Method and Apparatus for Efficient Communication with Implantable Devices
Described herein are methods of making and using and apparatus for wirelessly communicating data and providing power, particularly from a location exterior to a body and to an implantable device disposed within a body with tissue. The described embodiments provide apparatus and methods for efficiently transfer data and power between an external transceiver and an (implanted) biomedical device. The method is to modulate power carrier, which wirelessly powers the device, using an asynchronous modulation scheme, such as amplitude shift keying (ASK) modulation, with minimal modulation depth in order to not disrupt the power flow. The digital data is encoded in the pulse width, eliminating the need for synchronization to the power carrier signal and further minimizing the power consumption necessary for data transfer. Additionally, a reverse backscatter method for obtaining data from the implant is described that has flexible, low power operation.
Latest The Board of Trustees of The Leland Stanford Junior University Patents:
- Anomaly augmented generative adversarial network
- Cerium-doped ferroelectric materials and related devices and methods
- Measuring chordae tendineae forces using fiber bragg grating optical force sensors
- Antibodies against dengue virus and related methods
- Methods for manipulating phagocytosis mediated by CD47
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/582,980 filed Jan. 4, 2012, and is hereby incorporated by reference.
FIELD OF THE ARTThe embodiments described herein relate to methods of making and using and apparatus for wirelessly communicating data and providing power, particularly from a location exterior to a body and to an implantable device disposed within a body with tissue.
BACKGROUNDImplantable devices are known. Most use a battery internally disposed within the device from which to obtain power. Such devices requiring a battery that cannot draw additional power, however, are bulky and as such have limitations associated with them.
There are also known methods for wirelessly delivering power to an implantable device that have been proposed. One such discussion is provided in the patent application entitled “Method of Making and Using and Apparatus for a Locomotive Micro-Implant Using Active Electromagnetic Propulsion” filed as U.S. patent application Ser. No. 12/485,654 on Jun. 16, 2009, which application is expressly incorporated by reference herein, and priority claimed thereto,
There are also communication systems known to allow transmission of data from the exterior of a body into the implantable device, as well as allow transmission of data along the reverse link from the implantable device to the exterior of the body, which systems all have limitations.
SUMMARYDescribed herein are methods of making and using and apparatus for wirelessly communicating data and providing power, particularly from a location exterior to a body and to an implantable device disposed within a body with tissue.
The described embodiments provide apparatus and methods for efficiently transfer data and power between an external transceiver and an (implanted) biomedical device. The method is to modulate power carrier, which wirelessly powers the device, using an asynchronous modulation scheme, such as amplitude shift keying (ASK) modulation, with minimal modulation depth in order to not disrupt the power flow. The digital data is encoded in the pulse width (PW), eliminating the need for synchronization to the carrier signal and further minimizing the power consumption necessary for data transfer.
The combination of data and power in a single signal with ASK+PW modulation for data transfer to biomedical implantable devices also allows for an adjustable data rate by changing integrator gain or time constant. Additionally, the methods and apparatus described provide a large amount of flexibility for data transfer, and can operate under a variety of conditions.
These and other aspects and features will become apparent to those of ordinary skill in the art upon review of the following description of specific embodiments of the invention in conjunction with the accompanying figures, wherein:
The available power is very limited in autonomous implantable devices. This imposes strict limits on power budget of the transceiver components. Decoding data without synchronizing to the carrier signal could greatly reduce the power requirements of the transceiver components. Amplitude shift keying (ASK) modulation in conjunction with pulse width (PW) modulation encoding can be decoded without carrier synchronization and allows for simple, yet efficient and robust way to transfer data to an implantable device by directly modulating the carrier used to power the device. The demodulation of the data stream is simple and efficient compared to ASK or other modulation techniques that require synchronization, primarily because synchronization circuitry usually consists of phase or delay lock-loops, which can be complex and consume much power. By encoding the digital “0” and “1” bits with different pulse width, the demodulator is able to discriminate by comparing the transmitted energy in the bit. Furthermore, each bit contains both a transition from high to low and low to high in amplitude, which allows for digital clock recovery without the need for synchronization. This clock can be used to latch-in the received data and drive digital circuitry on chip.
The key advantage of this modulation technique is the efficiency of the data receiver and elimination of the need for synchronization circuitry. The power flow can also have minimum perturbations by choosing low modulation depth, as opposed to on-off keying (OOK) modulation. It has a very flexible data rate defined by the transmitter, and operates robustly as link gain and other environmental factors change, making it ideal for biomedical systems.
