TRANSFER PRINTING METHOD OF ELECTRONIC IMAGE AND TRANSFER SHEET

Provided is a transfer sheet whereby a T-shirt or the like can be printed in few steps by means of an electronic image forming device that uses powdered toner, liquid ink, or the like containing a plastic resin. By means of mirror-image printing a picture pattern, which is an electronic image, onto sheet A, aligning sheet A and sheet B, and heat-pressing, there is spread coating over the portion of the picture pattern printed to sheet A. Sheet A has a structure layering a mold release layer, a resin layer, and a porous resin layer in a substrate, and sheet B layers a mold release layer, a resin layer, an adhesive layer, and a colored porous resin layer in a substrate.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
TECHNICAL FIELD

The present invention relates to a method causing an electronic image obtained by an electronic image forming apparatus to be supported by a transfer sheet and performing transfer printing on a surface of a fabric such as T-shirt or the like, and the transfer sheet.

BACKGROUND ART

In recent years, a tendency of individualization of products has been specifically spreading, and wide-varieties and small-lot production of products has been inevitable. However, since the production cost is limited, how to manufacture a pattern, design and the like to be formed simply on a surface of a fabric such as a T-shirt at low cost is a major challenge. Therefore, graphics or a pattern of one's choice may be printed on the fabric surface by using an electronic image forming apparatus as a printing method configured to satisfy such a demand, reflecting a predetermined image on a thermal transfer sheet by this apparatus, placing the thermal transfer sheet on the fabric surface, and applying a pressure at a high temperature.

Incidentally, there are various printing methods of this type in the related art. For example, “A PRINTING METHOD OF AN ELECTRONIC IMAGE AND A THERMAL TRANSFER SHEET” disclosed in Japanese Patent No. 3182640 includes steps of: using two sheets: a sheet A composed of a substrate layer, a release layer, a polyvinyl acetate layer (PVA layer) or a polyester resin layer, and a sheet B composed of a substrate layer, a release layer, an adhesive layer, and a color layer; making a photocopy on a surface of either one of the sheets and forming a predetermined pattern or characters by a toner layer; stacking the both sheets one on top of another with the toner layer interposed therebetween and heating and pressing the same at a predetermined temperature; then, separating the both sheets off from each other to form the color layer and the adhesive layer of the separated sheet B on the toner layer of the sheet A; sticking the sheet A to a product such as the T-shirt and separating the substrate layer together with the release layer from the product; heating and pressing further at a predetermined temperature; and then separating and removing the polyvinyl acetate layer (PVA layer) or the polyester resin layer on the surface thereof from the product.

In other words, using the PVA layer as a medium, the medium is separated from the thermal transfer sheet substrate layer when performing transfer printing on the fabric, the medium carrying the electronic image is placed on the fabric and is pressed by heat, then the medium is separated, whereby the transfer printing of the electronic image is terminated. Therefore, the steps of separating needs to be performed twice after the transfer sheet is formed, and the toner layer of the printed electronic image is situated on the surface, so that physical property against rubbing or the like is rather inferior, and a lot of time and troubles are required.

“A METHOD OF PRINTING AN ELECTRONIC IMAGE” disclosed in Japanese Patent No. 3561775 is a method of printing characters and graphics or a pattern of white or milky white color on the surface of a color fabric such as black.

A negative photocopy of the characters, graphics, or the pattern is made on a copy sheet, the negative photocopy is superimposed on a sheet B having a release layer, an adhesive layer, and a milky white layer layered on a substrate layer and pressurized for a predetermined time under a high temperature and a high pressure. Then, by pealing the copy sheet off, the milky white layer and the adhesive layer separated from the release layer is adhered to toner and parts of the milky white layer and the adhesive layer on the side of the sheet B are removed, so that the remaining milky white layer and the adhesive layer form the characters or the graphics to be printed. Then a sheet A having a release layer and a resin layer layered on a substrate layer is superimposed on the sheet B and is pressurized for a predetermined time under a high temperature and a high pressure. Subsequently, by separating the sheet A off, the milky white layer and the adhesive layer separated from the sheet B are adhered to the surface of the resin layer on the sheet A. The sheet A is placed on a predetermined fabric surface and is pressurized for a predetermine time under the high temperature and the high pressure in the same manner, and then the sheet A is separated. Consequently, characters, graphics, or a pattern in milky white color or a white color may be printed on the fabric surface.

