CODEBOOK GENERATION SYSTEM AND ASSOCIATED METHODS
A codebook generation system and associated methods are generally described herein.
This application claims the benefit of, and priority to, previously filed U.S. patent application Ser. No. 12/584,009 entitled “Codebook Generation System and Associated Methods” filed on Aug. 28, 2009, a continuation of U.S. patent application Ser. No. 11/036,906, entitled “Codebook Generation System and Associated Methods” filed on Jan. 13, 2005, the subject matter of both of the above are hereby incorporated by reference in their entirety.
TECHNICAL FIELDEmbodiments of the invention are generally directed to communication systems and, more particularly, to a codebook generation system and associated methods.
BACKGROUNDClosed loop multiple-input-multiple-output (MIMO) systems typically transmit channel state information from a receiver to a transmitter. Transmitting the channel state information consumes bandwidth that might otherwise be available for data traffic.
Illustratively, conventional frequency division duplex (FDD) systems that employ beamforming (or, closed loop multiple input, multiple output (MIMO), the beamforming matrix (referred to herein as a codeword) generated in response to perceived channel conditions is computed and quantized at the receiver first, and then is provided to the source transmitter (e.g., via feedback). A conventional approach to reduce the overhead associated with this feedback is to provide matrix codebook(s) at each of the transmitter and the receiver, each of the codebook(s) comprising a plurality, or set, of potential beamforming matrixes that may be used depending on the channel conditions perceived at the receiver. When the receiver has identified the appropriate matrix codebook(s), the receiver will typically feed back only an index (instead of the actual matrix entries) that points to the appropriate codeword in the codebook(s) stored at the transmitter.
Thus, for a different combination of transmit antenna(e) (Nt)) and data streams (Ns), a different matrix codebook is required. Conventionally, the size of the codebook is based on the number of transmit antennae and the number of data streams: Nt×Ns. For some systems, e.g., one implementing the developing 802.16e1, Nt and Ns are currently less than five (5) but are likely to increase to eight (8). Therefore, a substantial number of Nt by Ns combinations are anticipated, requiring a significant amount of memory within mobile communication devices in order to store such a large number of codebooks. 1See, e.g., the ANSI/IEEE Std 802.16-2001 Standard for Local and Metropolitan area networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems, its progeny and supplements thereto (e.g., 802.16a, .16d, and .16e).
Embodiments of the present invention are illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings in which like reference numerals refer to similar elements and in which:
Embodiments of a codebook generation system and associated methods are generally presented. According to one embodiment, described more fully below, a codebook generation agent (CGA) is presented which may implement a method for generating one or more matrix codebooks from vector codebooks.
According to one embodiment, the CGA is implemented in mobile devices (e.g., stations, subscriber units, handsets, laptops, etc.), although the invention is not limited in this regard. As developed more fully below, the CGA may develop one or more matrix codebook(s) from matrix codewords that are dynamically generated from vector codebook(s) for 2-, 3-, 4-, . . . , N-unit vectors already resident on the device in support of other features (e.g., single data stream beamforming). In this regard, the use of the vector codebook(s) for 2-, 3- and 4-unit vectors does not add any extra complexity or memory drain to the mobile device. On the contrary, by dynamically generating the matrix codebooks rather than having them stored on the mobile device, enables the mobile device to utilize the memory normally consumed by the matrix codebooks in support of other features and/or services.
More particularly, as developed more fully below, the CGA may implement one or more of four (4) disclosed techniques for generating the matrix codebooks. According to some embodiments, the codebook generation agent may leverage the Householder reflection and an appropriate one or more vector codebook(s) of 2-, 3- and/or 4-unit vector matrix(ces) to generate one or more suitable matrix codeword(s) for compilation into a matrix codebook for a given set of channel conditions.
Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
Technical detail regarding some of the operating characteristics of the mobile devices and/or the wireless communication network(s) in which the CGA may be implemented may be found in, e.g., the IEEE 802.11, 1999 Edition; Information Technology Telecommunications and Information Exchange Between Systems—Local and Metropolitan Area Networks—Specific Requirements, Part 11: WLAN Medium Access Control (MAC) and Physical (PHY) Layer Specifications, its progeny and supplements thereto (e.g., 802.11a, .11g and .11n). See, also, the IEEE Std 802.16-2001 IEEE Std. 802.16-2001 IEEE Standard for Local and Metropolitan area networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems, its progeny and supplements thereto (e.g., 802.16a, .16d, and .16e).
Example Communications EnvironmentIn
According to one embodiment, communication network 100 is an 802.16x communication network, and device 102 is a base station while device 106 is a subscriber station, although the scope of the invention is not limited in this regard. In a closed-loop MIMO (or, as above, a beamforming system) the data signal is first weighted by a beamforming matrix V, and then selectively transmitted by a plurality of antennae, as shown. According to one embodiment, the data signal may comprise a number of data streams (N1 . . . Ns), although the invention is not limited in this regard. The number of data streams may represent the number of spatial channels, with appropriate bit-loading, power weighting and subcarrier assignments, although the invention is not limited in this regard.
According to one embodiment, with four (4) transmit antennae and three (3) data streams (for ease of illustration), the transmitted signal (x) transmitted via the Nt antennae may be represented as:
x=V×s (1)
-
- where
As shown, s is an Ns-vector of data symbols, and V is the Nt by Ns beamforming matrix developed from information (e.g., matrix codebook(s) and or indices thereto) fed back from a remote receiver. According to one embodiment, the beamforming matrix V is typically unitary, and power/bit loading is applied on vector s, as introduced above.
Device 106 is depicted comprising a codebook generation agent (CGA) 108 to dynamically generate one or more matrix codebook(s) from which channel state information may be characterized and fed back to the base station, 102. As introduced above, rather than storing ro one or more matrix codebooks, CGA 108 compiles the matrix codebooks necessary to characterize the channel state information from matrix codeword(s) dynamically generated from one or more vector codebook(s) for 2-, 3-, 4-, . . . , N-unit vectors. As discussed more fully below, the vector codebook(s) are recursively applied to a suitable transform (e.g., a Householder reflection) from the lowest-order codebook to the highest order codebook, as necessary to is generate the desired size matrix codeword(s) from which the matrix codebook(s) are assembled.
It will be appreciated that but for the introduction of the CGA 108, device 106 is intended to represent any of a wide variety of electronic device(s) with wireless communication capability. In some embodiments, CGA 108 may well be implemented within a receiver element of a device. In other embodiments, CGA 108 is responsive to a communicatively coupled receiver to perform the functions described herein. According to some embodiments, CGA 108 may well be implemented in hardware, software, firmware and/or any combination thereof.
Example OperationAs introduced above, CGA 108 may generate the matrix codebook(s) from the one or more vector codebooks according to a number of techniques, each described more fully below. The first technique disclosed offers the closest approximation to the conventional technique of using stored matrix codebooks. The second through fourth technique disclosed also offer very good results, although with decreased computational complexity. In either case, the computational complexity is more than offset by the reduced memory that need be allocated to the storage of the matrix codebooks.
Turning to
As shown, CGA 108 is depicted comprising vector codebooks for 2-, 3-, 4-, . . . , N-unit (or, parameter) vectors. Accordingly, CGA 108 dynamically selects the vector codebook(s) suitable for a particular element of the recursive process for generating an element of the matrix codeword(s), as provided more fully below.
