ADJUSTABLE POWER SPLITTER AND CORRESPONDING METHODS & APPARATUS
An adjustable power splitter includes: a power divider with an input and a first and second divider output; a first adjustable phase shifter and first adjustable attenuator series coupled to the first divider output and providing a first power output; and a second adjustable phase shifter and second adjustable attenuator series coupled to the second divider output and providing a second power output.
This invention relates to power or signal splitters in general and more specifically to techniques and apparatus for adjustable power or signal splitting or dividing.
BACKGROUND OF THE INVENTIONPower splitters or signal splitters or dividers are known. They are used, as the name suggests, to divide or split a signal into two or more identical signals. Identical or nearly identical signals can be used in various systems where the same signal is processed in varying manners or the same manner with more than one resultant signal being used in some combination for some purpose. For example, if signals are subject to the same interferences or distortions a practitioner can start with identical signals and use differential processing and subtract the resultant signals to basically eliminate the common interferences. As another example, some amplifiers use or start with identical signals and process these signals in distinctly different manners and then combine the resultant signals in some fashion to provide the final amplified signal.
In many of these cases where identical signals are used to begin with, the relative phase of the resultant or resulting processed signals is critical for a successful combination. Practitioners have used a phase adjustment in one of the signal paths to attempt to address this problem.
The accompanying figures where like reference numerals refer to identical or functionally similar elements throughout the separate views and which together with the detailed description below are incorporated in and form part of the specification, serve to further illustrate various embodiments and to explain various principles and advantages all in accordance with the present invention.
Embodiments of the present disclosure concern adjustable power splitters and methods therein and uses thereof, e.g., adjustable radio frequency power splitters, and more specifically techniques and apparatus for independently adjusting the signals at each output of the adjustable power splitter so the adjustable power splitter is or can be arranged and constructed for use with a Doherty power amplifier. More particularly various inventive concepts and principles embodied in methods and apparatus corresponding to adjustable power splitters suitable for use in amplifiers or Doherty amplifiers for improved efficiency, etc. will be discussed and disclosed.
The instant disclosure is provided to further explain in an enabling fashion the best modes, at the time of the application, of making and using various embodiments in accordance with the present invention. The disclosure is further offered to enhance an understanding and appreciation for the inventive principles and advantages thereof, rather than to limit in any manner the invention. The invention is defined solely by the appended claims including any amendments made during the pendency of this application and all equivalents of those claims as issued.
It is further understood that the use of relational terms, if any, such as first and second, top and bottom, and the like are used solely to distinguish one from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions.
In some embodiments much of the inventive functionality and many of the inventive principles are best implemented with or in integrated circuits (ICs) including possibly application specific ICs or ICs with integrated processing or control or other structures. It is expected that one of ordinary skill, notwithstanding possibly significant effort and many design choices motivated by, for example, available time, current technology, and economic considerations, when guided by the concepts and principles disclosed herein will be readily capable of generating such ICs and structures with minimal experimentation. Therefore, in the interest of brevity and minimization of any risk of obscuring the principles and concepts according to the present invention, further discussion of such structures and ICs, if any, will be limited to the essentials with respect to the principles and concepts of the various embodiments.
