TOUCH PANEL AND A MANUFACTURING METHOD THEREOF

A touch panel is provided in the present disclosure, comprising: a sensing patterned layer, comprising a plurality of first sensing electrode units not in contact with each other along first axis; and a bridging line, electrically connected with the adjacent first sensing electrode units along the first axis; wherein the bridging line are made by at least a metallic layer and a conductive oxidized layer. By this way the touch panel lowers light reflection, thereby reducing flashes and bright-spots on the touch panel and improving appearance of the touch panel.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description

This application claims the benefit of Chinese application No 201110461225.3 filed on Dec. 31, 2011.

BACKGROUND

1. Technical Field

The present disclosure relates to an input interface. More particularly the present disclosure relates to a touch panel and a method for manufacturing the same.

2. Description of the Related Art

A touch panel usually includes a substrate and sensing electrode units distributed interruptedly along first axis on the substrate and sensing arrays distributed along second axis on the substrate, wherein the sensing electrode units are actualized to be electrically connected via bridging bites and electrically insulated with the sensing arrays.

Since the surfaces of the bridging lines are usually made of highly reflective and opaque materials (such metals as aluminum, molybdenum), the bridging lines reflect lights to form a bright-spot area on the touch panel. When the touch panel is manipulated, the visual differences between the bridging area and the non-bridging area can be seen on the touch panel, thereby affecting visual effect of the appearance of the touch panel.

SUMMARY OF THE INVENTION

The present disclosure is to improve a bridging line with laminated structure of a metallic layer and a conductive oxidized layer so as to lower light reflection, thereby reducing flashes and bright-spots on touch panel and improving appearance of the touch panel.

In order to reach the foregoing and other purposes, the present disclosure provides a touch panel, comprising: a sensing patterned layer including a plurality of first sensing electrode units not in contact with each other along the first axis; and a bridging line electrically connected with the adjacent first sensing electrode units along the first axis; wherein the bridging line are made by at least a metallic layer and a conductive oxidized layer.

The present disclosure also provides a manufacturing method for a touch panel, comprising: forming a sensing, patterned layer, wherein the sensing patterned layer includes a plurality of first sensing electrode units not in contact with each other along first axis; and forming a bridging line to electrically connect with the adjacent first sensing electrode units; wherein the bridging line are made by at least a metallic layer and a conductive oxidized layer.

The approach of the present disclosure is to improve the bridging line with a laminated structure of a metallic layer and a conductive oxidized layer. So that the layers of the bridge line generate light interference effect with each other and the appearance of the bridge line is black or dark, thereby reducing the visibility of the bridge line. The bridging lines of the touch panel in the present disclosure can effectively lower reflection and get rid of flashes or bright-spots on the appearance of the touch panel. Therefore, the bridging lines of the touch panel in the present disclosure possess more favorable optical effect compared to the traditional structure.

For understanding more about the features and the technical contents of the present disclosure, please refer to the following detailed illustrations and attached drawings pertaining, to the present disclosure. However, the diagrams enclosed are only used for reference and illustration, but not for the limitation to the present disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

For those skilled in the art, numerous embodiments and drawings described below are for illustration purpose only and not to limit the scope of the present disclosure in any manner.

FIG. 1A is a top-view schematic diagram of a touch panel in accordance with the first embodiment of the present disclosure.

FIG. 1B is a cross-sectional schematic diagram shown in FIG. 1A along the cross-sectional line I-I.

FIG. 1C is a flow chart of a manufacturing method for a touch panel in accordance with the first embodiment of the present disclosure.

FIG. 2A is a schematic diagram of bridging lines of a touch panel in accordance with the second embodiment of the present disclosure.

FIG. 2B is a flow chart of a manufacturing method for a touch panel in accordance with another embodiment of the present disclosure.

FIG. 2C is a flow chart of a manufacturing method for a touch panel in accordance with the second embodiment of the present disclosure.

