UTILIZING DESTRUCTIVE FEATURES AS RAM CODE FOR A STORAGE DEVICE

A host including a controller configured to be connected to a storage device separate from the host. The controller is configured to maintain random access memory (RAM) code on the host, the RAM code configured to provide a destructive function, temporarily load the RAM code onto a volatile memory in the storage device during a manufacturing process, wherein the loaded RAM code, when executed by a processor in the storage device, is configured to cause the processor in the storage device to perform a destructive function on the storage device, and remove the loaded RAM code from the volatile memory after the manufacturing process, wherein the destructive function is unable to be performed by the processor when the loaded RAM code is removed from the volatile memory.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 61/886,604, filed on Oct. 3, 2013, entitled “UTILIZING DESTRUCTIVE FEATURES AS RAM CODE FOR A STORAGE DEVICE,” which is hereby incorporated by reference in its entirety.

BACKGROUND

Conventionally, a storage device may store a variety of programs. Some of the programs may be beneficial for the user or a manufacturer. However, even if a program is beneficial for the user or the manufacturer, the program may have destructive features. That is, the program may have the ability to render the storage device inoperable, even when the user does not intend to render the storage device inoperable. In such a case, the storage device may need to be sent in for repairs. This can be costly and time consuming for the user. Furthermore, this can also increase manufacturing and repair costs for the storage device if the storage device is under warranty.

However, non-use of the program may increase manufacturing costs since the program may have beneficial qualities during manufacture or design of the storage device.

BRIEF DESCRIPTION OF THE DRAWINGS

The features and advantages of the present embodiments will become more apparent from the detailed description set forth below when taken in conjunction with the drawings, wherein:

FIG. 1 depicts a host connected to a storage device according to an embodiment;

FIG. 2 depicts a bridge board in a storage device according to an embodiment;

FIG. 3 depicts contents of non-volatile memory in a storage device according to an embodiment;

FIG. 4 depicts a process for configuring a storage device according to an embodiment;

FIG. 5 depicts a process for loading replacement data onto a volatile memory in a storage device is according to an embodiment; and

FIG. 6 depicts a process for configuring a storage device according to an embodiment.

DETAILED DESCRIPTION

In an embodiment, as shown in FIG. 1, a storage device 102 is connected to a host 104. In an embodiment, the host 104 comprises an external host separate from the storage device 102. In an embodiment, the storage device 102 can comprise a network attached storage (NAS) device, or a direct attached storage (DAS) device. In an embodiment, the storage device 102 can comprise a bridge board 108 and a storage unit 106. In an embodiment, the host 104 is configured to be connected to the storage device 102 using the bridge board 108. In an embodiment, the storage unit 106 comprises a hard disk drive or a solid state drive. In an embodiment, the hard disk drive comprises a magnetic rotating disk. In an embodiment, the solid state drive comprises a solid state memory.

While the description herein refers to solid state memory generally, it is understood that solid state memory may comprise one or more of various types of solid state non-volatile memory devices such as flash integrated circuits, Chalcogenide RAM (C-RAM), Phase Change Memory (PC-RAM or PRAM), Programmable Metallization Cell RAM (PMC-RAM or PMCm), Ovonic Unified Memory (OUM), Resistance RAM (RRAM), NAND memory (e.g., single-level cell (SLC) memory, multi-level cell (MLC) memory, or any combination thereof), NOR memory, EEPROM, Ferroelectric Memory (FeRAM), Magnetoresistive RAM (MRAM), other discrete NVM (non-volatile memory) chips, or any combination thereof.

In an embodiment the host 104 comprises a controller 118 and a memory 120, which will be described in more detail below. In an embodiment, the memory 120 may comprise a volatile memory, a non-volatile memory, or any combination thereof. The memory 120 may be configured to store code, data, or programs which the controller 118 may wish to utilize. In an embodiment, the memory 120 is accessible by the controller 118.

Although the memory 120 is located in the host 104 in the embodiment shown in FIG. 1, the memory 120 could be located externally from the host 104 so long as the memory 120 is accessible by the host 104, but inaccessible by the storage device 102, or which has limited accessibility by the storage device 102. That is, the storage device 102 will be unable to access the memory 120 after the storage device 102 leaves a manufacturing facility or a repair facility.