Referring to
The adjustable power splitter 101 includes a power divider 105 with an input 107 and a first and second divider output 109, 111. The power divider 105 operates to divide or split a signal at the input 107 into two (or more in other embodiments—not specifically shown) signals, which are identical or very nearly identical signals with in some embodiments equal power. This equal power form of power divider is often referred to as a 3 dB divider since the resultant signals are each 3 dB less than the signal at the input. While the 3 dB divider is typical, other dividers with multiple outputs or outputs with unequal signals could be fashioned and used in some applications. One or more embodiments of the power divider can be a lumped element circuit including an inductive and a capacitive reactance as will be further discussed below with reference to
Further included in the adjustable power splitter 101, which in some embodiments is an adjustable radio frequency power splitter as shown in
In various embodiments of the adjustable power splitter 101, the first and typically the second adjustable phase shifter 113, 119 are each digitally controlled, e.g., by controller 125 and have a plurality of states. In one or more embodiments, the first adjustable phase shifter 113 and often the second adjustable phase shifter 119, each have eight phase shifted states with each state providing a different amount of phase shift. It will be appreciated that the first and second phase shifter may have different phase shifted states, cover different ranges, and have different steps sizes, although typically they will be essentially the same. While digitally controlled, i.e., by changing one or more control signals between differing discrete states or voltages (high or low, ON or OFF, level 1 or level 2, etc.), the adjustable phase shifters in many embodiments are analog phase shifters. Thus in certain embodiments, the analog phase shifters, while analog are controlled to provide a number of discrete phase shifts, i.e., digitally controlled, One or more embodiments of the adjustable phase shifters 113, 119 will be discussed below with reference to
In various embodiments of the adjustable power splitter 101, the first and typically the second adjustable attenuator 115, 121 are each digitally controlled (one or more control signals change between discrete steps or states and thus change between certain values of attenuation), e.g., by controller 125 and have a plurality of states. In one or more embodiments, the first adjustable attenuator 115 and often the second adjustable attenuator 121, each have eight attenuation states or attenuation levels. It will be appreciated that the first and second attenuation may have different attenuation states, cover different attenuation ranges, and have different attenuation steps sizes, although typically they will be essentially the same. While digitally controlled, the adjustable attenuators in many embodiments are analog attenuators. One or more embodiments of the adjustable attenuators 115, 121 will be discussed below with reference to
Some embodiments of the adjustable power splitter 101 further include a fixed phase shifter 127 that is configured for adding a fixed phase shift between first and second signals at the, respective, first and second power outputs 117, 123. In some embodiments this can be a fixed and predetermined phase shift, e.g., 90 degrees, added to one signal path, i.e., path between output 109 and power output 117 or path between output 111 and power output 123. In certain applications, e.g., Doherty amplifier 103, a ninety degree phase shift is added to one path in the amplifier and the fixed phase shift can be used to offset this amplifier phase shift. The fixed phase shift in some embodiments is a phase shift in a direction (negative or positive), e.g., a negative shift λ/8 129, such as a negative forty five degree shift, for the first signal at the first power output 117 and a phase shift in the opposite direction, e.g., a positive shift λ/8 131 such as a positive forty five degree phase shift for the second signal at the second power output 123. Using the forty five degree shifts gives a ninety degree phase shift between the signals at the power outputs 117, 123. The phase shifter 127 or negative shift 129 and positive shift 131 can be lumped element circuits having an inductive and a capacitive reactance as will be further discussed below with reference to
As suggested above, the adjustable power splitter 101 typically further comprises the controller 125, which is configured and arranged to control or for controlling the adjustable phase shifters and adjustable attenuators. The controller 125 in varying embodiments can be a processor or control circuitry or simply a one time programmable latch. The controller 125 can be provided data via an interface 133, such as a serial interface and in some embodiments this a serial peripheral interface (SPI), which as is known typically includes a data in and out, clock signal, and chip select lines. Various approaches and variants or combinations of those approaches can be utilized by the controller. Generally as will be explained below, control of the attenuators or phase shifters amounts to controlling switches, typically solid state or integrated switches such as some form of field effect transistor switch. Thus the controller can be provided state information for all switches in all attenuators and phase shifters and essentially act as one or more latching buffers with outputs arranged and coupled to insure that all switches are in the appropriate ON or OFF state. In some embodiments this can be as simple as fuses at each gate, which are set to insure that all gates stay in a specified or desired state. Alternatively, the controller can be provided in essence an address or two or more addresses, which address(es) uniquely specify a state for each attenuator and phase shifter. For example if all phase shifters and attenuators are 8 state devices a 3 bit address for each would uniquely specify the proper state and 4 such addresses could be provided to the controller, which would convert each address to the appropriate control signals for each attenuator and phase shifter and latch in these values, etc. In other embodiments the amount of phase shift and attenuation for each of the four devices could be sent to the controller and it could determine the proper state to realize the desired shifts and attenuations. The practitioner is free to choose from among these or other approaches or combinations to make and retain the appropriate adjustments to the adjustable attenuators and adjustable phase shifters.
