High Capacity BIological Fluid Filtration Apparatus
A biological fluid filtration device, system, and method, for filtering a biological fluid, the device comprising a housing having an inlet, a first outlet and a second outlet, with a first fluid flow path defined between the inlet and the first outlet, with a second fluid flow path defined between the inlet and the second outlet, with a first biological fluid filtration media interposed between the inlet and the first outlet and across the first fluid flow path, with a second biological fluid filtration media interposed between the inlet and the second outlet and across the second fluid flow path, the housing essentially lacking a solid partition wall between the first biological fluid filtration media and the second biological fluid filtration media, a first flow restriction may be added downstream of the first biological fluid filtration media, and a second flow restriction may be added downstream of the second biological fluid filtration media, in another embodiment, the device comprises a housing having an inlet an outlet with a flow path defined between the inlet and the outlet, with a biological fluid filtration media interposed between the inlet and the outlet and across the fluid flow path, the device further including a flow restriction downstream of the biological fluid filtration media.
Latest Hemerus Medical, LLC Patents:
- Blood storage container containing aqueous composition for the storage of red blood cells
- SYSTEM AND SOLUTION FOR IMPROVED WHOLE BLOOD STORAGE
- Blood storage container containing aqueous composition for the storage of red blood cells
- Filter Media Surface Modification for Enhanced Sealing and Apparatus Utilizing the Same
- Biological fluid filtration apparatus
This invention relates to the filtration field, and more particularly, to an improved low hold up biological fluid filtration system, including a low hold up double sided biological fluid filter device lacking a partition wall capable of filtering biological fluids, including the removal of components or chemicals from blood or blood products, and including the removal of leukocytes from packed red cells, and prions from blood or blood products.
Double sided biological fluid filtration devices that include a single inlet and a single outlet with a partition wall are disclosed in patent serial no. U.S. Pat. No. 6,660,171 B2, entitled HIGH CAPACITY GRAVITY FEED FILTER FOR FILTERING BLOOD AND BLOOD PRODUCTS, filed on Mar. 27, 2001 which is hereby incorporated by reference and made a part of the disclosure herein. Double sided biological fluid filtration devices that contain a partition wall are also disclosed in patent application Ser. No. 10/934,881, entitled A BIOLOGICAL FLUID FILTRATION APPARATUS, filed on Sep. 3, 2004 which is hereby incorporated by reference and made a part of the disclosure herein. Double sided biological fluid filtration devices that contain a partition wall are also disclosed in PCT application no. PCT/US2004/029026, entitled A BIOLOGICAL FLUID FILTRATION APPARATUS, filed on Sep. 7, 2004 which is hereby incorporated by reference and made a part of the disclosure herein. Application Ser. No. 10/934,881 and application no. PCT/US2004/029026 disclose a double sided biological fluid filtration device that includes two independent fluid flow paths separated by a partition wall with each fluid flow path containing a separate inlet and outlet, thereby allowing two units of biological fluid including blood or blood product to be independently filtered.
U.S. Pat. No. 6,231,770 B1 describes a double sided biological fluid filtration device that lacks a partition wall that includes a single inlet and a single outlet with two fluid flow paths between the inlet and outlet. The disadvantage of this type of device is that if two units of blood or blood product are filtered through this device and collected into two separate receiving blood bags, the first unit will be filtered by the device with the filter elements of the device in a relatively non-fouled condition, and the second unit will be filtered by the device with the filter elements in a relatively fouled condition. Therefore the flow rate through the device for the first until will be faster than the flow rate for the second unit. Hence the filtration efficiency may be different between the first and second units, and when the device is used for leukocyte reduction the leukocyte reduction rate may be different for the first and second units.
It is therefore an object of the present invention to provide a biological fluid filtration system including a biological fluid filtration device that lacks a partition wall, and that includes a single inlet and a double outlet, that will filter two units of biological fluid including blood or blood product, with both units being filtered simultaneously at approximately the same flow rate, and that will run automatically, and minimize hold up volume. It is also an object of the present invention to provide a single vent filtration device that can vent the two fluid flow paths of a biological fluid filtration device that includes two independent fluid flow paths.
