotic arm can be used to move a sample tube or any other object (e.g. a centrifuge adapter) from many different locations within the laboratory system (e.g., input robot 228, distribution robot 218, centrifuge robot 226, etc.).
The robotic arm architecture can differ in complexity dependent upon the given task.
The robotic arm including the gripper unit can be additionally employed for identification and for determination of physical characteristics of the moved object. Therefore, the robotic arm can be equipped with an appropriate identification and determination means (e.g., a camera, a bar code reader, or an absorption and transmission measurement unit). The tube identification, level detection, and tube presence detection units are described in more detail below.
Sample Level DetectionIn embodiments of the invention, a camera unit and analysis tool can use the 2-D image captured by the system to determine a sample volume and sample level for the sample in the sample tube.
A sample level detection unit (or assembly) and a sample tube are depicted in
The camera unit 2102 can be a still camera, a color image camera, a video camera, a spectral camera or the like. A color image camera, for example a 3CCD video camera, may be used. The settings of the color camera, such as focusing, white balance, diaphragm setting, filling-in, can be permanently preset or adjustable. For example, they can be adjusted with the aid of image evaluation software, as in when the data reported by the image evaluation software to the control software are of reduced quality with reference to store reference data. An algorithm can be used to calculate the sample level and/or volume using known data, such as the type of sample tube used, the type of sample, etc.
As shown in
Arranged above and in the middle relative to the analysis position of the sample tube is a gripper unit 2108 that is controlled by a computer. The gripper unit 2108 grips the sample tube 2106 located in a rack of the input section and lifts it into the analysis position. The gripper unit 2108 can comprise a gripper housing 2110. The gripper unit 2108 can also have a plurality of gripper fingers 2112 which can be used to grip the sample tube 2106.
As an alternative to the liquid level detection device using a camera unit, the liquid level detection may also be accomplished by the use of another type of image acquisition device such as a device that has laser diodes with a defined wavelength and analysis algorithms to evaluate the absorption spectra. A laser diode beam can be focused on sections of the sample tube, and an absorption and transmission measurement of different wavelengths of the focused beam can be measured. The analysis algorithm can then use the measurements to provide the liquid level and volume.
In
The liquid level detection unit can be combined with any of the above-described robotic arms with or without a tube identification unit, and with or without a tube or rack presence detection unit. Further details regarding tube identification units and tube or rack presence detection units can be found in U.S. Provisional Patent Application Nos. 61/556,667, 61/616,994, and 61/680,066.
Centrifuge DrawerThe centrifuge typically receives power and communications capability through cables that connect the centrifuge module power source. Centrifuge drawer 6800 may include a feature for managing cables when the drawer is extended and retracted. In some embodiments, centrifuge drawer 6800 comprises a flexible cable container such as e-chain 6812 as shown in retracted position 6812(a) and extended position 6812(b) in
In another embodiment, a cable retractor 6814 can be used to manage cables, as shown in
In some embodiments, centrifuge drawer 6800 includes a movement prevention measure. Movement of the drawer while the centrifuge is in operation could cause rotor imbalance and/or collision between the rotor bucket and containment can. Centrifuge drawer 6800 may include a permanent magnet with electric override to hold the centrifuge in place. To operate the drawer (e.g., to extend the drawer), the magnetic force of the permanent magnet is overpowered by application of an electric current to the electromagnet. For example, the electromagnet current may be activated with a polarization to counteract the magnetic field of the permanent magnet.
The centrifuge drawer 6800 may include a permanent magnet with electromagnet override latch 6819 as shown in
Centrifuge drawer 6800 may comprise an electric rotary mechanical latch.
Latch sensor 6828 may be capable of detecting the position of the drawer. When the drawer is in a retracted position, latch sensor 6828 can send a signal to rotate cam 6818 such that 6820 is returned to the position shown in
In some embodiments, centrifuge drawer 6800 comprises a damping mechanism to mitigate vibration of the frame 6804 when the drawer is being retracted to allow the centrifuge module to continue processing samples. A damping mechanism such as the compression damper 6840 shown in
A robotic arm may be capable of picking up and transporting a centrifuge adapter. For example, centrifuge adapters that are loaded with sample tubes ready to be centrifuged may be transported from the distribution area 204 to the centrifuge module 206 via a shuttle 224. The centrifuge adapters are loaded into the centrifuge, after which the samples can be centrifuged.