In addition to the adjustable power splitter 101, the radio frequency Doherty power amplifier 103 is shown where this amplifier includes a main amplifier 135 coupled via a matching network or circuit 137 to the first power output 117 and a peaking amplifier 139 coupled by its matching circuit 141 to the second power output 123. As will be appreciated by those of ordinary skill the main and peaking amplifiers are comprised of one or more stages of low level amplification and higher power level amplification. The main and peaking amplifiers are coupled via, respective, output matching circuits 143, 145 to a Doherty combiner 147, which as is known is configured such that the main amplifier provides the amplification for lower level signals and both amplifiers combine to provide the amplification for high level signals. This is usually accomplished by, e.g., biasing the main amplifier, such that is operates in a class AB mode and biasing the peaking amplifier such that it operates in a class C mode. More complex embodiments are possible where the adjustable power splitter has three outputs and the Doherty amplifier has a main and two peaking amplifiers with each peaking amplifier biased in different class C operating points. In one or more of these manners, overall efficiency/linearity of the amplifier can be improved over a wider range of signal levels. Adjustments to the adjustable attenuators and adjustable phase shifters can be made in an experimental manner by monitoring power drawn by the peaking stage or main stage or both as a function of signal levels and the like. At certain signal levels the peaking amplifier should begin to operate and amplitude and phase adjustments can be made with this in mind.
Referring to
The other fixed shift is a positive shift 231, such as a positive forty five degree shift that is coupled to divider output 111 and provides an output that goes to adjustable attenuator 121 (see
Referring to
Further shown in
In more detail, the first adjustable attenuator 303 is coupled to a capacitance 311 which will have a near zero impedance for signals of interest and this capacitance is coupled to a resistor 313 which is a relatively high value and is used for biasing purposes. Supply noise is coupled to ground by capacitor 314. Capacitor 311 is further coupled to switch S1 315, switch S2 317, and resistor 319. When S1 is ON, (s1=1 or high and coupled to the transistor gate, as shown, via a control lead or resistor) there will be near zero attenuation as the input signal at capacitor 311 will be coupled via S1 to the output capacitor 321 and thus output 307 since the output capacitor is near zero impedance for signals of interest (see also table, line 1). When S1 is OFF and S2 is ON (s1=0, s2=1 or high), the input signal at capacitor 311 will be coupled to resistor 323 and from there to the output capacitor 321. The input signal will also be coupled through the series combination of resistor 319 and 324 to the output capacitor 321. Resistors 323 in parallel with the series combination of resistors 319, 324 are chosen to provide an attenuation of 0.5 dB given the operating frequencies and impedances (see table, line 2). If, in addition to S2 being ON, switch S3 325 is ON (s3=1 or high), the signal at the node between resistors 319, 324 will be coupled via resistor 327 to capacitor 328 and thus ground. This will increase the attenuation and resistor 327 is selected such that an additional 0.5 dB or a total of 1.0 dB of attenuation is provided with this combination of switches (see table, line 3). If in addition to S2 and S3, switch S4 331 is ON (s4=1 or high) resistor 333 will be added in parallel with resistor 327 and the signal will be further attenuated. Resistor 333 is chosen to add a further 0.5 dB for a total of 1.5 dB of attenuation to the signal at the output (see table, line 4). Those of ordinary skill given a specific application with operating frequencies and impedances can determine the appropriate values of the resistors by calculation or experimentation.
Referring to
Generally speaking in many embodiments and as will be further discussed and described below, the switches shown are provided with a pair of single throw switches a, b for each phase shifting element 401, 411, 421. Each of the phase shifting elements can be designed, arranged and configured to provide some predetermined amount of phase shift. If a practitioner needs to cover a certain range of phase shift and needs a certain resolution for the phase shift it can be advantageous to design the first or one of the phase shifting elements to provide a choice between nominally zero or a minimal phase shift and the smallest phase shift step one needs (i.e., the resolution) with the next or another phase shifting element configured to provide minimal or 2× the smallest step needed. Thus with two phase shifting elements you can provide a near zero, 1×, 2×, and 3× small step in phase shift by activating different combinations of the a, b switches. Adding another phase shifting element with a 4× shift, allows 8 states with corresponding 0 to 7× the small step and so on. The number of phase shifting elements will be determined by the required resolution (step size) and the phase range needed to be covered (number of steps). For example if you want to cover 49 degrees with a resolution of 7 degrees then 8 states, including 0 will be required and this can be accomplished with 3 phase shifting elements etc. etc.