DEFINITIONSA Double Sided Biological Fluid Filtration Device (hereinafter referred to as BFFD) as used herein means a filtration device comprising a housing containing an inlet and two outlets, with a first fluid flow path defined between the inlet and the first outlet, with a second fluid flow path defined between the inlet and the second outlet, with a first biological fluid filtration media interposed between the inlet and the first outlet and across the first fluid flow path, with the first biological fluid filtration media sealed to the housing to prevent the flow of biological fluid between the housing and the first biological fluid filtration media, with a second biological fluid filtration media interposed between the inlet and the second outlet and across the second fluid flow path, with the second biological fluid filtration media sealed to the housing to prevent the flow of biological fluid between the housing and the second biological fluid filtration media. The biological fluid filtration device being capable of filtering biological fluids, including blood or blood products to remove leukocytes, prions, other blood components, cells, and chemical agents which may be used to treat the biological fluid, from the biological fluid.
Biological Fluid Filtration Media (hereinafter referred to as BFFM) as used herein means a porous filtration media capable of filtering biological fluids, including blood or blood products to remove leukocytes, prions, other blood components, cells, and chemical agents which may be used to treat the biological fluid, from the biological fluid. The biological fluid filtration media (BFFM) comprises at least one filter element, with each filter element containing one or more layers of porous filter material of the same type. The biological fluid filtration media may contain more than one filter element, with each filter element containing a different type of filter material. Any of the various types of biological fluid filtration media that contain one or more filter elements of the same or different types as disclosed in patent application Ser. No. 10/934,881 or in application no. PCT/US2004/029026 may be considered as biological fluid filtration media in this application.
Vent Filtration Media as used herein means the filtration media used in a vent filter device. The media may be microporous filter material made from a material such as Teflon or PVDF, preferably with a pore size of 0.2μ or smaller, or the media may be a depth media, such as cotton, spun bound polyester, or a molded depth media such as Porex.
Housing as used herein means the enclosure into which the filtration media is sealed. The housing of a BFFD contains an inlet and two outlets, with a first fluid flow path defined between the inlet and the first outlet, with a first BFFM interposed between the inlet and the first outlet and across the first fluid flow path, and sealed to the housing to prevent the flow of biological fluid between the housing and the first BFFM; with a second fluid flow path defined between the inlet and the second outlet, with a second BFFM interposed between the inlet and the second outlet and across the second fluid flow path, and sealed to the housing to prevent the flow of biological fluid between the housing and the second BFFM. The housing does not contain a partition wall. The housing may be made from a rigid material such as stainless steel or aluminum, or from any rigid molded plastic material such as Acrylic, Polycarbonate, Polypropylene, Polyethylene. The housing of a vent filtration device contains a vent port in fluid flow communication with atmosphere, and a system port in fluid flow communication with the biological fluid filtration system, with a fluid flow path defined between the vent port and the system port, with a vent filtration media interposed between the vent port and the system port and across the fluid flow path, and sealed to the housing to prevent the flow of biological fluid or gas between the vent filtration media and the housing.
Biological Fluid as used herein means any type of biological liquid, including blood or blood product, and including leukocyte containing suspensions or a prion containing suspensions.
Leukocyte Containing Suspension as used herein means a liquid in which leukocytes are suspended. Examples of leukocyte-containing suspensions include whole blood; red cell products, such as concentrated red cells, washed red cells, leukocyte-removed cells, thawed red cell concentrate and thawed red cell suspension; plasma products, such as platelet-poor plasma, platelet-enriched plasma, fresh lyophilized plasma, fresh liquid plasma and cryoprecipitate; and other leukocyte-containing blood products, such as concentrated platelet cells, buffy coat and buffy coat-removed blood. The leukocyte-containing suspension to be filtered by the devices and systems described in the present invention is not limited to the above examples.
Prion Containing Suspension as used herein means a liquid in which prions are suspended.
Diaphragm Draining Device (hereinafter referred to as DDD) as used herein means a device having a housing with an inlet in fluid flow communication with atmosphere, with an outlet in fluid flow communication with a second device to be drained, and with a diaphragm interposed between the inlet and the outlet, with the housing containing a volume of gas between the diaphragm and the outlet in its normal state.