Various measures may be implemented to prevent the centrifuge adapter from swinging during x- and y-axis movement of centrifuge adapter gripper 227. For example, gripper 227 may be operated at the extent of its z-axis range such that the top of the adapter is pressed against the underside of the housing of gripper 227. In this manner, any motion of centrifuge adapter 1002 with respect to gripper may be damped. In some embodiments, one or more springs may be used to prevent vibrations from the gripper housing from causing swinging of the centrifuge adapter.
In some embodiments, a robotic arm may be a combined gripper capable of gripping sample tubes as well as adapters 1002 used in the centrifuge module 206. One or more centrifuge area grippers may perform several functions, including picking up sample tubes at an input area 202, transporting sample tubes to a loading position 1004 for an empty centrifuge bucket, placing sample tubes in a free position of the centrifuge adapter, choosing a completely (or incompletely) filled centrifuge adapter, transporting the centrifuge adapter to an available centrifuge, placing the centrifuge adapter in a free position of the centrifuge rotor, choosing a centrifuged adapter, transporting a centrifuged adapter to an unloading position for a centrifuged adapter, picking up centrifuged sample tubes in the centrifuged adapter, etc.
In another embodiment, a single sample tube gripper can be applied to a telescopic robotic arm. The sample tube gripper unit may be moved down into the centrifuge body using the telescopic robotic arm. The sample tube gripper robot may then grip the centrifuge buckets with its standard gripper unit.
In another embodiment, a centrifuge bucket gripper unit can be applied to the telescopic robotic arm in addition to a standard sample tube gripper.
Centrifuge Adapter Lift-Up PreventionA sticky label or stuck specimen tube may cause a centrifuge adapter 1002 to become airborne when centrifuge tube gripper 226 removes a sample tube from an adapter. Various lift-up prevention devices to prevent adapters 1002 from becoming airborne are described below. Typically, a lift-up prevention device is activated only when sample tubes are being loaded into and unloaded from adapters, allowing the adapters to move freely when adapters are being moved.
When the shuttle is moved to a position at which tubes can be unloaded from an adapter 1002, hook 7906 is inserted through opening 7902 and, subsequently, adapter 1002 is shifted such that hook 7906 overhangs a ledge in opening 7902 to prevent adapter 1002 from lifting off of shuttle 224, as shown in
The various participants and elements described herein with reference to the figures may operate one or more computer apparatuses to facilitate the functions described herein. Any of the elements in the above description, including any servers, processors, or databases, may use any suitable number of subsystems to facilitate the functions described herein, such as, e.g., functions for operating and/or controlling the functional units and modules of the laboratory automation system, transportation systems, the scheduler, the central controller, centrifuge controller, balance controller, etc.
Examples of such subsystems or components are shown in
Embodiments of the technology are not limited to the above-described embodiments. Specific details regarding some of the above-described aspects are provided above. The specific details of the specific aspects may be combined in any suitable manner without departing from the spirit and scope of embodiments of the technology. For example, any features of any two or more specific embodiments as described above, can be combined in any suitable manner without departing from the spirit and scope of the invention.
It should be understood that the present technology as described above can be implemented in the form of control logic using computer software (stored in a tangible physical medium) in a modular or integrated manner. Furthermore, the present technology may be implemented in the form and/or combination of any image processing. Based on the disclosure and teachings provided herein, a person of ordinary skill in the art will know and appreciate other ways and/or methods to implement the present technology using hardware and a combination of hardware and software
Any of the software components or functions described in this application, may be implemented as software code to be executed by a processor using any suitable computer language such as, for example, Java, C++ or Perl using, for example, conventional or object-oriented techniques. The software code may be stored as a series of instructions, or commands on a computer readable medium, such as a random access memory (RAM), a read only memory (ROM), a magnetic medium such as a hard-drive or a floppy disk, or an optical medium such as a CD-ROM. Any such computer readable medium may reside on or within a single computational apparatus, and may be present on or within different computational apparatuses within a system or network.
The above description is illustrative and is not restrictive. Many variations of the technology will become apparent to those skilled in the art upon review of the disclosure. The scope of the technology should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the pending claims along with their full scope or equivalents.