In other words, a positive image white adhesive material sheet as the sheet B is obtained by drawing a negative image on a normal sheet with black toner, superimposing a white adhesive material sheet as the sheet B thereon, thermally pressing the sheets, separating the sheets away from each other while the sheets are hot so that an unnecessary portion of a white adhesive material on the white adhesive material sheet as the sheet B is adhered to the black toner on the normal sheet and thus removed and only a necessary positive image remains and drawn on the white adhesive material sheet as the sheet B.

Subsequently, a transfer sheet is prepared by mirror-printing a pictorial pattern of an electronic image on the other transfer sheet A, superimposing the sheet A on the positive image white adhesive material sheet as the sheet B and thermally pressing the sheets, separating the sheet B from the sheet A, and transferring the white adhesive material layer as the positive image on the sheet B onto the pictorial pattern on the sheet A. Since the process of preparing the transfer sheet requires two times of thermal press process and aligning of the pictorial pattern on the sheet A and the positive image on the sheet B, a lot of time and troubles are required.

Patent Literature:

PTL 1: “PRINTING METHOD OF AN ELECTRONIC IMAGE AND A THERMAL TRANSFER SHEET” in Japanese Patent No. 3182640

PTL 2: “A PRINTING METHOD OF AN ELECTRONIC IMAGE” in Japanese Patent No. 3561775

DISCLOSURE OF INVENTION Problem to be Solved by the Invention

Examples of general electronic image forming apparatuses include color copying machines installed in convenience stores and color laser printers or ink jet printers sold for family use. Toner and ink of the color copying machine, color laser printers, and the ink jet printers do not include white color, and color material itself is composed of dye or pigment, transparent resin, and the like. Therefore, when a material to which the image is to be transferred is black, for example, the ink used in these printers is inferior in masking property and hence sharp images cannot be formed.

Therefore, technologies as described in the related art are used. However, in a preparation of the transfer sheet, these technologies require two times of thermal press processes or separating the medium off before the transfer printing on the material to which the image is to be transferred, and hence double work is required. These technologies are used because there is no white color and hence the masking property is not sufficient in the electronic image forming apparatus.

However, the electronic image forming apparatuses in recent years include machine types having a bottle containing transparent resin without color pigment in addition to the normal color toner or color ink bottles. Examples of the color laser printers include image PRESS C1+manufactured by CANON Inc., in which clear toner is used as the fifth toner, and examples of ink jet printers include a glass optimizer of Colorio PX-G5300 type manufactured by Seiko Epson Corp. These functions are mounted in order to gloss over a printed result.

There is provided a method of printing an electronic image configured to allow further cutting down of the process of preparing a transfer sheet and a transfer printing work with respect to a printing workpiece in technologies of the transfer print of the related art, further cost reduction, and various types of transfer printing onto a printing workpiece simply in a short time by using the electronic image forming apparatuses as described above.

Means for Solving the Problem

In the present invention, two types of sheets; a sheet A and a sheet B are used, and a predetermined pattern or characters are printed on either one of the sheet A and the sheet B by using an electronic image forming apparatus. As a matter of course, an ink layer or a toner layer containing a resin is formed only on parts of pattern and characters on the sheet surface. The sheet A described above is a sheet composed of a substrate layer, a release layer, a resin layer, and a porous resin layer, laminated one on top of another. The sheet B is a sheet including a substrate layer, a release layer, an adhesive layer, and a white porous resin layer having color material such as white mixed therein, laminated one on top of another.

Here, both color materials, ink composed of pigment and resin for ink jet machine and resin toner for a laser printer or for a copier are referred to as “ink/resin toner”. The above described ink/resin toner layer is formed on the porous resin layer or the white porous resin layer, and the sheet A and the sheet B are superimposed with the porous resin layer and the white porous resin layer faced each other with ink/resin toner layers formed on the surfaces thereof interposed therebetween.

In this state, the sheets are heated to a temperature in a range from 110° C. to 140° C. and pressed, whereby the ink/resin toner is softened to adhere the sheet A and the sheet B. Then, when an attempt is made to separate the sheet A and the sheet B, the separation is not started from the above-described ink/resin toner layer, but the adhesive layer of the sheet B is separated from the release layer and is adhered to the sheet A side only on the ink/resin toner layer, thereby being separated apart from each other.

In other words, the adhesive layer of the sheet B is separated at and from the release layer and transferred to the sheet A, whereby the transfer sheet A is obtained. Then, the transfer sheet A with the adhesive layer is placed on the fabric surface or the like, and is heated to a temperature in the range from 110° C. to 140° C. and is pressed. Therefore, the transfer sheet A is secured to the fabric surface or the like via the adhesive layer, and then, the transfer sheet A is peeled off. However, since a color layer is interposed under the ink/resin toner layer, the original color of the ink/resin toner is printed without being affected by the color of the fabric surface or the like to be printed. Then, a clearer and robust transfer printed material even being subject to washing may be formed on the ink/resin toner layer by being covered with the porous resin and the resin layer.

