SITE-SPECIFIC LABELING METHODS AND MOLECULES PRODUCED THEREBY

- IRM LLC

The present disclosure provides methods of site-specific labeling of antibodies, using proteins having 4′-phosphopantetheinyl transferase activity that catalyze post-translational modification of peptide sequences (“peptide tags”) incorporated into one or more specific sites of an antibody of interest. Enzymatic labeling enables quantitative and irreversible covalent modification of a specific serine residue within the peptide tags incorporated into the antibody, and thus creates desirable antibody conjugates.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on May 29, 2013, is named PAT055142_SL2.txt and is 1,800,691 bytes in size.

FIELD OF THE INVENTION

The present invention relates to site-specific labeling process and molecules produced thereby.

BACKGROUND

Conjugation has been widely used to optimize the properties of biologically active proteins, such as protein therapies, antibody drug conjugates (ADCs), vaccines, tissue selective targeting vehicles, molecular diagnostics, and protein nucleic acid conjugates. Traditional conjugation method utilizes lysine based covalent ligation, which makes it difficult to achieve homogeneity due to the abundance of lysines on the protein's surface.

Site-specific labeling of proteins can be achieved by post-translational enzymatic reactions, for example, using human O6-alkylguanine-DNA alkyl-transferase (AGT), biotin ligase, transglutaminase, sortase, cutinase, or 4′-phosphopantetheinyl transferases for the covalent attachment of a label to a protein.

For post-translational enzymatic reactions using human O6-alkylguanine-DNA alkyl-transferase, the AGT is fused to a target protein of interest, followed by the addition of a labeled O6-benzylguanine, which is a suicide substrate for the AGT (Keppler et al., Nat. Biotechnol. 21:86-89, 2003). This approach is the basis for a technology called SNAP-Tag™, which utilizes a 180 amino acid tag (Tirat et al., International Journal of Biological Macromolecules, 39:66-76, 2006). However, labeling of proteins using this approach occurs only at the C- or N-termini.

For biotin ligation, the enzyme biotin protein ligase (BPL) attaches biotin to the biotin carrier domain of certain carboxylases or decarboxylases. BPL catalyzes, in a two-step, adenosine-5′-triphosphate (ATP)-dependent reaction, the post-translational formation of an amide bond between the carboxyl group of biotin and the ε-amino group of a specific lysine residue located within a highly conserved Ala-Met-Lys-Met (SEQ ID NO: 1017) recognition located motif within the biotin carrier domain (Tirat et al., International Journal of Biological Macromolecules, 39:66-76, 2006). This approach can be used to create fusion tags at the C-terminus, the N-terminus or even within the target protein and is the basis for a technology called BioEase™ (72 amino acid tag) and AviTag™ (uses the biotin ligase, BirA and 15-residue acceptor peptide tag (AP)).

Transglutaminases catalyze the formation of stable isopeptidic bonds between the side chains of glutamine (Gln) and lysine (Lys) with the loss of ammonia, and have been used to label glutamine side chains in proteins with fluorophores in vitro (Sato et al., Biochemistry 35:13072-13080, 1996). Also, bacterial and human tissue transglutaminases (BTGase and TG2) have been used to catalyze the post-translational modification of different IgG's via the Lys or Gln side chains located in the IgG heavy chain (Mindt et al., Bioconjugate Chem. 19:271-278, 2008; Jeger et al., Angew. Chem. Int. 49:9995-9997, 2010).

Sortases have been used for C-terminal and N-terminal site specific modification of proteins, where sortase A catalyzes the transpeptidation reaction (Antos et al., JACS, 131:10800-10801, 2009).

Cutinase is a 22-kDa serine esterase that forms a site-specific covalent adduct with phosphonate ligands that is resistant to hydrolysis. Cutinases have been used for C-terminal and N-terminal site specific modification of antibodies followed by immobilization onto surfaces (Kwon et al., Anal. Chem. 76:5713-5720, 2004; Hodneland et al., Proc. Natl. Acad. Sci. U.S.A., 99:5048-5052, 2002).

4′-Phosphopantetheinylation of acyl carrier proteins (ACPs) and peptidyl carrier proteins (PCPs) are involved in an essential post-translational modification that is required to activate metabolite synthesis by polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs), respectively (Fischbach et al., Chem. Rev. 106(8):3468-3496, 2006). The apo to holo conversion of ACPs and PCPs is catalyzed by 4′-phosphopantetheine (ppan) transferases, which attach a 4′-phospho-pantetheinyl moiety of coenzyme A (CoA) to an invariant serine residue of the protein domains (Lambalot et al., Chem. Biol. 3(11):923-936, 1996). Due to the comparably small size of the carrier proteins and the ability of 4′-phosphopantetheinyl transferases to accept functionalized CoA analogues as substrates, researchers have used carrier proteins as fusion tags to label target proteins with a variety of small molecule probes (see, e.g., La Clair et al., Chem. Biol. 11(2):195-201, 2004; Yin et al., J. Am. Chem. Soc. 126(25):7754-7755, 2004). In an effort to further reduce the carrier protein tag size, Walsh and co-workers used phage display to identify 8- to 12-residue peptides that are recognized as efficient substrates by the bacterial 4′-phosphopantetheinyl transferase Sfp (previously identified as a genetic locus responsible for surfactin production) and AcpS (Yin et al., Proc. Natl. Acad. Sci. USA 102(44):15815-15820, 2005; Zhou et al., ACS Chem. Biol. 2(5):337-346, 2007; Zhou et al., J. Am. Chem. Soc. 130(30):9925-9930, 2008).

Antibody drug conjugates (ADCs) have been used for the local delivery of cytotoxic agents in the treatment of cancer (see e.g., Lambert, Curr. Opinion In Pharmacology 5:543-549, 2005). ADCs allow targeted delivery of the drug moiety where maximum efficacy with minimal toxicity may be achieved. As more ADCs show promising clinical results, there is an increased need to develop stable engineered antibodies that provide reactive groups capable of conjugation to various agents, especially site-specific conjugations that can generate homogeneous immunoconjugates with a defined drug-to-antibody ratio for use in cancer therapy.

SUMMARY

The present invention provides modified antibodies or fragments thereof, which comprise at least one peptide tag that is a substrate of 4′-phosphopantetheinyl transferase, and is located within the structural loop of said antibodies or antibody fragments. The present invention further provides immunoconjugates comprising such modified antibodies or antibody fragments, and a terminal group. The present invention also provides methods of making such modified antibodies, antibody fragments, and the immunoconjugates, as well as methods of using such compositions.

In some embodiments, the present invention provides modified antibodies or fragments thereof, which comprise at least one peptide tag that is a substrate of 4′-phosphopantetheinyl transferase, and is located within the structural loop of said antibodies or antibody fragments, and wherein the 4′-phosphopantetheinyl transferase is Sfp, AcpS, T. maritima PPTase, human PPTase or a mutant or homolog form thereof that retains the 4′-phosphopantetheinyl transferase activity. In some embodiments, the peptide tag is selected from the group consisting of: GDSLSWLLRLLN (SEQ ID NO: 1), GDSLSWL (SEQ ID NO: 2), GDSLSWLVRCLN (SEQ ID NO: 3), GDSLSWLLRCLN (SEQ ID NO: 4), GDSLSWLVRLLN (SEQ ID NO: 5), GDSLSWLLRSLN (SEQ ID NO: 6), GSQDVLDSLEFIASKLA (SEQ ID NO: 7), VLDSLEFIASKLA (SEQ ID NO: 8), DSLEFIASKLA (SEQ ID NO: 9), GDSLDMLEWSLM (SEQ ID NO: 10), GDSLDMLEWSL (SEQ ID NO: 11), GDSLDMLEWS (SEQ ID NO: 12), GDSLDMLEW (SEQ ID NO: 13), DSLDMLEW (SEQ ID NO: 14), GDSLDM (SEQ ID NO: 15), LDSVRMMALAAR (SEQ ID NO: 16), LDSLDMLEWSLR (SEQ ID NO: 17), DSLEFIASKL (SEQ ID NO: 18), DSLEFIASK (SEQ ID NO: 19), DVLDSLEFI (SEQ ID NO: 20), VLDSLEFIAS (SEQ ID NO: 21) and DSLDMLEWSL (SEQ ID NO: 1132). The present invention further provides immunoconjugates comprising such modified antibodies or fragments thereof.

In some embodiments, The present invention provides modified antibodies or fragments thereof, which comprise at least one peptide tag that is a substrate of 4′-phosphopantetheinyl transferase, and is located within the structural loop of VH, VL, CH1, CH2, CH3, or CL region of the antibody or fragment thereof. In some embodiments, the peptide tag is inserted between any two amino acids that are listed in Table 1. In some embodiments, the present invention provides modified antibodies or antibody fragments comprising at least one peptide tag that is a substrate of 4′-phosphopantetheinyl transferase, and is located within the structural loop of the CH1 region of an antibody or fragment thereof. The present invention further provides immunoconjugates comprising such modified antibodies or fragments thereof.

In some embodiments, the peptide tag is inserted between amino acid residues 2 and 3 of the VH or VL domain, or between amino acid residues 63 and 64 of the VH domain, or between 64 and 65 of the VH domain, or between 138 and 139 of the CH1 domain, or between 197 and 198 of the CH1 domain, or between 359 and 360 of the CH3 domain, or between 388 and 389 of the CH3 domain, or after 447 of the CH3 domain of a parental antibody or fragment thereof. The present invention further provides immunoconjugates comprising such modified antibodies or fragments thereof.

In some embodiments, the peptide tag is inserted between amino acid residues 2 and 3 of the VH or VL domain, or between amino acid residue 110 and 111 of the light chain, or between 119 and 120, or between 120 and 121, or between 135 and 136, or between 136 and 137, or between 138 and 139, or between 162 and 163, or between 164 and 165, or between 165 and 166, or between 194 and 195, or between 195 and 196 of the CH1 domain, or between 388 and 389, or between 445 and 446, or between 446 and 447 of the CH3 domain of a parental antibody or fragment thereof. The present invention further provides immunoconjugates comprising such modified antibodies or fragments thereof.

In some embodiments, the peptide tag is inserted between amino acid residue 110 and 111 of the light chain, or between 119 and 120, or between 120 and 121, or between 135 and 136, or between 136 and 137, or between 138 and 139, or between 162 and 163, or between 164 and 165, or between 165 and 166, or between 194 and 195, or between 195 and 196 of the CH1 domain, or between 388 and 389 of the CH3 domain of a parental antibody or fragment thereof. The present invention further provides immunoconjugates comprising such modified antibodies or fragments thereof.

In some embodiments, the peptide tag is grafted between amino acid residues 62 to 64 or 62 to 65 of the VH domain, or between amino acid residues 133 and 138 of the CH1 domain, or between 189 and 195 of the CH1 domain, or between 190 and 197 of the CH1 domain. The present invention further provides immunoconjugates comprising such modified antibodies or fragments thereof.

In some embodiments, the present invention provides modified antibodies or antibody fragments comprising SEQ ID NO: 103, SEQ ID NO: 109, SEQ ID NO:113, SEQ ID NO:121, SEQ ID NO:122, SEQ ID NO:127, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:131, and/or SEQ ID NO:141. The present invention further provides immunoconjugates comprising such modified antibodies or fragments thereof.

In some embodiments, the present invention provides modified antibodies or antibody fragments comprising SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:32, SEQ ID NO:63, SEQ ID NO:94, SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO:126, SEQ ID NO:127, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:131, SEQ ID NO:132, SEQ ID NO:139, SEQ ID NO:149, SEQ ID NO:151, SEQ ID NO:152, SEQ ID NO:157, SEQ ID NO:158, SEQ ID NO:160, SEQ ID NO:166, SEQ ID NO:168, SEQ ID NO:169, SEQ ID NO:178, SEQ ID NO:179, SEQ ID NO:248, SEQ ID NO:250, SEQ ID NO:251, SEQ ID NO:256, SEQ ID NO:257, SEQ ID NO:259, SEQ ID NO:265, SEQ ID NO:267, SEQ ID NO:268, SEQ ID NO:277, SEQ ID NO:278, SEQ ID NO:348, SEQ ID NO:349, SEQ ID NO:356, SEQ ID NO:358, SEQ ID NO:359, SEQ ID NO:364, SEQ ID NO:365, SEQ ID NO:367, SEQ ID NO:371, SEQ ID NO:373, SEQ ID NO:374, SEQ ID NO:380, SEQ ID NO:381, SEQ ID NO:384, SEQ ID NO:386, SEQ ID NO:387, or SEQ ID NO:388. The present invention further provides immunoconjugates comprising such modified antibodies or fragments thereof.

In some embodiments, the present invention provides modified antibodies or antibody fragments comprising SEQ ID NO:32, SEQ ID NO:63, SEQ ID NO:127, SEQ ID NO:129, SEQ ID NO:132, SEQ ID NO:151, SEQ ID NO:152, SEQ ID NO:157, SEQ ID NO:158, SEQ ID NO:160, SEQ ID NO:166, SEQ ID NO:168, SEQ ID NO:169, SEQ ID NO:178, SEQ ID NO:179, SEQ ID NO:250, SEQ ID NO:251, SEQ ID NO:256, SEQ ID NO:257, SEQ ID NO:259, SEQ ID NO:265, SEQ ID NO:267, SEQ ID NO:268, SEQ ID NO:277, SEQ ID NO:278, SEQ ID NO:358, SEQ ID NO:359, SEQ ID NO:364, SEQ ID NO:365, SEQ ID NO:367, SEQ ID NO:371, SEQ ID NO:373, SEQ ID NO:374, SEQ ID NO:380, SEQ ID NO:381, or SEQ ID NO:384. The present invention further provides immunoconjugates comprising such modified antibodies or fragments thereof.

In one embodiment, the present invention provides modified antibodies or fragments thereof, which comprise at least one peptide tag that is a substrate of Sfp, and is located within the structural loop of said antibodies or antibody fragments, and wherein the peptide tag is GDSLSWLLRLLN (SEQ ID NO:1), GDSLSWLVRCLN (SEQ ID NO:3), GDSLSWLLRCLN (SEQ ID NO:4), GDSLSWLVRLLN (SEQ ID NO:5), GDSLSWLLRSLN (SEQ ID NO:6), GSQDVLDSLEFIASKLA (SEQ ID NO:7), VLDSLEFIASKLA (SEQ ID NO:8), DSLEFIASKLA (SEQ ID NO:9), GDSLDMLEWSLM (SEQ ID NO:10), GDSLDMLEWSL (SEQ ID NO:11), GDSLDMLEWS (SEQ ID NO:12), GDSLDMLEW (SEQ ID NO:13), DSLDMLEW (SEQ ID NO:14), LDSLDMLEWSLR (SEQ ID NO:17), DSLEFIASKL (SEQ ID NO:18), DSLEFIASK (SEQ ID NO:19), or DSLEFIAS (SEQ ID NO:1116). In another embodiment, the peptide tag is GDSLSWLLRLLN (SEQ ID NO:1), GDSLSWL (SEQ ID NO:2), DSLEFIASKLA (SEQ ID NO:9), GDSLDMLEWSLM (SEQ ID NO:10), DSLEFIASKL (SEQ ID NO:18), DSLEFIASK (SEQ ID NO:19), or DSLDMLEWSL (SEQ ID NO: 1132). The present invention further provides immunoconjugates comprising such modified antibodies or fragments thereof.

In some embodiments, the modified antibodies or antibody fragments of the invention are an isotype selected from IgG, IgM, IgE and IgA. In some other embodiments, the modified antibodies or antibody fragments of the invention are a subtype of IgG selected from IgG1, IgG2, IgG3 and IgG4. In some embodiments, the modified antibodies or antibody fragments of the invention are a human or humanized antibody or antibody fragment. In a specific embodiment, the modified antibody or antibody fragment of the invention is an anti-HER2 antibody or anti-HER2 antibody fragment. The present invention further provides immunoconjugates comprising such modified antibodies or fragments thereof.

The present invention provides nucleic acids encoding the modified antibodies or antibody fragments described herein, and host cells comprising such nucleic acids.

The present invention provides immunoconjugates comprising a modified antibody or fragment thereof, and a terminal group, wherein the modifice antibody or antibody fragment comprises at least one peptide tag that is a substrate of 4′-phosphopantetheinyl transferase, and is located within the structural loop of the antibody or antibody fragment. In some embodiments, the modified antibody or antibody fragment further comprises one or more orthogonal conjugation sites. In a specific embodiment, each orthogonal conjugation site is independently selected from a substrate of Sfp 4′-phosphopantetheinyl transferase, a substrate of AcpS 4′-phosphopantetheinyl transferase, a lysine, a cysteine, a tyrosine, a histidine, a formyl glycine, an unnatural amino acid, pyrrolysine and pyrroline-carboxylysine.

Another aspect provided herein are immunoconjugates comprising a modified antibody or antibody fragment, and a terminal group (TG) attached to the peptide tag in the modified antibody or antibody fragment by a linker having the structure according to Formula (I-b):

wherein:

    • L1 is a bond, a non-enzymatically cleavable linker, a non-cleavable linker; an enzymatically cleavable linker, a photo stable linker or a photo-cleavable linker;
    • L2 is a bond, a non-enzymatically cleavable linker, a non-cleavable linker; an enzymatically cleavable linker, a photo stable linker or a photo-cleavable linker;
    • L3 is a bond, a non-enzymatically cleavable linker, a non-cleavable linker; an enzymatically cleavable linker, a photo stable linker or a photo-cleavable linker;
    • L4 is a bond, a non-enzymatically cleavable linker, a non-cleavable linker; an enzymatically cleavable linker, a photo stable linker, a photo-cleavable linker or a self-immolative spacer,
    • the * denotes where the 4′-phosphopantetheinyl moiety is attached to the peptide tag,
    • and wherein the terminal group is a drug moiety, an affinity probe, a chelator, a spectroscopic probe, a radioactive probe, an imaging reagent, a lipid molecule, a polyethylene glycol, a polymer, a nanoparticle, a quantum dot, a liposome, a PLGA particle, a polysaccharide, an acetyl group, or a surface.