One or more features from any embodiment may be combined with one or more features of any other embodiment without departing from the scope of the technology.
A recitation of “a”, “an” or “the” is intended to mean “one or more” unless specifically indicated to the contrary.
All patents, patent applications, publications, and descriptions mentioned above are herein incorporated by reference in their entirety for all purposes. None is admitted to be prior art.
Claims
1. A method comprising:
- loading, by a first specimen container gripper, a plurality of specimen containers into a centrifuge adapter, wherein the first specimen container gripper sequentially loads single specimen containers of the plurality of specimen containers into the centrifuge adapter until the plurality of specimen containers are loaded;
- transporting, by an adapter shuttle, the centrifuge adapter to a centrifuge area;
- transporting, by a centrifuge adapter gripper, the centrifuge adapter into a centrifuge;
- centrifuging, by a centrifuge, the centrifuge adapter; and
- transporting, by the centrifuge adapter gripper, the centrifuge adapter from the centrifuge to an adapter shuttle; and
- unloading, by a second specimen container gripper, the plurality of specimen containers from the centrifuge adapter, wherein the second specimen container gripper sequentially unloads single specimen containers of the plurality of specimen containers until the plurality of specimen containers are unloaded.
2. The method of claim 1, wherein a weight of one or more specimen containers of the plurality of specimen containers is determined prior to loading, by a first specimen container gripper, the plurality of specimen containers into a centrifuge adapter.
3. The method of claim 2, wherein the weight of the one or more specimen containers is determined by a gripper configured to transport specimen containers to an area from which the first specimen container gripper grips the plurality of specimen containers.
4. The method of claim 2, wherein the weight of the one or more specimen containers is determined by a balance of a conveyor track.
5. The method of claim 1, wherein the plurality of specimen containers are loaded by the first specimen container gripper into the centrifuge adapter in an sequential order based on priority level of the plurality of specimen containers.
6. The method of claim 1, wherein the plurality of specimen containers are loaded by the first specimen container gripper into the centrifuge adapter in an sequential order based on weight of the plurality of specimen containers.
7. The method of claim 1, wherein the second specimen container gripper is used to determine a quantity of one or more liquids in the specimen container.
8. The method of claim 1, further comprising a second centrifuge, wherein the two centrifuges are run out of phase with one another.
9. A system comprising:
- a first specimen container gripper configured to load a specimen container into a centrifuge adapter;
- an adapter shuttle configured to transport the centrifuge adapter to a centrifuge area;
- a centrifuge adapter gripper configured to load the centrifuge adapter into a centrifuge; and
- a second specimen container gripper configured to unload a specimen container from the centrifuge adapter.
10. A method for replacing a set of centrifuged adapters with a set of uncentrifuged adapters, the method comprising:
- transporting, by a centrifuge adapter gripper, a centrifuge adapter from which all specimen containers have been removed to a temporary holding area;
- transporting, by the centrifuge adapter gripper, a second centrifuge adapter from a centrifuge to a first shuttle position, wherein the second centrifuge adapter contains previously centrifuged sample containers;
- transporting, by the centrifuge adapter gripper, a third centrifuge adapter from a second shuttle position to a centrifuge, wherein the third centrifuge adapter contains sample containers that have not been centrifuged; and
- transporting, by the centrifuge adapter gripper, a fourth centrifuge adapter from a temporary holding area to a second shuttle position, wherein the fourth centrifuge adapter contains sample containers that have not been centrifuged.