Advantages of the Invention

According to a printing method of the present invention, the two types of sheets;

the sheet A and the sheet B are used, the electronic image formed of the ink/resin toner is drawn on one of the sheets, both of the sheets A and B are superimposed on one another and bought into adhesion with heat, and then are separated, so that the color layer and the adhesive layer are formed on the ink/resin toner layer.

Then, for example, since white color expression may be expressed on a black printed material by the transparent ink/resin toner, a process of forming a negative photocopy on the normal paper, forming a positive adhesive layer by aligning the same with a milky white adhesive sheet, and aligning the positive adhesive layer on the image on the sheet A is no longer necessary. In addition, since the transfer printing of the surface of the ink/resin toner layer after the transfer is achieved by thermally pressing the transfer sheet even without separating the medium and, in addition, the ink/resin toner layer may be covered with the porous resin layer and the resin layer, the washing property is improved, so that a simple, quick and, in addition, low-cost transfer printing is enabled.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 illustrates a sheet A;

FIG. 2 illustrates a sheet B;

FIG. 3 illustrates the sheet A printed by ink/resin toner;

FIG. 4 illustrates a state in which the sheet B is superimposed on the printed sheet A and is separated, so that a transfer sheet A is prepared;

FIG. 5 is a state in which the transfer sheet A is placed on a T-shirt;

FIG. 6 illustrates a state in which the transfer sheet A is separated and an ink/resin toner layer is transferred to the T-shirt in a state of being covered; and

FIG. 7 is a state in which an electronic image of the “Hinomaru” flag, i.e. the national flag of Japan is printed on a T-shirt.

BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1

Examples of a substrate layer 1 of a sheet A illustrated in FIG. 1 include a paper sheet or a film. Here, on coated paper (a coat 110 manufactured by Nippon Paper Industries Co., Ltd.), a release layer 2 (for example, Silicon KS3502 manufactured by Shin-Etsu Chemical Co., Ltd), a resin layer 3 (for example, a cover coat resin 300 manufactured by Goo Chemical Co., LTD), a porous resin layer 4 (for example, a mixture of FPS-2 silica manufactured by Shionogi & Co., Ltd. and a transparent urethane resin of UD710 manufactured by Dainichiseika Color & Chemicals MFG. CO., Ltd. or the like) were provided, and respective layers were laminated into a single sheet A.

Although the lamination of the sheet A was transparent, by mixing white titanium oxide as a color material, into the resin layer 3 or the porous resin layer 4, the printed workpiece was finally covered with white and becomes white irrespective of the color of an ink/resin toner. Other color materials may also be mixed.

Examples of the substrate layer 1 of a sheet B illustrated in FIG. 2 include paper or a film. Although ST600KT manufactured by Lintec Corporation, which is processed up to the release layer 2, may be used, here, coated paper (the coat 110 manufactured by Nippon Paper Industries Co., Ltd.), the release layer 2 (for example, Silicon KS776L manufactured by Shin-Etsu Chemical Co., Ltd), an adhesive layer 5 (for example, CRISVON AH4555 manufactured by DIC Corporation), and a white porous resin layer 6 (for example, a mixture of FPS-2 silica and titanium oxide manufactured by Shionogi & Co., Ltd. and a urethane resin of UD710 manufactured by Dainichiseika Color & Chemicals MFG. CO., Ltd. or the like) were provided, and respective layers were laminated into a single sheet B. The sheet B becomes transparent if white titanium oxide, which is a color material, was not added. Other color materials may also be mixed. If the transparent ink/resin toner of the electronic image forming apparatus is the white ink/resin toner, the sheet B may remain transparent.

When “Hinomaru” (disc of the sun), which is a main portion of the Japanese national flag, was printed with a color laser printer (image PRESS C1+manufactured by CANON Inc.,) on the sheet A in FIG. 1 described above, the toner layer 7 which expresses a red disc was printed, while square white part of the flag around the disc was drawn by a transparent toner layer 8 and, as illustrated in FIG. 3, the toner layers 7 and 8 of the “Hinomaru” image of the Japanese flag of an electronic image was formed on the porous resin layer 4 on the sheet A.