High-level diagrams of the transmitter 100 and the receiving device 200 are shown in
At the transmitter 100, the carrier can be generated with any number of techniques, and many conventional components can be used for most frequency ranges of interest. Amplitude shift keying with information encoded using pulse width modulation also has many possible implementations, and one potential method is shown in
On the preferably passive device, the incoming signal is passed to a power receiver, which creates a stable power supply for the device. In one embodiment, this power received consists of rectification, reference generation, and regulation circuitry, all of which have many implementations. The envelope of the incoming signal is also recovered and passed to a pulse detector which decodes the data.
An implementation of the envelope detector 250 and pulse detector 260 is shown in
With specific reference to
This method can operate with minimal modulation depth if the threshold is set as an average of the envelope. This modulation depth can be arbitrarily low as long as the envelope can be extracted, and the preferred-reduction of the transmitted envelope is in the range of 15-20% during periods when forward link data is being transmitted. Since the periods during which forward link data is being transmitted will vary depending on application, in many instances the overall power loss will be minimal. With this averaging circuit, which in one embodiment is an RC low pass filter attached to an envelope detector, the detector could operate at arbitrary modulation depths. Also, the full-swing amplifier in
With respect to this specific implementation, an envelope detector 410 is directly connected to a receiving antenna, not shown, and the impedance matching network, which could be optional, (shown in
The same RF carrier signal is passed to the power receiver 210 shown in
The envelope is compared to its average and the resulting waveform is amplified, using a full-swing amplifier 420, to a full-swing digital signal. The transitions (zero-crossings) of the envelope with its average are the basis for the obtained clock that will be used to latch the data in. The resulting waveform is fed to a resettable integrator 430. The integrator 430 starts integrating when the envelope rises above its average and stops integrating when the envelope falls below the average. The output of the integrator 430 is fed to a comparator 440 which compares the integrated value to a reference voltage. The duration of integration determines whether a logical “0” or “1” will be received. Longer pulses will result in an output of logical “1” whereas shorter pulses will be interpreted as logical “0”. A more detailed implementation of a receiver is shown in
The modulation depth can be chosen arbitrarily low and can be as high as 100%, as in the case of on-off keying (OOK). The pulse width encoding can also be an arbitrarily long duration for logical “1” and short duration for logical “0” or vice versa. Also, the actual duration of high and low amplitudes is arbitrary and sets the data rate of the data transmission. The receiver can accommodate different data rates chosen by configuring its integration time constants (integrator gain) and thus by changing the slope of the integrated waveform, or by changing the threshold voltage to the following comparator. Thus, the data rate can be made variable and adjustable depending on the required application, and the implantable device can accommodate such different data rates. In a preferred embodiment, the implantable device has several different RC time constants from which one can be selected and/or changed, thereby allowing modification after the implantable device is in the body. This selection can be made by appropriately programming a controller within the functional elements of the device block 220 shown in
With respect to the forward data link created by the transmitter 100 shown in
Firstly, multi-level encoding, which allows for the transfer of bits or symbols representing multiple bits of information, can be provided. Symbols can be encoded in pulse durations, pulse amplitude, pulse timings, or any combination of these. In one embodiment, instead of encoding digital “0” and “1” into pulse width duration followed by negative transition, digital “0” and digital “1” can be encoded into negative and positive envelope transitions of equal pulse duration. This allows for constant period clock transmission and thus training of a PLL if one is required for an on-chip clock without use of preamble (which clock is being used to control and/or synchronize with circuits and signals other than the asynchronous data that is decoded from the RF carrier signal. With this multi-level encoding, each bit has equal duration resulting in a constant data rate. Pulses for each bit can be arbitrarily short and both “0” and “1” takes equal amount of time to transmit, and this eases decoding because the dynamic reference setting becomes a simple averaging of the envelope and thus simplifies threshold detection. An additional advantage is that average envelope becomes constant for equal probability of “0”s and “1”s transmitted and thus average power transferred is also constant, making it easier to estimate how much power is being transmitted for SAR or other regulations compliance
A specific implementation of a multi-level decoding circuit is illustrated in
Another implementation of a multi-level decoding circuit is illustrated in
Another embodiment uses frequency modulation rather than amplitude phase shift keying. In this embodiment frequency shifting can be used, which advantageously does not perturb the amplitude of the RF carrier signal, but which does require additional matching and/or filtering circuitry and the like in order to decode the frequency encoded data signal, which circuitry can be complex and consume substantial power. For frequency modulation on the transmitter side, two frequency generators which represent different bits can be switched in and out as power carriers. On the demodulator side, a filter that is selective of only one of the transmitted frequencies can be employed to recover either the presence or lack of carrier and thus decoding either a digital “1” or a “0”.