11. A method for loading specimen containers into a set of centrifuge adapters, the method comprising:
- loading, by a specimen container gripper, a first specimen container that is first in a sequential order into a first position of a first centrifuge adapter, wherein the first position of the first centrifuge adapter is one of a first set of positions that are within a first distance from the center of the first centrifuge adapter;
- loading, by the specimen container gripper, a second specimen container that is second in the sequential order into a first position of a second centrifuge adapter, wherein the first position of the second centrifuge adapter is in a first set of positions that are within a first distance from the center of the second centrifuge adapter;
- loading, by the specimen container gripper, a third specimen container that is third in the sequential order into a first position of a third centrifuge adapter, wherein the first position of the third centrifuge adapter is in a first set of positions that are within a first distance from the center of the third centrifuge adapter;
- loading, by the specimen container gripper, a fourth specimen container that is fourth in the sequential order into a first position of a fourth centrifuge adapter, wherein the first position of the fourth centrifuge adapter is in a first set of positions that within a first distance from the center of the fourth centrifuge adapter;
- wherein when all of the first set of positions that are within a first distance from the center of the first centrifuge adapter are filled, all of the first set of positions that are within a first distance from the center of the second centrifuge adapter are filled, all of the first set of positions that are within a first distance from the third centrifuge adapter are filled, and all of the first set of positions that are within a first distance from the center of the fourth centrifuge adapter are filled: loading, by a specimen container gripper, a fifth specimen container into a second position of a first centrifuge adapter, wherein the second position of the first centrifuge adapter is one of a second set of positions that are not within a first distance from the center of the first centrifuge adapter, wherein the fifth specimen container follows a previously loaded specimen container in the sequential order; loading, by a specimen container gripper, a sixth specimen container into a second position of a second centrifuge adapter, wherein the second position of the second centrifuge adapter is one of a second set of positions that are not within a first distance from the center of the second centrifuge adapter, wherein the sixth specimen container follows a previously loaded specimen container in the sequential order; loading, by a specimen container gripper, a seventh specimen container into a second position of a third centrifuge adapter, wherein the second position of the third centrifuge adapter is one of a second set of positions that are not within a first distance from the center of the third centrifuge adapter, wherein the seventh specimen container follows a previously loaded specimen container in the sequential order; and loading, by a specimen container gripper, an eighth specimen container into a second position of a fourth centrifuge adapter, wherein the second position of the fourth centrifuge adapter is one of a second set of positions that are not within a first distance from the center of the fourth centrifuge adapter, wherein the eighth specimen container follows a previously loaded specimen container in the sequential order.
12. The method of claim 11, wherein the sequential order is based on priority level of the plurality of specimen containers.
13. The method of claim 12, wherein a lower priority sample tube may be loaded in lieu of a higher priority sample tube if the higher priority tube has a weight that exceeds the weight of the lower priority tube by a predetermined amount.
14. The method of claim 11, wherein the sequential order is based on weight of the plurality of specimen containers.
15. The method of claim 14, wherein weight is determined by a specimen container gripper.
16. The method of claim 11, wherein when a cycle for a centrifuge is within a predetermined period of time from completion, loading is halted.
17. A centrifuge drawer, comprising:
- a platform coupled to a frame via telescoping rails, the platform configured to support a centrifuge; and
- a latch coupled to the platform.
18. The centrifuge drawer of claim 17, wherein the latch includes:
- a permanent magnet; and
- an electromagnet;
- wherein the permanent magnet is configured to anchor the drawer in an extended position or in a retracted position when the centrifuge is not spinning;
- wherein current is applied to the electromagnet in a first direction to reinforce the magnetic field of the permanent magnet when the centrifuge is spinning; and
- wherein the current is applied to the electromagnet in a second direction to counteract the magnetic field of the permanent magnet when the drawer is operated.
19. The centrifuge drawer of claim 17, wherein the latch includes:
- an electric motor communicatively coupled to a controller,
- a cam mechanically coupled to the electric motor, wherein the electric motor is configured to rotate the cam in response to receiving a signal from a controller;
- a lever in contact with the cam, wherein the rotation of the cam causes the lever to pivot;
- a latch element; wherein the latch element is caused to pivot by the rotation of the lever such that a tine of the latch element is rotated to release position, wherein a striker bolt of the centrifuge drawer can be removed from the latch when the latch element is in the release position.
20. The centrifuge drawer of claim 17, further comprising a cable container coupled to the frame, the cable container configured to contain one or more cables of the centrifuge, wherein the cable container includes a flexible material configured to extend when the drawer is extended and compress when the drawer is retracted.
21. The centrifuge drawer of claim 17, further comprising a spring loaded cable retractor coupled to the frame, wherein the spring loaded cable retractor includes a spring that is coupled to one or more cables of the centrifuge, wherein the spring is configured to extend when the drawer is extended and compress when the drawer is retracted.
22. A method for installing a centrifuge in centrifuge drawer, the method comprising:
- applying a loading tool to a centrifuge, wherein the loading tool includes a plurality of jacks and a plurality of wheels;
- lifting the centrifuge by extending the plurality of jacks;
- rolling the centrifuge to a position over centrifuge drawer using the plurality of wheels;
- retracting the plurality of jacks until the centrifuge is supported by the centrifuge drawer; and
- removing the loading tool from the centrifuge.