Subsequently, the sheet B was superimposed on the sheet A with the above-described toner layers 7 and 8 on which the image of the “Hinomaru” flag, which is the Japanese flag, was printed with the color laser printer interposed therebetween in a state in which the porous resin layer 4 and the white porous resin layer 6 faced each other. Then, in this state, the sheets were heated to a temperature in a range from 120° C. to 130° C. and pressed at a pressure on the order of 300 g/cm2 for 20 seconds, the toner was softened and the sheet A and the sheet B were adhered to each other. Subsequently, when an attempt was made to separate the sheet A and the sheet B, the separation was not started from the above-described toner layers 7, 8, but the adhesive layer 5 on the sheet B was separated from the release layer 2, and was adhered only to a portion of the sheet A side where a “Hinomaru” (red disc) image formed of the toner layer 7 of the electronic image of the “Hinomaru” flag was drawn and to a square flag portion formed of the transparent toner layer 8 formed around the “Hinomaru” image, thereafter the layers 2, 7 and 8 being separated apart from the release layer 2 (see FIG. 4).

The white porous resin layer 6 and the adhesive layer 5 on the sheet B were transferred to the sheet A, resulting in that a transfer sheet A illustrated in FIG. 4a was formed. As illustrated in FIG. 5, in a state that the adhesive layer 5 of the transfer sheet A was placed on the black T-shirt 9, the sheets were heated to a temperature in a range from 120° to 130° C., and were pressed for approximately 20 seconds at a pressure on the order of 300 g/cm2. Thereby, the transfer sheet A was secured to the fabric surface via the adhesive layer 5. Subsequently, when the transfer sheet A was peeled off as illustrated in FIG. 6, a red “Hinomaru” image was clearly drawn on a white flag on the black T-shirt 9, and the national flag of Japan 10 was printed as illustrated in FIG. 7.

Incidentally, when 25 g of Attack ALLin (a bleaching agent with a fabric softener contained therein) manufactured by Kao Corporation was put in 30 L of warm water at a temperature of 50° C. in a dual tub washing machine of Ginga 2.2 (VH-22083) of Toshiba Corporation, and the printed black T-shirt 9 was dipped therein and was subjected to washing for 15 minutes and rinsing for 15 minutes in a strong current of washing water, and to dehydrating for 5 minutes and drying repeatedly by three times. Then, it was recognized that no color loosing and no peeling of the transferred image occurred. Also, a clothes iron for family use heated to a medium temperature of 150° C. was placed directly on the “Hinomaru” flag image 10 printed on the black T-shirt 9 and was slid laterally as is after 5 seconds, the resin toner layers 7, 8 covered with the resin layer 3 and the porous resin layer 4 on the sheet A were not melted and the “Hinomaru” flag image 10 clearly remained on the black T-shirt 9.

Embodiment 2

A red disc image of “Hinomaru” as of Japanese national flag was printed with ink 7 by an ink jet printer (Colorio PX-G5300 type manufactured by Seiko Epson Corp.) on the above-described sheet A illustrated in FIG. 1, and then the sheet A was set so that the “Hinomaru” image was aligned to the center, and a square flag image which corresponds to the white portion was drawn therearound with the transparent ink 8 with an ink jet printer (Colorio PX-V630 type manufactured by Seiko Epson Corp) in which gloss optimizer manufactured by Seiko Epson Corp., which is transparent ink, was filled in all of ink bottles thereof) (See FIG. 3).

The ink layers 7 and 8 of the electronic image of the “Hinomaru” flag were formed on the porous resin layer 4 on the sheet A. Subsequently, the sheet B was superimposed on the sheet A in the state in which the porous resin layer 4 and the white porous resin layer 6 face each other with the ink layers 7 and 8 interposed therebetween and, in this state, the sheets were heated to a temperature in the range from 120° C. to 130° C. and was pressed for approximately for 20 seconds at a pressure on the order of approximately 300 g/cm2. The ink layers 7, 8 were softened and bonded the sheet A and the sheet B to each other. Then, when an attempt was made to separate the sheet A and the sheet B, the separation was not started from the above-described ink layers 7, 8, but the adhesive layer 5 on the sheet B was separated from the release layer 2 and was adhered only to a portion of the sheet A side where a “Hinomaru” (red disc) image formed of the ink layer 7 of the electronic image of the “Hinomaru” flag was drawn and to a square flag portion formed of the transparent toner layer 8 formed around the “Hinomaru” image, thereafter the layers 2, 7 and 8 being separated apart from each other (See FIG. 4).

The white porous resin 6 and the adhesive layer 5 on the sheet B were transferred to the sheet A, resulting in that a transfer sheet A was formed. Then, as illustrated in FIG. 5, in a state that the adhesive layer 5 of the transfer sheet A was placed on the black T-shirt 9, the sheets were heated to a temperature in the range from 120° C. to 130° C., and were pressed for approximately 20 seconds at a pressure on the order of 300 g/cm2. Thereby, the transfer sheet A was secured to the fabric surface or the like via the adhesive layer 5. When the transfer sheet A was peeled off as in FIG. 6, a red “Hinomaru” was clearly drawn and printed on a white flag on the black T-shirt 9 (see FIG. 7).