DETAILED DESCRIPTION OF THE EMBODIMENTS

FIG. 1A is a top-view schematic diagram of a touch panel in accordance with the first embodiment of the present disclosure, while FIG. 1B is a cross-sectional schematic diagram shown in FIG. 1A along the cross-sectional line I-I. FIG. 1C is a flow chart of a manufacturing method for touch panels in accordance with the first embodiment of the present disclosure. With reference to FIG. 1A and FIG. 1B, the touch panel 100 of the present embodiment includes a substrate 110, multiple bridging lines 120, and a sensing patterned layer 130. The sensing patterned layer 130 is disposed on the substrate 110, wherein the substrate 110 may be a glass plate or a transparent plastic sheet.

The sensing patterned layer 130 comprises multiple first sensing electrode units 131 distributed along first axis, multiple second sensing electrode its 132 distributed along second axis and multiple interconnecting parts 133. Wherein the lust sensing electrode units 131, the second sensing electrode units 132 and the interconnecting pails 133 are disposed on the substrate 110. The bridging lines 120 are in connection between two adjacent lint sensing electrode units 131 to form multiple first sensing electrode arrays L1 paralleled with each other, whereas the various interconnecting parts 133 are in connection between two adjacent second sensing electrode units 132 to form multiple second sensing arrays L2 paralleled with each other, wherein the first sensing arrays L1 and the second sensing arrays L2 are electrically insulated from each other. The touch sensing panel 100 can further include an insulating block 140, wherein the insulating block 140 is disposed in space between the interconnecting part 133 and the bridging line 120 to reach the purpose of electrical insulation with each other. The first sensing arrays L1 and the second sensing arrays L2 are interlaced, wherein the various interconnecting parts 133 are located right below any one of the bridging lines 120. Therefore, the interconnecting parts 133 are respectively interlaced with the bridging lines 120. In addition, the sensing patterned layer 130 can be made of a transparent conductive film which may be indium tin oxide or indium zinc oxide, wherein the first sensing electrode units 131, the second sensing electrode units 132 and the interconnecting parts 133 can be formed by the said transparent conductive film via photolithography and etching.

The multiple bridging lines 120 are made by metallic layer and conductive oxidized layer overlapping and interlacing with each other in sequence, wherein the metallic layer far away from the person's eyes is the first metallic layer 120A electrically connected with the adjacent sensing electrode unit 131. The first conductive oxidized layer 120B covers the first metallic layer 120A, and the second metallic layer 120C covers the first conductive oxidized layer 120B, whereas the second conductive oxidized layer 120D covers the second metallic layer 120C. The first metallic layers 120A and the second metallic layers 120C are made of, but not limited to, at least one kind of gold, silver, copper, nickel, tungsten, aluminum, molybdenum, chromium or their alloys and their nitro-compound or their oxidized compound. The first conductive oxidized layer 120B and the second conductive oxidized layer 120D can be composed of, but not limited to, at least one kind of indium tin oxides, antimony tin oxides, ZnO, ZnO2, SnO2 or In2O2. The bridging lines 120 can be formed by performing the photolithography process and then performing the etching process.

Thickness of the first metallic layer 120A is 100 nm±20%. In a preferable embodiment, thicknesses of the first metallic layer 120A, the first conductive oxidized layer 120B, the second metallic layer 120C and the second conductive oxidized layer 120D are respectively 100 nm, 17 nm, 10 nm and 20 nm. Thickness of the first metallic layer 120A is larger than that of other layers. Dark metallic materials of black or dark gray color can be further chosen for the first metallic layer 120A to make transmittance of the said metallic layer lesser and enable the said metallic layer to absorb most of the hens entering into the lower side of the bridging lines so that the integral bridging lines present the effect of invisibility.

Please make further reference to FIG. 1C. The manufacturing method for touch panels in accordance with the first embodiment of the present disclosure comprises: S1, forming a transparent conductive film on the substrate 110; S2, patterning the transparent conductive films and forming multiple first sensing electrode units 131 distributed along the first axis, multiple second sensing electrode units 132 distributed along the second axis and multiple interconnecting parts 133; S3, forming a plurality of insulating blocks 140; S4, forming bridging lines 120 to electrically connect with the adjacent first sensing electrode units 131, wherein the bridging line 120 are made by at least a metallic layer and a conductive oxidized layer.