In response to determining the necessary size of the matrix codeword, CGA 108 may dynamically select an appropriate one or more vector codebook(s) suitable for generating at least an element of the matrix codeword, block 204. According to one embodiment, the vector codebook(s) selected by CGA 108 may depend on which of the techniques will be employed to generate the matrix codeword(s). According to one embodiment, the technique to be used is dynamically selected by CGA 108 and may depend on any of a number of factors including, but not limited to, the current processing load of the receiver and/or CGA 108, the perceived quality of the channel, and the like. That is, the current processing load of the receiver and/or CGA 108 may be such that a lower complexity codebook generation technique is required. Similarly, if the perceived quality of the channel (e.g., through signal-to-noise ratio, received power level, etc.) is high, CGA 108 may determine that a lower complexity codebook generation technique will provide suitable results, whereas a poorer channel may benefit from use of a more complex technique that more closely approximates the use of conventional (stored) codebooks.
Once the matrix codebook is generated, conventional techniques for computation and quantization of the proposed beamforming matrix may be employed, such as the one described in co-pending U.S. patent application Ser. No. 10/937,097 entitled Recursive Reduction of Channel State Feedback by Li, et al., commonly assigned to the Assignee of this application, and incorporated by reference herein for all purposes.
Returning to block 206, as provided above CGA 108 may employ one or more of at least four (4) techniques for recursively generating one or more matrix codeword(s) from vector codebook(s) for 2-, 3-, 4-, . . . N-unit vectors. It will be appreciated that other techniques for generating a matrix codeword from vector codebooks may well be used without deviating from the scope and spirit of the claims, below. Each of the four techniques are presented, as follows.
Technique 1According to one embodiment, CGA 108 may generate a matrix codeword, column by column, using vector codebooks starting from the smallest dimension of the matrix codeword and working towards the largest dimension. For example, to generate a 4×3 matrix codeword, CGA 108 may employ unit vectors of dimensions 2, 3, and 4 sequentially, starting from the most inner-most parentheses (or, lowest dimension) and working out towards higher dimensions of the codeword, as shown:
In the special case, vi=e1, the householder reflection can be computed as Pi=I. Without unnecessary repetition, it is understood that this special treatment is implied in all the following description.
The Nt by Ns matrix codeword is constructed from the last column recursively, where the iteration starts from the lower, right hand side corner. Successive iteration(s) adds one column and one row to the constructing matrix codeword. In this regard, let {vi(li)}l
The matrix codebook {VN
As shown above, CGA 108 may generate a matrix from the most inner core with the smallest dimension (the lowest dimension) to the full matrix. The lowest dimension core is either 1, or a vector of size Nt−Ns+1. Each expansion, or recursive iteration, effectively increases the size of the matrix by one row and one column. There are Ns FOR loops for Nt>Ns, and there are Nt−1 FOR loops for Nt=Ns. Each FOR loop corresponds to one expansion of the matrix codeword, each expansion generally comprising:
1) picking an appropriate vector from the vector codebook;
2) removing the phase of the first element of the vector by ev(l) and subtract one from the first element of the phase corrected vector w=ev(l)−e;
3) generating a Householder matrix
4) padding zeros and a one in the previous expanded matrix V as
and
5) multiplying the Householder matrix with the padded matrix to finish one expansion.
Since the vector steps through the vector codebook, the number of runs for each FOR loop is equal to the number of vectors in the corresponding vector codebook. The index l is the index for the matrix finally generated. It increases as 1, 2, . . . , LNt*LNt−1 . . . *LNt−Ns+1, where Lt is the number of vectors in the vector codebook of dimension t.
To reduce complexity and speed up computation, the phase of the first entry of each vector may be removed when CGA 108 stores each vector codebook as ev(l). Namely, each first element of each vector in each vector codebook is real (not complex). The real number
may also be pre-computed and stored for each vector.
Technique 2According to one embodiment, CGA 108 may well implement a second technique to generate one or more matrix codeword(s) from vector codebook(s) for 2-, 3-, 4-, . . . N-unit vectors. In this technique, CGA 108 employs the complementary property of unitary matrix as follows. Instead of generating a Nt by Ns matrix directly, it first generates a Nt by Nt matrix first and then cut a submatrix of dimension Nt by Ns from it.