In certain embodiments of such immunoconjugates:

    • L1 is -A1X2— or —X2—; L2 is a bond, -A2-, or -A2X2—;
    • L3 is a bond, -A3-, or -A3X2—:
    • L4 is a bond, -A4-, -A4X2—,

    • A1 is —C(═O)NH—, —NHC(═O)—, —C(═O)NH(CH2)n—, —C(═O)NH(C(R4)2)n—, —(O(CH2)n)m—, —(O(C(R4)2)n)m—, —((CH2)nO)m—, —(((C(R4)2)nO)m—, —((CH2)nO)m(CH2)n—, —(((C(R4)2)nO)mC(R4)2)n—, —(CH2)nC(═O)NH—, —(C(R4)2)nC(═O)NH—, —(CH2)nNHC(═O)—, —(C(R4)2)nNHC(═O)—, —NHC(═O)(CH2)n—, —NHC(═O)(C(R4)2)n—, —C(═O)NH(CH2)nS—, —C(═O)NH(C(R4)2)nS—, —S(CH2)nC(═O)NH—, —S(C(R4)2)nC(═O)NH—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —C(═O)NH(C(R4)2)nNHC(═O)(C(R4)2)n—, —C(═O)(CH2)n—, —C(═O)(C(R4)2)n—, —(CH2)nC(═O)—, —(C(R4)2)nC(═O)—, —(CH2)n(O(CH2)n)mNHC(═O)(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—, —(CH2)nNHC(═O)(CH2)n—, —(C(R4)2)nNHC(═O)(C(R4)2)n—, —(CH2)nNH((CH2)nO)m(CH2)n—, —(C(R4)2)nNH((C(R4)2)nO)m(C(R4)2)n—, —(O(CH2)n)mNHC(═O)(CH2)n—, or —(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—;
    • A2 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(C(R4)2)n—, —(O(CH2)n)m—, —(O(C(R4)2)n)m—, —((CH2)nO)m—, —(((C(R4)2)nO)m—, —((CH2)nO)m(CH2)n—, —(((C(R4)2)nO)mC(R4)2)n—, —(CH2)nC(═O)NH—, —(C(R4)2)nC(═O)NR4—, —(CH2)nNHC(═O)—, —(C(R4)2)nNHC(═O)—, —NHC(═O)(CH2)n—, —NHC(═O)(C(R4)2)n—, —C(═O)NH(CH2)nS—, —C(═O)NH(C(R4)2)nS—, —S(CH2)nC(═O)NH—, —S(C(R4)2)nC(═O)NH—, —(CH2)nS—, —(C(R4)2)nS—, —S(CH2)n—, —S(C(R4)2)n—, —(CH2)nNH—, —(C(R4)2)nNH—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —C(═O)NH(C(R4)2)nNHC(═O)(C(R4)2)n—, —C(═O)(CH2)n—, —C(═O)(C(R4)2)n—, —(CH2)nC(═O)—, —(C(R4)2)nC(═O)—, —(CH2)n(O(CH2)n)mNHC(═O)(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—, —(CH2)n(O(CH2)n)mOC(═O)NH(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mOC(═O)NH(C(R4)2)n—, —(CH2)nNHC(═O)(CH2)n—, —(C(R4)2)nNHC(═O)(C(R4)2)n—, —(CH2)nNH((CH2)nO)m(CH2)n—, —(C(R4)2)nNH((C(R4)2)nO)m(C(R4)2)n—, —(O(CH2)n)mNHC(═O)(CH2)n—, —(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—,

    • A3 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(C(R4)2)n—, —(O(CH2)n)m—, —(O(C(R4)2)n)m—, —((CH2)nO)m—, —(((C(R4)2)nO)m—, —((CH2)nO)m(CH2)n—, —(((C(R4)2)nO)mC(R4)2)n—, —(CH2)nC(═O)NH—, —(C(R4)2)nC(═O)NH—, —(CH2)nNHC(═O)—, —(C(R4)2)nNHC(═O)—, —NHC(═O)(CH2)n—, —NHC(═O)(C(R4)2)n—, —C(═O)NH(CH2)nS—, —C(═O)NH(C(R4)2)nS—, —S(CH2)nC(═O)NH—, —S(C(R4)2)nC(═O)NH—, —(CH2)nS—, —(C(R4)2)nS—, —S(CH2)n—, —S(C(R4)2)n—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —C(═O)NH(C(R4)2)nNHC(═O)(C(R4)2)n—, —C(═O)(CH2)n—, —C(═O)(C(R4)2)n—, —(CH2)nC(═O)—, —(C(R4)2)nC(═O)—, —(CH2)n(O(CH2)n)mNHC(═O)(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—, —(CH2)n(O(CH2)n)mOC(═O)NH(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mOC(═O)NH(C(R4)2)n—, —(CH2)n(O(CH2)n)mOC(═O)—, —(C(R4)2)n(O(C(R4)2)n)mOC(═O)—, —(CH2)n(O(CH2)n)mOC(═O)—, —(C(R4)2)n(O(C(R4)2)n)mC(═O)—, —(CH2)nNHC(═O)(CH2)n—, —(C(R4)2)nNHC(═O)(C(R4)2)n—, —(O(CH2)n)mNHC(═O)(CH2)n—, —(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—,

    • A4 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(C(R4)2)n—, —(O(CH2)n)m—, —(O(C(R4)2)n)m—, —((CH2)nO)m—, —(((C(R4)2)nO)m—, —((CH2)nO)m(CH2)n—, —(((C(R4)2)nO)mC(R4)2)n—, —(CH2)nC(═O)NH—, —(C(R4)2)nC(═O)NH—, —(CH2)nNHC(═O)—, —(C(R4)2)nNHC(═O)—, —NHC(═O)(CH2)n—, —NHC(═O)(C(R4)2)n—, —C(═O)NH(CH2)nS—, —C(═O)NH(C(R4)2)nS—, —S(CH2)nC(═O)NH—, —S(C(R4)2)nC(═O)NH—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —C(═O)NH(C(R4)2)nNHC(═O)(C(R4)2)n—, —C(═O)(CH2)n—, —C(═O)(C(R4)2)n—, —(CH2)nC(═O)—, —(C(R4)2)nC(═O)—, —(CH2)n(O(CH2)n)mNHC(═O)(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—, —(CH2)nNHC(═O)(CH2)n—, —(C(R4)2)nNHC(═O)(C(R4)2)n—, —(CH2)nNH((CH2)nO)m(CH2)n—, —(C(R4)2)nNH((C(R4)2)nO)m(C(R4)2)n—, —(O(CH2)n)mNHC(═O)(CH2)n—, or —(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—;
    • each X2 is independently selected from a bond,

    •  —S—, —Si(OH)2O—,

    •  —CHR4(CH2)nC(═O)NH—, —CHR4(CH2)nNHC(═O)—, —C(═O)NH— and —NHC(═O)—;
    • each R4 is independently selected from H, C1-4alkyl, —C(═O)OH and —OH,
    • each R5 is independently selected from H, C1-4alkyl, phenyl or C1-4alkyl substituted with 1 to 3 —OH groups;
    • each R6 is independently selected from H, fluoro, benzyloxy substituted with —C(═O)OH, benzyl substituted with —C(═O)OH, C1-4alkoxy substituted with —C(═O)OH and C1-4alkyl substituted with —C(═O)OH;
    • R7 is independently selected from H, phenyl and pyridine;
    • R8 is independently selected from

    • R9 is independently selected from H and C1-6haloalkyl;
    • each n is independently selected from 1, 2, 3, 4, 5, 6, 7, 8 and 9, and
    • each m is independently selected from 1, 2, 3, 4, 5, 6, 7, 8 and 9.
      In other embodiments of such immunoconjugates:
    • L1 is -A1X2— or —X2—;
    • L2 is a bond, -A2-, or -A2X2—;
    • L3 is a bond, -A3-, or -A3X2—;
    • L4 is a bond, -A4-, -A4X2—,

    • A1 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(CH2)nS—, —(O(CH2)n)m—, —((CH2)nO)m(CH2)n—, —NHC(═O)(CH2)n—, —(CH2)nNHC(═O)—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —(CH2)nNHC((CH2)nO)m(CH2)n— or —(O(CH2)n)mNHC(═O)(CH2)n—;
    • A2 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(CH2)nS—, —(O(CH2)n)m—, —((CH2)nO)m(CH2)n—, —NHC(═O)(CH2)n—, —(CH2)nNHC(═O)—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —(CH2)nNH((CH2)nO)m(CH2)n—, —(O(CH2)n)mNHC(═O)(CH2)n— or

    • A3 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(CH2)nS—, —(O(CH2)n)m, —((CH2)nO)m(CH2)n—, —NHC(═O)(CH2)n—, —(CH2)nNHC(═O)—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —(CH2)nNH((CH2)nO)m(CH2)n—, —(O(CH2)n)mNHC(═O)(CH2)n— or

    • A4 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(CH2)nS—, —(O(CH2)n)m, —((CH2)nO)m(CH2)n—, —NHC(═O)(CH2)n—, —(CH2)nNHC(═O)—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —(CH2)nNH((CH2)nO)m(CH2)n— or —(O(CH2)n)mNHC(═O)(CH2)n—;
    • each X2 is independently selected from a bond,

    • —S—, —Si(OH)2O—,

    •  —CHR4(CH2)nC(═O)NH—, —CHR4(CH2)nNHC(═O)—, —C(═O)NH— and —NHC(═O)—;
    • each R4 is independently selected from H, C1-4alkyl, —C(═O)OH and —OH,
    • each R5 is independently selected from H, C1-4alkyl, phenyl or C1-4alkyl substituted with 1 to 3 —OH groups;
    • each R6 is independently selected from H, fluoro, benzyloxy substituted with —C(═O)OH, benzyl substituted with —C(═O)OH, C1-4alkoxy substituted with —C(═O)OH and C1-4alkyl substituted with —C(═O)OH;
    • R7 is independently selected from H, phenyl and pyridine;
    • R8 is independently selected from

    • R9 is independently selected from H and C1-6haloalkyl;
    • each n is independently selected from 1, 2, 3, 4, 5, 6, 7, 8 and 9, and
    • each m is independently selected from 1, 2, 3, 4, 5, 6, 7, 8 and 9.
      In certain embodiments of such aforementioned immunoconjugates, the linker of Formula (I-b) is a linker having the structure according to Formula (I-c):

In other embodiments of such aforementioned immunoconjugates:

    • L1 is -A1X2—, where A1 is —C(═O)NH(CH2)nS— and X2 is

    • L2 is a bond; L3 is a bond, and L4 is -A4- wherein A4 is —(CH2)nNHC(═O)—.
      In other embodiments of such aforementioned immunoconjugates:
    • L1 is -A1X2—, wherein A1 is —C(═O)NH(CH2)nS— and X2 is

    • L2 is a bond; L3 is a bond; L4 is -A4-, wherein A4 is —(CH2)nC(═O)—.
      In other embodiments of such immunoconjugates:
    • L1 is -A1X2—, wherein A1 is —C(═O)NH(CH2)nS— and X2 is

    • L2 is -A2-, wherein A2 is —(CH2)nC(═O;
    • L3 is -A3-, wherein A3 is

    •  and
    • L4 is

In other embodiments of such aforementioned immunoconjugates:

    • L1 is a -A1X2—, wherein A1 is —C(═O)NH(CH2)nS— and X2 is —(CH2)nC(═O)NH—;
    • L2 is a bond-; L3 is -A3-, wherein A3 is —(CH2)nC(═O)—, and L4 is a bond.
      In other embodiments of such aforementioned immunoconjugates:
    • L1 is a -A1X2—, wherein A1 is —C(═O)NH(CH2)nS—, X2 is —CHR4(CH2)nC(═O)NH— and R4 is —C(═O)OH;
    • L2 is a bond; L3 is -A3-, wherein A3 is —(CH2)nC(═O)— and. L4 is a bond.
      In other embodiments of such aforementioned immunoconjugates:
    • L1 is -A1X2—, where A1 is —C(═O)NH(CH2)nS— and X2 is —(CH2)C(═O)NH—;
    • L2 is a bond; L3 is a bond, and L4 is -A4- wherein A4 is —(CH2)nNHC(═O)—.
      In other embodiments of such aforementioned immunoconjugates:
    • L1 is -A1X2—, wherein A1 is —C(═O)NH(CH2)nS— and X2 is —(CH2)C(═O)NH—;
    • L2 is a bond; L3 is a bond; L4 is -A4-, wherein A4 is —(CH2)nC(═O)—.
      In other embodiments of such aforementioned immunoconjugates:
    • L1 is -A1X2—, wherein A1 is —C(═O)NH(CH2)nS— and X2 is —(CH2)C(═O)NH—;
    • L2 is -A2-, wherein A2 is —(CH2)nC(═O;
    • L3 is -A3-, wherein A3 is

    •  and
    • L4 is

In other embodiments of such aforementioned immunoconjugates:

    • L1 is a -A1X2—, wherein A1 is —C(═O)NH(CH2)nS— and X2 is —(CH2)C(═O)NH—;
    • L2 is a bond-; L3 is -A3-, wherein A3 is —(CH2)nC(═O)—, and L4 is a bond.
      In other embodiments of such aforementioned immunoconjugates:
    • L1 is a -A1X2—, wherein A1 is —C(═O)NH(CH2)nS—, X2 is —CHR4(CH2)nC(═O)NH— and R4 is —C(═O)OH;
    • L2 is a bond; L3 is -A3-, wherein A3 is —(CH2)nC(═O)— and. L4 is a bond.

In the embodiments of the aforementioned immunoconjugates the terminal group is a drug moiety selected from an anti-inflammatory agent, an anticancer agent, an antifungal agent, an antibacterial agent, an anti-parasitic agent, an anti-viral agent and an anesthetic agent. In certain embodiments of such immunoconjugates the drug moiety is selected from a V-ATPase inhibitor, a HSP90 inhibitor, an IAP inhibitor, an mTor inhibitor, a microtubule stabilizer, a microtubule destabilizers, an auristatin, a dolastatin, a maytansinoid, a MetAP (methionine aminopeptidase), an inhibitor of nuclear export of proteins CRM1, a DPPIV inhibitor, an inhibitors of phosphoryl transfer reactions in mitochondria, a protein synthesis inhibitor, a CDK2 inhibitor, a CDK9 inhibitor, an Eg5 inhibitor, an HDAC inhibitor, a DNA damaging agent, a DNA alkylating agent, a DNA intercalator, a DNA minor groove binder, a proteasome inhibitor, a RNA polymerase inhibitor and a DHFR inhibitor. In certain embodiments of such immunoconjugates the spectroscopic probe is selected from a fluorophore, a chromophore, a quantum dot, a magnetic probe, a radioactive probe, an imaging reagent, or a contrast reagent. In certain embodiments of such immunoconjugates the affinity probe is biotin.

Another aspect provided herein is the preparation of an immunoconjugate by a process comprising the steps of:

    • (a) providing a modified antibody or fragment thereof, wherein the modified antibody or fragment comprises a peptide tag, and wherein the peptide tag is a substrate of an enzyme having phosphopantetheinyl transferase activity, and
    • (b) labeling the modified antibody or antibody fragment with a terminal group by incubating the modified antibody or fragment thereof with an enzyme having phosphopantetheinyl transferase activity in the presence of a coenzyme A analogue having the structure of Formula B:

      • wherein L1, L2, L3, L4, R2 and TG are as defined herein;
    •  thereby the terminal group is attached to the peptide tag by a linker having the structure according to Formula (I-b):

    • where the * denotes the phosphopantetheinyl moiety is attached to the peptide tag. In certain embodiments the compound of Formula (B) is selected from

Another aspect provided herein is the preparation of an immunoconjugate by a process comprising the steps of:

    • (a) providing a modified antibody or fragment thereof, wherein the a modified antibody or fragment thereof, comprises a peptide tag, and wherein the peptide tag is a substrate of an enzyme having phosphopantetheinyl transferase activity;
    • (b) labeling the modified antibody or fragment thereof, with a terminal group (TG) by
      • i) incubating the modified antibody or fragment thereof, with an enzyme having phosphopantetheinyl transferase activity in the presence of a compound of Formula (D),

      •  thereby attaching an activated phosphopentathienyl group of Formula (D-a) to the peptide tag,

      •  wherein R1 is a functional group; and
      • ii) reacting the functional group R1 of the activated phosphopentathienyl group with a compound of Formula (II-a),


X-L2-L2-L4-TG  Formula (II-a)

      •  wherein X is a group which reacts with functional group R1, wherein:
        • when X is a thiol, then R1 is a thiol, a maleimide or a haloacetamide; or,
        • when X is a an azide, then R1 is an alkyne, a triaryl phosphine, a cyclooctene or an oxanobornadiene; or,
        • when X is a a triaryl phosphine, then R1 is an azide; or,
        • when X is a an oxanobornadiene, then R1 is an azide; or,
        • when X is a an alkyne, then R1 is an azide; or,
        • when X is a an alkene, then R1 is an azide; or,
        • when X is a a cyclooctene, then R1 is a diaryl tetrazine; or,
        • when X is a a diaryl tetrazine, then R1 is a cyclooctene; or,
        • when X is a a monoaryl tetrazine, then R1 is a norbornene; or,
        • when X is a a norbornene, then R1 is a monoaryl tetrazine; or,
        • when X is a an aldehyde, then R1 is a hydroxylamine or a hydrazine or NH2—NH—C(═O)—; or,
        • when X is a a ketone, then R1 is a hydroxylamine or a hydrazine or NH2—NH—C(═O)—; or,
        • when X is a a hydroxylamine, then R1 is an aldehyde or a ketone; or,
        • when X is a a hydrazine, then R1 is an aldehyde or a ketone; or,
        • when X is a NH2—NH—C(═O)—, then R1 is an aldehyde or a ketone; or,
        • when X is a a haloacetamide, then R1 is a thiol; or,
        • when X is a a maleimide, then R1 is a thiol;
    • thereby the terminal group is attached to the peptide tag by a linker having the structure according to Formula (II-b):

