Patents Assigned to Genesis Photonics, Inc.
  • Patent number: 10453999
    Abstract: The invention provides an LED including a first-type semiconductor layer, an emitting layer, a second-type semiconductor layer, a first electrode, a second electrode, a Bragg reflector structure, a conductive layer and insulation patterns. The first electrode and the second electrode are located on the same side of the Bragg reflector structure. The conductive layer is disposed between the Bragg reflector structure and the second-type semiconductor layer. The insulation patterns are disposed between the conductive layer and the second-type semiconductor layer. Each insulating layer has a first surface facing toward the second-type semiconductor layer, a second surface facing away from the second-type semiconductor layer, and an inclined surface. The inclined surface connects the first surface and the second surface and is inclined with respect to the first surface and the second surface.
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: October 22, 2019
    Assignee: Genesis Photonics Inc.
    Inventors: Yi-Ru Huang, Tung-Lin Chuang, Yan-Ting Lan, Sheng-Tsung Hsu, Chih-Ming Shen, Jing-En Huang, Teng-Hsien Lai, Hung-Chuan Mai, Kuan-Chieh Huang, Shao-Ying Ting, Cheng-Pin Chen, Wei-Chen Chien, Chih-Chin Cheng, Chih-Hung Tseng
  • Publication number: 20190312176
    Abstract: A light-emitting diode including a semiconductor epitaxial layer, a first electrode, and a second electrode is provided. The semiconductor epitaxial layer includes a first-type doped semiconductor layer, a second-type doped semiconductor layer, and a quantum well layer. A recessed portion is formed in the semiconductor epitaxial layer. The recessed portion separates the second-type doped semiconductor layer, the quantum well layer, and a portion of the first-type doped semiconductor layer and defines a first region and a second region on the semiconductor epitaxial layer. The first electrode is located in the first region and electrically connected to at least a portion of the first-type doped semiconductor layer and at least a portion of the second-type doped semiconductor layer. The second electrode is located in the second region and electrically connected to the second-type doped semiconductor layer.
    Type: Application
    Filed: June 17, 2019
    Publication date: October 10, 2019
    Applicant: Genesis Photonics Inc.
    Inventors: Tsung-Syun Huang, Jing-En Huang, Yu-Chen Kuo, Yan-Ting Lan, Kai-Shun Kang, Fei-Lung Lu, Teng-Hsien Lai, Yi-Ru Huang
  • Patent number: 10439111
    Abstract: A light-emitting device including at least one light-emitting unit, a wavelength conversion adhesive layer, and a reflective protecting element is provided. The light-emitting unit has an upper surface and a lower surface opposite to each other. The light-emitting unit includes two electrode pads, and the two electrode pads are located on the lower surface. The wavelength conversion adhesive layer is disposed on the upper surface. The wavelength conversion adhesive layer includes a low-concentration fluorescent layer and a high-concentration fluorescent layer. The high-concentration fluorescent layer is located between the low-concentration fluorescent layer and the light-emitting unit. The width of the high-concentration fluorescent layer is WH. The width of the low-concentration fluorescent layer is WL. The width of the light-emitting unit is WE. The light-emitting device further satisfies the following inequalities: WE<WL, WH<WL and 0.8<WH/WE?1.2.
    Type: Grant
    Filed: October 19, 2017
    Date of Patent: October 8, 2019
    Assignee: Genesis Photonics Inc.
    Inventors: Cheng-Wei Hung, Long-Chi Tu, Jui-Fu Chang, Chun-Ming Tseng, Yun-Chu Chen
  • Patent number: 10411065
    Abstract: A light-emitting device includes a substrate and a first light-emitting unit. The first light-emitting unit is disposed on the substrate, and includes a first semiconductor layer, a first light-emitting layer, and a second semiconductor layer. The first semiconductor layer is disposed on the substrate. The first light-emitting layer is disposed between the first semiconductor layer and the second semiconductor layer. The second semiconductor layer is disposed on the first light-emitting layer. The first semiconductor layer has a first sidewall and a second sidewall. A first angle is between the substrate and the first sidewall. A second angle is between the substrate and the second sidewall. The first angle is smaller than the second angle.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: September 10, 2019
    Assignee: GENESIS PHOTONICS INC.