This technique is the most efficient when it generates matrix codebook of dimension Nt is by (Nt−1). As specified above, the stored Nt-vector codebook has the property that the Nt-vector codewords are spread over the complex Nt-sphere as uniformly as possible, where the minimum angle between any two vectors is maximized. Note that each vector has a complementary, orthogonal subspace, spanned by (Nt−1) orthogonal vectors, and is orthogonal to the vector. The property of the vector codebook implies that the subspaces (i.e. Nt by (Nt−1) matrixes) are uniformly spread, where the minimum angle between any two subspaces is maximized. This maximum minimum angle is a desirable property for Nt by (Nt−1) matrix codebook. The major advantage of scheme 2 is that only one vector codebook is required to generate the Nt by (Nt−1) codebook, while (Nt−1) vector codebooks are required in Technique 1.
Technique 2 is also efficient to generate matrix codebook of dimension Nt by Ns where
For this case, the CGA 108 first generates an Nt×Nt matrix, and then cuts a Nt by Ns submatrix from it as a matrix codeword. The pseudo code of the scheme is as follows, where the notations are already defined, above, in Technique 1. It is assumed that
One advantage of this scheme is that only Nt−Ns vector codebooks are required to generate the Nt×Ns codebook, while Ns vector codebooks may be required for Technique 1.
According to one embodiment, CGA 108 may well implement a third technique to generate one or more matrix codeword(s) from vector codebook(s) for 2-, 3-, 4-, . . . N-unit vectors. This technique represents a further simplification over technique 2, above. For the is generation of an Nt by (Nt−1) codebook, techniques 2 and 3 are very similar in terms of computational complexity. However, when generating an Nt by Ns codebook with L codewords, this third technique provides for the use of only one vector codebook with L codewords and span each vector into a Nt by Nt matrix using Householder reflection. The Nt by Ns matrix codebook is formed by taking a Nt by Ns submatrix from each spanned Nt by Nt matrix. Example pseudo code of for technique 3 is as follows:
According to one embodiment, CGA 108 may employ yet a fourth technique to generate matrix codeword(s) from vector codebook(s) for 2, 3, 4 . . . N-unit vectors, according to one embodiment. According to one embodiment, the fourth technique represents a further simplification of technique three, above. In particular, in step 4 of technique 3, CGA 108 may take any Ns columns of Vt, such as the first Ns columns, or Ns columns extracted for the Nt columns.
It should be appreciated that combinations of techniques 1-4 are possible, without deviating from the scope and spirit of the invention. For example, techniques 1 and 2 expand the matrix from a small core to a big matrix iteratively as shown above. According to one embodiment, the small core (or, lowest dimension) may be generated using other techniques. For example, to generate a 4×3 matrix, the core (lowest dimension) used in technique 1 may be generated by technique 3. In this regard, CGA 108 may use technique 3 to generate a core matrix of size 3×2 using a 3-vector codebooks, and then use the remaining teachings of technique 1 to finish the generation of 4×3 using the 3×2 core as the lowest dimension.
To illustrate the algorithm, we use an example of 3/6 bits vector codebooks to generate all the necessary matrix codebooks. In 802.16e, it may be desirable to implement codebooks, whose size L=3n bits, where n is integer.
Since there are many combinations of Nt, Ns, and L and each of them requires a corresponding codebook, the storage of all codebooks are burdensome. A set of codebooks is proposed, which can be dynamically generated with low complexity.
For small size codebooks, i.e. 2×1, 3×1, and 4×1 with 3 bit index, three optimized, random codebooks are stored. For 3×1 and 4×1 with 6 bit index, two structured codebooks are proposed, which can be dynamically generated using an improved Hochwald method. For all the other matrix codebooks such as 3×2 and 4×2, structured codebooks are proposed, which can also be dynamically generated with low complexity.
