WORKING MACHINE

- GENESIS PHOTONICS INC.

A working machine includes a work piece, at least one signal generator and a detector. The signal generator is disposed beside the work piece for transmitting a signal. The detector is disposed beside the work piece so as to detect the signal transmitted by the signal generator and get a location information of the work piece.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the priority benefits of Taiwan application serial no. 101148417, filed on Dec. 19, 2012, and Taiwan application serial no. 102110262, filed on Mar. 22, 2013. The entirety of each of the above-mentioned patent applications is hereby incorporated by reference herein and made a part of specification.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention relates to a working machine, and more particularly to a working machine having a signal generator and a detector.

2. Description of Related Art

During a polishing process of a wafer, the wafer is generally polished in a spinning manner by using a polishing machine. Since it cannot be previously determined whether the polishing machine is in a horizontal status, quality of the polished wafers constantly changes due to uneven polishing or fragmentation. Further, during a cutting process on the wafer, conventionally a plurality of intersected cutting lines is formed on the wafer by a laser beam emitted by a laser head of a laser cutting apparatus on a predetermined cutting path. Accumulated errors caused by tilt angles may occur after using many times (i.e., after the laser head shifts by an excessive distance with respect to an initial location). However, users cannot be informed on whether the laser head is tilted before the laser cutting process is performed. Therefore, a case where the cutting lines formed on the wafer in the subsequent process diverge from a predetermined cutting location may arise accordingly. Moreover, said case may also affect a splitting operation along the cutting lines in subsequent process, such that chips may have a size prone to inconsistency or an irregular edge profile. In some severe cases, devices or circuits on the chips may be damaged, leading to malfunctions of the chips. Accordingly, it is an important subject of how to get a status of the working machine (including polishing machine or laser cutting apparatus) instantly before working with it.

SUMMARY OF THE INVENTION

The invention directs to a working machine with increased working yield rate.

The working machine of the invention includes a work piece, at least one signal generator and a detector. The signal generator is disposed beside the work piece for transmitting a signal. The detector is disposed beside the work piece so as to detect the signal transmitted by the signal generator and get a location information of the work piece.

In an embodiment of the invention, the work piece includes a laser head and a polishing platform.

In an embodiment of the invention, the signal generator and the detector are disposed at the same side of the work piece.

In an embodiment of the invention, the detector is directly disposed on the work piece.

In an embodiment of the invention, the working machine further includes at least one guide, in which the signal generator, the detector and the guide are disposed at the same side of the work piece, the guide is directly disposed on the work piece and the guide guides the signal transmitted by the signal generator to the detector.

In an embodiment of the invention, the signal generator and the detector are respectively located on two opposite sides of a normal direction of the guide.

In an embodiment of the invention, the guide includes a reflective mirror.

In an embodiment of the invention, the signal generator includes an acoustic wave generator or a light wave generator.

In an embodiment of the invention, the detector includes a matrix detector.

In an embodiment of the invention, the working machine further includes a controller and an adjuster. The controller is connected to the detector to receive the location information and generate an adjusting information. The adjuster is connected to the controller and the work piece, in which the adjuster receives the adjusting information and adjusts the location of the work piece based on the adjusting information.

In an embodiment of the invention, the controller includes a computer.

In an embodiment of the invention, the adjuster includes an actuator.

Based on above, since the working machine of the invention has the signal generator and the detector, the signal transmitted by the signal generator may be detected by the detector, so as to get a location information of the work piece. As a result, it can be instantly informed whether the location of the work piece is tilted before working with the work piece, so as to increase working yield rate of the working machine.

To make the above features and advantages of the invention more comprehensible, several embodiments accompanied with drawings are described in detail as follows.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.

FIG. 1 is a schematic diagram illustrating a working machine according to an embodiment of the invention.

FIG. 2 is a schematic diagram illustrating a working machine according to another embodiment of the invention.

FIG. 3 is a schematic diagram illustrating a working machine according to another embodiment of the invention.

FIG. 4 is a schematic diagram illustrating a working machine according to another embodiment of the invention.

FIG. 5 is a schematic diagram illustrating a working machine according to another embodiment of the invention.

FIG. 6 is a schematic diagram illustrating a working machine according to another embodiment of the invention.