In an embodiment, the host 104 comprises a computer, a testing machine, or other device which can be used to configure the storage device 102. In an embodiment, the host 104 is configured to be connected to the bridge board 108 using a small computer system interface (SCSI). However, in an embodiment, the host 104 may utilize other types of interfaces to connect to the storage device 102.

In an embodiment, the bridge board 108 is configured to be connected to the storage unit 106 using a serial advanced technology attachment (SATA) interface. However, in an embodiment, the bridge board 108 may be configured to be connected to the storage unit 106 using other types of interfaces.

In an embodiment, the bridge board 108 is shown in FIG. 2. In the embodiment shown in FIG. 2, the bridge board 108 comprises a non-volatile memory 110, such as a read only memory (ROM), a non-volatile memory 112, such as a flash memory, a volatile memory 114, such as a random access memory (RAM), and a processor 116. In an embodiment, the processor 116 can comprise a microprocessor.

In an embodiment, the non-volatile memory 110 (ROM) can store a program such as a ROM program which can be loaded when the storage device 102 is boot up and executed by the processor 116. In an embodiment, the ROM program comprises an initial program. In an embodiment, the non-volatile memory 112 (flash memory) can be configured to store firmware as shown in an embodiment in FIG. 3

In the embodiment shown in FIG. 3, the non-volatile memory 112 (flash memory) is configured to store multiple copies of the firmware such as a first copy of the firmware and a second copy of the firmware. The multiple copies of the firmware can provide a safeguard against failure by providing redundancy for the firmware. Thus, if a first copy of the firmware becomes corrupted or damaged, the second copy of the firmware can be used instead. Similarly, if a second copy of the firmware becomes corrupted or damaged, the first copy of the firmware can be used instead.

Furthermore, the non-volatile memory 112 (flash memory) can also store one or more copies of metadata. The metadata can provide useful information regarding each copy of the firmware such as version information, most recently written copy of the firmware, and cyclic redundancy check (“CRC”) information of the firmware. In an embodiment, removal of all of the copies of the firmware or all of the copies of the metadata may render the storage device 102 inoperable.

In an embodiment, when the ROM program is executed by the processor 116, the firmware stored in the non-volatile memory 112 (flash memory) can be loaded onto the volatile memory 114 (RAM) for execution by the processor 116.

In an embodiment, a process for configuring the storage device 102 is shown in FIG. 4. In block S402, the controller 118 of the host 104 maintains the RAM code on the host 104, which is separate from the storage device. As previously noted, the RAM code can be configured to provide a destructive function.

In block 5404, the controller 118 of the host 104 can temporarily load the RAM code onto the volatile memory 114 (RAM) during a manufacturing process. For example, the controller 118 in the host 104 can be configured to load the RAM code onto the volatile memory 114 (RAM). Furthermore, the loaded RAM code, when executed by the processor 116, is configured to cause the processor 116 to perform a destructive function on the storage device 102. In an embodiment, the destructive function is configured to perform a first action to render the storage device 102 inoperable until a second action is performed to render the storage device 102 operable.

In an embodiment, the destructive function can be performed on data stored in a memory in the storage device 102. In an embodiment, the memory comprises the non-volatile memory 112 (flash memory).

For example, the destructive function can comprise a complete erase of the data stored in the non-volatile memory 112 (flash memory). Thus, the firmware, including all copies of the firmware may be erased. Without the firmware stored in the non-volatile memory 112 (flash memory), the storage device may be inoperable since no firmware is available to be loaded onto the volatile memory 114 (RAM) for execution by the processor. Furthermore, the metadata for each of the firmware may be erased. In addition, without the metadata, the storage device 102 may be unable to determine relevant information regarding the firmware or even determine if the firmware is valid or not. Thus, in an embodiment, when the storage device 102 is inoperable, the storage device 102 may be unable to complete its boot process when booting up.

In block S406, the controller 118 can remove the loaded RAM code from the volatile memory 114 (RAM) after the manufacturing process, wherein the destructive function is unable to be performed by the processor 116 when the loaded RAM code is removed from the volatile memory 114 (RAM). In an embodiment, the loaded RAM code can be removed from the volatile memory 114 (RAM) in the storage device 102 by powering off the storage device 102. In such a case, the loaded RAM code will be removed since the volatile memory 114 (RAM) will lose data stored in its memory when power is lost.

In an embodiment, the controller 118 in the host 104 can send a signal to the storage device 102 to power off. In an embodiment, the controller 118 in the host 104 can prevent power from being supplied to the storage device 102 in order to power off the storage device 102.