    Inventors: Tsung-Syun Huang, Chih-Chung Kuo, Jing-En Huang, Shao-Ying Ting
  • Patent number: 10396255
    Abstract: A light emitting component includes a light emitting unit, a molding compound and a wavelength converting layer. The light emitting unit has a forward light emitting surface. The molding compound covers the light emitting unit. The wavelength converting layer is disposed above the molding compound. The wavelength converting layer has a first surface and a second surface opposite to the first surface, wherein the first surface is located between the forward light emitting surface and the second surface, and at least one of the first and second surfaces is non-planar.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: August 27, 2019
    Assignee: Genesis Photonics Inc.
    Inventors: Kuan-Chieh Huang, Shao-Ying Ting, Jing-En Huang, Yi-Ru Huang
  • Patent number: 10388838
    Abstract: A light-emitting device includes a substrate, a light-emitting component, a translucent layer, an adhesive layer, a reflective layer and translucent encapsulant. The light-emitting component is disposed on the substrate. The adhesive layer is formed between the light-emitting component and the translucent layer. The reflective layer is formed above the substrate and covering a lateral surface of the light-emitting component, a lateral surface of the adhesive layer and a lateral surface of the translucent layer. The translucent encapsulant is formed on the substrate and encapsulating the light-emitting component, the translucent layer and the reflective layer.
    Type: Grant
    Filed: October 19, 2017
    Date of Patent: August 20, 2019
    Assignee: GENESIS PHOTONICS INC.
    Inventors: Chin-Hua Hung, Cheng-Wei Hung, Yu-Feng Lin, Cheng-Chuan Chen
  • Patent number: 10381511
    Abstract: A nitride semiconductor structure and a semiconductor light emitting device are revealed. The semiconductor light emitting device includes a substrate disposed with a first type doped semiconductor layer and a second type doped semiconductor layer. A light emitting layer is disposed between the first type doped semiconductor layer and the second type doped semiconductor layer. The second type doped semiconductor layer is doped with a second type dopant at a concentration larger than 5×1019 cm ?3 while a thickness of the second type doped semiconductor layer is smaller than 30 nm. Thereby the semiconductor light emitting device provides a better light emitting efficiency.
    Type: Grant
    Filed: October 2, 2017
    Date of Patent: August 13, 2019
    Assignee: Genesis Photonics Inc.
    Inventors: Yen-Lin Lai, Jyun-De Wu, Yu-Chu Li
  • Publication number: 20190237627
    Abstract: A light emitting diode structure including a substrate, a semiconductor epitaxial structure, a first insulating layer, a first reflective layer, a second reflective layer, a second insulating layer and at least one electrode. The substrate has a tilt surface. The semiconductor epitaxial structure at least exposes the tilt surface. The first insulating layer exposes a portion of the semiconductor epitaxial structure. The first reflective layer is at least partially disposed on the portion of the semiconductor epitaxial structure and electrically connected to the semiconductor epitaxial structure. The second reflective layer is disposed on the first reflective layer and the first insulating layer, and covers at least the portion of the tilt surface. The second insulating layer is disposed on the second reflective layer. The electrode is disposed on the second reflective layer and electrically connected to the first reflective layer and the semiconductor epitaxial structure.
    Type: Application
    Filed: April 15, 2019
    Publication date: August 1, 2019
    Applicant: Genesis Photonics Inc.
    Inventors: Yi-Ru Huang, Yu-Yun Lo, Chih-Ling Wu, Jing-En Huang, Shao-Ying Ting
  • Publication number: 20190214374
    Abstract: A light emitting component includes an epitaxial structure, an adhesive layer, a first reflective layer, a second reflective layer, a block layer, a first electrode and a second electrode. The epitaxial structure includes a substrate, a first semiconductor layer, a light emitting layer and a second semiconductor layer. The adhesive layer is disposed on the second semiconductor layer of the epitaxial structure. The first reflective layer is disposed on the adhesive layer. The second reflective layer is disposed on the first reflective layer and extended onto the adhesive layer. A projection area of the second reflective layer is larger than a projection area of the first reflective layer. The block layer is disposed on the second reflective layer. The first electrode is electrically connected to the first semiconductor layer. The second electrode is electrically connected to the second semiconductor layer.
    Type: Application
    Filed: March 13, 2019
    Publication date: July 11, 2019
    Applicant: Genesis Photonics Inc.