In more detail, switchable phase shifting element or circuit 401 (and the other similar phase shifting elements) further comprises a first signal path coupled between the input through a switch 403 or alternatively with switch 405 closed through phase shifting circuit 407 to an output 410. The first signal path, when activated by closing or activating switch 403 or integrated circuit switch, will be providing a near zero phase shift for a signal coupled through the first signal path. Further included is a second signal path coupled between the input and the output 410 via the phase shifting circuit 407 (switch 405 closed). The second path is configured for providing a second phase shift for a signal coupled through the second signal path. Basically switch 403 selects between the first path and the second path or between zero and some phase shift. Insertion loss is equalized between the first path and the second path by switching in (opening switch 405) a loss circuit, resistor 409, when the first signal path is selected. The switches 403, 405, 413, 415, 423, and 425, etc. are controlled by a control circuit, e.g., controller 125 or another controller or latch, which can alternatively be viewed as a portion of the phase shifter with selectable phase shift.
In these embodiments or other embodiments, when the switch or integrated circuit switch 403 is activated (closed or ON) thus selecting the first signal path, the resistive loss circuit or resistor 409 is switched in (switch 405 open or OFF) and is configured or value chosen to equalize the first insertion loss for the first path and the second insertion loss expected when the second signal path is selected (i.e., switch 403 is open and 405 is closed).
Various embodiments of the phase shifting circuit 407 as illustrated in
When the first switch or first integrated circuit switch 403 is closed, ON, or activated it selects the first signal path (provides a short circuit around the second signal path) and when the first switch 403 is open, OFF, or inactivated it deselects (opens) the first signal path and signal is routed via the second signal path and reactive phase shifting or changing circuit 407. When the first switch is closed 403 the second switch 405 will be open thereby adding the resistive loss circuit 409 to the reactive circuit 407. This additional loss when the first signal path is chosen can be selected, i.e., resistor value chosen, by experimental processes to equalize the insertion loss when the first signal path is selected with the insertion loss when the second signal path is selected, thereby removing any relationship between phase shift and insertion loss. Typically the resistive loss circuit or resistor will be several orders of magnitude larger than the ON resistance of an integrated circuit switch.
The first switch 403 or integrated circuit switch in series with the first signal path and the second switch 405 or integrated circuit switch for switching in the resistive loss circuit 409 are alternatively activated (when 403 is ON or CLOSED, 405 is OFF or OPEN and vice-a-versa). Similarly the phase shifting element or circuit 411 which can comprise a third switch S2a 413 or integrated circuit switch in series with the third signal path and a fourth switch S2b 415 or integrated circuit switch for the switching in a second resistive loss circuit 419, wherein the third and fourth switch or integrated circuit switch are alternatively activated (when one closed other open). In some embodiments, the first (and second) resistive loss circuit is a resistor in parallel with the second (and fourth) integrated circuit switch and the first (and second) resistive loss circuit is switched in by opening the second (and fourth) integrated circuit switch, thereby equalizing the first and second (and third and forth) insertion loss.
The control circuit is arranged to control first, second, third and fourth switches. As suggested above in some embodiments the control circuit is configured to select at least one state from available states of minimal phase shift, a first phase shift, a second phase shift, and a first plus second phase shift by activating one or more of the first, thus second, and third, thus fourth, integrated circuit switches. To select the states in order (near zero phase shift through first plus second phase shift), switches 403, 413 are ON for near zero, switches 405, 413 are ON for a first shift, switches 403, 415 are ON for a second phase shift, and switches 413, 415 are ON for a first plus second phase shift. In the above, it is understood that undesignated or unspecified switches are OFF. As suggested above, each time another switchable phase shifting element or circuit is added, e.g., 421 with switches 423, 425) the number of possible states can double and the range of phase shift for a given step size can therefore double or alternatively for a given range the resolution can double, i.e., step size can be cut in half.
The controller 125 or control circuit in addition to possibly selecting timing for activating switches and decoding inputs can, for many embodiments, by viewed as a register or buffer for storing switch state (ON or OFF) information with one output coupled to each of the switches. The control circuit can be programmed or loaded via inputs 133. These inputs may simply specify a state for the phase shifter which is then decoded by the control circuit into switch states or the inputs can be the state for each switch or specify how much phase shift is desired with the control circuit then determining an appropriate state. The inputs can be sent to the control circuit via the serial peripheral interface (SPI). This is a generally known serial interface as indicated above.