An example of stored vector codebooks for 2×1, 3×1, and 4×1 with 3 bit index are listed below in Table 1, Table 2, and Table 3. The notation v(Nt,L) denotes the vector codebook (i.e. the set of complex unit vectors), which consists of 2L unit vectors of a dimension Nt. The number L is the number of bits required for the feedback index that can indicate any vector in the codebook.
The matrix codebooks for multiple stream transmission are constructed from the vector codebooks in the previous section using three operations depicted next. We assume that all unit vectors in the section are complex with unit norm and the first entry of each vector is real. The first operation is called Householder reflection transformation. It is to generate a unitary N by N matrix H(v) using a unit N vector v as:
where w=v−e1 and el=[1 0 . . . 0]T;
and it is a real number that can be pre-computed and stored for each vector in the tables; I is the N by N identity matrix; H denotes the conjugate transpose operation.
The other two operations are built on Householder transformation. One of them is called H-concatenation, and the other is called H-expansion, where the “H” stands for Householder. The H-concatenation (HC) generates a N by M+1 unitary matrix from a unit N vector and a unitary N−1 by M matrix using Householder transformation as
where N−1≧M; the N−1 by M matrix unitary matrix has property AHA=I. Since both terms on the left are unitary the output of HC is a unitary matrix. The H-expansion (HE) generates a N by l matrix from a unit N vector, vN, by taking the last M columns of H(v) as
HE(vN,l)=H(vN):,N−l+1:N, (4)
-
- CGA 108 may selectively employ one or more of the operations defined in (2), (3), and (4) to jointly generate matrix codebooks as follows. In Table, by K bit codebook we mean the codebook has 2K matrixes, which requires a K bit feedback index.
The set notation v(Nt, L) in the input parameter of the operations (i.e. H, HC, and HE) denotes that each vector in the codebook v(Nt, L) is sequentially taken as an input parameter to the operations. The feedback index is constructed by concatenating all the indexes of the input argument vector codebooks in binary format. For example, the feedback index of HC(v(4,6), v(3,3)) is constructed as i2j2, where i2 and j2 are the indexes of the vectors in codebook v(4,6) and v(3,3) in binary format respectively.
Turning briefly to
Having introduced the communication environment and operating characteristics of CGA 108 with respect to
In some embodiments, electronic device 400 may represent a system that includes an access point, a mobile station, a base station, or a subscriber unit as well as other circuits. For example, in some embodiments, electronic device 400 may be a computer, such as a personal computer, a workstation, or the like, that includes an access point or mobile station as a peripheral or as an integrated unit. Further, electronic device 400 may include a series of access points that are coupled together in a network.
In operation, device 400 may send and receive signals using one or more of the antennas, wherein the signals are processed by the various elements shown in
Physical layer (PHY) 402 is selectively coupled to one or more of the antennae to interact with a wireless network. PHY 402 may include circuitry to support the transmission and reception of radio frequency (RF) signals. For example, in some embodiments, PHY 402 may include an RF receiver to receive signals and perform “front end” processing such as low noise amplification (LNA), filtering, frequency conversion or the like. Further, in some embodiments, PHY 402 may include transform mechanisms and beamforming circuitry to support MIMO signal processing. Also for example, in some embodiments, PHY 402 may include circuits to support frequency up-conversion, and an RF transmitter.
Media access control (MAC) layer 404 may be any suitable media access control layer implementation. For example, MAC 404 may be implemented in software, or hardware or any combination thereof. In some embodiments, a portion of MAC 540 may be implemented in hardware, and a portion may be implemented in software that is executed by processor 408. Further, MAC 404 may include a processor separate from processor 408.
In operation, processor 408 may read instructions and data from memory 410 and perform actions in response thereto. For example, processor 408 may access instructions from memory 410 and perform method embodiments of the present invention, such as method 200 (
Memory 410 represents an article that includes a machine readable medium. For example, memory 410 represents a random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), read only memory (ROM), flash memory, or any other type of article that includes a medium readable by processor 408. Memory 410 may store instructions for performing the execution of the various method embodiments of the present invention. Memory 410 may also store vector codebooks of 2, 3, 4, . . . N-unit vectors, although the invention is not limited in this respect.