Configurability of the previously described embodiments of the forward data link is a significant benefit achieved by the embodiments described. Some aspects that are configurable include the carrier frequency, the modulation depth and frequency, the pulse width, the pulse amplitude, and the pulse timing. Adjusting these parameters allows for variable data rates and operation with lower or higher available power as dictated by the environment and application. Another parameter that can either be fixed or adjustable is device identification (ID) number for individual addressability, similar to device shown in
The reverse data link 280 from the implantable device to the external reader, if used, can be implemented in many different ways ranging from complex and power intensive methods to simple and low-power solutions. A brute force solution would be a dedicated transmitter with a local oscillator that transmits data to the external reader. This approach allows for full-duplex communication at the cost of high complexity and power consumption. A lower power, more simple solution uses load modulation, which is modulation of the load impedance as seen by the antenna. Modulating this load reflects energy that can be detected by the transmit antenna or by a different receive antenna or multiple antennas disposed exterior to the body. For power-limited devices, load and backscatter modulation for the reverse link are more practical solutions. The load can be modulated by changing either the resistivity, reactivity, or some combination of the two. Depending on how the load is varied and the link transfer function between the antennas, the phase and/or amplitude of the carrier will be modulated. In particular with respect to modulation of the load, as shown in
A sample high-level diagram of load modulation for the reverse data link is shown in
The range of communication with the device depends on the carrier frequency, the transmitted power, and the intended application of the device. These ranges typically vary from a millimeter to a meter, though a preferred set of ranges is carrier wavelength/100 to carrier wavelength*100. For biomedical implants, there are safety considerations with transmitting RF power into the body, and these requirements are associated with the amount of energy absorbed by the tissue. This absorption varies with frequency, and so the frequency must be carefully chosen to suit the application. Lower frequencies tend to have greater penetration through the body with less absorption, but also tend to be inefficient as implantable devices become very small due to antenna inefficiencies. High frequencies are absorbed more strongly by the tissue, but for small implants they are necessary because both the receive antennas are smaller and power transfer efficiency is higher. Different applications will also have different power requirements, and so the carrier must be chosen to accommodate the power budget for the intended purpose, which specifically include transcutaneous powering and data transfer for implantable biomedical devices body area network (BAN). For other passive devices that are not intended to be implanted such as near field communications (NFC) and radio frequency identification (RFID) tags, there is different set of considerations and limitations. The frequency and power levels can be chosen to be compatible with existing standards and regulations. Also, different privacy measures and encoding schemes can be implemented with the existing data link to make the link more robust and secure. However, the modulation and data transfer method described can operate over a wide range of frequencies and power levels, and so it should be able to robustly accommodate the different needs of these types of devices.
The preferred embodiment operates at 2 GHz (typical for small implantable devices), and RFID frequencies tend to be near 900 MHz. However, modulation at the impedance at any frequency, and recovery is straightforward, and as such, the present embodiments can operate from the kHz range to the mid-GHz range, and this choice would be made based on the application. It is noted, however, that there is a limitation at the rectifier by the switching speed of the transistors, but this is inherent to the technology. Also, the carrier frequency should be higher than the modulation frequency in order to properly receive data. This sets the lower bound for the carrier frequency if the application requires certain data rate. Alternatively, lower carrier frequencies limit the maximum data rate if the application requires a certain carrier frequency.
The typical lengths/powers are also set by the specific application, and this data transmission method could be applied for these applications with minimal impact on power transfer. Implantable devices tend to be shorter range because the tissue absorbs so much power, while RFID systems can be longer range because they transmit through air. The exact choice of frequency depends on many things and influences the size of the device, distance (depending on transmission medium), and the resulting efficiency of the transfer. It also must comply with the regulations associated with the frequency band, which can force devices to operate in certain ranges. These can be determined based upon the teachings described herein.
In a specific configuration that uses as the functional device elements 220 illustrated in
In use, the implantable device can be packaged with epoxies, plastics, or other materials that cover the receive antenna and isolate circuitry both physically and electrically, though it should be transparent at the frequency of operation for the best performance. These epoxies are readily available and there are even bio-compatible versions. While there will be some minimal loss through this material, for most applications it is insignificant, especially when transmitting through tissue.
Although the embodiments have been particularly described with reference to embodiments thereof, it should be readily apparent to those of ordinary skill in the art that various changes, modifications and substitutes are intended within the form and details thereof, without departing from the spirit and scope intended. Accordingly, it will be appreciated that in numerous instances some features will be employed without a corresponding use of other features. Further, those skilled in the art will understand that variations can be made in the number and arrangement of components illustrated in the above figures.