FIG. 7 is a schematic diagram illustrating a working machine according to another embodiment of the invention.

DESCRIPTION OF THE EMBODIMENTS

FIG. 1 is a schematic diagram illustrating a working machine according to an embodiment of the invention. Referring to FIG. 1, in the present embodiment, a working machine 100a is suitable for cutting a wafer W. The working machine 100a includes a work piece 110, at least one signal generator 130 (only one is schematically depicted in FIG. 1) and a detector 140a. More specifically, the work piece 100 is a laser head for emitting a laser beam L to the wafer W. The signal generator 130 is disposed beside the work piece 110 for transmitting a signal. The detector 140a is disposed beside the work piece 110 so as to detect the signal transmitted by the signal generator 130 and get a location information of the work piece 110. Herein, the working machine 100a is, for example, a laser cutting machine.

More specifically, in the present embodiment, the signal generator 130 is, for example, an acoustic wave generator or a light wave generator. In other words, in case when the signal generator 130 is the acoustic wave generator, the signal transmitted by the signal generator 130 is an acoustic wave signal. On the other hand, in case when the signal generator 130 is the light wave generator, the signal transmitted by the signal generator 130 is a light wave signal. In addition, the detector 140a herein is, for example, a matrix detector, once the detector 140a receives the signal transmitted by the signal generator 130, the location information gotten may be expressed in formation of a matrix. As shown in FIG. 1, the signal generator 130 and the detector 140a are disposed at a same side of the work piece 110, and the detector 140a are directly disposed on the work piece 110.

Since the working machine 100a of the present embodiment includes the signal generator 130 and the detector 140a, the detector 140a may detect the signal transmitted by the signal generator 130 and get the location information of the work piece 110. Accordingly, it can be instantly informed whether the location of the work piece is tilted before cutting the wafer W, so as to increase working yield rate of the working machine 100a.

It should be noted that the reference numerals and a part of the contents in the previous embodiment are used in the following embodiments, in which identical reference numerals indicate identical or similar components, and repeated description of the same technical contents is omitted. For a detailed description of the omitted parts, reference can be found in the previous embodiment, and no repeated description is contained in the following embodiments.

FIG. 2 is a schematic diagram illustrating a working machine according to another embodiment of the invention. Referring to FIG. 2, a working machine 100b of the present embodiment is similar to the working machine 100a of FIG. 1, while the main difference therebetween lies in that the working machine 100b of the present embodiment further includes at least one guide 120 (only one is schematically depicted in FIG. 2). As shown in FIG. 2, the signal generator 130, a detector 140b and the guide 120 are disposed at the same side of the work piece 110, and the guide 120 is directly disposed on the work piece 110, and the guide 120 guides the signal transmitted by the signal generator 130 to the detector 140b. Herein, the signal generator 130 and the detector 140b are respectively located on two opposite sides of a normal direction N of the guide 120.

For instance, in case when the location information is identical to a predetermined location information, the location of work piece 110 is located on a normal direction n of the wafer W as shown in FIG. 2, such that the cutting lines D can be cut directly by laser beam L vertically to a surface of the wafer W. In case when the location information is different to the predetermined location information, the location of work piece 110 of the working machine 100b is diverged from the normal direction n of the work piece W (i.e., the work piece 110 is tilted) as shown in FIG. 3, such that the cutting lines D cannot be cut because the laser beam L is not vertically to a surface of the work piece W. Accordingly, the location of the work piece 110 must be adjusted before cutting the cutting lines D. In summary, the signal transmitted by the signal generator 130 is guided to the detector 140b through the guide 120 before cutting the cutting lines D, so as to detect the location of the work piece 110. That is to say, it is instantly informed by the detector 140b whether the work piece 110 is tilted before proceeding to subsequent cutting processes. As a result, working yield rate of the working machine 100b may be effectively increased.