Network interface 406 may provide communications between electronic device 400 and other systems. For example, in some embodiments, electronic device 400 may be an access point that utilizes network interface 406 to communicate with a wired network or to communicate with other access points. In some embodiments, electronic device 400 may be a network interface card (NIC) that communicates with a computer or network using a bus or other type of port.
As used herein, embodiments of CGA 108 may well be implemented in one or more of PHY 402, MAC 404, processor(s) 408, and/or combinations thereof. As introduced above, CGA 108 may well be implemented in hardware, software, firmware or combinations thereof.
Although the various elements of device 400 are depicted as disparate elements in
The machine-readable (storage) medium 500 may include, but is not limited to, floppy diskettes, optical disks, CD-ROMs, and magneto-optical disks, ROMs, RAMs, EPROMs, EEPROMs, magnet or optical cards, flash memory, or other type of media/machine-readable medium suitable for storing electronic instructions. Moreover, the present invention may also be is downloaded as a computer program product, wherein the program may be transferred from a remote computer to a requesting computer by way of data signals embodied in a carrier wave or other propagation medium via a communication link (e.g., a modem, radio or network connection). As used herein, all of such media is broadly considered storage media.
It should be understood that embodiments of the present invention may be used in a variety of applications. Although the present invention is not limited in this respect, the circuits disclosed herein may be used in many apparatuses such as in the transmitters and receivers of a radio system. Radio systems intended to be included within the scope of the present invention include, by way of example only, wireless local area networks (WLAN) devices and wireless wide area network (WWAN) devices including wireless network interface devices and network interface cards (NICs), base stations, access points (APs), gateways, bridges, hubs, cellular radiotelephone communication systems, satellite communication systems, two-way radio communication systems, one-way pagers, two-way pagers, personal communication systems (PCS), personal computers (PCs), personal digital assistants (PDAs), sensor networks, personal area networks (PANs) and the like, although the scope of the invention is not limited in this respect. Such devices may well be employed within any of a variety of
Embodiments of the present invention may also be included in integrated circuit blocks referred to as core memory, cache memory, or other types of memory that store electronic instructions to be executed by the microprocessor or store data that may be used in arithmetic operations. In general, an embodiment using multistage domino logic in accordance with the claimed subject matter may provide a benefit to microprocessors, and in particular, may be incorporated into an address decoder for a memory device. Note that the embodiments may be integrated into radio systems or hand-held portable devices, especially when devices depend on reduced power consumption. Thus, laptop computers, cellular radiotelephone communication systems, two-way radio communication systems, one-way pagers, two-way pagers, personal communication systems (PCS), personal digital assistants (PDA's), cameras and other products are intended to be included within the scope of the present invention.
The present invention includes various operations. The operations of the present invention may be performed by hardware components, or may be embodied in machine-executable content (e.g., instructions), which may be used to cause a general-purpose or special-purpose processor or logic circuits programmed with the instructions to perform the operations. Alternatively, the operations may be performed by a combination of hardware and software. Moreover, although the invention has been described in the context of a computing appliance, those skilled in the art will appreciate that such functionality may well be embodied in any of number of alternate embodiments such as, for example, integrated within a communication appliance (e.g., a cellular telephone).
In the description above, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the present invention may be practiced without some of these specific details. In other instances, well-known structures and devices are shown in block diagram form. Any number of variations of the inventive concept are anticipated within the scope and spirit of the present invention. In this regard, the particular illustrated example embodiments are not provided to limit the invention but merely to illustrate it. Thus, the scope of the present invention is not to be determined by the specific examples provided above but only by the plain language of the following claims.