    • where the * denotes the phosphopantetheinyl moiety is attached to the peptide tag, and wherein A1, X2, L2, L3, L4, R2 and TG are as defined herein.
      Another aspect provided herein is the preparation of an immunoconjugate by a process comprising the steps of:
    • (a) providing a modified antibody or fragment thereof, wherein the modified antibody or fragment thereof comprises a peptide tag, and wherein the peptide tag is a substrate of an enzyme having phosphopantetheinyl transferase activity;
    • (b) labeling the modified antibody or fragment thereof with a terminal group (TG)
      • i) by incubating the modified antibody or fragment thereof with an enzyme having phosphopantetheinyl transferase activity in the presence of a compound of Formula (E),

      •  thereby attaching an activated phosphopentathienyl group of Formula (E-a) to the peptide tag,

      •  wherein R1 is a functional group;
      • and
      • ii) reacting the functional group R1 of the activated phosphopentathienyl group with a compound of Formula (II-c),


X-L3-L4-TG  Formula (II-c)

      •  wherein X is a group which reacts with functional group R1, wherein:
        • when X is a thiol, then R1 is a thiol, a maleimide or a haloacetamide; or,
        • when X is a an azide, then R1 is an alkyne, a triaryl phosphine, a cyclooctene or an oxanobornadiene; or,
        • when X is a a triaryl phosphine, then R1 is an azide; or,
        • when X is a an oxanobornadiene, then R1 is an azide; or,
        • when X is a an alkyne, then R1 is an azide; or,
        • when X is a an alkene, then R1 is an azide; or,
        • when X is a a cyclooctene, then R1 is a diaryl tetrazine; or,
        • when X is a a diaryl tetrazine, then R1 is a cyclooctene; or,
        • when X is a a monoaryl tetrazine, then R1 is a norbornene; or,
        • when X is a a norbornene, then R1 is a monoaryl tetrazine; or,
        • when X is a an aldehyde, then R1 is a hydroxylamine or a hydrazine or NH2—NH—C(═O)—; or,
        • when X is a a ketone, then R1 is a hydroxylamine or a hydrazine or NH2—NH—C(═O)—; or,
        • when X is a a hydroxylamine, then R1 is an aldehyde or a ketone; or,
        • when X is a a hydrazine, then R1 is an aldehyde or a ketone; or,
        • when X is a NH2—NH—C(═O)—, then R1 is an aldehyde or a ketone; or,
        • when X is a a haloacetamide, then R1 is a thiol; or,
        • when X is a a maleimide, then R1 is a thiol;
    • thereby the terminal group is attached to the peptide tag by a linker having the structure according to Formula (II-d):

    • where the * denotes the phosphopantetheinyl moiety is attached to the peptide tag, and wherein L1, A2, X2, L3, L4, R2 and TG are as defined herein.
      Another aspect provided herein is the preparation of an immunoconjugate by a process comprising the steps of:
    • (a) providing a modified antibody or fragment thereof, wherein the modified antibody or fragment thereof comprises a peptide tag, and wherein the peptide tag is a substrate of an enzyme having phosphopantetheinyl transferase activity;
    • (b) labeling the modified antibody or fragment thereof with a terminal group (TG)
      • i) by incubating the modified antibody or fragment thereof with an enzyme having phosphopantetheinyl transferase activity in the presence of a compound of Formula (F),

      •  thereby attaching an activated phosphopentathienyl group of Formula (F-a) to the peptide tag,

      •  wherein R1 is a functional group;
      • and
      • ii) reacting the functional group R1 of the activated phosphopentathienyl group with a compound of Formula (II-e),


X-L4-TG  Formula (II-e)

      •  wherein X is a group which reacts with functional group R1, wherein:
        • when X is a thiol, then R1 is a thiol, a maleimide or a haloacetamide; or,
        • when X is a an azide, then R1 is an alkyne, a triaryl phosphine, a cyclooctene or an oxanobornadiene; or,
        • when X is a a triaryl phosphine, then R1 is an azide; or,
        • when X is a an oxanobornadiene, then R1 is an azide; or,
        • when X is a an alkyne, then R1 is an azide; or,
        • when X is a an alkene, then R1 is an azide; or,
        • when X is a a cyclooctene, then R1 is a diaryl tetrazine; or,
        • when X is a a diaryl tetrazine, then R1 is a cyclooctene; or,
        • when X is a a monoaryl tetrazine, then R1 is a norbornene; or,
        • when X is a a norbornene, then R1 is a monoaryl tetrazine; or,
        • when X is a an aldehyde, then R1 is a hydroxylamine or a hydrazine or NH2—NH—C(═O)—; or,
        • when X is a a ketone, then R1 is a hydroxylamine or a hydrazine or NH2—NH—C(═O)—; or,
        • when X is a a hydroxylamine, then R1 is an aldehyde or a ketone; or,
        • when X is a a hydrazine, then R1 is an aldehyde or a ketone; or,
        • when X is a NH2—NH—C(═O)—, then R1 is an aldehyde or a ketone; or,
        • when X is a a haloacetamide, then R1 is a thiol; or,
        • when X is a a maleimide, then R1 is a thiol;
    • thereby the terminal group is attached to the peptide tag by a linker having the structure according to Formula (II-f):

    • where the * denotes the phosphopantetheinyl moiety is attached to the peptide tag, and wherein L1, L2, A3, X2, L4, R2 and TG are as defined herein.
      Another aspect provided herein is the preparation of an immunoconjugate by a process comprising the steps of:
    • (a) providing a modified antibody or fragment thereof, wherein the modified antibody or fragment thereof comprises a peptide tag, and wherein the peptide tag is a substrate of an enzyme having phosphopantetheinyl transferase activity;
    • (b) labeling the modified antibody or fragment thereof with a terminal group (TG)
      • i) by incubating the modified antibody or fragment thereof with an enzyme having phosphopantetheinyl transferase activity in the presence of a compound of Formula (G),

      •  thereby attaching an activated phosphopentathienyl group of Formula (G-a) to the peptide tag,

      •  wherein R1 is a functional group;
      • and
      • ii) reacting the functional group R1 of the activated phosphopentathienyl group with a compound of Formula (II-g),


X-TG  Formula (II-g)

      •  wherein X is a group which reacts with functional group R1, wherein:
        • when X is a thiol, then R1 is a thiol, a maleimide or a haloacetamide; or,
        • when X is a an azide, then R1 is an alkyne, a triaryl phosphine, a cyclooctene or an oxanobornadiene; or,
        • when X is a a triaryl phosphine, then R1 is an azide; or,
        • when X is a an oxanobornadiene, then R1 is an azide; or,
        • when X is a an alkyne, then R1 is an azide; or,
        • when X is a an alkene, then R1 is an azide; or,
        • when X is a a cyclooctene, then R1 is a diaryl tetrazine; or,
        • when X is a a diaryl tetrazine, then R1 is a cyclooctene; or,
        • when X is a a monoaryl tetrazine, then R1 is a norbornene; or,
        • when X is a a norbornene, then R1 is a monoaryl tetrazine; or,
        • when X is a an aldehyde, then R1 is a hydroxylamine or a hydrazine or NH2—NH—C(═O)—; or,
        • when X is a a ketone, then R1 is a hydroxylamine or a hydrazine or NH2—NH—C(═O)—; or,
        • when X is a a hydroxylamine, then R1 is an aldehyde or a ketone; or,
        • when X is a a hydrazine, then R1 is an aldehyde or a ketone; or,
        • when X is a NH2—NH—C(═O)—, then R1 is an aldehyde or a ketone; or,
        • when X is a a haloacetamide, then R1 is a thiol; or,
        • when X is a a maleimide, then R1 is a thiol;
    • thereby the terminal group is attached to the peptide tag by a linker having the structure according to Formula (II-h):

    • where the * denotes the phosphopantetheinyl moiety is attached to the peptide tag, and wherein L1, L2, L3, A4, X2, R2 and TG are as defined herein.
      Another aspect provided herein is the preparation of an immunoconjugate by a process comprising the steps of:
    • (a) providing a modified antibody or fragment thereof, wherein the modified antibody or fragment thereof comprises a peptide tag, and wherein the peptide tag is a substrate of an enzyme having phosphopantetheinyl transferase activity;
    • (b) labeling the modified antibody or fragment thereof with a terminal group (TG) by incubating the modified antibody or fragment thereof with an enzyme having phosphopantetheinyl transferase activity in the presence of a compound of Formula (H),

      • thereby attaching a protected phosphopentathienyl group of Formula (H-a) to the peptide tag,

      • wherein R1—PG is a protected functional group R1;
    • (c) deprotecting the protected phosphopentathienyl group to give an activated phosphopentathienyl group of Formula (D-a) attached to the peptide tag,

      • wherein R1 is a functional group;
    • and
    • (d) reacting the functional group R1 of the activated phosphopentathienyl group with a compound of Formula (II-a),


X-L2-L3-L4-TG  Formula (II-a)

      • wherein X is a group which reacts with functional group R1, wherein:
        • when X is a thiol, then R1 is a thiol, a maleimide or a haloacetamide; or,
        • when X is a an azide, then R1 is an alkyne, a triaryl phosphine, a cyclooctene or an oxanobornadiene; or,
        • when X is a a triaryl phosphine, then R1 is an azide; or,
        • when X is a an oxanobornadiene, then R1 is an azide; or,
        • when X is a an alkyne, then R1 is an azide; or,
        • when X is a an alkene, then R1 is an azide; or,
        • when X is a a cyclooctene, then R1 is a diaryl tetrazine; or,
        • when X is a a diaryl tetrazine, then R1 is a cyclooctene; or,
        • when X is a a monoaryl tetrazine, then R1 is a norbornene; or,
        • when X is a a norbornene, then R1 is a monoaryl tetrazine; or,
        • when X is a an aldehyde, then R1 is a hydroxylamine or a hydrazine or NH2—NH—C(═O)—; or,
        • when X is a a ketone, then R1 is a hydroxylamine or a hydrazine or NH2—NH—C(═O)—; or,
        • when X is a a hydroxylamine, then R1 is an aldehyde or a ketone; or,
        • when X is a a hydrazine, then R1 is an aldehyde or a ketone; or,
        • when X is a NH2—NH—C(═O)—, then R1 is an aldehyde or a ketone; or,
        • when X is a a haloacetamide, then R1 is a thiol; or,
        • when X is a a maleimide, then R1 is a thiol;
    • thereby the terminal group is attached to the peptide tag by a linker having the structure according to Formula (II-b):

    • where the * denotes the phosphopantetheinyl moiety is attached to the peptide tag, and wherein A1, X2, L2, L3, L4, R2, PG and TG are as defined herein.
      Another aspect provided herein is the preparation of an immunoconjugate by a process comprising the steps of:
    • (a) providing a modified antibody or fragment thereof, wherein the modified antibody or fragment thereof comprises a peptide tag, and wherein the peptide tag is a substrate of an enzyme having phosphopantetheinyl transferase activity;
    • (b) labeling the modified antibody or fragment thereof with a terminal group (TG) by incubating the modified antibody or fragment thereof with an enzyme having phosphopantetheinyl transferase activity in the presence of a compound of Formula (J),

      • thereby attaching a protected phosphopentathienyl group of Formula (J-a) to the peptide tag,

      • wherein R1—PG is a protected functional group R1;
    • (c) deprotecting the protected phosphopentathienyl group to give an activated phosphopentathienyl group of Formula (E-a) attached to the peptide tag,

      • wherein R1 is a functional group;
    • and
    • (d) reacting the functional group R1 of the activated phosphopentathienyl group with a compound of Formula (II-c),


X-L3-L4-TG  Formula (II-c)

      • wherein X is a group which reacts with functional group R1, wherein:
        • when X is a thiol, then R1 is a thiol, a maleimide or a haloacetamide; or,
        • when X is a an azide, then R1 is an alkyne, a triaryl phosphine, a cyclooctene or an oxanobornadiene; or,
        • when X is a a triaryl phosphine, then R1 is an azide; or,
        • when X is a an oxanobornadiene, then R1 is an azide; or,
        • when X is a an alkyne, then R1 is an azide; or,
        • when X is a an alkene, then R1 is an azide; or,
        • when X is a a cyclooctene, then R1 is a diaryl tetrazine; or,
        • when X is a a diaryl tetrazine, then R1 is a cyclooctene; or,
        • when X is a a monoaryl tetrazine, then R1 is a norbornene; or,
        • when X is a a norbornene, then R1 is a monoaryl tetrazine; or,
        • when X is a an aldehyde, then R1 is a hydroxylamine or a hydrazine or NH2—NH—C(═O)—; or,
        • when X is a a ketone, then R1 is a hydroxylamine or a hydrazine or NH2—NH—C(═O)—; or,
        • when X is a a hydroxylamine, then R1 is an aldehyde or a ketone; or,
        • when X is a a hydrazine, then R1 is an aldehyde or a ketone; or,
        • when X is a NH2—NH—C(═O)—, then R1 is an aldehyde or a ketone; or,
        • when X is a a haloacetamide, then R1 is a thiol; or,
        • when X is a a maleimide, then R1 is a thiol;
    • thereby the terminal group is attached to the peptide tag by a linker having the structure according to Formula (II-d):

    • where the * denotes the phosphopantetheinyl moiety is attached to the peptide tag, and wherein L1, A2, X2, L3, L4, R2, PG and TG are as defined herein.
      Another aspect provided herein is the preparation of an immunoconjugate by a process comprising the steps of:
    • (a) providing a modified antibody or fragment thereof, wherein the modified antibody or fragment thereof comprises a peptide tag, and wherein the peptide tag is a substrate of an enzyme having phosphopantetheinyl transferase activity;
    • (b) labeling the modified antibody or fragment thereof with a terminal group (TG) by incubating the modified antibody or fragment thereof with an enzyme having phosphopantetheinyl transferase activity in the presence of a compound of Formula (K),

      • thereby attaching a protected phosphopentathienyl group of Formula (J-a) to the peptide tag,

      • wherein R1—PG is a protected functional group R1;
    • (c) deprotecting the protected phosphopentathienyl group to give an activated phosphopentathienyl group of Formula (F-a) attached to the peptide tag,

      • wherein R1 is a functional group;
    • and
    • (d) reacting the functional group R1 of the activated phosphopentathienyl group with a compound of Formula (II-e),


X-L4-TG  Formula (II-e)

      • wherein X is a group which reacts with functional group R1, wherein:
        • when X is a thiol, then R1 is a thiol, a maleimide or a haloacetamide; or,
        • when X is a an azide, then R1 is an alkyne, a triaryl phosphine, a cyclooctene or an oxanobornadiene; or,
        • when X is a a triaryl phosphine, then R1 is an azide; or,
        • when X is a an oxanobornadiene, then R1 is an azide; or,
        • when X is a an alkyne, then R1 is an azide; or,
        • when X is a an alkene, then R1 is an azide; or,
        • when X is a a cyclooctene, then R1 is a diaryl tetrazine; or,
        • when X is a a diaryl tetrazine, then R1 is a cyclooctene; or,
        • when X is a a monoaryl tetrazine, then R1 is a norbornene; or,
        • when X is a a norbornene, then R1 is a monoaryl tetrazine; or,
        • when X is a an aldehyde, then R1 is a hydroxylamine or a hydrazine or NH2—NH—C(═O)—; or,
        • when X is a a ketone, then R1 is a hydroxylamine or a hydrazine or NH2—NH—C(═O)—; or,
        • when X is a a hydroxylamine, then R1 is an aldehyde or a ketone; or,
        • when X is a a hydrazine, then R1 is an aldehyde or a ketone; or,
        • when X is a NH2—NH—C(═O)—, then R1 is an aldehyde or a ketone; or,
        • when X is a a haloacetamide, then R1 is a thiol; or,
        • when X is a a maleimide, then R1 is a thiol;
    • thereby the terminal group is attached to the peptide tag by a linker having the structure according to Formula (II-f):

    • where the * denotes the phosphopantetheinyl moiety is attached to the peptide tag, and wherein L1, L2, A3, X2, L4, R2, PG and TG are as defined herein.
      Another aspect provided herein is the preparation of an immunoconjugate by a process comprising the steps of:
    • (a) providing a modified antibody or fragment thereof, wherein the modified antibody or fragment thereof comprises a peptide tag, and wherein the peptide tag is a substrate of an enzyme having phosphopantetheinyl transferase activity;
    • (b) labeling the modified antibody or fragment thereof with a terminal group (TG) by incubating the modified antibody or fragment thereof with an enzyme having phosphopantetheinyl transferase activity in the presence of a compound of Formula (L),

      • thereby attaching a protected phosphopentathienyl group of Formula (L-a) to the peptide tag,

      • wherein R1—PG is a protected functional group R1;
    • (c) deprotecting the protected phosphopentathienyl group to give an activated phosphopentathienyl group of Formula (G-a) attached to the peptide tag,

      • wherein R1 is a functional group;
    • and
    • (d) reacting the functional group R1 of the activated phosphopentathienyl group with a compound of Formula (II-g),


X-TG  Formula (II-g)