SUMMARY OF THE INVENTIONThe foregoing problems of the prior art are solved, and the objects of the present invention are achieved, by use of a biological fluid filtration device (BFFD) and system constructed in accordance with the principles of the present invention. The biological fluid filtration system of the present invention is capable of filtering biological fluids, including blood or blood products to remove leukocytes, prions, other blood components, cells, and chemical agents which may be used to treat the biological fluid, from the biological fluid.
The biological fluid filtration system includes a feed container, normally a collapsible blood bag and a receiving container, normally a collapsible blood bag with a BFFD interposed between the two blood bags. The BFFD includes a housing lacking a partition wall having an inlet and two outlets, with a first fluid flow path defined between the inlet and the first outlet, with a first biological fluid filtration media (BFFM) is interposed between the inlet and the first outlet, and across the first fluid flow path; and with a second fluid flow path defined between the inlet and the second outlet, with a second biological fluid filtration media (BFFM) interposed between the inlet and the second outlet, and across the second fluid flow path. The BFFM's may contain one filter element or multiple filter elements of different types. The housing also includes a chamber located between the inlet and the upstream surface of the two BFFM's. A first flow restriction may be located downstream of the first BFFM, and a second flow restriction may be located downstream of the second BFFM. The biological fluid filtration system also includes a means to automatically drain the upstream chamber of the BFFD when the filtration cycle is complete. The draining means may include a diaphragm draining device (DDD) that includes a built in flow restriction. Any of the various types of in line automatic draining means that are disclosed in patent application Ser. No. 10/934,881 or in application no. PCT/US2004/029026 may be used as automatic draining means in this application.
In any of the embodiments the BFFM may include a first filter element composed of one or more layers of porous filter material of a first pore size, followed by a second filter element composed of one or more layers of porous filter material of a second pore size smaller than that of the first pore size, followed by a third filter element composed of one or more layers of porous filter material of a third pore size larger than that of the second pore size, followed by a fourth filter element composed of one or more layers of porous filter material of a fourth pore size smaller than the pore size of the second filter element. The first filter element may include means to remove gels from blood or blood product, the second filter element may include means to remove microaggregates from blood or blood products, the fourth filter element may include means to remove leukocytes from blood or blood products, while the third filter element acts as a flow distribution layer. However, the BFFM is not restricted to the type just described, any suitable type of BFFM for a particular application may be used.
The invention may be best understood by reference to the detailed description of the preferred embodiments herein when read in conjunction with the drawings in which;
One embodiment of the biological fluid filtration system constructed in accordance with the principles of the present invention, is shown in
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
When tube clamp 95 is opened biological fluid (i.e. liquid) will flow from feed blood bag 98, through tubing 81, into inlet 54 of DDD 50, through outlet 55 of DDD 50, through tubing 81a, into inlet 5 of BFFD 100, into upstream chamber 13 of BFFD 1000. Because outlet 55 of DDD 50 contains a flow restriction, the flow downstream of the inlet and downstream of the side port of the DDD will be automatically restricted, and a positive pressure will be created at common node 60 of DDD 50. Also because flexible diaphragm 53 is sealed to DDD 50 with a liquid/air tight seal, air can not escape through inlet 57 of DDD 50. Therefore the air in chamber 63 of DDD 50 will be pressurized so that only a very small quantity of biological fluid if any will enter side port 56 of DDD 50.