In an embodiment, the loaded RAM code can be removed from the volatile memory 114 (RAM) in the storage device 102 through commands issued from the controller 118 in the host 104. For example, in an embodiment, the controller 118 in the host 104 can instruct the processor 116 in the storage device 102 to erase the loaded RAM code from the volatile memory 114 (RAM) or replace the loaded RAM code with replacement data or other data. In an embodiment, the replacement data could be a new copy of the firmware and/or the metadata.

In block S408, the controller 118 can perform the second action to render the storage device 102 operable. In an embodiment, the second action comprises loading the replacement data onto the non-volatile memory 112 (flash memory). For example, the controller 118 can be configured to load the replacement data onto the non-volatile memory 112 (flash memory) to render the storage device 102 operable again. In an embodiment, the replacement data can comprise a copy of the firmware which was erased, a correct or functional copy of the firmware, a new version of the firmware, corresponding metadata for the firmware, or additional data which should be loaded onto the non-volatile memory 112 (flash memory) and which will render the storage device 102 operable again.

In an embodiment, an optional or additional process for loading replacement data onto the volatile memory 114 (RAM) is shown in FIG. 5. In block 5502, the controller 118 in the host 104 instructs the storage device 102 to reboot. In an embodiment, when the storage device 102 reboots, the processor 116 executes a ROM program stored in the non-volatile memory 110 (ROM). In an embodiment, the ROM program causes the processor 116 to load replacement data from the non-volatile memory 112 (flash memory) onto the volatile memory 114 (RAM). For example, the ROM program can cause the processor 116 to load the firmware stored in the non-volatile memory 112 (flash memory) onto the volatile memory 114 (RAM). In an embodiment, this replaces the loaded RAM code in the volatile memory 114 (RAM) with the replacement data. Thus, the loaded RAM code in the volatile memory 114 (RAM) may be replaced with the firmware.

In an embodiment, the destructive function is unable to be performed by the processor 116 when the loaded RAM code is removed from the volatile memory 114 (RAM). This can be beneficial because it can prevent a user from causing the processor 116 to execute the loaded RAM code to utilize the destructive function. As previously noted, usage of the destructive function may render the storage device 102 inoperable, which may require the user to send the storage device 102 in for repair.

However, in an embodiment, the destructive function may be beneficial during configuration of the storage device 102 such as during manufacturing or development of the storage device 102. For example, during manufacturing, the non-volatile memory 112 (flash memory) may comprise corrupted firmware. To ensure that a correct or functional copy of the firmware is loaded onto the non-volatile memory 112 (flash memory), the destructive function may be used on the non-volatile memory 112 (flash memory) to erase all data stored in the non-volatile memory 112 (flash memory). In an embodiment, this can ensure that the non-volatile memory 112 (flash memory) is completely wiped clean prior to loading the correct or functional copy of the firmware.

In an embodiment, this can help reclaim and reuse storage devices 102 which may have had a corrupted firmware in the non-volatile memory 112 (flash memory). In an embodiment, this can reduce manufacturing costs since the storage device 102 or portions thereof need not be wasted. Furthermore, should the non-volatile memory 112 (flash memory) still contain corrupted firmware, the non-volatile memory 112 (flash memory) can be more readily identified as a problem instead of the firmware. This can also reduce manufacturing costs by reducing troubleshooting costs.

Similarly, during development, it may be beneficial to ensure that a new version of a firmware is loaded and utilized instead of an old version of the firmware. Thus, the destructive function may be utilized to erase all data in the non-volatile memory 112 (flash memory) and ensure that the non-volatile memory 112 (flash memory) does not contain a copy of the old version of the firmware prior to loading of the new version of the firmware.

In an embodiment, the removal of the RAM code and the lack of access to the RAM code by the user will not prevent the user from upgrading the firmware. To upgrade the firmware, the new version of the firmware will be overlaid over the old version of the firmware. For example, a copy of the old version of the firmware can be maintained in the non-volatile memory 112 (flash memory) along with a copy of the new version of the firmware. Thus, if the new version of the firmware presents installation problems, such as if the new version of the firmware is corrupted or is not compatible with the storage device 102, then the old version of the firmware can be restored.

In an embodiment, by using the RAM code to perform the destructive function instead of other persistent code, the ability of the user to utilize the destructive function can be limited since the user will have limited or no access to the RAM code. However, the ability of the manufacturer to utilize the destructive function during configuration of the storage device 102 can be maintained since the manufacturer will have access to the RAM code.