      • wherein X is a group which reacts with functional group R1, wherein:
        • when X is a thiol, then R1 is a thiol, a maleimide or a haloacetamide; or,
        • when X is a an azide, then R1 is an alkyne, a triaryl phosphine, a cyclooctene or an oxanobornadiene; or,
        • when X is a a triaryl phosphine, then R1 is an azide; or,
        • when X is a an oxanobornadiene, then R1 is an azide; or,
        • when X is a an alkyne, then R1 is an azide; or,
        • when X is a an alkene, then R1 is an azide; or,
        • when X is a a cyclooctene, then R1 is a diaryl tetrazine; or,
        • when X is a a diaryl tetrazine, then R1 is a cyclooctene; or,
        • when X is a a monoaryl tetrazine, then R1 is a norbornene; or,
        • when X is a a norbornene, then R1 is a monoaryl tetrazine; or,
        • when X is a an aldehyde, then R1 is a hydroxylamine or a hydrazine or NH2—NH—C(═O)—; or,
        • when X is a a ketone, then R1 is a hydroxylamine or a hydrazine or NH2—NH—C(═O)—; or,
        • when X is a a hydroxylamine, then R1 is an aldehyde or a ketone; or,
        • when X is a a hydrazine, then R1 is an aldehyde or a ketone; or,
        • when X is a NH2—NH—C(═O)—, then R1 is an aldehyde or a ketone; or,
        • when X is a a haloacetamide, then R1 is a thiol; or,
        • when X is a a maleimide, then R1 is a thiol;
    • thereby the terminal group is attached to the peptide tag by a linker having the structure according to Formula (II-h):

    • where the * denotes the phosphopantetheinyl moiety is attached to the peptide tag, and wherein L1, L2, L3, A4, X2, R2, PG and TG are as defined herein

In certain embodiments of the above methods of preparation

    • A1 is —C(═O)NH—, —NHC(═O)—, —C(═O)NH(CH2)n—, —C(═O)NH(C(R4)2)n—, —(O(CH2)n)m—, —(O(C(R4)2)n)m—, —((CH2)nO)m—, —(((C(R4)2)nO)m—, —((CH2)nO)m(CH2)n—, —(((C(R4)2)nO)mC(R4)2)n—, —(CH2)nC(═O)NH—, —(C(R4)2)nC(═O)NH—, —(CH2)nNHC(═O)—, —(C(R4)2)nNHC(═O)—, —NHC(═O)(CH2)n—, —NHC(═O)(C(R4)2)n—, —C(═O)NH(CH2)nS—, —C(═O)NH(C(R4)2)nS—, —S(CH2)nC(═O)NH—, —S(C(R4)2)nC(═O)NH—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —C(═O)NH(C(R4)2)nNHC(═O)(C(R4)2)n—, —C(═O)(CH2)n—, —C(═O)(C(R4)2)n—, —(CH2)nC(═O)—, —(C(R4)2)nC(═O)—, —(CH2)n(O(CH2)n)mNHC(═O)(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—, —(CH2)nNHC(═O)(CH2)n—, —(C(R4)2)nNHC(═O)(C(R4)2)n—, —(CH2)nNH((CH2)nO)m(CH2)n—, —(C(R4)2)nNH((C(R4)2)nO)m(C(R4)2)n—, —(O(CH2)n)mNHC(═O)(CH2)n—, or —(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—;
    • L2 is a bond, -A2-, or -A2X2—;
    • L3 is a bond, -A3-, or -A3X2—;
    • L4 is a bond, -A4-, -A4X2—,

    • A2 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(C(R4)2)n—, —(O(CH2)n)m—, —(O(C(R4)2)n)m—, —((CH2)nO)m—, —(((C(R4)2)nO)m—, —((CH2)nO)m(CH2)n—, —(((C(R4)2)nO)mC(R4)2)n—, —(CH2)nC(═O)NH—, —(C(R4)2)nC(═O)NR4—, —(CH2)nNHC(═O)—, —(C(R4)2)nNHC(═O)—, —NHC(═O)(CH2)n—, —NHC(═O)(C(R4)2)n—, —C(═O)NH(CH2)nS—, —C(═O)NH(C(R4)2)nS—, —S(CH2)nC(═O)NH—, —S(C(R4)2)nC(═O)NH—, —(CH2)nS—, —(C(R4)2)nS—, —S(CH2)n—, —S(C(R4)2)n—, —(CH2)nNH—, —(C(R4)2)nNH—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —C(═O)NH(C(R4)2)nNHC(═O)(C(R4)2)n—, —C(═O)(CH2)n—, —C(═O)(C(R4)2)n—, —(CH2)nC(═O)—, —(C(R4)2)nC(═O)—, —(CH2)n(O(CH2)n)mNHC(═O)(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—, —(CH2)n(O(CH2)n)mOC(═O)NH(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mOC(═O)NH(C(R4)2)n—, —(CH2)nNHC(═O)(CH2)n—, —(C(R4)2)nNHC(═O)(C(R4)2)n—, —(CH2)nNH((CH2)nO)m(CH2)n—, —(C(R4)2)nNH((C(R4)2)nO)m(C(R4)2)n—, —(O(CH2)n)mNHC(═O)(CH2)n—, —(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—,

    • A3 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(C(R4)2)n—, —(O(CH2)n)m—, —(O(C(R4)2)n)m—, —((CH2)nO)m, —(((C(R4)2)nO)m, —((CH2)nO)m(CH2)n—, —(((C(R4)2)nO)mC(R4)2)n—, —(CH2)nC(═O)NH—, —(C(R4)2)nC(═O)NH—, —(CH2)nNHC(═O)—, —(C(R4)2)nNHC(═O)—, —NHC(═O)(CH2)n—, —NHC(═O)(C(R4)2)n—, —C(═O)NH(CH2)nS—, —C(═O)NH(C(R4)2)nS—, —S(CH2)nC(═O)NH—, —S(C(R4)2)nC(═O)NH—, —(CH2)nS—, —(C(R4)2)nS—, —S(CH2)n—, —S(C(R4)2)n—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —C(═O)NH(C(R4)2)nNHC(═O)(C(R4)2)n—, —C(═O)(CH2)n—, —C(═O)(C(R4)2)n—, —(CH2)nC(═O)—, —(C(R4)2)nC(═O)—, —(CH2)n(O(CH2)n)mNHC(═O)(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—, —(CH2)n(O(CH2)n)mOC(═O)NH(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mOC(═O)NH(C(R4)2)n—, —(CH2)n(O(CH2)n)mOC(═O)—, —(C(R4)2)n(O(C(R4)2)n)mOC(═O)—, —(CH2)n(O(CH2)n)mOC(═O)—, —(C(R4)2)n(O(C(R4)2)n)mOC(═O)—, —(CH2)nNHC(═O)(CH2)n—, —(C(R4)2)nNHC(═O)(C(R4)2)n—, —(O(CH2)n)mNHC(═O)(CH2)n—, —(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—,

    • A4 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(C(R4)2)n—, —(O(CH2)n)m—, —(O(C(R4)2)n)m—, —((CH2)nO)m—, —(((C(R4)2)nO)m—, —((CH2)nO)m(CH2)n—, —(((C(R4)2)nO)mC(R4)2)n—, —(CH2)nC(═O)NH—, —(C(R4)2)nC(═O)NH—, —(CH2)nNHC(═O)—, —(C(R4)2)nNHC(═O)—, —NHC(═O)(CH2)n—, —NHC(═O)(C(R4)2)n—, —C(═O)NH(CH2)nS—, —C(═O)NH(C(R4)2)nS—, —S(CH2)nC(═O)NH—, —S(C(R4)2)nC(═O)NH—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —C(═O)NH(C(R4)2)nNHC(═O)(C(R4)2)n—, —C(═O)(CH2)n—, —C(═O)(C(R4)2)n—, —(CH2)nC(═O)—, —(C(R4)2)nC(═O)—, —(CH2)n(O(CH2)n)mNHC(═O)(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—, —(CH2)nNHC(═O)(CH2)n—, —(C(R4)2)nNHC(═O)(C(R4)2)n—, —(CH2)nNH((CH2)nO)m(CH2)n—, —(C(R4)2)nNH((C(R4)2)nO)m(C(R4)2)n—, —(O(CH2)n)mNHC(═O)(CH2)n—, or —(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—;
    • each X2 is independently selected from a bond,

    •  —S—, —Si(OH)2O—,

    •  CHR4(CH2)nC(═O)NH—, —CHR4(CH2)nNHC(═O)—, —C(═O)NH— and —NHC(═O)—;
    • each R4 is independently selected from H, C1-4alkyl, —C(═O)OH and —OH,
    • each R5 is independently selected from H, C1-4alkyl, phenyl or C1-4alkyl substituted with 1 to 3 —OH groups;
    • each R6 is independently selected from H, fluoro, benzyloxy substituted with —C(═O)OH, benzyl substituted with —C(═O)OH, C1-4alkoxy substituted with —C(═O)OH and C1-4alkyl substituted with —C(═O)OH;
    • R7 is independently selected from H, phenyl and pyridine;
    • R8 is independently selected from

    • R9 is independently selected from H and C1-6haloalkyl;
    • each n is independently selected from 1, 2, 3, 4, 5, 6, 7, 8 and 9;
    • each m is independently selected from 1, 2, 3, 4, 5, 6, 7, 8 and 9, and
    • TG is selected from a drug moiety, an affinity probe, a chelator, a spectroscopic probe, a radioactive probe, a lipid molecule, a polyethylene glycol, a polymer, a nanoparticle, a quantum dot, a liposome, a PLGA particle, and a polysaccharide.

In other embodiments of the above methods of preparation

    • A1 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(CH2)nS—, —(O(CH2)n)m—, —((CH2)nO)m(CH2)n—, —NHC(═O)(CH2)n—, —(CH2)nNHC(═O)—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —(CH2)nNH((CH2)nO)m(CH2)n— or —(O(CH2)n)mNHC(═O)(CH2)n—;
    • L2 is a bond, -A2-, or -A2X2—;
    • L3 is a bond, -A3-, or -A3X2—;
    • L4 is a bond, -A4-, -A4X2—,

    • A1 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(CH2)nS—, —(O(CH2)n)m—, —((CH2)nO)m(CH2)n—, —NHC(═O)(CH2)n—, —(CH2)nNHC(═O)—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —(CH2)nNH((CH2)nO)m(CH2)n— or —(O(CH2)n)mNHC(═O)(CH2)n—;
    • A2 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(CH2)nS—, —(O(CH2)n)m—, —((CH2)nO)m(CH2)n—, —NHC(═O)(CH2)n—, —(CH2)nNHC(═O)—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —(CH2)nNH((CH2)nO)m(CH2)n—, —(O(CH2)n)mNHC(═O)(CH2)n— or

    • A3 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(CH2)nS—, —(O(CH2)n)m—, —((CH2)nO)m(CH2)n—, —NHC(═O)(CH2)n—, —(CH2)nNHC(═O)—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —(CH2)nNH((CH2)nO)m(CH2)n—, —(O(CH2)n)mNHC(═O)(CH2)n— or

    • A4 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(CH2)nS—, —(O(CH2)n)m—, —((CH2)nO)m(CH2)n—, —NHC(═O)(CH2)n—, —(CH2)nNHC(═O)—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —(CH2)nNH((CH2)nO)m(CH2)n— or —(O(CH2)n)mNHC(═O)(CH2)n—;
    • each X2 is independently selected from a bond,

    •  —S—, —Si(OH)2O—,

    •  —CHR4(CH2)nC(═O)NH—, —CHR4(CH2)nNHC(═O)—, —C(═O)NH— and —NHC(═O)—;
    • each R4 is independently selected from H, C1-4alkyl, —C(═O)OH and —OH,
    • each R5 is independently selected from H, C1-4alkyl, phenyl or C1-4alkyl substituted with 1 to 3 —OH groups;
    • each R6 is independently selected from H, fluoro, benzyloxy substituted with —C(═O)OH, benzyl substituted with —C(═O)OH, C1-4alkoxy substituted with —C(═O)OH and C1-4alkyl substituted with —C(═O)OH;
    • R7 is independently selected from H, phenyl and pyridine;
    • R8 is independently selected from

    • R9 is independently selected from H and C1-6haloalkyl;
    • each n is independently selected from 1, 2, 3, 4, 5, 6, 7, 8 and 9, and
    • each m is independently selected from 1, 2, 3, 4, 5, 6, 7, 8 and 9.
      In other embodiments of the above methods of preparation
    • L1 is a bond, -A1-, -A1X2— or —X2—;
    • L3 is a bond, -A3-, or -A3X2—;
    • L4 is a bond, -A4-, -A4X2—,

    • A1 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(CH2)nS—, —(O(CH2)n)m—, —((CH2)nO)m(CH2)n—, —NHC(═O)(CH2)n—, —(CH2)nNHC(═O)—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —(CH2)nNH((CH2)nO)m(CH2)n— or —(O(CH2)n)mNHC(═O)(CH2)n—;
    • A2 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(CH2)nS—, —(O(CH2)n)m—, —((CH2)nO)m(CH2)n—, —NHC(═O)(CH2)n—, —(CH2)nNHC(═O)—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —(CH2)nNH((CH2)nO)m(CH2)n—, —(O(CH2)n)mNHC(═O)(CH2)n— or

    • A3 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(CH2)nS—, —(O(CH2)n)m—, —((CH2)nO)m(CH2)n—, —NHC(═O)(CH2)n—, —(CH2)nNHC(═O)—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —(CH2)nNH((CH2)nO)m(CH2)n—, —(O(CH2)n)mNHC(═O)(CH2)n— or

    • A4 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(CH2)nS—, —(O(CH2)n)m—, —((CH2)nO)m(CH2)n—, —NHC(═O)(CH2)n—, —(CH2)nNHC(═O)—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —(CH2)nNH((CH2)nO)m(CH2)n— or —(O(CH2)n)mNHC(═O)(CH2)n—;
    • each X2 is independently selected from a bond,

    •  —S—, —Si(OH)2O—,

    •  —CHR4(CH2)nC(═O)NH—, —CHR4(CH2)nNHC(═O)—, —C(═O)NH— and —NHC(═O)—;
    • each R4 is independently selected from H, C1-4alkyl, —C(═O)OH and —OH,
    • each R5 is independently selected from H, C1-4alkyl, phenyl or C1-4alkyl substituted with 1 to 3 —OH groups;
    • each R6 is independently selected from H, fluoro, benzyloxy substituted with —C(═O)OH, benzyl substituted with —C(═O)OH, C1-4alkoxy substituted with —C(═O)OH and C1-4alkyl substituted with —C(═O)OH;
    • R7 is independently selected from H, phenyl and pyridine;
    • R8 is independently selected from

    • R9 is independently selected from H and C1-6haloalkyl;
    • each n is independently selected from 1, 2, 3, 4, 5, 6, 7, 8 and 9, and
    • each m is independently selected from 1, 2, 3, 4, 5, 6, 7, 8 and 9.

Another aspect provided herein are conjugated antibodies or antibody fragment thereof, comprising the modified antibody or antibody fragment provided herein, wherein a serine residue of the peptide tag in the modified antibody or antibody fragment thereof is conjugated to a 4′-phosphopantetheine group having the structure of Formula (D-a), Formula (E-a), Formula (F-a) or Formula (G-a):

wherein:

    • L1 is -A1X2— or —X2—;
    • L2 is a bond, -A2-, or -A2X2—;
    • L3 is a bond, -A3-, or -A3X2—;
    • L4 is a bond, -A4-, -A4X2—,

    • A1 is —C(═O)NH—, —NHC(═O)—, —C(═O)NH(CH2)n—, —C(═O)NH(C(R4)2)n—, —(O(CH2)n)m—, —(O(C(R4)2)n)m—, —((CH2)nO)m—, —(((C(R4)2)nO)m—, —((CH2)nO)m(CH2)n—, —(((C(R4)2)nO)mC(R4)2)n—, —(CH2)nC(═O)NH—, —(C(R4)2)nC(═O)NH—, —(CH2)nNHC(═O)—, —(C(R4)2)nNHC(═O)—, —NHC(═O)(CH2)n—, —NHC(═O)(C(R4)2)n—, —C(═O)NH(CH2)nS—, —C(═O)NH(C(R4)2)nS—, —S(CH2)nC(═O)NH—, —S(C(R4)2)nC(═O)NH—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —C(═O)NH(C(R4)2)nNHC(═O)(C(R4)2)n—, —C(═O)(CH2)n—, —C(═O)(C(R4)2)n—, —(CH2)nC(═O)—, —(C(R4)2)nC(═O)—, —(CH2)n(O(CH2)n)mNHC(═O)(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—, —(CH2)nNHC(═O)(CH2)n—, —(C(R4)2)nNHC(═O)(C(R4)2)n—, —(CH2)nNH((CH2)nO)m(CH2)n—, —(C(R4)2)nNH((C(R4)2)nO)m(C(R4)2)n—, —(O(CH2)n)mNHC(═O)(CH2)n—, or —(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—;
    • A2 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(C(R4)2)n—, —(O(CH2)n)m—, —(O(C(R4)2)n)m—, —((CH2)nO)m—, —(((C(R4)2)nO)m—, —((CH2)nO)m(CH2)n—, —(((C(R4)2)nO)mC(R4)2)n—, —(CH2)nC(═O)NH—, —(C(R4)2)nC(═O)NR4—, —(CH2)nNHC(═O)—, —(C(R4)2)nNHC(═O)—, —NHC(═O)(CH2)n—, —NHC(═O)(C(R4)2)n—, —C(═O)NH(CH2)nS—, —C(═O)NH(C(R4)2)nS—, —S(CH2)nC(═O)NH—, —S(C(R4)2)nC(═O)NH—, —(CH2)nS—, —(C(R4)2)nS—, —S(CH2)n—, —S(C(R4)2)n—, —(CH2)nNH—, —(C(R4)2)nNH—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —C(═O)NH(C(R4)2)nNHC(═O)(C(R4)2)n—, —C(═O)(CH2)n—, —C(═O)(C(R4)2)n—, —(CH2)nC(═O)—, —(C(R4)2)nC(═O)—, —(CH2)n(O(CH2)n)mNHC(═O)(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—, —(CH2)n(O(CH2)n)mOC(═O)NH(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mOC(═O)NH(C(R4)2)n—, —(CH2)nNHC(═O)(CH2)n—, —(C(R4)2)nNHC(═O)(C(R4)2)n—, —(CH2)nNH((CH2)nO)m(CH2)n—, —(C(R4)2)nNH((C(R4)2)nO)m(C(R4)2)n—, —(O(CH2)n)mNHC(═O)(CH2)n—, —(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—,