Once tube clamp 95 is opened, one of four conditions can occur. The first condition is: If the volume of upstream chamber 13 is small enough, and if the initial combined flow rate of the first and second BFFM's does not exceed the flow rate of the biological fluid entering inlet 5, upstream chamber 13 of BFFD 100 will rapidly fill with biological fluid from the bottom up. As upstream chamber 13 fills from the bottom up, the initial air in upstream chamber 13 will be displaced by the biological fluid filling upstream chamber 13. A portion of the displaced air will be forced through the first BFFM, into vertical channels 22 and 22a, into circular outlet channel 25, and then into outlet first 27, all of first housing outlet half 20. The remainder of the displaced air will be forced through the second BFFM, into vertical channels 22 and 22a, into circular outlet channel 25, and then into second outlet 27a, all of second housing outlet half 20a. The biological fluid in upstream chamber 13 will be pressurized, with the pressure at the bottom of upstream chamber 13 being proportional to the distance from the top of the biological fluid in feed blood bag 98 to the bottom of upstream chamber 13, and with the pressure at the top of upstream chamber 13 being proportional to the distance from the top of the biological fluid in feed blood bag 98 to the top of upstream chamber 13. Hence the pressure at the top of upstream chamber 13 will be less than the pressure at the bottom of upstream chamber 13. The positive pressure in upstream chamber 13 will cause the biological fluid to flow through the first and second BFFM's over the entire surface area of the first and second BFFM's and to displace the air within the pores of the first and second BFFM's with biological fluid, thereby wetting the first and second BFFM's from the upstream side of the first and second BFFM's to the downstream side of the first and second BFFM's. As the BFFM's wet the air that was initially in the pores of BFFM's will be displaced by biological fluid and flow into the vertical channels 22 and 22a, and into circular outlet channel 25, of the respective housing outlet half's, and then into outlet 27 of housing outlet half 20 and outlet 27a of housing outlet half 20a, into tubing 82, and then into first receiving blood bag 99, and into tubing 82a, and then into second receiving blood bag 99a. Because the pressure at the bottom of upstream chamber 13 is greater than the pressure at the top of upstream chamber 13, the initial flow rate of biological fluid through the BFFM's will be greater at the bottom of the BFFM's than at the top of the BFFM's. Therefore, the BFFM's will first become completely wetted from the upstream surface of the BFFM's to downstream surface of the BFFM's at the bottom of the BFFM's. If the width of vertical channels 22 and 22a of the respective housing outlet half's is sufficiently small, and the depth of vertical channels 22 and 22a is sufficiently shallow, so that the cross-sectional flow area of vertical channels 22 and 22a is sufficiently small, and if the distance between vertical channels 22 is sufficiently large, the path of least resistance for continued biological fluid flow through the BFFM's will be through the capillaries of the BFFM's in both the horizontal and vertical directions and not through the vertical channels; because if the cross-sectional flow area of the vertical channels is sufficiently small, the displaced air flowing into and through the vertical channels will create a sufficiently high positive pressure in the vertical channels to prevent biological fluid from entering the vertical channels. The downstream surface of the BFFM's will therefore wet from the bottom up and the displaced air that was within the BFFM's will continue to flow into the vertical channels, and into the circular outlet channel, and then into the outlets. When the downstream surface of the respective BFFM's has become wetted to the level of the top of vertical channels 22a, air flow through the two outermost vertical channels 22a will stop because the downstream surface of the BFFM's below the top of the two outermost vertical channels will be wetted. Therefore the pressure in the two outermost vertical channels will decrease allowing biological fluid to enter the two outermost vertical channels from the bottom up, thereby displacing the air that was in the two outermost vertical channels. At the same time the wetted level of the downstream surface of the BFFM's will continue to wet in the vertical direction, wetting the downstream surface of the BFFM's adjoining the respective circular outlet channel's 25. Because the cross-sectional flow area of the top of circular outlet channel's 25 is not sufficiently small to create a positive pressure in them due to the air flow through them, biological fluid will begin to flow into vertical channels 22 and into the top of circular outlet channel's 25 of BFFM's continue to wet in the vertical direction. The biological fluid flowing into vertical channels 22 and 22a, and into circular outlet channel's 25 will flow into the respective outlets 27 and 27a of BFFD 100 and then into tubing 82 toward receiving blood bag 99, and into tubing 82a toward receiving blood bag 99a. As biological fluid starts to flow into outlets 27 and 27a, the first and second BFFM's will continue to wet vertically. Hence the initial flow through circular outlet channel's 25, and through outlet 27 and 27a, will first be air, and then be a mixture of air and biological fluid, and finally biological fluid only, so that the initial flow into tubing 82 and 82a will be first air and then consist of alternate segments of biological fluid and air, and finally consist of biological fluid only. Once the BFFM's have been wetted, the flow of biological fluid through them will be uniform over their entire surface area so that the entire surface area of the BFFM's will be used to filter the biological fluid, thereby utilizing the BFFM's most efficiently. The present invention is not limited to the filter underdrain shown in