The said step S4 specifically includes: S41, forming the first metallic layer 120A electrically connected with the adjacent sensing electrode units 131; S42, forming the first conductive oxidized layer 120B covering the first metallic layer; S43, forming the second metallic layer 120C covering the first conductive oxidized layer 120B; S44, forming the second conductive oxidized layer 120D covering the second metallic layer 120C.

The traditional Mo—Al—Mo structure is abandoned and changed into the laminated structure of metallic layers and conductive oxidized layers for the bridging lines 120 of the touch panel in the present disclosure. For reducing the flashes and the bright spots on the appearance of the touch panel used and improving its appearance, the present disclosure makes the lights among the various layers generating the effect of interference and offsetting mutually, thereby rendering the integral bridging lines under the person's eyes presenting the effect of invisibility.

FIG. 2A is a schematic diagram in accordance with another embodiment of the present disclosure, in which the structure is similar to that of the foregoing embodiment and the identical components are symbolized with the same numbers. The difference in both the embodiments is that an upper surface 110A of a substrate 110 serves as a touch panel and a lower surface 110B series as a supporting plane for a sensing patterned layer 130. Bridging lines 120 of this embodiment are similarly separated into four layers; a metallic layer far away from the person's eyes is the first metallic layer 120A; a first conductive oxidized layer 120B covering the first metallic layer 120A; the second metallic layer 120C covering, the first conductive oxidized layer 120B; the second conductive oxidized layer 120D electrically connected with the adjacent sensing electrode unit 131 covering the second metallic layer 120C. The first metallic layer 120A and the second metallic layer 120C are composed of, but not limited to, at least one kind of gold, silver, copper, nickel, tungsten, aluminum, molybdenum, chromium or their alloys and their nitro-compound or their oxidized compound. The first conductive oxidized layer 120B and the second conductive oxidized layer 120D can be composed of, but not limited to, at least one kind of indium tin oxide, antimony tin oxide, ZnO, ZnO2, SnO2 or In2O2.

FIG. 2C is a flow chart of a manufacturing method for touch panels in accordance with another embodiment of the present disclosure, wherein the manufacturing method is essentially identical to the first embodiment of the present disclosure, and the difference in both the embodiments lies in that Step S4 in the present embodiment includes: S41, forming the second conductive oxidized layer 120D electrically connected with the adjacent sensing electrode units 131; S42, forming the second metallic layer 120C covering the second conductive oxidized layer 120D; S43, forming the first conductive oxidized layer 120B covering the second metallic layer 120C; S44, forming the first metallic layer 120A covering the second metallic layer 120C.

Thickness of the first metallic layer 120A is larger than those of other layers. Dark metallic materials of black or dark gray color can be chosen for the first metallic layer to make it capable of absorbing most of the lights entering into the lower side of the bridging lines so that the integral bridging lines present the effect of invisibility.

In an embodiment, the bridging lines 120 present the black non-transparent effect by viewing, whether done from up to down or from down to up. Thereby, the bridging lines 120, used for a touch panel, can remove Rashes and bright spots on an appearance and improve the appearance. Therefore, the present disclosure possesses more favorable optical effect compared to the traditional Mo—Al—Mo structure. Subsequently, the bridging lines 120 of the present disclosure can be rendered possessing the effect of integral invisibility by means of the laminated structure.

While certain embodiments have been shown and described, various modifications and substitutions may be made thereto without departing from the spirit and scope of the disclosure. Therefore, it is to be understood that the present disclosure has been described by way of illustration and not limitation.

Claims

1. A touch panel, comprising:

a sensing patterned layer, comprising a plurality of first sensing electrode units not in contact with each other along first axis; and
a bridging line, electrically connected with the adjacent first sensing electrode units along the first axis; wherein the bridging line are made by at least a metallic layer and a conductive oxidized layer.

2. The touch panel of claim 1, further comprising a substrate on which the sensing patterned layer is disposed.

3. The touch panel of claim 1, wherein the metallic layer of the bridging line connects to the adjacent first electrode units.

4. The touch panel of claim 1, wherein the conductive oxidized layer of the bridging line connects to the adjacent first electrode units.