    • A3 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(C(R4)2)n—, —(O(CH2)n)m—, —(O(C(R4)2)n)m—, —((CH2)nO)m—, —(((C(R4)2)nO)m—, —((CH2)nO)m(CH2)n—, —(((C(R4)2)nO)mC(R4)2)n—, —(CH2)nC(═O)NH—, —(C(R4)2)nC(═O)NH—, —(CH2)nNHC(═O)—, —(C(R4)2)nNHC(═O)—, —NHC(═O)(CH2)n—, —NHC(═O)(C(R4)2)n—, —C(═O)NH(CH2)nS—, —C(═O)NH(C(R4)2)nS—, —S(CH2)nC(═O)NH—, —S(C(R4)2)nC(═O)NH—, —(CH2)nS—, —(C(R4)2)nS—, —S(CH2)n—, —S(C(R4)2)n—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —C(═O)NH(C(R4)2)nNHC(═O)(C(R4)2)n—, —C(═O)(CH2)n—, —C(═O)(C(R4)2)n—, —(CH2)nC(═O)—, —(C(R4)2)nC(═O)—, —(CH2)n(O(CH2)n)mNHC(═O)(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—, —(CH2)n(O(CH2)n)mOC(═O)NH(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mOC(═O)NH(C(R4)2)n—, —(CH2)n(O(CH2)n)mOC(═O)—, —(C(R4)2)n(O(C(R4)2)n)mOC(═O)—, —(CH2)n(O(CH2)n)mOC(═O)—, —(C(R4)2)n(O(C(R4)2)n)mOC(═O)—, —(CH2)nNHC(═O)(CH2)n—, —(C(R4)2)nNHC(═O)(C(R4)2)n—, —(O(CH2)n)mNHC(═O)(CH2)n—, —(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—,

    • A4 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(C(R4)2)n—, —(O(CH2)n)m—, —(O(C(R4)2)n)m—, —((CH2)nO)m—, —(((C(R4)2)nO)m—, —((CH2)nO)m(CH2)n—, —(((C(R4)2)nO)mC(R4)2)n—, —(CH2)nC(═O)NH—, —(C(R4)2)nC(═O)NH—, —(CH2)nNHC(═O)—, —(C(R4)2)nNHC(═O)—, —NHC(═O)(CH2)n—, —NHC(═O)(C(R4)2)n—, —C(═O)NH(CH2)nS—, —C(═O)NH(C(R4)2)nS—, —S(CH2)nC(═O)NH—, —S(C(R4)2)nC(═O)NH—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —C(═O)NH(C(R4)2)nNHC(═O)(C(R4)2)n—, —C(═O)(CH2)n—, —C(═O)(C(R4)2)n—, —(CH2)nC(═O)—, —(C(R4)2)nC(═O)—, —(CH2)n(O(CH2)n)mNHC(═O)(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—, —(CH2)nNHC(═O)(CH2)n—, —(C(R4)2)nNHC(═O)(C(R4)2)n—, —(CH2)nNH((CH2)nO)m(CH2)n—, —(C(R4)2)nNH((C(R4)2)nO)m(C(R4)2)n—, —(O(CH2)n)mNHC(═O)(CH2)n—, or —(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—;
    • each X2 is independently selected from a bond,

    •  —S—, —Si(OH)2O—,

    •  —CHR4(CH2)nC(═O)NH—, —CHR4(CH2)nNHC(═O)—, —C(═O)NH— and —NHC(═O)—;
    • each R4 is independently selected from H, C1-4alkyl, —C(═O)OH and —OH,
    • each R5 is independently selected from H, C1-4alkyl, phenyl or C1-4alkyl substituted with 1 to 3 —OH groups;
    • each R6 is independently selected from H, fluoro, benzyloxy substituted with —C(═O)OH, benzyl substituted with —C(═O)OH, C1-4alkoxy substituted with —C(═O)OH and C1-4alkyl substituted with —C(═O)OH;
    • R7 is independently selected from H, phenyl and pyridine;
    • R9 is independently selected from

    • R9 is independently selected from H and C1-6haloalkyl;
    • each n is independently selected from 1, 2, 3, 4, 5, 6, 7, 8 and 9,
    • each m is independently selected from 1, 2, 3, 4, 5, 6, 7, 8 and 9, and
    • R1 is a thiol, a maleimide, a haloacetamide, an alkyne, a triaryl phosphine, a cyclooctene, an oxanobornadiene, an azide, a diaryl tetrazine, a norbornene, a monoaryl tetrazine, a hydroxylamine, a hydrazine, NH2—NH—C(═O)—, an aldehyde or a ketone.
      In certain embodiments of such conjugated antibodies or antibody fragments thereof, the 4′-phosphopantetheine group is

In certain embodiments of such conjugated antibodies or antibody fragments thereof, the conjugated serine has a structure selected from:

In other embodiments of such conjugated antibodies or antibody fragments thereof, the conjugated serine is

Another aspect provided herein are conjugated antibodies or antibody fragment thereof, comprising a modified antibody or antibody fragment thereof provided herein, wherein a serine residue of the peptide tag is conjugated to a modified 4′-phosphopantetheine group and the conjugated serine has a structure selected from:

wherein

    • L1 is -A1X2— or —X2—;
    • L2 is a bond, -A2-, or -A2X2—;
    • L3 is a bond, -A3-, or -A3X2—;
    • L4 is a bond, -A4-, -A4X2—,

    • A1 is —C(═O)NH—, —NHC(═O)—, —C(═O)NH(CH2)n—, —C(═O)NH(C(R4)2)n—, —(O(CH2)n)m—, —(O(C(R4)2)n)m—, —((CH2)nO)m—, —(((C(R4)2)nO)m—, —((CH2)nO)m(CH2)n—, —(((C(R4)2)nO)mC(R4)2)n—, —(CH2)nC(═O)NH—, —(C(R4)2)nC(═O)NH—, —(CH2)nNHC(═O)—, —(C(R4)2)nNHC(═O)—, —NHC(═O)(CH2)n—, —NHC(═O)(C(R4)2)n—, —C(═O)NH(CH2)nS—, —C(═O)NH(C(R4)2)nS—, —S(CH2)nC(═O)NH—, —S(C(R4)2)nC(═O)NH—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —C(═O)NH(C(R4)2)nNHC(═O)(C(R4)2)n—, —C(═O)(CH2)n—, —C(═O)(C(R4)2)n—, —(CH2)nC(═O)—, —(C(R4)2)nC(═O)—, —(CH2)n(O(CH2)n)mNHC(═O)(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—, —(CH2)nNHC(═O)(CH2)n—, —(C(R4)2)nNHC(═O)(C(R4)2)n—, —(CH2)nNH((CH2)nO)m(CH2)n—, —(C(R4)2)nNH((C(R4)2)nO)m(C(R4)2)n—, —(O(CH2)n)mNHC(═O)(CH2)n—, or —(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—;
    • A2 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(C(R4)2)n—, —(O(CH2)n)m—, —(O(C(R4)2)n)m—, —((CH2)nO)m—, —(((C(R4)2)nO)m—, —((CH2)nO)m(CH2)n—, —(((C(R4)2)nO)mC(R4)2)n—, —(CH2)nC(═O)NH—, —(C(R4)2)nC(═O)NR4—, —(CH2)nNHC(═O)—, —(C(R4)2)nNHC(═O)—, —NHC(═O)(CH2)n—, —NHC(═O)(C(R4)2)n—, —C(═O)NH(CH2)nS—, —C(═O)NH(C(R4)2)nS—, —S(CH2)nC(═O)NH—, —S(C(R4)2)nC(═O)NH—, —(CH2)nS—, —(C(R4)2)nS—, —S(CH2)n—, —S(C(R4)2)n—, —(CH2)nNH—, —(C(R4)2)nNH—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —C(═O)NH(C(R4)2)nNHC(═O)(C(R4)2)n—, —C(═O)(CH2)n—, —C(═O)(C(R4)2)n—, —(CH2)nC(═O)—, —(C(R4)2)nC(═O)—, —(CH2)n(O(CH2)n)mNHC(═O)(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—, —(CH2)n(O(CH2)n)mOC(═O)NH(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mOC(═O)NH(C(R4)2)n—, —(CH2)nNHC(═O)(CH2)n—, —(C(R4)2)nNHC(═O)(C(R4)2)n—, —(CH2)nNH((CH2)nO)m(CH2)n—, —(C(R4)2)nNH((C(R4)2)nO)m(C(R4)2)n—, —(O(CH2)n)mNHC(═O)(CH2)n—, —(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—,

    • A3 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(C(R4)2)n—, —(O(CH2)n)m—, —(O(C(R4)2)n)m—, —((CH2)nO)m—, —(((C(R4)2)nO)m—, —((CH2)nO)m(CH2)n—, —(((C(R4)2)nO)mC(R4)2)n—, —(CH2)nC(═O)NH—, —(C(R4)2)nC(═O)NH—, —(CH2)nNHC(═O)—, —(C(R4)2)nNHC(═O)—, —NHC(═O)(CH2)n—, —NHC(═O)(C(R4)2)n—, —C(═O)NH(CH2)nS—, —C(═O)NH(C(R4)2)nS—, —S(CH2)nC(═O)NH—, —S(C(R4)2)nC(═O)NH—, —(CH2)nS—, —(C(R4)2)nS—, —S(CH2)n—, —S(C(R4)2)n—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —C(═O)NH(C(R4)2)nNHC(═O)(C(R4)2)n—, —C(═O)(CH2)n—, —C(═O)(C(R4)2)n—, —(CH2)nC(═O)—, —(C(R4)2)nC(═O)—, —(CH2)n(O(CH2)n)mNHC(═O)(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—, —(CH2)n(O(CH2)n)mOC(═O)NH(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mOC(═O)NH(C(R4)2)n—, —(CH2)n(O(CH2)n)mOC(═O)—, —(C(R4)2)n(O(C(R4)2)n)mOC(═O)—, —(CH2)n(O(CH2)n)mOC(═O)—, —(C(R4)2)n(O(C(R4)2)n)mOC(═O)—, —(CH2)nNHC(═O)(CH2)n—, —(C(R4)2)nNHC(═O)(C(R4)2)n—, —(O(CH2)n)mNHC(═O)(CH2)n—, —(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—,

    • A4 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(C(R4)2)n—, —(O(CH2)n)m—, —(O(C(R4)2)n)m—, —((CH2)nO)m—, —(((C(R4)2)nO)m—, —((CH2)nO)m(CH2)n—, —(((C(R4)2)nO)mC(R4)2)n—, —(CH2)nC(═O)NH—, —(C(R4)2)nC(═O)NH—, —(CH2)nNHC(═O)—, —(C(R4)2)nNHC(═O)—, —NHC(═O)(CH2)n—, —NHC(═O)(C(R4)2)n—, —C(═O)NH(CH2)nS—, —C(═O)NH(C(R4)2)nS—, —S(CH2)nC(═O)NH—, —S(C(R4)2)nC(═O)NH—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —C(═O)NH(C(R4)2)nNHC(═O)(C(R4)2)n—, —C(═O)(CH2)n—, —C(═O)(C(R4)2)n—, —(CH2)nC(═O)—, —(C(R4)2)nC(═O)—, —(CH2)n(O(CH2)n)mNHC(═O)(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—, —(CH2)nNHC(═O)(CH2)n—, —(C(R4)2)nNHC(═O)(C(R4)2)n—, —(CH2)nNH((CH2)nO)m(CH2)n—, —(C(R4)2)nNH((C(R4)2)nO)m(C(R4)2)n—, —(O(CH2)n)mNHC(═O)(CH2)n—, or —(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—;
    • each X2 is independently selected from a bond,

    •  —S—, —Si(OH)2O—,

    •  —CHR4(CH2)nC(═O)NH—, —CHR4(CH2)nNHC(═O)—, —C(═O)NH— and —NHC(═O)—;
    • each R4 is independently selected from H, C1-4alkyl, —C(═O)OH and —OH,
    • each R5 is independently selected from H, C1-4alkyl, phenyl or C1-4alkyl substituted with 1 to 3 —OH groups;
    • each R6 is independently selected from H, fluoro, benzyloxy substituted with —C(═O)OH, benzyl substituted with —C(═O)OH, C1-4alkoxy substituted with —C(═O)OH and C1-4alkyl substituted with —C(═O)OH;
    • R7 is independently selected from H, phenyl and pyridine;
    • R8 is independently selected from

    • R9 is independently selected from H and C1-6haloalkyl;
    • each n is independently selected from 1, 2, 3, 4, 5, 6, 7, 8 and 9,
    • each m is independently selected from 1, 2, 3, 4, 5, 6, 7, 8 and 9, and
    • TG is a drug moiety, an affinity probe, a chelator, a spectroscopic probe, a radioactive probe, an imaging reagent, a lipid molecule, a polyethylene glycol, a polymer, a nanoparticle, a quantum dot, a liposome, a PLGA particle, a polysaccharide, an acetyl group, or a surface.
      In certain embodiments of such conjugated antibodies or antibody fragments thereof, the conjugated serine is

of such conjugated antibodies or antibody fragments thereof, X2 is

or —(CH2)C(═O)NH—.

The present invention also provides pharmaceutical compositions comprising an effective amount of the immunoconjugate of the invention, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable diluent, carrier or excipient.

The present invention provides a method of treating a disease, such as cancer, comprising administering to a mammal in need thereof an effective amount of an immunoconjugate of the invention. In some embodiments, the present invention provides immunoconjugates for use as a medicament. In some embodiments, the present invention provides use of an immunoconjugate in the manufacture of a medicament for treatment of cancer, autoimmune diseases, inflammatory diseases, infectious diseases (e.g., bacterial, fungus, virus), genetic disorders, cardiovascular diseases, and/or metabolic diseases.

The present invention provides methods of producing the immunoconjugates described herein. In one embodiment, the method comprises incubating a modified antibody or antibody fragment of the invention, a 4′-phosphopantetheinyl transferase, and a terminal group linked to CoA under suitable conditions to promote formation of an immunoconjugate comprising the antibody or antibody fragment and the terminal group linked together by 4′-phosphopantetheine. In a specific embodiment, the suitable condition comprises a temperature between 4° C. to 37° C. and pH 6.5 to pH 9.0.

In another embodiment of such methods of producing the immunoconjugates described herein, the method comprising incubating under suitable conditions a modified antibody or antibody fragment of the invention, a 4′-phosphopantetheinyl transferase, and a terminal group linked to CoA or a terminal group linked to a CoA analogue, thereby promoting formation of the immunoconjugate which comprises the antibody or antibody fragment and the terminal group linked together by a linker comprising a 4′-phosphopantetheine or a 4′-phosphopantetheine analogue. In a specific embodiment, the suitable condition comprises a temperature between 4° C. to 37° C. and pH 6.5 to pH 9.0.

In another embodiment of such methods of producing the immunoconjugates described herein, the method comprising comprises the steps:

    • i) incubating under suitable conditions a modified antibody or antibody fragment of the invention with a 4′-phosphopantetheinyl transferase and a CoA or CoA analogue, thereby attaching a 4′-phosphopantetheine or a 4′-phosphopantetheine analogue to the antibody or antibody fragment, wherein the 4′-phosphopantetheine and the 4′-phosphopantetheine analogue comprises a functional group, and
    • ii) reacting the 4′-phosphopantetheine or the 4′-phosphopantetheine analogue with a reactive group optionally linked to a terminal group, thereby forming the immunoconjugate comprising the antibody or antibody fragment and the terminal group linked together by a linker comprising a 4′-phosphopantetheine or a 4′-phosphopantetheine analogue.
      In a specific embodiment, the suitable condition comprises a temperature between 4° C. to 37° C. and pH 6.5 to pH 9.0.

In another embodiment of such methods of producing the immunoconjugates described herein, the method comprising comprises the steps:

    • i) incubating under suitable conditions a modified antibody or antibody fragment of the invention with a 4′-phosphopantetheinyl transferase and a CoA or CoA analogue, thereby attaching a 4′-phosphopantetheine or a 4′-phosphopantetheine analogue to the antibody or antibody fragment, wherein the 4′-phosphopantetheine and the 4′-phosphopantetheine analogue comprises a protected functional group;
    • ii) deprotecting the protected functional group of the 4′-phosphopantetheine or the 4′-phosphopantetheine analogue, and
    • iii) reacting the deprotected functional group of the 4′-phosphopantetheine or the 4′-phosphopantetheine analogue with a reactive group optionally linked to a terminal group, thereby forming the immunoconjugate comprising the antibody or antibody fragment and the terminal group linked together by a linker comprising a 4′-phosphopantetheine or a 4′-phosphopantetheine analogue.
      In a specific embodiment, the suitable condition comprises a temperature between 4° C. to 37° C. and pH 6.5 to pH 9.0.

DEFINITIONS

The terms “alkenyl” or “alkene”, as used herein, refer to a branched or straight chain hydrocarbon having at least one carbon-carbon double bond. Atoms oriented about the double bond are in either the cis (Z) or trans (E) conformation. As used herein, the terms “C2-C4alkenyl”, “C2-C5alkenyl”, “C2-C6alkenyl”, “C2-C7alkenyl”, “C2-C8alkenyl”, “C2-C4alkene”, “C2-C5alkene”, “C2-C6alkene”, “C2-C7alkene”, and “C2-C8alkene” refer to a branched or straight chain hydrocarbon having at least one carbon-carbon double bond and containing at least 2, and at most 4, 5, 6, 7 or 8 carbon atoms, respectively. Non-limiting examples of alkenyl groups, as used herein, include ethenyl, ethane, epropenyl, propene, allyl (2-propenyl), 2-propene, butenyl, pentenyl, pentene, hexenyl, heptenyl, heptene, octenyl, nonenyl, nonene, decenyl, decene and the like. If not otherwise specified, an alkenyl group generally is a C2-C6 alkenyl.