The second condition that can occur after tube clamp 95 is opened is: BFFD 100 will wet as described in the first condition above, with the initial flow rates (i.e. the flow rates before the BFFM's have been wetted) being as described in the first condition. However, once the BFFM's have been wetted with biological fluid the flow rate through the BFFM's may increase so that the combined flow rate through the first and second BFFM will exceed the flow rate of biological fluid entering chamber 13 through inlet 5. In this case biological fluid will initially fill chamber 13 from the bottom to the top, and then after BFFM's have been wetted, the liquid level in chamber 13 will drop to a level below the top of chamber 13. Hence, once the BFFM's have been wetted the flow rate of biological fluid through the portion of the BFFM's below the top of the liquid level in chamber 13 will be much greater than the flow rate of biological fluid through the portion of the BFFM's above the top of the liquid level in chamber 13, so that the portions of the BFFM's above the liquid level will not be properly utilized. If BFFD 100 is used to remove leukocytes from blood or blood product, the leukocyte removing capability of the BFFM's may be reduced in the second condition when measured against the first condition above. Hence in the second condition the filtered blood or blood product in the receiving blood bag's may contain more leukocytes than the filtered blood or blood product in the receiving blood bag's under the first condition. The second condition can be rectified by adding flow restrictions to first outlet 27 and second outlet 27a as shown in
The third condition that can occur after tube clamp 95 is opens, is: If the volume of upstream chamber 13 is large enough, the BFFM's will be wetted before the liquid level in upstream chamber reaches the top of upstream chamber 13, by a combination of liquid flow through the BFFM's below the liquid level in upstream chamber 13, and capillary wetting above the liquid level, thereby allowing the air to be purged from the BFFM's. Once the BFFM's have been wetted, the air in upstream chamber 13 above the liquid level will be trapped in upstream chamber 13, because the wetted BFFM's will not allow this air to be purged from upstream chamber 13. Once the BFFM's have been wetted the flow rate of biological fluid through the portion of the BFFM's below the top of the liquid level in chamber 13 will be much greater than the flow rate of biological fluid through the portion of the BFFM's above the top of the liquid level in chamber 13, so that the portions of the BFFM's above the liquid level will not be properly utilized. If BFFD 100 is used to remove leukocytes from blood or blood product, the leukocyte removing capability of the BFFM's may be reduced in the third condition when measured against the first condition above. Hence in the third condition the filtered blood or blood product in the receiving blood bag's may contain more leukocytes than the filtered blood or blood product in the receiving blood bag's under the first condition. The third condition can be rectified by reducing the volume of upstream chamber 13. Referring to
The fourth condition that can occur after tube clamp 95 is opens, is: If the initial combined flow rate of the first and second BFFM's exceeds the flow rate of the biological fluid entering inlet 5, the BFFM's will be wetted before the liquid level in upstream chamber reaches the top of upstream chamber 13, by a combination of liquid flow through the BFFM's below the liquid level in upstream chamber 13, and capillary wetting above the liquid level, thereby allowing the air to be purged from the BFFM's. Once the BFFM's have been wetted, the air in upstream chamber 13 above the liquid level will be trapped in upstream chamber 13, because the wetted BFFM's will not allow this air to be purged from the upstream chamber 13. Once the BFFM's have been wetted the flow rate of biological fluid through the portion of the BFFM's below the top of the liquid level in chamber 13 will be much greater than the flow rate of biological fluid through the portion of the BFFM's above the top of the liquid level in chamber 13, so that the portions of the BFFM's above the liquid level will not be properly utilized. If BFFD 100 is used to remove leukocytes from blood or blood product, the leukocyte removing capability of the BFFM's may be reduced in the fourth condition when measured against the first condition above. Hence in the fourth condition the filtered blood or blood product in the receiving blood bag's may contain more leukocytes than the filtered blood or blood product in the receiving blood bag's under the first condition. The fourth condition can be rectified by reducing the initial flow rate through the BFFM's, by reducing the surface area of the BFFM's, or by increasing the resistance to flow through the BFFM's, or both.
Referring to
A single sided BFFD with a single inlet and a single outlet, with a fluid flow path defined between the inlet and the outlet, with a BFFM interposed between the inlet and the outlet, and across the fluid flow path can benefit by adding a flow restriction downstream of the BFFM. If for example the single sided BFFD is used to remove leukocytes from a biological fluid, the initial flow rate of the biological fluid through the BFFM will start out high and decrease as the BFFM fouls. If the initial flow rate is too high the leukocyte removing capability of the BFFM may be reduced, so that fewer leukocytes per unit volume of filtered biological fluid will be removed from the biological fluid initially, than will be after the flow rate has been reduced due to fouling. In this case restricting the flow of biological fluid through the BFFD by using a restriction downstream of the BFFM will produce a more uniform flow rate through the BFFM throughout the entire filtration cycle, thereby increasing the leukocyte removal rate. In this case a single sided BFFD will have a single inlet and a single outlet, with a fluid flow path defined between the inlet and the outlet, with a BFFM interposed between the inlet and the outlet, and across the fluid flow path, with a flow restriction located downstream of the BFFM, with the fluid flow path flowing through the flow restriction.