When 25 g of Attack ALLin (with bleaching agent and fabric softener contained therein) manufactured by Kao Corporation was put in 30 L of warm water at a temperature of 50° C. in a dual tub washing machine of Ginga 2.2 (VH-22083) of Toshiba Corporation, and the printed black T-shirt 9 was dipped therein and was subjected to washing for 15 minutes and rinsing for 15 minutes in a strong current of washing water, and to dehydrating for 5 minutes and drying repeatedly by three times. Consequently, it was recognized that no color loosing and separation occurred. Also, a clothes iron for family use heated to a medium temperature of 150° C. was placed directly on the “Hinomaru” flag printed on the black T-shirt 9 and was slid laterally as is after 5 seconds, the ink covered with the resin layer 3 and the porous resin layer 4 on the sheet A was not melted and the “Hinomaru” flag 10 clearly remained on the black T-shirt 9.

REFERENCE SIGNS LIST

  • 1 substrate layer
  • 2 release layer
  • 3 resin layer
  • 4 porous resin layer
  • 5 adhesive layer
  • 6 white porous resin layer
  • 7 ink/resin toner layer
  • 8 transparent ink/resin toner layer
  • 9 T-shirt
  • 10 “Hinomaru” flag

Claims

1. A transfer sheet manufactured by mirror-printing a pictorial pattern as an electronic image on transfer paper with use of an electronic image forming apparatus in which liquid ink or powder toner containing a thermoplastic resin is used, and thermally pressing the transfer paper together with an adhesive material sheet, whereby an adhesive material is spread on a portion of the pictorial pattern printed on the transfer paper.

2. A transfer sheet manufactured by mirror-printing a pictorial pattern as an electronic image on one sheet with use of an electronic image forming apparatus in which liquid ink or powder toner containing a thermoplastic resin is used, and thermally pressing said one sheet and another sheet overlapping each other, whereby an adhesive is spread on a portion of the pictorial pattern printed on said one sheet, wherein said one sheet has a structure in which a release layer, a resin layer, an a porous resin layer laminated on a substrate layer, and wherein said another sheet has a structure in which a release layer, an adhesive layer, and a color porous resin layer laminated on the substrate layer.

3. The transfer sheet according to claim 2, wherein the color porous resin layer is a white porous resin layer.

4. A transfer printing method for transfer printing a pictorial pattern on a printing workpiece such as a T-shirt comprising:

mirror-printing the pictorial pattern as an electronic image on one sheet with use of an image forming apparatus in which liquid ink or powder toner containing a thermoplastic resin is used;
overlapping said one sheet and another sheet to align the sheets with each other, and thermally pressing the two sheets so as to allow an adhesive to spread on the pictorial portion printed on said one sheet in order to prepare a transfer sheet having said pictorial pattern printed and said adhesive layer thereon,
placing said transfer sheet on the printing workpiece such as the T-shirt;
heating and pressurizing the transfer sheet onto said printing workpiece from above; and
separating the transfer sheet from said printing workpiece, to form a robust and wash-resistant print on the workpiece.

5. A transfer printing method for transfer printing a pictorial pattern on a printing workpiece such as a T-shirt comprising:

mirror-printing the pictorial pattern as an electronic image on one sheet with use of an image forming apparatus in which liquid ink or powder toner containing a thermoplastic resin is used;
overlapping said one sheet and a white adhesive material sheet to align the two sheets with each other, thermally pressing the two sheets, and separating said white adhesive material sheet from said one sheet to form a transfer sheet on which a white adhesive material is spread as in a white glue layer on the pictorial portion of the sheet;
placing the transfer sheet on a printing workpiece such as a fabric of a dark color;
heating and pressurizing the transfer sheet onto said printing workpiece from above; and
separating the transfer sheet from said printing workpiece to form a robust and wash-resistant print having clear pictorial pattern on the dark color printing workpiece.
Patent History
Publication number: 20140041543
Type: Application
Filed: May 18, 2011
Publication Date: Feb 13, 2014
Inventor: Kaoru Yamamoto (Fukui)
Application Number: 14/113,431
Classifications
Current U.S. Class: Processes (101/483); Intermediate Layer Is Discontinuous Or Differential (428/201); Release Layer (428/41.8)
International Classification: B44C 1/17 (20060101); B41F 16/00 (20060101);