FIG. 4 is a schematic diagram illustrating a working machine according to another embodiment of the invention. Referring to FIG. 4, a working machine 100c of the present embodiment is similar to the working machine 100b of FIG. 2, while the main difference therebetween lies in that the working machine 100c of the present embodiment further includes a controller 150 and an adjuster 160. The controller 150 is electrically connected to the detector 140b to receive the location information and generate an adjusting information. The adjuster 160 is electrically connected to the controller 150 and the work piece 110. More specifically, the adjuster 160 receives the adjusting information and adjusts the location of the work piece 110 based on the adjusting information (e.g., adjusting the work piece 110 and the laser beam L at full line to the work piece 110 and the laser beam L at dotted line, as shown in FIG. 4), such that the cutting lines D on the wafer W may be cut by the laser beam L. Herein, the controller 150 is, for example, a computer which may calculate the location information gotten by the detector 140b to generate the adjusting information. The adjuster 160 is, for example, an actuator which may automatically adjust the location of the work piece 110 based on the adjusting information (i.e., the location of the work piece 110 is adjusted to locate on the normal direction n of the wafer W). As a result, working yield rate of the working machine 100c may be increased, and working efficiency of the working machine 100c may also be increased by said automated adjustment.

Since the working machines 100a, 100b and 100c of the present embodiment include the signal generator 130 and the detectors 140a and 140b, the detectors 140a and 140b may detect the signal transmitted by the signal generator 130 and get the location information of the work piece 110. Of course, the signal transmitted by the signal generator 130 may also be guided by the guide 120 to the detectors 140a and 140b, so as to detect the location of the work piece 110. Accordingly, it can be instantly informed whether the location of the work piece 110 is tilted before cutting the wafer W, so as to increase working yield rates of the working machines 100a, 100b and 100c. In addition to the present embodiment, the controller 150 and the adjuster 160 may also be disposed so the controller 150 may receive the location information and generate the adjusting information, and the adjuster 160 may automatically adjust the location of the work piece 110 based on the adjusting information, so as to increase yield rates of the working machines 100a, 100b and 100c.

FIG. 5 is a schematic diagram illustrating a working machine according to another embodiment of the invention. Referring to FIG. 5, in the present embodiment, the working machine 200a includes a work piece 210, at least one signal generator 230 (only one is schematically depicted in FIG. 5) and a detector 240a. More specifically, the work piece 210 is a polishing platform, the working machine 200a further includes a upper rotating disc 270, at least one wafer (not illustrated) placed between the upper rotating disc 270 and the work piece 210, and the work piece 210 faces the wafer to perform a polishing process. The signal generator 230 is disposed beside the work piece 210 for transmitting a signal. The detector 240a is disposed beside the work piece 210 so as to detect the signal transmitted by the signal generator 230 and get a location information of the work piece 210. Herein, the working machine 200a is, for example, a polishing machine.

More specifically, in the present embodiment, the signal generator 230 is, for example, an acoustic wave generator or a light wave generator. In other words, in case when the signal generator 230 is the acoustic wave generator, the signal transmitted by the signal generator 230 is an acoustic wave signal. On the other hand, in case when the signal generator 230 is the light wave generator, the signal transmitted by the signal generator 230 is a light wave signal. In addition, the detector 240a herein is, for example, a matrix detector, once the detector 240a receives the signal transmitted by the signal generator 230, the location information gotten may be expressed in formation of a matrix. As shown in FIG. 5, the signal generator 230 and the detector 240a are disposed at the same side (e.g., at a lower side) of the work piece 210, and the detector 240a is directly disposed on the work piece 210.

Since the working machine 200a of the present embodiment includes the signal generator 230 and the detector 240a, the detector 240a may detect the signal transmitted by the signal generator 230 and get the location information of the work piece 210. Accordingly, it can be instantly informed whether the location of the work piece 210 is tilted before performing the polishing process, so as to increase working yield rate (i.e., polishing yield rate) of the working machine 200a.

FIG. 6 is a schematic diagram illustrating a working machine according to another embodiment of the invention. Referring to FIG. 6, a working machine 200b of the present embodiment is similar to the working machine 200a of FIG. 5, while the main difference therebetween lies in that the working machine 200b of the present embodiment further includes two guides 220a and 220b, and the working machine has two signal generators 230a and 230b. As shown in FIG. 6, the signal generators 230a and 230b, a detector 240b and the guides 220a and 220b are disposed on the same side (e.g., at a lower side) of the work piece 210, and the guides 220a and 220b are directly disposed on the work piece 210. The guides 220a and 220b respectively guide the signals transmitted by the signal generators 230a and 230b to the detector 240b. Herein, the guides 220a and 220b are respectively located on two opposite sides of a normal direction N1 of the detector 240b, the signal generator 230a and detector 240b are respectively located on two opposite sides of a normal direction N2 of the guide 220a, and the signal generator 230b and the detector 240b are respectively located on two opposite sides of a normal direction N3 of the guide 220b.