A double sided BFFD that lacks a partition wall, that includes a single inlet and a single outlet, with a first fluid flow path defined between the inlet and the outlet, with a first BFFM interposed between the inlet and the outlet, and across the first fluid flow path, with a second fluid flow path defined between the inlet and the outlet, with a second BFFM interposed between the inlet and the outlet, and across the second fluid flow path, can benefit by adding a flow restriction downstream of the first and second BFFM's. If for example such a double sided BFFD is used to remove leukocytes from a biological fluid, the initial flow rate of the biological fluid through the BFFM's will start out high and decrease as the BFFM's foul. If the initial flow rate is too high the leukocyte removing capability of the BFFM's may be reduced, so that fewer leukocytes per unit volume of filtered biological fluid will be removed from the biological fluid initially, than will be after the flow rate through the BFFM's has been reduced due to fouling. In this case restricting the flow of biological fluid through the BFFD by using a restriction downstream of both the BFFM's will produce a more uniform flow rate through the BFFM's throughout the entire filtration cycle, thereby increasing the leukocyte removal rate. In this case a double sided BFFD that lacks a partition wall will have a single inlet and a single outlet, with a first fluid flow path defined between the inlet and the outlet, with a first BFFM interposed between the inlet and the outlet, and across the first fluid flow path, with a second fluid flow path defined between the inlet and the outlet, with a second BFFM interposed between the inlet and the outlet, and across the second fluid flow path, with a flow restriction located downstream of both the first and second BFFM's, with the first and second fluid flow paths flowing through the flow restriction.
A double sided BFFD, such as the ones disclosed in U.S. Pat. No. 6,660,171, and in U.S. patent application Ser. No. 10/934,881, that include a partition wall, and that include a single inlet and a single outlet, with a first fluid flow path defined between the inlet and the outlet, with a first BFFM interposed between the inlet and the outlet, and across the first fluid flow path, with a second fluid flow path defined between the inlet and the outlet, with a second BFFM interposed between the inlet and the outlet, and across the second fluid flow path, can benefit by adding a flow restriction downstream of the first and second BFFM's. If for example such a double sided BFFD is used to remove leukocytes from a biological fluid, the initial flow rate of the biological fluid through the BFFM's will start out high and decrease as the BFFM's foul. If the initial flow rate is too high the leukocyte removing capability of the BFFM's may be reduced, so that fewer leukocytes per unit volume of filtered biological fluid will be removed from the biological fluid initially, than will be after the flow rate through the BFFM's has been reduced due to fouling. In this case restricting the flow of biological fluid through the BFFD by using a restriction downstream of both the BFFM's will produce a more uniform flow rate through the BFFM's throughout the entire filtration cycle, thereby increasing the leukocyte removal rate. In this case a double sided BFFD that includes a partition wall will have a single inlet and a singlet outlet, with a first fluid flow path defined between the inlet and the outlet, with a first BFFM interposed between the inlet and the outlet, and across the first fluid flow path, with a second fluid flow path defined between the inlet and the outlet, with a second BFFM interposed between the inlet and the outlet, and across the second fluid flow path, with a flow restriction located downstream of both the first and second BFFM's, with the first and second fluid flow paths flowing through the flow restriction.