The terms “alkynyl” or “alkyne”, as used herein, refer to a branched or straight chain hydrocarbon radical having at least one carbon-carbon triple bond. As used herein, the terms “C2-C4alkynyl”, “C2-C5alkynyl”, “C2-C6alkynyl”, “C2-C7alkynyl”, and “C2-C8alkynyl” refer to a branched or straight chain hydrocarbon radical having at least one carbon-carbon triple bond and containing at least 2, and at most 4, 5, 6, 7 or 8 carbon atoms, respectively. Non-limiting examples of alkynyl groups, as used herein, include ethynyl, propynyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl, decynyl and the like. If not otherwise specified, an alkynyl group generally is a C2-C6 alkynyl.

The term “alkyl,” as used herein, refers to a saturated branched or straight chain hydrocarbon. As used herein, the terms “C1-C3alkyl”, “C1-C4alkyl”, “C1-C5alkyl”, “C1-C6alkyl”, “C1-C7alkyl” or “C1-C8alkyl” refer to saturated branched or straight chain hydrocarbon containing at least 1, and at most 3, 4, 5, 6, 7 or 8 carbon atoms, respectively. Non-limiting examples of alkyl groups as used herein include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, t-butyl, n-pentyl, isopentyl, hexyl, heptyl, octyl, nonyl, decyl and the like. If not otherwise specified, an alkyl group generally is a C1-C6 alkyl.

The term “alkoxy,” as used herein, refers to the group —ORa, where Ra is an alkyl group as defined herein. As used herein, the terms “C1-C3alkoxy”, “C1-C4alkoxy”, “C1-C5alkoxy”, “C1-C6alkoxy”, “C1-C7alkoxy” and “C1-C8alkoxy” refer to an alkoxy group wherein the alkyl moiety contains at least 1, and at most 3, 4, 5, 6, 7 or 8, carbon atoms. Non-limiting examples of alkoxy groups, as used herein, include methoxy, ethoxy, n-propoxy, isopropoxy, n-butyloxy, t-butyloxy, pentyloxy, hexyloxy, heptyloxy, octyloxy, nonyloxy, decyloxy and the like.

The term “aryl”, as used herein, refers to monocyclic, bicyclic, and tricyclic ring systems having a total of six to fourteen ring members, wherein at least one ring in the system is aromatic. An aryl group also includes one or more aromatic rings fused to one or more non-aromatic hydrocarbon rings. Non-limiting examples of aryl groups, as used herein, include phenyl (Ph), naphthyl, fluorenyl, indenyl, azulenyl, anthracenyl and the like. An aryl group may contain one or more substituents and thus may be “optionally substituted”. Unless otherwise specified, aryl groups can have up to four substituents.

The term “cycloalkyl”, as used herein, refers to a saturated monocyclic, fused bicyclic, fused tricyclic or bridged polycyclic ring assembly. As used herein, the terms “C3-C5cycloalkyl”, “C3-C6cycloalkyl”, “C3-C7cycloalkyl”, “C3-C8cycloalkyl, “C3-C9cycloalkyl and “C3-C10cycloalkyl refer to a saturated monocyclic, fused bicyclic, fused tricyclic or bridged polycyclic ring assembly which contains at least 3, and at most 5, 6, 7, 8, 9 or 10, carbon atoms. Non-limiting examples of cycloalkyl groups, as used herein, include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, decahydronaphthalenyl and the like. If not otherwise specified, a cycloalkyl group generally is a C3-C8 cycloalkyl.

The terms “cycloalkenyl” or “cycloalkene”, as used herein, refers to a monocyclic, fused bicyclic, fused tricyclic or bridged polycyclic ring assembly having at least one carbon-carbon double bond. Atoms oriented about the double bond are in either the cis (Z) or trans (E) conformation. A monocyclic cycloalkene can be fused to one or two aryl rings. Non-limiting examples of cycloalkenyl groups, as used herein, include cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, cyclooctenyl, cyclononenyl, cyclodecenyl, and the like. If not otherwise specified, a cycloalkenyl group generally is a C5-C8 cycloalkenyl.

The terms “cycloalkynyl” or “cycloalkyne”, as used herein, refers to a monocyclic, fused bicyclic, fused tricyclic or bridged polycyclic ring assembly having at least one carbon-carbon triple bond. A monocyclic cycloalkyne can be fused to one or two aryl rings. Non-limiting examples of cycloalkynyl groups, as used herein, include cyclopropynyl, cyclobutynyl, cyclopentynyl, cyclohexynyl, cycloheptynyl, cyclooctynyl, cyclononynyl, cyclodecynyl, and the like. If not otherwise specified, a cycloalkynyl group generally is a C6-C8 cycloalkynyl.

The term “heteroaryl,” as used herein, refers to a 5-6 membered heteroaromatic monocyclic ring having 1 to 4 heteroatoms independently selected from nitrogen, oxygen and sulfur, an 8-10 membered fused bicyclic ring having 1 to 4 heteroatoms independently selected from nitrogen, oxygen and sulfur as ring members and where at least one of the rings is aromatic, or a 12-14 membered fused tricyclic ring having 1 to 4 heteroatoms independently selected from nitrogen, oxygen and sulfur and where at least one of the rings is aromatic. Such fused bicyclic and tricyclic ring systems may be fused to one or more aryl, cycloalkyl, or heterocycloalkyl rings. Non-limiting examples of heteroaryl groups, as used herein, include 2- or 3-furyl; 1-, 2-, 4-, or 5-imidazolyl; 3-, 4-, or 5-isothiazolyl; 3-, 4-, or 5-isoxazolyl; 2-, 4-, or 5-oxazolyl; 4- or 5-1,2,3-oxadiazolyl; 2- or 3-pyrazinyl; 1-, 3-, 4-, or 5-pyrazolyl; 3-, 4-, 5- or 6-pyridazinyl; 2-, 3-, or 4-pyridyl; 2-, 4-, 5- or 6-pyrimidinyl; 1-, 2- or 3-pyrrolyl; 1- or 5-tetrazolyl; 2- or 5-1,3,4-thiadiazolyl; 2-, 4-, or 5-thiazolyl; 2- or 3-thienyl; 2-, 4- or 6-1,3,5-triazinyl; 1-, 3- or 5-1,2,4-triazolyl; 1-, 4- or 5-1,2,3-triazolyl; 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8-, or 9-acridinyl; 1-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, or 10-benzo[g]isoquinoline; 2-, 4-, 5-, 6-, or 7-benzoxazolyl; 1-, 2-, 4-, 5-, 6-, or 7-benzimidazolyl; 2-, 4-, 5-, 6-, or 7-benzothiazolyl; 2-, 3-, 4-, 5-, 6-, 7-benzo[b]thienyl; 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-benzo[b]oxepine; 2-, 4-, 5-, 6-, 7-, or 8-benzoxazinyl; 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8, or 9-carbazolyl; 3-, 4-, 5-, 6-, 7-, or 8-cinnolinyl; 2-, 4-, or 5-4H-imidazo[4,5-d]thiazolyl; 2-, 3-, 5-, or 6-imidazo[2,1-b]thiazolyl; 2-, 3-, 6-, or 7-imidazo[1,2-b][1,2,4]triazinyl; 1-, 3-, 4-, 5-, 6-, or 7-indazolyl; 1-, 2-, 3-, 5-, 6-, 7-, or 8-indolizinyl; 1-, 2-, 3-, 4-, 5-, 6-, or 7-indolyl; 1-, 2-, 3-, 4-, 5-, 6-, or 7-isoindolyl; 1-, 3-, 4-, 5-, 6-, 7-, or 8-isoquinoliyl; 2-, 3-, 4-, 5-, 6-, or 7-naphthyridinyl; 1-, 2-, 4-, 5-, 6-, 7-, 8-, or 9-perimidinyl; 1-, 2-, 3-, 4-, 6-, 7-, 8-, 9-, or 10-phenanthridinyl; 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, or 10-phenathrolinyl; 1-, 2-, 3-, 4-, 6-, 7-, 8-, or 9-phenazinyl; 1-, 2-, 3-, 4-, 6-, 7-, 8-, 9-, or 10-phenothiazinyl; 1-, 2-, 3-, 4-, 6-, 7-, 8-, 9-, or 10-phenoxazinyl; 1-, 4-, 5-, 6-, 7-, or 8-phthalazinyl; 2-, 4-, 6-, or 7-pteridinyl; 2-, 6-, 7-, or 8-purinyl; 2-, 3-, 5-, 6-, 7-, 8-, 9-, 10-, or 11-7H-pyrazino[2,3-c]carbazolyl; 2-, 3-, 5-, 6-, or 7-furo[3,2-b]-pyranyl; 1-, 3-, or 5-1H-pyrazolo[4,3-d]-oxazolyl; 2-, 3-, 5-, or 8-pyrazino[2,3-d]pyridazinyl; 1-, 2-, 3-, 4-, 5-, or 8-5H-pyrido[2,3-d]-o-oxazinyl; 1-, 2-, 3-, 4-, 6-, 7-, 8-, or 9-quinolizinyl; 2-, 3-, 4-, 5-, 6-, 7-, or 8-quinolinyl; 2-, 3-, 4-, 5-, 6-, 7-, or 8-quinazolinyl; 2-, 3-, 4-, or 5-thieno[2,3-b]furanyl, and 1-, 3-, 6-, 7-, 8-, or 9-furo[3,4-c]cinnolinyl.

The term “heteroatoms,” as used herein, refers to nitrogen (N), oxygen (O) or sulfur (S) atoms.

The term “heterocycloalkyl,” as used herein refers to a to saturated 3-8 membered monocyclic hydrocarbon ring structure, a saturated 6-9 membered fused bicyclic hydrocarbon ring structure, or a saturated 10-14 membered fused tricyclic hydrocarbon ring structure, wherein one to four of the ring carbons of the hydrocarbon ring structure are replaced by one to four groups independently selected from —O—, —NR—, and —S—, wherein R is hydrogen, C1-C4alkyl or an amino protecting group. Non-limiting examples of heterocycloalkyl groups, as used herein, include aziridinyl, aziridin-1-yl, aziridin-2-yl, aziridin-3-yl, oxiranyl, oxiran-2-yl, oxiran-3-yl, thiiranyl, thiiran-2-yl, thiiran-3-yl, azetadinyl, azetadin-1-yl, azetadin-2-yl, azetadin-3-yl, oxetanyl, oxetan-2-yl, oxetan-3-yl, oxetan-4-yl, thietanyl, thietan-2-yl, thietan-3-yl, thietan-4-yl, pyrrolidinyl, pyrrolidin-1-yl, pyrrolidin-2-yl, pyrrolidin-3-yl, pyrrolidin-4-yl, pyrrolidin-5-yl, tetrahydrofuranyl, tetrahydrofuran-2-yl, tetrahydrofuran-3-yl, tetrahydrofuran-4-yl, tetrahydrofuran-5-yl, tetrahydrothienyl, tetrahydrothien-2-yl, tetrahydrothien-3-yl, tetrahydrothien-4-yl, tetrahydrothien-5-yl, piperidinyl, piperidin-1-yl, piperidin-2-yl, piperidin-3-yl, piperidin-4-yl, piperidin-5-yl, piperidin-6-yl, tetrahydropyranyl, tetrahydropyran-2-yl, tetrahydropyran-3-yl, tetrahydropyran-4-yl, tetrahydropyran-5-yl, tetrahydropyran-6-yl, tetrahydrothiopyranyl, tetrahydrothiopyran-2-yl, tetrahydrothiopyran-3-yl, tetrahydrothiopyran-4-yl, tetrahydrothiopyran-5-yl, tetrahydrothiopyran-6-yl, piperazinyl, piperazin-1-yl, piperazin-2-yl, piperazin-3-yl, piperazin-4-yl, piperazin-5-yl, piperazin-6-yl, morpholinyl, morpholin-2-yl, morpholin-3-yl, morpholin-4-yl, morpholin-5-yl, morpholin-6-yl, thiomorpholinyl, thiomorpholin-2-yl, thiomorpholin-3-yl, thiomorpholin-4-yl, thiomorpholin-5-yl, thiomorpholin-6-yl, oxathianyl, oxathian-2-yl, oxathian-3-yl, oxathian-5-yl, oxathian-6-yl, dithianyl, dithian-2-yl, dithian-3-yl, dithian-5-yl, dithian-6-yl, azepanyl, azepan-1-yl, azepan-2-yl, azepan-3-yl, azepan-4-yl, azepan-5-yl, azepan-6-yl, azepan-7-yl, oxepanyl, oxepan-2-yl, oxepan-3-yl, oxepan-4-yl, oxepan-5-yl, oxepan-6-yl, oxepan-7-yl, thiepanyl, thiepan-2-yl, thiepan-3-yl, thiepan-4-yl, thiepan-5-yl, thiepan-6-yl, thiepan-7-yl, dioxolanyl, dioxolan-2-yl, dioxolan-4-yl, dioxolan-5-yl, thioxanyl, thioxan-2-yl, thioxan-3-yl, thioxan-4-yl, thioxan-5-yl, dithiolanyl, dithiolan-2-yl, dithiolan-4-yl, dithiolan-5-yl, pyrrolinyl, pyrrolin-1-yl, pyrrolin-2-yl, pyrrolin-3-yl, pyrrolin-4-yl, pyrrolin-5-yl, imidazolinyl, imidazolin-1-yl, imidazolin-3-yl, imidazolin-4-yl, imidazolin-5-yl, imidazolidinyl, imidazolidin-1-yl, imidazolidin-2-yl, imidazolidin-3-yl, imidazolidin-4-yl, imidazolidin-4-yl, pyrazolinyl, pyrazolin-1-yl, pyrazolin-3-yl, pyrazolin-4-yl, pyrazolin-5-yl, pyrazolidinyl, pyrazolidin-1-yl, pyrazolidin-2-yl, pyrazolidin-3-yl, pyrazolidin-4-yl, pyrazolidin-5-yl, hexahydro-1,4-diazepinyl, dihydrofuranyldihydropyranyl, 1,2,3,6-tetrahydropyridinyl, 2H-pyranyl, 4H-pyranyl, dihydropyranyl, dihydrothienyl, dihydrofuranyl, 3-azabicyclo[3.1.0]hexanyl, 3-azabicyclo[4.1.0]heptanyl, pyrrolidinyl-2-one, piperidinyl-3-one piperidinyl-2-one, piperidinyl-4-one, and 2H-pyrrolyl.

The term “optionally substituted”, as used herein, means that the referenced group may or may not be substituted with one or more additional group(s) in place of one or more hydrogen atoms of the unsubstituted group. The number of such groups that can be present ranges from one up to the number of hydrogen atoms on the unsubstituted group. The optional substituents, unless otherwise specified, are individually and independently selected from alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl, heterocycloalkyl, hydroxyl, alkoxy, mercaptyl, cyano, halo, carbonyl, thiocarbonyl, isocyanato, thiocyanato, isothiocyanato, nitro, perhaloalkyl, perfluoroalkyl, and amino, including mono- and di-substituted amino groups, and the protected derivatives thereof. Non-limiting examples of optional substituents include, halo (particularly F, Cl and Br), —CN, —OR, —R, —NO2, —C(═O)R, —OC(═O)R, —C(═O)OR, —OC(═O)NHR, —C(═O)N(R)2, —SR—, —S(═O)R, —S(═O)2R, —NHR, —N(R)2, —NHC(═O)R, —NRC(═O)R, —NRC(S)R, NHC(═O)OR, —NRCO2R, —NRC(═O)N(R)2, —NRC(S)N(R)2, —NRNRC(═O)R, —NRNRC(═O)N(R)2, —NRNRCO2R, —C(═O)NH—, S(═O)2NHR, —S(═O)2N(R)2, —NHS(═O)2, —NHS(═O)2R, —C(═O)C(═O)R, —C(═O)CH2C(═O)R, —C(S)R, —C(═O)N(R)2, —C(S)N(R)2, —OC(═O)N(R)2, —C(O)N(OR)R, —C(NOR)R, —S(═O)3R, —NRSO2N(R)2, —NRSO2R, —N(OR)R, —C(═NH)—N(R)2, —P(═O)2R, —PO(R)2, —OPO(R)2, —(CH2)0-2NHC(═O)R, phenyl (Ph) optionally substituted with R, —O(Ph) optionally substituted with R, —(CH2)1-2(Ph), optionally substituted with R, CH═CH(Ph), optionally substituted with R, C1-C6 alkyl, C1-C6 alkoxy, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, halo-substituted C1-C6alkyl, halo-substituted C1-C6alkoxy, where each R is independently selected from H, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C1-C6 alkoxy, aryl, heteroaryl, C3-8 cycloalkyl, C3-8 heterocycloalkyl, halo-substituted C1-C6alkyl, halo-substituted C1-C6alkoxy; and two R groups on the same or on adjacent connected atoms can be taken together to form a 5-6 membered ring optionally containing an additional N, O or S as a ring member. Suitable substituents for alkyl, cycloalkyl, and heterocycloalkyl groups can further include ═CHR, ═O (oxo) and ═N—R. Preferred substituents for an aryl or heteroaryl group are selected from F, Cl, Br, CN, —NR′2, hydroxy, C1-C4 alkyl, C1-C4 haloalkyl, C1-C4 alkoxy, C1-C4 haloalkoxy, C1-C4 alkoxy-C1-C4alkyl, —COOR′, —CONR′2, —SR′, and —SO2R′, where each R′ is H or C1-C4 alkyl. Preferred substituents for an alkyl, cycloalkyl or heterocycloalkyl group are selected from oxo (═O), F, Cl, Br, CN, —NR′2, hydroxy, C1-C4 alkyl, C1-C4 haloalkyl, C1-C4 alkoxy, C1-C4 haloalkoxy, C1-C4 alkoxy-C1-C4alkyl, —COOR′, —CONR′2, —SR′, and —SO2R′, where each R′ is H or C1-C4 alkyl.