    Inventors: Yi-Ru Huang, Tung-Lin Chuang, Chih-Ming Shen, Sheng-Tsung Hsu, Kuan-Chieh Huang, Jing-En Huang
  • Patent number: 10326047
    Abstract: A light-emitting diode including a semiconductor epitaxial layer, a first electrode, and a second electrode is provided. The semiconductor epitaxial layer includes a first-type doped semiconductor layer, a second-type doped semiconductor layer, and a quantum well layer. A recessed portion is formed in the semiconductor epitaxial layer. The recessed portion separates the second-type doped semiconductor layer, the quantum well layer, and a portion of the first-type doped semiconductor layer and defines a first region and a second region on the semiconductor epitaxial layer. The first electrode is located in the first region and electrically connected to at least a portion of the first-type doped semiconductor layer and at least a portion of the second-type doped semiconductor layer. The second electrode is located in the second region and electrically connected to the second-type doped semiconductor layer.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: June 18, 2019
    Assignee: Genesis Photonics Inc.
    Inventors: Tsung-Syun Huang, Jing-En Huang, Yu-Chen Kuo, Yan-Ting Lan, Kai-Shun Kang, Fei-Lung Lu, Teng-Hsien Lai, Yi-Ru Huang
  • Patent number: 10319879
    Abstract: A semiconductor structure includes a first-type semiconductor layer, a second-type semiconductor layer, a light emitting layer and a hole supply layer. The light emitting layer is disposed between the first-type semiconductor layer and the second-type semiconductor layer. The hole supply layer is disposed between the light emitting layer and the second-type semiconductor layer, and the hole supply layer includes a first hole supply layer and a second hole supply layer. The first hole supply layer is disposed between the light emitting layer and the second hole supply layer, and a chemical formula of the first hole supply layer is Alx1Iny1Ga1-x1-y1N, wherein 0?x1<0.4, and 0?y1<0.4. The second hole supply layer is disposed between the first hole supply layer and the second-type semiconductor layer, a chemical formula of the second hole supply layer is Alx2Iny2Ga1-x2-y2N, wherein 0?x2<0.4, 0?y2<0.4, and x1>x2.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: June 11, 2019
    Assignee: Genesis Photonics Inc.
    Inventors: Cheng-Hung Lin, Jeng-Jie Huang, Chi-Feng Huang
  • Publication number: 20190157503
    Abstract: A light emitting device including a light emitting unit and a phosphor resin layer is provided. The light emitting unit has a top surface and a bottom surface opposite to each other. Each of the light emitting units includes two electrodes. The two electrodes are disposed on the bottom surface. The phosphor resin layer is disposed on the top surface of the light emitting unit. One side of the phosphor resin layer has a mark. One of the two electrodes is closer to the mark with respect to the other one of the two electrodes.
    Type: Application
    Filed: November 5, 2018
    Publication date: May 23, 2019
    Applicant: Genesis Photonics Inc.
    Inventors: Cheng-Wei Hung, Chin-Hua Hung, Xun-Xain Zhan, Chuan-Yu Liu, Yun-Chu Chen, Yu-Feng Lin
  • Publication number: 20190139932
    Abstract: A method of mass transferring electronic devices includes following steps. A wafer is provided. The wafer includes a substrate and a plurality of electronic devices. The electronic devices are arranged in a matrix on a surface of the substrate. The wafer is attached to a temporary fixing film. The wafer is cut so that the wafer is divided into a plurality of blocks. Each of the blocks includes at least a part of the electronic devices and a sub-substrate. The temporary fixing film is stretched so that the blocks on the temporary fixing film are separated from each other as the temporary fixing film is stretched. At least a part of the blocks is selected as a predetermined bonding portion, and each of the blocks in the predetermined bonding portion is transferred to a carrying substrate in sequence, so that the electronic devices in the predetermined bonding portion are bonded to the carrying substrate. The sub-substrates of the blocks are removed.
    Type: Application
    Filed: January 7, 2019
    Publication date: May 9, 2019
    Applicant: Genesis Photonics Inc.
    Inventors: Shao-Ying Ting, Yan-Ting Lan, Jing-En Huang, Yi-Ru Huang
  • Publication number: 20190131490
    Abstract: A method for manufacturing a light emitting unit is provided. A semiconductor structure including a plurality of light emitting dice separated from each other is provided. A molding compound is formed to encapsulate the light emitting dice. Each of the light emitting dice includes a light emitting element, a first electrode and a second electrode. A patterned metal layer is formed on the first electrodes and the second electrodes of the light emitting dice. A substrate is provided, where the molding compound is located between the substrate and the light emitting elements of the light emitting dice. A cutting process is performed to cut the semiconductor structure, the patterned metal layer, the molding compound and the substrate so as to define a light emitting unit with a series connection loop, a parallel connection loop or a series-parallel connection loop.
    Type: Application
    Filed: December 24, 2018
    Publication date: May 2, 2019
    Applicant: Genesis Photonics Inc.