A double sided BFFD, such as the ones disclosed in patent application Ser. No. 10/934,881 or in application no. PCT/US2004/029026, that include a solid partition wall, and that include two inlets and two outlets, with a first fluid flow path defined between the first inlet and the first outlet, with a first BFFM interposed between the first inlet and the first outlet, and across the first fluid flow path, with a second fluid flow path defined between the second inlet and the second outlet, with a second BFFM interposed between the second inlet and the second outlet, and across the second fluid flow path, can benefit by adding a first flow restriction downstream of the first BFFM, and a second flow restriction downstream of the second BFFM. If for example such a double sided BFFD is used to remove leukocytes from a single or two independent biological fluid sources, the initial flow rate of the biological fluid or fluids through the first and second BFFM's will start out high and decrease as the BFFM's foul. If the initial flow rate is too high through either of the BFFM's, the leukocyte removing capability of the BFFM's may be reduced, so that fewer leukocytes per unit volume of filtered biological fluid or fluids through either fluid flow path will be removed from the biological fluid or fluids initially, than will be after the flow rate through the BFFM's has been reduced due to fouling. In this case restricting the flow of biological fluid or fluids through the first and second flow paths of the BFFD by using a first flow restriction downstream of the first BFFM, and a second flow restriction downstream of the second BFFM will produce a more uniform flow rate through both of the BFFM's throughout the entire filtration cycle, thereby increasing the leukocyte removal rate through both BFFM's. In this case a double sided BFFD that includes a solid partition wall will have first inlet and a first outlet, with a first fluid flow path defined between the first inlet and the first outlet, with a first BFFM interposed between the first inlet and the first outlet, and across the first fluid flow path, with a second fluid flow path defined between the second inlet and the second outlet, with a second BFFM interposed between the second inlet and the second outlet, and across the second fluid flow path, with a first flow restriction located downstream of the first BFFM, with a second flow restriction located downstream of the second BFFM with a first fluid flow path flowing through the first flow restriction, and with the second fluid flow path flowing through the second flow restriction.
A double sided BFFD, with or without a partition wall that includes a single inlet and a single outlet, with a first fluid flow path defined between the inlet and the outlet, with a first BFFM interposed between the inlet and the outlet, and across the first fluid flow path, with a second fluid flow path defined between the inlet and the outlet, with a second BFFM interposed between the inlet and the outlet, and across the second fluid flow path, can benefit by adding two flow restrictions downstream of the outlet as shown in
Although the filter underdrain structure shown in
Although the present invention has been shown and described in terms of specific preferred embodiments, it will be appreciated by those skilled in the art that changes or modifications are possible which do not depart from the inventive concepts described and taught herein. Such changes and modifications are deemed to fall within the purview of these inventive concepts. Any combination of the various features of the described embodiments are deemed to fall within the purview of these inventive concepts.
Claims
1. A biological fluid filtration device comprising:
- a housing having an inlet, a first outlet, and a second outlet, and defining a first fluid flow path between the inlet and the first outlet, and a second fluid flow path between the inlet and the second outlet, wherein the housing essentially lacks a solid partition wall between the first fluid flow path and the second fluid flow path,
- a first biological fluid filtration media, having an upstream surface and a downstream surface, interposed between the inlet and the first outlet and across the first fluid flow path,
- a second biological fluid filtration media, having an upstream surface and a downstream surface, interposed between the inlet and the second outlet and across the second fluid flow path,
- an upstream chamber including a space between the first biological fluid filtration media and the second biological fluid filtration media, with the upstream surface of the first biological fluid filtration media opposing the upstream surface of the second biological fluid filtration media.
2. The biological fluid filtration device of claim 1 wherein the first biological fluid filtration media and the second biological fluid filtration media are capable of removing leukocytes from a biological fluid.
3. The biological fluid filtration device of claim 1 wherein a first flow restriction is located downstream of the first biological fluid filtration media, and wherein a second flow restriction is located downstream of the second biological fluid filtration media.
4. The biological fluid filtration device of claim 3 wherein the first flow restriction is disposed within the first outlet, and wherein the second flow restriction is disposed within the second outlet.
5. The biological fluid filtration device of claim 1 wherein the housing includes a baffle disposed within said upstream chamber, and interposed between the first biological fluid filtration media and the second biological fluid filtration media, and wherein said baffle includes at least one aperture, with the cross-sectional area of said aperture being sufficiently large to prevent said upstream chamber from being divided into two distinct and separate chambers, said baffle thereby reducing the volume of said upstream chamber.