The term “amino acid” refers to naturally occurring, synthetic, and unnatural amino acids, as well as amino acid analogs and amino acid mimetics that function in a manner similar to the naturally occurring amino acids. Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, γ-carboxyglutamate, and O-phosphoserine. Amino acid analogs refer to compounds that have the same basic chemical structure as a naturally occurring amino acid, i.e., an α-carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium. Such analogs have modified R groups (e.g., norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally occurring amino acid. Amino acid mimetics refers to chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but that functions in a manner similar to a naturally occurring amino acid.

The term “unnatural amino acid”, as used herein, is intended to represent amino acid structures that cannot be generated biosynthetically in any organism using unmodified or modified genes from any organism, whether the same or different. In addition, it is understood that such “unnatural amino acids” require a modified tRNA and a modified tRNA synthetase (RS) for incorporation into a protein. These “selected” orthogonal tRNA/RS pair are specific for the unnatural amino acid and are generated by a selection process as developed by Schultz et al. (see, e.g., Liu et al., Annu. Rev. Biochem. 79:413-444, 2010) or a similar procedure. The term “unnatural amino acid” does not include the natural occurring 22nd proteinogenic amino acid pyrrolysine (Pyl) as well as its demethylated analogue pyrroline-carboxy-lysine (Pcl), because incorporation of both residues into proteins is mediated by the unmodified, naturally occurring pyrrolysyl-tRNA/tRNA synthetase pair (see, e.g., Ou et al., Proc. Natl. Acad. Sci. USA. 108:10437-10442, 2011).

The term “antibody” as used herein refers to a polypeptide of the immunoglobulin family that is capable of binding a corresponding antigen non-covalently, reversibly, and in a specific manner. For example, a naturally occurring IgG antibody is a tetramer comprising at least two heavy (H) chains and two light (L) chains inter-connected by disulfide bonds. Each heavy chain is comprised of a heavy chain variable region (abbreviated herein as VH) and a heavy chain constant region. The heavy chain constant region is comprised of three domains, CH1, CH2 and CH3. Each light chain is comprised of a light chain variable region (abbreviated herein as VL) and a light chain constant region. The light chain constant region is comprised of one domain, CL. The VH and VL regions can be further subdivided into regions of hypervariability, termed complementarity determining regions (CDR), interspersed with regions that are more conserved, termed framework regions (FR). Each VH and VL is composed of three CDRs and four FRs arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, and FR4. The variable regions of the heavy and light chains contain a binding domain that interacts with an antigen. The constant regions of the antibodies may mediate the binding of the immunoglobulin to host tissues or factors, including various cells of the immune system (e.g., effector cells) and the first component (Clq) of the classical complement system.

The term “antibody” includes, but is not limited to, monoclonal antibodies, human antibodies, humanized antibodies, camelid antibodies, chimeric antibodies, and anti-idiotypic (anti-Id) antibodies (including, e.g., anti-Id antibodies to antibodies of the invention). The antibodies can be of any isotype/class (e.g., IgG, IgE, IgM, IgD, IgA and IgY), or subclass (e.g., IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2).

Both the light and heavy chains are divided into regions of structural and functional homology. The terms “constant” and “variable” are used functionally. In this regard, it will be appreciated that the variable domains of both the light (VL) and heavy (VH) chain portions determine antigen recognition and specificity. Conversely, the constant domains of the light chain (CL) and the heavy chain (CH1, CH2 or CH3) confer important biological properties such as secretion, transplacental mobility, Fc receptor binding, complement binding, and the like. By convention, the numbering of the constant region domains increases as they become more distal from the antigen binding site or amino-terminus of the antibody. The N-terminus is a variable region and at the C-terminus is a constant region; the CH3 and CL domains actually comprise the carboxy-terminal domains of the heavy and light chain, respectively.

The term “antibody fragment” as used herein refers to either an antigen binding fragment of an antibody or a non-antigen binding fragment (e.g., Fc) of an antibody. The term “antigen binding fragment”, as used herein, refers to one or more portions of an antibody that retain the ability to specifically interact with (e.g., by binding, steric hindrance, stabilizing/destabilizing, spatial distribution) an epitope of an antigen. Examples of binding fragments include, but are not limited to, single-chain Fvs (scFv), disulfide-linked Fvs (sdFv), Fab fragments, F(ab′) fragments, a monovalent fragment consisting of the VL, VH, CL and CH1 domains; a F(ab)2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; a Fd fragment consisting of the VH and CH1 domains; a Fv fragment consisting of the VL and VH domains of a single arm of an antibody; a dAb fragment (Ward et al., Nature 341:544-546, 1989), which consists of a VH domain; and an isolated complementarity determining region (CDR), or other epitope-binding fragments of an antibody.

Furthermore, although the two domains of the Fv fragment, VL and VH, are coded for by separate genes, they can be joined, using recombinant methods, by a synthetic linker that enables them to be made as a single protein chain in which the VL and VH regions pair to form monovalent molecules (known as single chain Fv (“scFv”); see, e.g., Bird et al., Science 242:423-426, 1988; and Huston et al., Proc. Natl. Acad. Sci. 85:5879-5883, 1988). Such single chain antibodies are also intended to be encompassed within the term “antigen binding fragment.” These antigen binding fragments are obtained using conventional techniques known to those of skill in the art, and the fragments are screened for utility in the same manner as are intact antibodies.

Antigen binding fragments can also be incorporated into single domain antibodies, maxibodies, minibodies, nanobodies, intrabodies, diabodies, triabodies, tetrabodies, v-NAR and bis-scFv (see, e.g., Hollinger and Hudson, Nature Biotechnology 23:1126-1136, 2005). Antigen binding fragments can be grafted into scaffolds based on polypeptides such as fibronectin type III (Fn3) (see U.S. Pat. No. 6,703,199, which describes fibronectin polypeptide monobodies).

Antigen binding fragments can be incorporated into single chain molecules comprising a pair of tandem Fv segments (VH-CH1-VH-CH1) which, together with complementary light chain polypeptides, form a pair of antigen binding regions (Zapata et al., Protein Eng. 8:1057-1062, 1995; and U.S. Pat. No. 5,641,870).

The term “monoclonal antibody” or “monoclonal antibody composition” as used herein refers to polypeptides, including antibodies and antibody fragments that have substantially identical amino acid sequence or are derived from the same genetic source. This term also includes preparations of antibody molecules of single molecular composition. A monoclonal antibody composition displays a single binding specificity and affinity for a particular epitope.

The term “human antibody”, as used herein, includes antibodies having variable regions in which both the framework and CDR regions are derived from sequences of human origin. Furthermore, if the antibody contains a constant region, the constant region also is derived from such human sequences, e.g., human germline sequences, or mutated versions of human germline sequences or antibody containing consensus framework sequences derived from human framework sequences analysis, for example, as described in Knappik et al., J. Mol. Biol. 296:57-86, 2000).

The human antibodies of the invention may include amino acid residues not encoded by human sequences (e.g., mutations introduced by random or site-specific mutagenesis in vitro or by somatic mutation in vivo, or a conservative substitution to promote stability or manufacturing).

The term “humanized” antibody, as used herein, refers to an antibody that retains the reactivity of a non-human antibody while being less immunogenic in humans. This can be achieved, for instance, by retaining the non-human CDR regions and replacing the remaining parts of the antibody with their human counterparts. See, e.g., Morrison et al., Proc. Natl. Acad. Sci. USA, 81:6851-6855 (1984); Morrison and Oi, Adv. Immunol., 44:65-92 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988); Padlan, Molec. Immun., 28:489-498 (1991); Padlan, Molec. Immun., 31(3):169-217 (1994).

The term “recognize” as used herein refers to an antibody or antigen binding fragment thereof that finds and interacts (e.g., binds) with its epitope, whether that epitope is linear or conformational. The term “epitope” refers to a site on an antigen to which an antibody or antigen binding fragment of the invention specifically binds. Epitopes can be formed both from contiguous amino acids or noncontiguous amino acids juxtaposed by tertiary folding of a protein. Epitopes formed from contiguous amino acids are typically retained on exposure to denaturing solvents, whereas epitopes formed by tertiary folding are typically lost on treatment with denaturing solvents. An epitope typically includes at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 amino acids in a unique spatial conformation. Methods of determining spatial conformation of epitopes include techniques in the art, for example, x-ray crystallography and 2-dimensional nuclear magnetic resonance (see, e.g., Epitope Mapping Protocols in Methods in Molecular Biology, Vol. 66, G. E. Morris, Ed. (1996)).

The term “affinity” as used herein refers to the strength of interaction between antibody and antigen at single antigenic sites. Within each antigenic site, the variable region of the antibody “arm” interacts through weak non-covalent forces with antigen at numerous sites; the more interactions, the stronger the affinity.

The term “isolated antibody” refers to an antibody that is substantially free of other antibodies having different antigenic specificities. An isolated antibody that specifically binds to one antigen may, however, have cross-reactivity to other antigens. Moreover, an isolated antibody may be substantially free of other cellular material and/or chemicals.

The term “conservatively modified variant” applies to both amino acid and nucleic acid sequences. With respect to particular nucleic acid sequences, conservatively modified variants refers to those nucleic acids which encode identical or essentially identical amino acid sequences, or where the nucleic acid does not encode an amino acid sequence, to essentially identical sequences. Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids encode any given protein. For instance, the codons GCA, GCC, GCG and GCU all encode the amino acid alanine. Thus, at every position where an alanine is specified by a codon, the codon can be altered to any of the corresponding codons described without altering the encoded polypeptide. Such nucleic acid variations are “silent variations,” which are one species of conservatively modified variations. Every nucleic acid sequence herein which encodes a polypeptide also describes every possible silent variation of the nucleic acid. One of skill will recognize that each codon in a nucleic acid (except AUG, which is ordinarily the only codon for methionine, and TGG, which is ordinarily the only codon for tryptophan) can be modified to yield a functionally identical molecule. Accordingly, each silent variation of a nucleic acid that encodes a polypeptide is implicit in each described sequence.

For polypeptide sequences, “conservatively modified variants” include individual substitutions, deletions or additions to a polypeptide sequence which result in the substitution of an amino acid with a chemically similar amino acid. Conservative substitution tables providing functionally similar amino acids are well known in the art. Such conservatively modified variants are in addition to and do not exclude polymorphic variants, interspecies homologs, and alleles of the invention. The following eight groups contain amino acids that are conservative substitutions for one another: 1) Alanine (A), Glycine (G); 2) Aspartic acid (D), Glutamic acid (E); 3) Asparagine (N), Glutamine (Q); 4) Arginine (R), Lysine (K); 5) Isoleucine (I), Leucine (L), Methionine (M), Valine (V); 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W); 7) Serine (S), Threonine (T); and 8) Cysteine (C), Methionine (M) (see, e.g., Creighton, Proteins (1984)). In some embodiments, the term “conservative sequence modifications” are used to refer to amino acid modifications that do not significantly affect or alter the binding characteristics of the antibody containing the amino acid sequence.

The term “optimized” as used herein refers to a nucleotide sequence has been altered to encode an amino acid sequence using codons that are preferred in the production cell or organism, generally a eukaryotic cell, for example, a yeast cell, a Pichia cell, a fungal cell, a Trichoderma cell, a Chinese Hamster Ovary cell (CHO) or a human cell. The optimized nucleotide sequence is engineered to retain completely or as much as possible the amino acid sequence originally encoded by the starting nucleotide sequence, which is also known as the “parental” sequence.

The terms “percent identical” or “percent identity,” in the context of two or more nucleic acids or polypeptide sequences, refers to two or more sequences or subsequences that are the same. Two sequences are “substantially identical” if two sequences have a specified percentage of amino acid residues or nucleotides that are the same (i.e., 60% identity, optionally 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity over a specified region, or, when not specified, over the entire sequence), when compared and aligned for maximum correspondence over a comparison window, or designated region as measured using one of the following sequence comparison algorithms or by manual alignment and visual inspection. Optionally, the identity exists over a region that is at least about 50 nucleotides (or 10 amino acids) in length, or more preferably over a region that is 100 to 500 or 1000 or more nucleotides (or 20, 50, 200 or more amino acids) in length.

For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Default program parameters can be used, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters.

A “comparison window”, as used herein, includes reference to a segment of any one of the number of contiguous positions selected from the group consisting of from 20 to 600, usually about 50 to about 200, more usually about 100 to about 150 in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned. Methods of alignment of sequences for comparison are well known in the art. Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith and Waterman, Adv. Appl. Math. 2:482c (1970), by the homology alignment algorithm of Needleman and Wunsch, J. Mol. Biol. 48:443 (1970), by the search for similarity method of Pearson and Lipman, Proc. Natl. Acad. Sci. USA 85:2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wis.), or by manual alignment and visual inspection (see, e.g., Brent et al., Current Protocols in Molecular Biology, 2003).

Two examples of algorithms that are suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul et al., Nuc. Acids Res. 25:3389-3402, 1977; and Altschul et al., J. Mol. Biol. 215:403-410, 1990, respectively. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information. This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al., supra). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0) and N (penalty score for mismatching residues; always <0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a word length (W) of 11, an expectation (E) or 10, M=5, N=−4 and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a word length of 3, and expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff and Henikoff, (1989) Proc. Natl. Acad. Sci. USA 89:10915) alignments (B) of 50, expectation (E) of 10, M=5, N=−4, and a comparison of both strands.

The BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin and Altschul, Proc. Natl. Acad. Sci. USA 90:5873-5787, 1993). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.2, more preferably less than about 0.01, and most preferably less than about 0.001.

The percent identity between two amino acid sequences can also be determined using the algorithm of E. Meyers and W. Miller, Comput. Appl. Biosci. 4:11-17, 1988) which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4. In addition, the percent identity between two amino acid sequences can be determined using the Needleman and Wunsch, J. Mol. Biol. 48:444-453, 1970) algorithm which has been incorporated into the GAP program in the GCG software package (available at www.gcg.com), using either a Blossom 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6.

Other than percentage of sequence identity noted above, another indication that two nucleic acid sequences or polypeptides are substantially identical is that the polypeptide encoded by the first nucleic acid is immunologically cross reactive with the antibodies raised against the polypeptide encoded by the second nucleic acid, as described below. Thus, a polypeptide is typically substantially identical to a second polypeptide, for example, where the two peptides differ only by conservative substitutions. Another indication that two nucleic acid sequences are substantially identical is that the two molecules or their complements hybridize to each other under stringent conditions, as described below. Yet another indication that two nucleic acid sequences are substantially identical is that the same primers can be used to amplify the sequence.

The term “nucleic acid” is used herein interchangeably with the term “polynucleotide” and refers to deoxyribonucleotides or ribonucleotides and polymers thereof in either single- or double-stranded form. The term encompasses nucleic acids containing known nucleotide analogs or modified backbone residues or linkages, which are synthetic, naturally occurring, and non-naturally occurring, which have similar binding properties as the reference nucleic acid, and which are metabolized in a manner similar to the reference nucleotides. Examples of such analogs include, without limitation, phosphorothioates, phosphoramidates, methyl phosphonates, chiral-methyl phosphonates, 2-O-methyl ribonucleotides, peptide-nucleic acids (PNAs).

Unless otherwise indicated, a particular nucleic acid sequence also implicitly encompasses conservatively modified variants thereof (e.g., degenerate codon substitutions) and complementary sequences, as well as the sequence explicitly indicated. Specifically, as detailed below, degenerate codon substitutions may be achieved by generating sequences in which the third position of one or more selected (or all) codons is substituted with mixed-base and/or deoxyinosine residues (Batzer et al., (1991) Nucleic Acid Res. 19:5081; Ohtsuka et al., (1985) J. Biol. Chem. 260:2605-2608; and Rossolini et al., (1994) Mol. Cell. Probes 8:91-98).

The term “operably linked” in the context of nucleic acids refers to a functional relationship between two or more polynucleotide (e.g., DNA) segments. Typically, it refers to the functional relationship of a transcriptional regulatory sequence to a transcribed sequence. For example, a promoter or enhancer sequence is operably linked to a coding sequence if it stimulates or modulates the transcription of the coding sequence in an appropriate host cell or other expression system. Generally, promoter transcriptional regulatory sequences that are operably linked to a transcribed sequence are physically contiguous to the transcribed sequence, i.e., they are cis-acting. However, some transcriptional regulatory sequences, such as enhancers, need not be physically contiguous or located in close proximity to the coding sequences whose transcription they enhance.

The terms “polypeptide” and “protein” are used interchangeably herein to refer to a polymer of amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers and non-naturally occurring amino acid polymer. Unless otherwise indicated, a particular polypeptide sequence also implicitly encompasses conservatively modified variants thereof.

The term “immunoconjugate” or “antibody conjugate” as used herein refers to the linkage of an antibody or an antibody fragment thereof with another agent, such as a chemotherapeutic agent, a toxin, an immunotherapeutic agent, an imaging probe, a spectroscopic probe, and the like. The linkage can be covalent bonds, or non-covalent interactions such as through electrostatic forces. Various linkers, known in the art, can be employed in order to form the immunoconjugate. Additionally, the immunoconjugate can be provided in the form of a fusion protein that may be expressed from a polynucleotide encoding the immunoconjugate. As used herein, “fusion protein” refers to proteins created through the joining of two or more genes or gene fragments which originally coded for separate proteins (including peptides and polypeptides). Translation of the fusion gene results in a single protein with functional properties derived from each of the original proteins.

The term “subject” includes human and non-human animals. Non-human animals include all vertebrates, e.g., mammals and non-mammals, such as non-human primates, sheep, dog, cow, chickens, amphibians, and reptiles. Except when noted, the terms “patient” or “subject” are used herein interchangeably.