23. A centrifuge adapter, comprising:
- a tubular holder, wherein a first end of the tubular holder is coupled to the centrifuge adapter and a second end of the tubular holder has an opening configured to receive a bolt, the tubular holder including:
- a first vertical groove on the interior of the tubular holder, the first vertical groove terminating at the opening of the tubular holder;
- a second vertical groove on the interior of the tubular holder, the second vertical groove terminating at the opening of the tubular holder;
- a first horizontal groove of the tubular holder, wherein the first horizontal groove connects with the first vertical groove such that a first pin can enter the tubular holder via the first vertical groove and the first pin can travel from the first vertical groove into the first horizontal groove;
- a second horizontal groove of the tubular holder, wherein the second horizontal groove connects with the first vertical groove such that a second pin can enter the tubular holder via the second vertical groove and the second pin can travel from the second vertical groove into the second horizontal groove;
- wherein the first pin and the second pin are coupled to the bolt; and
- wherein the bolt is coupled to a robotic arm.
24. A centrifuge adapter, comprising:
- a tubular holder, wherein a first end of the tubular holder is coupled to the centrifuge adapter and a second end of the tubular holder has an opening configured to receive a bolt;
- wherein a first pin and a second are coupled to the bolt;
- wherein the opening has a keyhole shape configured to match a cross-sectional profile of the bolt having the first pin and the second pin;
- wherein the tubular holder includes: a first vertical groove on the interior of the tubular holder, wherein a first end of the first vertical groove terminates at the opening of the tubular holder and a second end of the first vertical groove terminates at a shelf; a second vertical groove on the interior of the tubular holder, wherein a first end of the second vertical groove terminates at the opening of the tubular holder and a second end of the second vertical groove terminates at the shelf; wherein the shelf has a first notch and a second notch; wherein the first vertical groove is configured to receive the first pin and the second vertical groove is configured to receive the second pin when the bolt descends through the opening of the tubular holder; and wherein the first notch is configured to receive the first pin and the second notch is configured to receive the second pin after the bolt has descended such that the first pin and the second pin are below the shelf and after the bolt has rotated such that first pin aligns with the first notch and the second pin aligns with the second notch.
25. A method for gripping a centrifuge adapter, the method comprising:
- inserting, by the downward movement of a robotic arm, a bolt coupled to the robot arm into a tubular holder coupled to a centrifuge adapter;
- rotating, by the robot arm, the bolt with respect to the tubular holder, wherein the bolt enters a locking position within the tubular holder; and
- lifting, by the upward movement of the robotic arm, the centrifuge adapter, wherein the lifting continues until the upper surface of the tubular holder contacts the lower surface of the housing of the robotic arm, wherein the contact between the tubular holder and the robot arm damps movement of the centrifuge adapter with respect to the robot arm.
26. A centrifuge adapter shuttle, comprising:
- one or more hooks movably coupled to the centrifuge adapter shuttle, wherein the hooks are configured to mate with one or more openings in a centrifuge adapter; and
- wherein after a centrifuge adapter is loaded onto a centrifuge adapter shuttle, the hooks are moved laterally such that the hooks overhang a ledge of the openings such that the centrifuge adapter is restrained from being lifted away from the centrifuge adapter shuttle.
27. A centrifuge adapter shuttle, comprising:
- a controller;
- a power supply communicatively coupled to the controller;
- an electromagnet mechanically coupled to a centrifuge adapter shuttle, the electromagnet receives power from the power supply; and
- wherein after a centrifuge adapter is loaded onto a centrifuge adapter shuttle, power is supplied to the electromagnet such that the electromagnet electromagnetically couples to a metal bar that is coupled to the centrifuge adapter.
Type: Application
Filed: Nov 7, 2012
Publication Date: May 16, 2013
Patent Grant number: 9482684
Applicant: Beckman Coulter, Inc. (Brea, CA)
Inventor: Beckman Coulter, Inc. (Brea, CA)
Application Number: 13/671,361
International Classification: B01D 21/26 (20060101); B04B 15/00 (20060101); B25J 11/00 (20060101); B04B 7/08 (20060101);