Claims
1. A method for wireless transmission of data and power to an implantable device disposed within a body that causes varying transmission characteristics, the method comprising the step of:
- providing, from a forward link transmitter exterior of the body, a power and data signal, the power and data signal including a RF carrier signal and data encoded on the RF carrier signal;
- directing the power and data signal toward the implantable device disposed within the body;
- receiving, at the implantable device or devices, the power and data signal; and
- processing within the implantable device or devices the received power and data signal, the processing including: collecting power required for operation of the implantable device from the RF carrier signal of the power and data signal; and decoding the data encoded on the RF carrier signal, wherein the decoding occurs without synchronizing to the RF carrier signal.
2. The method according to claim 1 wherein:
- the step of collecting power required for operation uses a rectifier; and
- the step of decoding uses a decoder to asynchronously decode the data encoded on the RF carrier signal.
3. The method according to claim 1 wherein the implantable devices are individually addressable.
4. The method according to claim 2 wherein the step of decoding uses a detected envelope of the RF carrier signal to asynchronously decode the data encoded on the RF carrier signal.
5. The method according to claim 4 wherein the data encoded on the RF carrier signal is encoded during the step of providing using amplitude shift keying modulation, with the data being encoded in a pulse width, amplitude, and/or timing.
6. The method according to claim 5 wherein the data encoded on the RF carrier signal is also encoded with minimal modulation depth.
7. The method according to claim 5 wherein the data encoded on the RF carrier signal is encoded as either a digital “0” or a digital “1”,
8. The method according to claim 5 wherein the amplitude shift keying modulation includes multi-level encoding.
9. The method according to claim 2 wherein the data encoded on the RF carrier signal is encoded as a symbol.
10. The method according to claim 1 wherein the data provided in the step of providing includes clock data and other circuit data, wherein the implantable device further includes a controller that received the other circuit data and a PLL coupled to the controller, and further including the steps of:
- training the PLL using the clock data; and
- using the other circuit data in the controller.
11. The method according to claim 1 wherein the step of decoding uses a dynamically generated reference level.
12. The method according to claim 10 wherein adjustable reference level is adjusted continuously or periodically.
13. The method according to claim 2 wherein the data encoded on the RF carrier signal is encoded during the step of providing using frequency modulation.
14. The method according to claim 13 wherein the decoding of the encoded data uses selective filtering of the transmitted frequencies.
15. The method according to claim 5 wherein the step of providing changes the pulse width, amplitude, and/or timing to accommodate a configuration of the decoder.
16. The method according to claim 5 wherein the step of providing changes a data rate to accommodate a configuration of the decoder.
17. The method according to claim 5 wherein the step of providing reduces a data rate in response to the step of collecting obtaining less power over a period of time.
18. The method according to claim 5 wherein the step of providing changes a data rate to accommodate the intended purpose of the device or devices.
19. The method according to claim 1, further including the step of:
- providing, from a reverse link transmitter within the implantable device, a reverse link data signal,
- encoding the reverse link data signal by adjusting a load on an antenna that receives the RF carrier signal, thereby causing a reflected RF carrier signal that as the reverse link data encoded thereon; and
- decoding the reflected RF carrier signal at a location exterior of the body to asynchronously receive and reconstruct the reverse link data signal.
20. The method according to claim 19 wherein the device or devices configure the reflected signal pulse width, amplitude, and/or timing to accommodate its purpose.
21. The method according to claim 19 wherein the device or devices configure a data rate to accommodate their intended purpose.
22. A method for amplitude modulation of a high frequency carrier signal comprising the step of:
- Switching a variable impedance into a signal path of the high frequency carrier signal to either divert energy from a transmitter and/or reflect energy back to the transmitter, allowing modulation depths of the frequency carrier signal from 0-100%.
23. The method according to claim 22 wherein the step of switching uses a transistor to act as a switch and cause an impedance to vary, with the impedance being adjusted by a voltage applied to one of the dependent terminals of the transistor.
24. The method according to claim 22, wherein the step of switching occurs in the transmitter and the energy is diverted from the transmitter.
25. The method according to claim 22, wherein the step of switching occurs in a receiver and the energy is reflected back to the transmitter.
26. The method according to claim 1 wherein, during the step of directing, the distance between the forward link transmitter and the body being in the range of carrier wavelength/100 to carrier wavelength*100.
Type: Application
Filed: Jan 4, 2013
Publication Date: Aug 22, 2013
Applicant: The Board of Trustees of The Leland Stanford Junior University (Stanford, CA)
Inventor: The Board of Trustees of The Leland Stanford Junior University
Application Number: 13/734,772
International Classification: H04B 5/00 (20060101);