In an embodiment, the memory 120 in the host 104 is configured to store an original RAM code, while the RAM code which is loaded onto the volatile memory 114 (RAM) in the storage device 102 comprises a removable copy of the original RAM code. In an embodiment, a copy of the RAM code is not stored in any non-volatile memory in the storage device 102. In an embodiment, this can ensure that any copies of the RAM code will be erased from the storage device 102 prior to access by the user since the storage device 102 may be powered down prior to access by the user. In an embodiment this can further reduce the likelihood that the user will have access to the RAM code. In an embodiment, the original RAM code can comprise a permanent copy of the RAM code.

In an embodiment, a process for configuring a storage device 102 is shown in FIG. 6. In an embodiment, the destructive function can comprise other functions which may be harmful to the storage device 102, but which may be useful during configuration of the storage device 102. In the embodiment shown in FIG. 6, the destructive function need not perform a first action to render the storage device 102 inoperable until a second action is performed to render the storage device 102 operable.

In block S602, the controller 118 of the host 104 maintains the RAM code on the host 104. The RAM code can be configured to provide a destructive function. In an embodiment, this can be similar or the same as the block S402 in the embodiment shown in FIG. 4. In block S604, the controller 118 of the host 104 can temporarily load the RAM code onto the volatile memory 114 (RAM) during a manufacturing process. For example, the controller 118 in the host 104 can be configured to load the RAM code onto the volatile memory 114 (RAM). Furthermore, the loaded RAM code, when executed by the processor 116, is configured to cause the processor 116 to perform a destructive function on the storage device 102.

For example, the destructive function may comprise a function for setting heat removal operations for the storage device 102. In an embodiment, the heat removal operations comprise thermal controls such as the operational speed of fans in the storage device 102. In an embodiment, this may be destructive because it may damage the storage device 102 if it is improperly set. However, this destructive function may be useful since the operational speed of the fans in the storage device 102 may need to be configured.

Furthermore, in an embodiment, the destructive functions could enable certain performance characteristic improvements in the storage device 102 which may be dangerous to the data stored in the storage device 102. For example, when the storage unit 106 comprises a disk drive, the destructive function could comprise enabling delayed cache writes to a disk in the disk drive. In an embodiment, this could be dangerous to data integrity in the disk drive.

In block 5606, the controller 118 can remove the loaded RAM code from the volatile memory 114 (RAM) after the manufacturing process, wherein the destructive function is unable to be performed by the processor 116 when the loaded RAM code is removed from the volatile memory 114 (RAM). In an embodiment, this can be similar or the same as the block S406 in the embodiment shown in FIG. 4.

Those of ordinary skill would appreciate that the various illustrative logical blocks, modules, and algorithm parts described in connection with the examples disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. Furthermore, the embodiments can also be embodied on a non-transitory machine readable medium causing a processor or computer to perform or execute certain functions.

To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and process parts have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the disclosed apparatus and methods.

The parts of a method or algorithm described in connection with the examples disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. The parts of the method or algorithm may also be performed in an alternate order from those provided in the examples. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, an optical disk, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an Application Specific Integrated Circuit (ASIC).

The previous description of the disclosed examples is provided to enable any person of ordinary skill in the art to make or use the disclosed methods and apparatus. Various modifications to these examples will be readily apparent to those skilled in the art, and the principles defined herein may be applied to other examples without departing from the spirit or scope of the disclosed method and apparatus. The described embodiments are to be considered in all respects only as illustrative and not restrictive and the scope of the disclosure is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims

1. A host comprising:

a controller configured to be connected to a storage device separate from the host and to: maintain random access memory (RAM) code on the host, the RAM code configured to provide a destructive function; temporarily load the RAM code onto a volatile memory in the storage device during a manufacturing process, wherein the loaded RAM code, when executed by a processor in the storage device, is configured to cause the processor in the storage device to perform a destructive function on the storage device; and remove the loaded RAM code from the volatile memory after the manufacturing process, wherein the destructive function is unable to be performed by the processor when the loaded RAM code is removed from the volatile memory.

2. The host of claim 1 wherein the destructive function is configured to perform a first action to render the storage device inoperable until a second action is performed to render the storage device operable.

3. The host of claim 2 wherein the processor is further configured to perform the destructive function on data stored in a memory in the storage device.