Referring to
Referring to
The method of providing a power split signal or adjusting a power splitter illustrated in
Also included in the method of
In some embodiments this may include disposing a first adjustable phase shifter and first adjustable attenuator series coupled to the first divider output and arranged and configured to phase shift and attenuate the first signal and provide a first resultant signal at a first power output. These can each be digitally controlled with each having multiple states, e.g., 8 states. The adjustable attenuators can have multiple attenuation states with each state having a different amount or value for attenuation and the adjustable phase shifters can have multiple phase shift or shifting states with each such state having a different amount of or value for the corresponding phase shift.
Next shown is adjusting 905 a phase shift and attenuation of the second signal to provide a second resultant signal at a second power output; which can include, e.g., using a second adjustable phase shifter and second adjustable attenuator that are each digitally controlled with each having multiple states. This can be accomplished in some instances by disposing a second adjustable phase shifter and second adjustable attenuator series coupled to the second divider output and arranged and configured to phase shift and attenuate the second signal and provide a second resultant signal at a second power output. Again, these can each be digitally controlled with each having multiple states. In some instances, the adjusting a phase shift and attenuation of the first signal further comprises using a first adjustable phase shifter having a multiplicity of phase shifted states, e.g., 8 states, with each such state providing a different phase shift and first adjustable attenuator having a multiplicity of attenuation states, e.g., 8 states, with each attenuation state providing a different attenuation value, wherein the adjusting a phase shift includes shifting a phase of the first signal in accordance with the phase shift for a selected one of the multiplicity of phase shifted states and the adjusting the attenuation includes changing a level of the first signal in accordance with the attenuation value for a selected one of the multiplicity of attenuation states
In some embodiments, the method includes providing 907 a fixed phase shift between the first and second resultant signals, which can further comprise, e.g., providing a negative forty five degree shift for the first resultant signal at the first power output and a positive forty five degree phase shift for the second resultant signal at the second power output. Again disposing a fixed phase shifter arranged and configured to provide a fixed phase shift between signals at the first and second power output, e.g., to provide a negative forty five degree shift for the first resultant signal at the first power output and a positive forty five degree phase shift for the second resultant signal at the second power output. In most embodiments, the method includes controlling 909 the adjustable phase shifters and adjustable attenuators. Controlling can includes providing digital phase control signals to the adjustable phase shifters to control the phase shift of a signal coupled through the, respective, adjustable phase shifters and providing digital attenuator control signals to the adjustable attenuators to control the attenuation of any signal coupled through the, respective, adjustable attenuator.
It will be appreciated that the above described functions and adjustable signal or power splitters may be implemented with one or more integrated circuits or hybrid structures including lumped or discrete components or elements or transmission lines or combinations or the like. The processes, apparatus, and systems, discussed above, and the inventive principles thereof are intended to and can alleviate yield and performance issues caused by prior art techniques. Using these principles of independent adjustment of phase or signal level or signal attenuation within a power splitter can quickly resolve performance and production yield problems in, e.g., Doherty amplifiers with relatively minor costs and the like.
This disclosure is intended to explain how to fashion and use various embodiments in accordance with the invention rather than to limit the true, intended, and fair scope and spirit thereof The foregoing description is not intended to be exhaustive or to limit the invention to the precise form disclosed. Modifications or variations are possible in light of the above teachings. The embodiment(s) was chosen and described to provide the best illustration of the principles of the invention and its practical application, and to enable one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the invention as determined by the appended claims, as may be amended during the pendency of this application for patent, and all equivalents thereof, when interpreted in accordance with the breadth to which they are fairly, legally, and equitably entitled.
Claims
1. An adjustable power splitter comprising:
- a power divider including an input and a first and second divider output;
- a first adjustable phase shifter and first adjustable attenuator series coupled to the first divider output and providing a first power output; and
- a second adjustable phase shifter and second adjustable attenuator series coupled to the second divider output and providing a second power output,
- the first and second power output coupled to a Doherty power amplifier.
2. The adjustable power splitter of claim 1 wherein the first adjustable phase shifter has a plurality of phase shifted states with each such state providing a different phase shift.
3. The adjustable power splitter of claim 2 wherein the first adjustable phase shifter has a multiplicity of phase shifted states.
4. The adjustable power splitter of claim 2 wherein the second adjustable phase shifter has a multiplicity of second phase shifted states with each such second state providing a different second phase shift.
5. The adjustable power splitter of claim 1 wherein the first adjustable attenuator has a plurality of attenuation states with each attenuation state providing a different attenuation value.