Claims
1. An apparatus, comprising:
- a processor circuit arranged to select a precoding matrix based on an index received from a remote device over a communication channel of a closed-loop multiple-input and multiple-output (MIMO) orthogonal frequency-division multiple access (OFDMA) system, the precoding matrix constructed by applying a transform to one or more vectors, and precode information with the precoding matrix for transmission over multiple transmitter antennae.
2. The apparatus of claim 1, the processor circuit arranged to select a vector from a codebook, and apply a transform to the selected vector to form the precoding matrix.
3. The apparatus of claim 1, the processor circuit arranged to apply a Householder reflection transform to a vector to form a matrix of multiple columns.
4. The apparatus of claim 1, the processor circuit arranged to apply a transform to a vector to form an N×N matrix.
5. The apparatus of claim 1, the processor circuit arranged to apply a transform to a vector to form a 4×4 matrix.
6. The apparatus of claim 1, the processor circuit arranged to select a subset of columns from a matrix of multiple columns as the precoding matrix.
7. The apparatus of claim 1, comprising:
- a memory communicatively coupled to the processor circuit, the memory to store the one or more vectors; and
- a physical layer (PHY) communicatively coupled to the processor circuit and the multiple transmitter antennae to interact with the remote device.
8. A device, comprising:
- a receiver arranged to receive an index for a precoding matrix over a communication channel of a closed-loop multiple-input and multiple-output (MIMO) orthogonal frequency-division multiple access (OFDMA) system; and
- a processor circuit communicatively coupled to the receiver, the processor circuit arranged to select a precoding matrix based on the received index, the precoding matrix constructed by applying a transform to one or more vectors, and precode information with the precoding matrix; and
- a radio frequency (RF) transmitter communicatively coupled to the processor circuit, the RF transmitter arranged to transmit electromagnetic representations of the precoded information over multiple transmitter antennae.
9. The device of claim 8, the processor circuit arranged to select a vector from a codebook, and apply a transform to the selected vector to form the precoding matrix.
10. The device of claim 8, the processor circuit arranged to apply a Householder reflection transform to a vector to form a matrix of multiple columns.
11. The device of claim 8, the processor circuit arranged to apply a transform to a vector to form an N×N matrix.
12. The device of claim 8, the processor circuit arranged to apply a transform to a vector to form a 4×4 matrix.
13. The device of claim 8, the processor circuit arranged to select a subset of columns from a matrix of multiple columns as the precoding matrix for the RF transmitter.
14. The device of claim 8, wherein the RF transmitter utilizes two transmitter antennae (Nt).
15. The device of claim 8, wherein the RF transmitter utilizes four transmitter antennae (Nt).
16. A communications device, comprising:
- a storage medium comprising content; and
- a processor circuit, communicatively coupled with the storage medium, to select a precoding matrix based on an index received from a remote device over a communication channel of a closed-loop multiple-input and multiple-output (MIMO) orthogonal frequency-division multiple access (OFDMA) system, the precoding matrix constructed by applying a transform to one or more vectors, and precode information with the precoding matrix for transmission over multiple transmitter antennae.
17. The communications device of claim 16, the processor circuit arranged to select a vector from a codebook, and apply a transform to the selected vector to form the precoding matrix.
18. The communications device of claim 16, the processor circuit arranged to apply a Householder reflection transform to a vector to form a matrix of multiple columns.
19. The communications device of claim 16, the processor circuit arranged to select a subset of columns from a matrix of multiple columns as the precoding matrix.
20. The communications device of claim 16, comprising a radio frequency (RF) transmitter communicatively coupled to the processor circuit, the RF transmitter arranged to transmit electromagnetic representations of the precoded information over the multiple transmitter antennae, wherein the RF transmitter utilizes an even number of transmitter antennae (Nt).
Type: Application
Filed: Mar 13, 2013
Publication Date: Aug 1, 2013
Inventors: Xintian E. Lin (Mountain View, CA), Qinghua Li (Sunnyvale, CA)
Application Number: 13/801,912
International Classification: H04B 7/04 (20060101);