The signals transmitted by the signal generators 230a and 230b may be guided to the detector 240b through the guide 220a and 220b before performing the polishing process, so as to detect the location of the work piece 210. That is to say, it is instantly informed by the detector 240b whether the work piece 210 is tilted before proceeding to subsequent cutting processes. As a result, working yield rate (i.e., polishing yield rate) of the working machine 200b may be effectively increased.

FIG. 7 is a schematic diagram illustrating a working machine according to another embodiment of the invention. Referring to FIG. 7, a working machine 200c of the present embodiment is similar to the working machine 200a of FIG. 5, while the main difference therebetween lies in that the working machine 200c of the present embodiment further includes a controller 250 and an adjuster 260. The controller 250 is electrically connected to the detector 240a to receive the location information and generate an adjusting information. The adjuster 260 is electrically connected to the controller 250 and the work piece 210. More specifically, the adjuster 260 receives the adjusting information and adjusts the location of the work piece 210 based on the adjusting information, such that the work piece 210 presents in a horizontal status. Herein, the controller 250 is, for example, a computer which may calculate the location information gotten by the detector 240a to generate the adjusting information. The adjuster 260 is, for example, an actuator which may automatically adjust the location of the work piece 210 based on the adjusting information. As a result, working yield rate of the working machine 200c may be effectively increased, and working efficiency of the working machine 200c may also be increased by said automated adjustment.

In view of above, since the working machine of the invention has the signal generator and the detector, the signal transmitted by the signal generator may be detected by the detector, so as to get a location information of the work piece. As a result, it can be instantly informed whether the location of the work piece is tilted before working with the work piece, so as to increase working yield rate of the working machine.

It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.

Claims

1. A working machine, comprising:

a work piece;
at least one signal generator disposed beside the work piece for transmitting a signal; and
a detector disposed beside the work piece so as to detect the signal transmitted by the signal generator and get a location information of the work piece.

2. The working machine as recited in claim 1, wherein the work piece comprises a laser head or a polishing platform.

3. The working machine as recited in claim 2, wherein the signal generator and the detector are disposed at the same side of the work piece.

4. The working machine as recited in claim 3, wherein the detector is directly disposed on the work piece.

5. The working machine as recited in claim 1, further comprising:

at least one guide, wherein the signal generator, the detector and the guide are disposed at the same side of the work piece, the guide is directly disposed on the work piece, and the guide guides the signal transmitted by the signal generator to the detector.

6. The working machine as recited in claim 5, wherein the signal generator and the detector are respectively located on two opposite sides of a normal direction of the guide.

7. The working machine as recited in claim 5, wherein guide comprises a reflective mirror.

8. The working machine as recited in claim 1, wherein the signal generator comprises an acoustic wave generator or a light wave generator.

9. The working machine as recited in claim 1, wherein the detector comprises a matrix detector.

10. The working machine as recited in claim 1, further comprising:

a controller connected to the detector to receive the location information and generate an adjusting information; and
an adjuster connected to the controller and the work piece, wherein the adjuster receives the adjusting information and adjusts a location of the work piece based on the adjusting information.

11. The working machine as recited in claim 10, wherein the controller comprises a computer.

12. The working machine as recited in claim 10, wherein the adjuster comprises an actuator.

Patent History
Publication number: 20140170936
Type: Application
Filed: Jun 13, 2013
Publication Date: Jun 19, 2014
Applicant: GENESIS PHOTONICS INC. (Tainan City)
Inventors: Tai-Cheng Tsai (Tainan City), Gwo-Jiun Sheu (Tainan City), Zhe-Long Wang (Tainan City)
Application Number: 13/917,630
Classifications
Current U.S. Class: Of Tool Or Work Holder Position (451/9)
International Classification: B24B 49/12 (20060101);