4. The host of claim 3 wherein the controller is further configured perform the second action to render the storage device operable, wherein the second action comprises loading replacement data onto the memory in the storage device.

5. The host of claim 4 wherein the data comprises firmware and the memory in the storage device comprises flash memory.

6. The host of claim 5 wherein the replacement data comprises a new copy of the firmware.

7. The host of claim 6 wherein the remove the loaded RAM code from the volatile memory further comprises reboot the storage device.

8. The host of claim 1 wherein the destructive function is configured to improve performance characteristics of a storage unit in the storage device.

9. The host of claim 1 wherein the destructive function is configured to set heat removal operations for the storage device.

10. The host of claim 1 further comprising a memory configured to store an original RAM code, wherein the loaded RAM code comprises a removable copy of the original RAM code.

11. A method for manufacturing a storage device comprising:

maintaining random access memory (RAM) code on an external host separate from the storage device, the RAM code configured to provide a destructive function;
temporarily loading the RAM code from the external host onto a volatile memory in the storage device during a manufacturing process, wherein the loaded RAM code, when executed by a processor in the storage device, is configured to cause the processor in the storage device to perform the destructive function on the storage device; and
removing the loaded RAM code from the volatile memory after the manufacturing process, wherein the destructive function is unable to be performed by the processor when the loaded RAM code is removed from the volatile memory.

12. The method of claim 11 wherein the destructive function is configured to perform a first action to render the storage device inoperable until a second action is performed to render the storage device operable.

13. The method of claim 12 wherein the processor is further configured to perform the destructive function on data stored in a memory in the storage device.

14. The method of claim 13 further comprising performing the second action to render the storage device operable, wherein the second action comprises loading replacement data onto the memory in the storage device.

15. The method of claim 14 wherein the data comprises firmware and the memory in the storage device comprises flash memory.

16. The method of claim 15 wherein the replacement data comprises a new copy of the firmware.

17. The method of claim 16 wherein the removing the loaded RAM code from the volatile memory further comprises loading the new copy of the firmware onto the volatile memory.

18. The method of claim 16 wherein the removing the loaded RAM code from the volatile memory further comprises rebooting the storage device.

19. The method of claim 15 further comprising:

rebooting the storage device; and
executing a read only memory (ROM) program stored in a non-volatile memory in the storage device using the processor when the storage device is rebooted, wherein the ROM program causes the processor to load the replacement data onto the volatile memory.

20. The method of claim 11 wherein the destructive function is configured to improve performance characteristics of a storage unit in the storage device.

21. The method of claim 11 wherein the destructive function is configured to set heat removal operations for the storage device.

22. The method of claim 11 further comprising storing an original RAM code in a memory in the external host, wherein the loaded RAM code comprises a removable copy of the original RAM code.

23. A non-transitory machine readable medium storing a program which when executed by a processor in a host, causes the processor in the host to configure a storage device separate from the host by:

maintaining a random access memory (RAM) code on the host, the RAM code configured to provide a destructive function;
temporarily loading the RAM code from the host onto a volatile memory in the storage device during a manufacturing process, wherein the loaded RAM code, when executed by a processor in the storage device, is configured to cause the processor in the storage device to perform a destructive function on the storage device; and
removing the loaded RAM code from the volatile memory after the manufacturing process, wherein the destructive function is unable to be performed by the processor when the loaded RAM code is removed from the volatile memory.

24. The non-transitory machine readable medium of claim 23 wherein the destructive function is configured to perform a first action to render the storage device inoperable until a second action is performed to render the storage device operable.

25. The non-transitory machine readable medium of claim 24 wherein the processor in the storage device is further configured to perform the destructive function on data stored in a memory in the storage device.

26. The non-transitory machine readable medium of claim 24 wherein the program further causes the processor in the host to further configure the storage device by performing the second action to render the storage device operable, wherein the second action comprises loading replacement data onto the memory in the storage device.

Patent History
Publication number: 20150100722
Type: Application
Filed: Nov 25, 2013
Publication Date: Apr 9, 2015
Patent Grant number: 9275697
Applicant: Western Digital Technologies, Inc. (Irvine, CA)
Inventor: MICHAEL W. WEBSTER (SAN JOSE, CA)
Application Number: 14/088,739
Classifications
Current U.S. Class: Solid-state Random Access Memory (ram) (711/104)
International Classification: G11C 7/10 (20060101);