    Inventors: Shao-Ying Ting, Kuan-Chieh Huang, Jing-En Huang, Yi-Ru Huang, Sie-Jhan Wu, Long-Lin Ke
  • Patent number: 10263156
    Abstract: A light emitting diode structure including a substrate, a semiconductor epitaxial structure, a first insulating layer, a first reflective layer, a second reflective layer, a second insulating layer and at least one electrode. The substrate has a tilt surface. The semiconductor epitaxial structure at least exposes the tilt surface. The first insulating layer exposes a portion of the semiconductor epitaxial structure. The first reflective layer is at least partially disposed on the portion of the semiconductor epitaxial structure and electrically connected to the semiconductor epitaxial structure. The second reflective layer is disposed on the first reflective layer and the first insulating layer, and covers at least the portion of the tilt surface. The second insulating layer is disposed on the second reflective layer. The electrode is disposed on the second reflective layer and electrically connected to the first reflective layer and the semiconductor epitaxial structure.
    Type: Grant
    Filed: January 15, 2018
    Date of Patent: April 16, 2019
    Assignee: Genesis Photonics Inc.
    Inventors: Yi-Ru Huang, Yu-Yun Lo, Chih-Ling Wu, Jing-En Huang, Shao-Ying Ting
  • Publication number: 20190088819
    Abstract: A ?LED including an epitaxial stacked layer, a first electrode and a second electrode is provided. The epitaxial stacked layer includes a first type doped semiconductor layer, a light emitting layer and a second type doped semiconductor layer. The epitaxial stacked layer has a first mesa portion and a second mesa portion to form a first type conductive region and a second type conductive region respectively. The first electrode is disposed on the first mesa portion. The second electrode is disposed on the second mesa portion. The second electrode contacts the first type doped semiconductor layer, the light emitting layer and the second type doped semiconductor layer located at the second mesa portion. Moreover, a manufacturing method of the ?LED is also provided.
    Type: Application
    Filed: November 19, 2018
    Publication date: March 21, 2019
    Applicant: Genesis Photonics Inc.
    Inventors: Shao-Ying Ting, Yan-Ting Lan, Jing-En Huang, Yi-Ru Huang
  • Patent number: 10229977
    Abstract: A nitrogen-containing semiconductor device including a substrate, a first AlGaN buffer layer, a second AlGaN buffer layer and a semiconductor stacking layer is provided. The first AlGaN buffer layer is disposed on the substrate, and the second AlGaN buffer layer is disposed on the first AlGaN buffer layer. A chemical formula of the first AlGaN buffer layer is AlxGa1-xN, wherein 0?x?1. The first AlGaN buffer layer is doped with at least one of oxygen having a concentration greater than 5×1017 cm?3 and carbon having a concentration greater than 5×1017 cm?3. A chemical formula of the second AlGaN buffer layer is AlyGa1-yN, wherein 0?y?1. The semiconductor stacking layer is disposed on the second AlGaN buffer layer.
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: March 12, 2019
    Assignee: Genesis Photonics Inc.
    Inventors: Cheng-Hsueh Lu, Hsin-Chiao Fang, Chi-Hao Cheng, Chih-Feng Lu, Chi-Feng Huang
  • Patent number: 10224315
    Abstract: A light source device including a substrate, a plurality of first light emitting diode (LED) chips, and at least one second LED chip is provided. The substrate has an upper surface. The plurality of first LED chips are disposed on the upper surface and electrically connected to the substrate. Each of the first LED chips includes a first chip substrate, a first semiconductor layer, and a plurality of first electrodes, and the first electrodes are disposed on the upper surface of the substrate. The second LED chip is disposed on the upper surface and electrically connected to the substrate. The second LED chip includes a second chip substrate, a second semiconductor layer, and a plurality of second electrodes. A thickness of the second chip substrate is different from than a thickness of the first chip substrate, and the second electrodes are disposed on the upper surface of the substrate.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: March 5, 2019
    Assignee: Genesis Photonics Inc.
    Inventors: Cheng-Yen Chen, Yun-Li Li, Po-Jen Su
  • Patent number: D843957
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: March 26, 2019
    Assignee: Genesis Photonics Inc.
    Inventors: Chuan-Yu Liu, Xun-Xain Zhan, Chun-Ming Tseng, Yu-Jung Wu, Yu-Feng Lin
  • Patent number: D854195
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: July 16, 2019
    Assignee: Genesis Photonics Inc.
    Inventors: Hao-Chung Lee, Xun-Xain Zhan, Yu-Feng Lin