6. A method for processing a biological fluid comprising:
- passing a biological fluid into a filter device comprising a housing having an inlet, a first outlet and a second outlet, and defining a first fluid flow path between the inlet and the first outlet, and defining a second fluid flow path between the inlet and the second outlet, wherein the housing essentially lacks a solid partition wall between the first fluid flow path and the second fluid flow path;
- passing a portion of the biological fluid along the first fluid flow path through a first biological fluid filtration media, the first biological fluid filtration media having an upstream surface and a downstream surface, with the first biological fluid filtration media being interposed between the inlet and the first outlet and across the first fluid flow path,
- passing another portion of the biological fluid along the second fluid flow path through a second biological fluid filtration media, the second biological fluid filtration media having an upstream surface and a downstream surface, with the second biological fluid filtration media being interposed between the inlet and the second outlet and across the second fluid flow path.
7. The method of claim 15 wherein the first biological fluid filtration media and the second biological fluid filtration media are capable of removing leukocytes from a biological fluid.
8. The method of claim 15 wherein a first flow restriction is located downstream of the first biological fluid filtration media, and wherein a second flow restriction is located downstream of the second biological fluid filtration media.
9. The biological fluid filtration device of claim 15 wherein the housing includes a baffle disposed within said upstream chamber, and interposed between the first biological fluid filtration media and the second biological fluid filtration media, and wherein said baffle includes at least one aperture, with the cross-sectional area of said aperture being sufficiently large to prevent said upstream chamber from being divided into two distinct and separate chambers, said baffle thereby reducing the volume of said upstream chamber.
10. The method of claim 9 wherein said baffle includes at least one filter support rib on its first surface, and at least one filter support rib on its second surface.
11. A biological fluid filtration system comprising:
- a feed blood bag,
- a biological fluid filtration device located downstream of said feed blood bag, having an inlet and an outlet, and defining a fluid flow path between the inlet and the outlet, with a biological fluid filtration media having an upstream surface and a downstream surface interposed between the inlet and the outlet and across the fluid flow path,
- a receiving blood bag,
- a length of tubing in fluid flow communication with the outlet of said biological fluid filtration device, and in fluid flow communication with said receiving blood bag,
- a flow restriction located downstream of said biological fluid filtration media.
12. The biological fluid filtration system of claim 11 wherein said flow restriction is located within said biological fluid filtration device.
13. The biological fluid filtration system of claim 11 wherein said flow restriction is located downstream of said outlet of said biological fluid filtration device, and upstream of said receiving blood bag.
14. The biological fluid filtration system of claim 11 wherein said biological fluid filtration device further includes a second outlet, with a second a fluid flow path defined between the inlet and the second outlet, with a second biological fluid filtration media having an upstream surface and a downstream surface interposed between the inlet and the second outlet and across the second fluid flow path,
- with the biological fluid filtration system further including a second receiving blood bag,
- a second length of tubing in fluid flow communication with the second outlet of said biological fluid filtration device, and in fluid flow communication with said second receiving blood bag,
- and a second flow restriction located downstream of said second biological fluid filtration media.
15. The biological fluid filtration system of claim 14 wherein said biological fluid filtration device further includes a partition wall with the first outlet located on a first side of said partition wall, and with the second outlet located on a second side of said partition wall.
16. The biological fluid filtration system of claim 14 wherein said biological fluid filtration device essentially lacks a solid partition wall between the first fluid flow path and the second fluid flow path.
17. The biological fluid filtration system of claim 11 wherein said biological fluid filtration device further includes a second inlet and a second outlet, with a second a fluid flow path defined between the second inlet and the second outlet, with a second biological fluid filtration media having an upstream surface and a downstream surface interposed between the second inlet and the second outlet and across the second fluid flow path,
- with the biological fluid filtration system further including a second receiving blood bag,
- a second length of tubing in fluid flow communication with the second outlet of said biological fluid filtration device, and in fluid flow communication with said second receiving blood bag,
- and a second flow restriction located downstream of said second biological fluid filtration media.
18. The biological fluid filtration system of claim 17 wherein said biological fluid filtration device further includes a solid partition wall between the first fluid flow path and the second fluid flow path, thereby making the first fluid flow path independent of the second fluid flow path.
Type: Application
Filed: Nov 28, 2012
Publication Date: Sep 12, 2013
Applicant: Hemerus Medical, LLC (St. Paul, MN)
Inventor: Peter Zuk, JR. (Harvard, MA)
Application Number: 13/687,976
International Classification: A61M 1/36 (20060101);