6. The adjustable power splitter of claim 5 wherein the first adjustable attenuator has a multiplicity of attenuation states.
7. The adjustable power splitter of claim 5 wherein the second adjustable attenuator has a multiplicity of second attenuation states with each second attenuation state providing a different second attenuation value.
8. The adjustable power splitter of claim 1 wherein the power divider is a lumped element circuit including an inductive reactance and a capacitive reactance.
9. An adjustable power splitter comprising:
- a power divider including an input and a first and second divider output;
- a first adjustable phase shifter and first adjustable attenuator series coupled to the first divider output and providing a first power output;
- a second adjustable phase shifter and second adjustable attenuator series coupled to the second divider output and providing a second power output; and
- a fixed phase shifter configured for adding a fixed phase shift between first and second signals, the first and second signals at the first and second power outputs.
10. The adjustable power splitter of claim 9 wherein the fixed phase shift is a negative forty five degree shift for the first signal and a positive forty five degree phase shift for the second signal.
11. The adjustable power splitter of claim 9 wherein the fixed phase shifter is a lumped element circuit having an inductive reactance and a capacitive reactance.
12. The adjustable power splitter of claim 1 further comprising a controller for controlling the adjustable phase shifters and adjustable attenuators, the controller providing discrete control signals for controlling phase shifted values for the first and second adjustable phase shifters and for controlling attenuation values for the first and second adjustable attenuators.
13. An adjustable power splitter comprising:
- a power divider including an input and a first and second divider output;
- a first adjustable phase shifter and first adjustable attenuator series coupled to the first divider output and providing a first power output; and
- a second adjustable phase shifter and second adjustable attenuator series coupled to the second divider output and providing a second power output; and
- a Doherty power amplifier with a main amplifier coupled to the first power output and a peaking amplifier coupled to the second power output.
14. The adjustable power splitter including a Doherty amplifier of claim 13 wherein the first and second adjustable phase shifters have multiple phase shifted states where each phase shifted state provides a different phase shift and the first and second adjustable attenuators have multiple attenuation states where each attenuation state provides a difference attenuation value are digitally controlled with each having multiple states.
15. The adjustable power splitter including a Doherty amplifier of claim 13 wherein the power splitter is characterized as a radio frequency power splitter and the Doherty amplifier is further characterized as radio frequency Doherty amplifier.
16. A method of providing a power split signal comprising:
- splitting an input signal into first and second signals at a first and a second divider outputs;
- adjusting a phase shift and attenuation of the first signal to provide a first resultant signal at a first power output;
- adjusting a phase shift and attenuation of the second signal to provide a second resultant signal at a second power output; and
- providing a fixed phase shift between the first and second resultant signals.
17. The method of providing a power split signal of claim 16 wherein the splitting an input signal further comprises using a lumped element circuit including an inductive reactance and a capacitive reactance.
18. The method of providing a power split signal of claim 16 wherein the adjusting a phase shift and attenuation of the first signal further comprises using a first adjustable phase shifter having a multiplicity of phase shifted states with each such state providing a different phase shift and first adjustable attenuator having a multiplicity of attenuation states with each attenuation state providing a different attenuation value, wherein the adjusting a phase shift includes shifting a phase of the first signal in accordance with the phase shift for a selected one of the multiplicity of phase shifted states and the adjusting the attenuation includes changing a level of the first signal in accordance with the attenuation value for a selected one of the multiplicity of attenuation states.
19. The method of providing a power split signal of claim 16 wherein the providing a fixed phase shift between the first and second resultant signals, further comprises providing a negative forty five degree shift for the first resultant signal at the first power output and a positive forty five degree phase shift for the second resultant signal at the second power output.
20. The method of providing a power split signal of claim 16 further comprising providing digital phase control signals to the adjustable phase shifters to control the phase shift of a signal coupled through the, respective, adjustable phase shifters and providing digital attenuator control signals to the adjustable attenuators to control the attenuation of any signal coupled through the, respective, adjustable attenuator.
Type: Application
Filed: Jan 27, 2012
Publication Date: Aug 1, 2013
Inventors: Abdulrhman M.S Ahmed (Gilbert, AZ), Mario M. Bokatius (Chandler, AZ), Paul R. Hart (Phoenix, AZ), Joseph Staudinger (Gilbert, AZ), Richard E. Sweeney (Chandler, AZ)
Application Number: 13/360,473