5. The touch panel of claim 1, further comprising a plurality of second sensing electrode units distributed along second axis, and wherein the first sensing electrode units are electrically connected with each other via the bridging line to form a first sensing array, and the second sensing electrode wins are linked mutually via an interconnecting part to form a second sensing array, Wherein the first sensing array and the second sensing array being mutually insulated.

6. The touch panel of claim 5, further comprising an insulating block disposed between the interconnecting part and the bridging line for insulating the first sensing array and the second sensing array.

7. The touch panel of claim 1, wherein the metallic layer and the conductive oxidized layer overlap and interlace with each other.

8. The touch panel of claim 1, wherein the bridging line comprises:

a first metallic layer;
a first conductive oxidized layer, covering the first metallic layer;
a second metallic layer, covering the first conductive oxidized layer; and
a second conductive oxidized layer, covering the second metallic layer.

9. The touch panel of claim 8, wherein thickness of the first metallic layer is larger than those of other conductive oxidized layers or metallic layers.

10. The touch panel of claim 9, wherein thickness of the first metallic layer is 100 nm ±20%.

11. The touch panel of claim 1, wherein color of the bridging lines is black or dark gray.

12. The touch panel of claim 1 wherein the conductive oxidized layers are composed of one or more of indium tin oxide, antimony tin oxide, ZnO ZnO2, SnO2 and In2O2.

13. The touch panel of claim 1, Wherein the metallic layers are composed of one or more of gold, silver, copper, nickel, tungsten, aluminum, molybdenum, chromium or their alloys and their nitro-compounds or their oxidized compounds.

14. A manufacturing method for a touch panel, comprising:

forming a sensing patterned layer, wherein the sensing patterned layer includes a plurality of first sensing electrode units not in contact with each other along first axis; and
forming a bridging line to electrically connect with the adjacent first sensing electrode units;
wherein the bridging line are made by at least a metallic layer and a conductive oxidized layer.

15. The manufacturing method for the touch panel of claim 14, wherein the sensing patterned layer further comprises a plurality of second sensing electrode units along second axis and a plurality of interconnecting parts, wherein the first sensing electrode units are electrically connected with each other via the bridging line to form a first sensing array, and the second sensing electrode units are linked mutually via the interconnecting parts to form a second sensing array, wherein the first sensing array and the second sensing array being mutually insulated.

16. The manufacturing method for the touch panel of claim 15, wherein the step before the step of forming the bridging lines further comprises: forming a plurality of insulating blocks set between the bridging lines and the interconnecting parts for insulating the first sensing array and the second sensing array.

17. The manufacturing method for the touch panel of claim 14, Wherein the bridging lines includes a first metallic layer, first conductive oxidized layer, a second metallic layer, and a second conductive oxidized layer.

18. The manufacturing method for the touch panel of claim 17, wherein the said step of forming bridging lines includes:

forming the first metallic layer to electrically connect with the adjacent first sensing electrode units;
forming the first conductive oxidized layer to cover the first metallic layer;
forming the second metallic layer to cover the first conductive oxidized layer; and
forming the second conductive oxidized layer to cover the second metallic layer.

19. The manufacturing method for the touch panel of claim 17, wherein the said step of forming bridging lines includes:

forming the second conductive oxidized layer to electrically connect with the adjacent first sensing electrode units;
forming the second metallic layer to cover the second conductive oxidized layer;
forming the first conductive oxidized layer to cover the second metallic layer; and
forming the first metallic layer to cover the first conductive oxidized layer.

20. The manufacturing method for the touch panel of claim 14, wherein the metallic layer and the conductive oxidized layer overlap and interlace with each other.

Patent History
Publication number: 20140125597
Type: Application
Filed: Nov 2, 2012
Publication Date: May 8, 2014
Patent Grant number: 9575600
Inventors: Yuh-Wen Lee (Zhubei City), Lichun Yang (Xiamen City), Chunyong Zhang (Xiamen City), Qiong Yuan (Xinyu)
Application Number: 13/666,981
Classifications
Current U.S. Class: Touch Panel (345/173); Conductor Or Circuit Manufacturing (29/825)
International Classification: G06F 3/041 (20060101); H05K 13/00 (20060101);