The term “cytotoxin”, or “cytotoxic agent” as used herein, refer to any agent that is detrimental to the growth and proliferation of cells and may act to reduce, inhibit, or destroy a cell or malignancy.

The term “anti-cancer agent” as used herein refers to any agent that can be used to treat a cell proliferative disorder such as cancer, including but not limited to, cytotoxic agents, chemotherapeutic agents, radiotherapy and radiotherapeutic agents, targeted anti-cancer agents, and immunotherapeutic agents.

The term “terminal group (TG)” as used herein refers to a chemical moiety or a surface that is conjugated to the antibody or antibody fragment of the invention. For example, a terminal group can be a drug moiety selected from an anti-cancer agent, an anti-inflammatory agent, an antifungal agent, an antibacterial agent, an anti-parasitic agent, an anti-viral agent, an anesthetic agent. In certain embodiments a drug moiety is selected from a V-ATPase inhibitor, a HSP90 inhibitor, an IAP inhibitor, an mTor inhibitor, a microtubule stabilizer, a microtubule destabilizers, an auristatin, a dolastatin, a maytansinoid, a MetAP (methionine aminopeptidase), an inhibitor of nuclear export of proteins CRM1, a DPPIV inhibitor, an inhibitors of phosphoryl transfer reactions in mitochondria, a protein synthesis inhibitor, a kinase inhibitor, a CDK2 inhibitor, a CDK9 inhibitor, a proteasome inhibitor, a RNA polymerase inhibitor, an Eg5 inhibitor, an HDAC inhibitor, a DNA damaging agent, a DNA alkylating agent, a DNA intercalator, a DNA minor groove binder and a DHFR inhibitor. Suitable examples include auristatins such as MMAE and MMAF; calicheamycins such as gamma-calicheamycin; and maytansinoids such as DM1 and DM4. Methods for attaching each of these to a linker compatible with the antibodies and method of the invention are known in the art. See, e.g., Singh et al., Therapeutic Antibodies: Methods and Protocols, vol. 525, 445-457 (2009). In addition a terminal group can be a biophysical probe, a fluorophore, a spin label, an infrared probe an affinity probe, a chelator, a spectroscopic probe, a radioactive probe, a lipid molecule, a polyethylene glycol, a polymer, a spin label, DNA, RNA, a protein, a peptide, a surface, an antibody, an antibody fragment, a nanoparticle, a quantum dot, a liposome, a PLGA particle, or a polysaccharide. In embodiments wherein the terminal group is a surface, such solid supports include, but are not limited to, glass, cellulose, polyacrylamide, nylon, polystyrene, polyvinyl chloride or polypropylene.

“Tumor” refers to neoplastic cell growth and proliferation, whether malignant or benign, and all pre-cancerous and cancerous cells and tissues.

The term “anti-tumor activity” means a reduction in the rate of tumor cell proliferation, viability, or metastatic activity. A possible way of showing anti-tumor activity is to show a decline in growth rate of abnormal cells that arises during therapy or tumor size stability or reduction. Such activity can be assessed using accepted in vitro or in vivo tumor models, including but not limited to xenograft models, allograft models, MMTV models, and other known models known in the art to investigate anti-tumor activity.

The term “malignancy” refers to a non-benign tumor or a cancer. As used herein, the term “cancer” includes a malignancy characterized by deregulated or uncontrolled cell growth. Exemplary cancers include: carcinomas, sarcomas, leukemias, and lymphomas.

The term “cancer” includes primary malignant tumors (e.g., those whose cells have not migrated to sites in the subject's body other than the site of the original tumor) and secondary malignant tumors (e.g., those arising from metastasis, the migration of tumor cells to secondary sites that are different from the site of the original tumor).

The term “insertion” in the context of inserting a peptide tag into an antibody means the incorporation of a peptide tag between two specific residues of an antibody. The total number of residues of the antibody is increased by the number of inserted tag residues.

The term “grafting” in the context of incorporating a peptide tag into an antibody refers to the incorporation of a peptide tag into an antibody by mutagenesis. For instance, a short stretch of amino acid residues within a non-CDR loop is substituted by a peptide sequence. In this case, the total number of residues of the antibody remains unchanged. In some embodiments, the term “grafting” also encompasses a combination of substitution and insertion of peptide tag residues. For example, one part of the peptide tag is incorporated by substitution of structural loop residues, while the remaining part is inserted between specific residues of the non-CDR loop. The total number of residues of the IgG antibody is increased by a number that is smaller than the number of tag residues,

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1. Schematic description of 4′-phosphopantetheinyl transferase (PPTase)-mediated generation of ADCs.

FIG. 2. Design of IgG1 constructs which contain peptide tags for site-specific antibody labeling via post-translational 4′-phosphopantetheinylation. (A) IgG1 constructs contain peptide tags (underlined) in the VH, CH1, and CH3 domains. (B) IgG1 constructs contain peptide tags (underlined) in the CH3, VL, and CL domains. Designed constructs that were successfully cloned are marked by a plus (+) sign in the left column. Unsuccessful cloning is indicated by a minus (−) sign. Successfully cloned constructs are grouped as non-expressors (−) and expressors (+) (middle column). Expressors which do not show any detectable Sfp-catalyzed product formation in the presence of CoA-MC-MMAF substrate (acetyl CoA substrate was used for SEQ ID NOs: 28, 105, 118, 120, 123, and 126) are marked with a minus (−) sign in the right column. Very low but detectable formation of the respective MC-MMAF ADC is indicated with a plus (+) symbol. Significantly more efficient but non-quantitative MC-MMAF ADC formation is indicated by a double plus (++) sign. Quantitatively generated MC-MMAF ADCs with two terminal groups (TGs) are classified with a triple plus (+++) rating (according to HPLC analysis). The residue positions disclosed in FIG. 2(A) and FIG. 2(B) are the indicated ‘residues of’ the corresponding SEQ ID NO according to the Eu numbering system for each sequence.

FIG. 2(A) discloses residues 1-68 of SEQ ID NO: 1130, residues 1-80 of SEQ ID NO: 94, residues 1-79 of SEQ ID NO: 95, residues 1-80 of SEQ ID NO: 96, residues 1-72 of SEQ ID NO: 1130, residues 1-80 of SEQ ID NO: 99, residues 1-79 of SEQ ID NO: 97, residues 1-77 of SEQ ID NO: 98, residues 122-198 of SEQ ID NO: 1130, residues 1-77 of SEQ ID NO: 100, residues 1-77 of SEQ ID NO: 102, residues 1-77 of SEQ ID NO: 101, residues 1-77 of SEQ ID NO: 105, residues 1-77 of SEQ ID NO: 107, residues 122-190 of SEQ ID NO: 1130, residues 1-76 of SEQ ID NO: 108, residues 1-75 of SEQ ID NO: 103, residues 1-74 of SEQ ID NO: 106, residues 164-231 of SEQ ID NO: 1130, residues 43-115 of SEQ ID NO: 118, residues 43-115 of SEQ ID NO: 110, residues 43-114 of SEQ ID NO: 113, residues 164-240 of SEQ ID NO: 1130, residues 43-119 of SEQ ID NO: 119, residues 43-119 of SEQ ID NO: 109, residues 43-119 of SEQ ID NO: 112, residues 43-119 of SEQ ID NO: 111, residues 43-119 of SEQ ID NO: 114, residues 43-119 of SEQ ID NO: 115, residues 43-119 of SEQ ID NO: 116, residues 43-119 of SEQ ID NO: 117, residues 324-400 of SEQ ID NO: 1130, residues 203-279 of SEQ ID NO: 123, and residues 203-279 of SEQ ID NO: 120, all respectively, in order of appearance.

FIG. 2(B) discloses residues 324-388 of SEQ ID NO: 1130, residues 203-278 of SEQ ID NO: 122, residues 203-279 of SEQ ID NO: 121, residues 373-449 of SEQ ID NO: 1130, residues 252-328 of SEQ ID NO: 124, residues 252-328 of SEQ ID NO: 125, residues 252-328 of SEQ ID NO: 135, residues 252-328 of SEQ ID NO: 137, residues 252-328 of SEQ ID NO: 138, residues 373-444 of SEQ ID NO: 1130, residues 252-328 of SEQ ID NO: 134, residues 390-449 of SEQ ID NO: 1130, residues 269-340 of SEQ ID NO: 127, residues 269-335 of SEQ ID NO: 126, residues 269-339 of SEQ ID NO: 129, residues 269-337 of SEQ ID NO: 131, residues 269-338 of SEQ ID NO: 130, residues 269-340 of SEQ ID NO: 132, residues 269-340 of SEQ ID NO: 136, residues 383-449 of SEQ ID NO: 1130, residues 262-341 of SEQ ID NO: 140, residues 262-340 of SEQ ID NO: 139, residues 262-340 of SEQ ID NO: 141, residues 1-68 of SEQ ID NO: 1131, residues 1-80 of SEQ ID NO: 26, residues 1-79 of SEQ ID NO: 27, residues 76-152 of SEQ ID NO: 1131, residues 76-160 of SEQ ID NO: 30, residues 150-214 of SEQ ID NO: 1131, residues 42-117 of SEQ ID NO: 29, and residues 42-118 of SEQ ID NO: 28, all respectively, in order of appearance.

FIG. 3. (A) Sequence of CH1 domain, CH2 domain, CH3 domain, and hinge region of the Ig gamma 1 heavy chain (SEQ ID NO:93). (B) Sequence of CL domain of the Ig kappa light chain (SEQ ID NO:24). Underlined amino acids are structural loops. Amino acid positions are numbered according to the Eu numbering system as described in Edelman et al., Proc. Natl. Acad. USA 63:78-85 (1969). X′1, X′2, X′3, X′4, X′5, and X′6 indicate residues that are present at allotypic positions within the IgG1 subclass and the kappa isotype (according to Jefferis et al., MAbs. 1:332-338 (2009)).

FIG. 4. (A) Sequence alignment of CH1 domain, CH2 domain, CH3 domain, and hinge region of the four human Ig gamma subclasses with Trastuzumab (SEQ ID NOs 1109-1113, respectively, in order of appearance). (B) Sequence alignment of CL domain with Trastuzumab (SEQ ID NOs 1114-1115, respectively, in order of appearance). Underlined residues belong to structural loops (see also FIG. 3). Boxed residues indicate allotypic positions according to Jefferis et al., MAbs. 1:332-338 (2009). For simplicity, only the allotypic positions within the IgG1 subclass and the kappa isotype are shown. Protein sequences of the human Ig gamma subclasses and the human kappa isotype are derived from the UniProt database (entry numbers P01857, P01859, P01860, P01861, and P01834).

FIG. 5. HPLC characterization of Sfp-catalyzed ADC formation. (A) HPLC trace confirming the near quantitative formation of the immunoconjugate anti-hHER2-HC-T359-GDS-ppan-MC-MMAF-LSWLLRLLN-K360 (SEQ ID NO:1117). (B) HPLC trace confirming the near quantitative formation of the immunoconjugate anti-hHER2-HC-E388-GDS-ppan-MC-MMAF-LSWLLRLLN-N389 (SEQ ID NO:1118). (C)HPLC trace confirming the near quantitative formation of the immunoconjugate anti-hHER2-HC-V2-DS-ppan-MC-MMAF-LEFIASKLA-Q3 (SEQ ID NO:1119). (D) HPLC trace confirming the quantitative formation of the immunoconjugate anti-hHER2-HC-V2-GDS-ppan-MC-MMAF-LSWLLRLLN-Q3 (SEQ ID NO:1120). (E) HPLC trace confirming the near quantitative formation of the immunoconjugate anti-hHER2-HC-E388-DS-ppan-MC-MMAF-LEFIASKL-N389 (SEQ ID NO:1121). (F) HPLC trace confirming the quantitative formation of the immunoconjugate anti-hHER2-HC-E388-DS-ppan-MC-MMAF-LEFIASKLA-N389 (SEQ ID NO:1122). (G) HPLC trace confirming the near quantitative formation of the immunoconjugate mAb2-HC-T359-GDS-ppan-MC-MMAF-LSWLLRLLN-K360 (SEQ ID NO:1123). (H)HPLC trace exemplifying partial formation of the immunoconjugate anti-hHER2-LC-12-DS-ppan-MC-MMAF-LEFIASKLA-Q3 (SEQ ID NO:1124).

FIG. 6. Characterization of three trastuzumab immunoconjugates by analytical size-exclusion chromatography (AnSEC) exemplifies the formation of monomeric, non-aggregated ADCs. (A) AnSEC analysis of the immunoconjugate anti-hHER2-HC-V2-GDS-ppan-MC-MMAF-LSWLLRLLN-Q3 (SEQ ID NO:1120). (B) AnSEC analysis of the immunoconjugate anti-hHER2-HC-E388-DS-ppan-MC-MMAF-LEFIASKLA-N389 (SEQ ID NO:1122). (C) AnSEC analysis of the immunoconjugate anti-hHER2-HC-E388-DS-ppan-MC-MMAF-LEFIASKL-N389 (SEQ ID NO:1121).

FIG. 7. HPLC characterization of unsuccessful labeling of trastuzumab with incorporation of a peptide tag at a specific location. HPLC trace indicating no conjugation between anti-hHER2-HC-S190D-S191-S192L-L193E-G194F-T195I-Q196A-T197S-Y198K-I199L (SEQ ID NO:114) and CoA-MC-MMAF.

FIG. 8. HPLC characterization of the labeling of mixed grafting/insertion constructs with CoA-MC-MMAF. (A) HPLC trace indicating partial formation of the immunoconjugate anti-hHER2-HC-S63-ppan-MC-MMAF-V64L-EFIASKLA-K65 (SEQ ID NO:1125). (B) HPLC trace indicating no formation of the immunoconjugate anti-hHER2-LC-S76D-S77-ppan-MC-MMAF-L78-EFIASKLA-Q79 (SEQ ID NO:1126).

FIG. 9. HPLC characterization of fluorophore attachment to IgGs. (A) HPLC trace confirming the near quantitative formation of the antibody-fluorophore conjugate anti-hHER2-HC-P189G-S190D-S191-ppan-maleimidoethylamido-TMR-S192L-L193S-G194W-T195L (SEQ ID NO:1127). The extensive overlap between the HPLC traces monitored at 280 and 555 nm indicates near quantitative fluorophore conjugation. (B) HPLC trace confirming the near quantitative formation of the antibody-fluorophore conjugate anti-hHER2-HC-T359-GDS-ppan-maleimidoethylamido-TMR-LSWLLRLLN-K360 (SEQ ID NO:1128). The extensive overlap between the HPLC traces monitored at 280 and 555 nm indicates near quantitative fluorophore conjugation.

FIG. 10. HPLC characterization of antibody labeling with hydrolyzed maleimido- or bromoacetyl thioether-linked cytotoxins. (A) HPLC trace confirming the near quantitative conjugation of maleimide-ring-opened CoA-MC-MMAF to anti-hHER2-HC-T359-GDSLSWLLRLLN-K360 (SEQ ID NO:121). (B) HPLC trace confirming the near quantitative conjugation of CoA-Ac-Ahx-MMAF to anti-hHER2-HC-T359-GDSLSWLLRLLN-K360 (SEQ ID NO:121).

FIG. 11. HPLC characterization of antibody labeling with cytotoxins connected via a cleavable linker. (A) HPLC trace confirming the near quantitative conjugation of CoA-MC-Val-Cit-PABC-MMAF to anti-hHER2-HC-T359-GDSLSWLLRLLN-K360 (SEQ ID NO:121). (B) HPLC trace confirming the near quantitative conjugation of CoA-MC-Val-Cit-PABC-MMAF to anti-hHER2-HC-E388-GDSLSWLLRLLN-N389 (SEQ ID NO:127).

FIG. 12. Optimization of 4′-phosphopantetheinyl transferase (PPTase)-catalyzed ADC formation as a function of pH. The bar graph representation shows the amount of generated ADC with a drug-to-antibody ratio (DAR) of 2 as a function of pH. The data is based on the HPLC analysis (280 nm) of the reaction of CoA-MC-MMAF with either anti-hHER2-HC-T359-GDSLSWLLRLLN-K360 (SEQ ID NO:121) or anti-hHER2-HC-E388-GDSLSWLLRLLN-N389 (SEQ ID NO:127) at a pH range of 5.0 to 10.0.

FIG. 13. Optimization of conjugation reaction as a function of Sfp enzyme concentration in 50 mM HEPES buffer (pH 7.5) containing 2.5 μM antibody, 50 μM CoA-MC-MMAF, and 10 mM MgCl2 (37° C., 16 hours). (A) Deconvoluted mass spectrum showing primarily unconjugated anti-hHER2-HC-E388-GDSLSWLLRLLN-N389 (SEQ ID NO:127) at an Sfp concentration of 0.1 μM. (B) Deconvoluted mass spectrum showing near quantitative ADC formation of anti-hHER2-HC-E388-GDS-ppan-MC-MMAF-LSWLLRLLN-N389 (SEQ ID NO:1118) at an Sfp concentration of 0.25 μM. (C) Deconvoluted mass spectrum showing near quantitative ADC formation of anti-hHER2-HC-E388-GDS-ppan-MC-MMAF-LSWLLRLLN-N389 (SEQ ID NO:1118) at an Sfp concentration of 0.5 μM.

FIG. 14. Optimization of enzymatic conjugation reaction as a function of CoA-MC-MMAF substrate concentration at pH 8.0. (A) The HPLC traces represent three conjugation reactions with 2.5 μM anti-hHER2-HC-E388-GDSLSWLLRLLN-N389 (SEQ ID NO:127) that contained 2.5 μM (top trace), 7.5 μM (middle trace), or 25 μM (bottom trace) of CoA-MC-MMAF. The peak at a retention time of 4.9 min corresponds to unlabeled antibody (DAR=0), the peak at 5.3 min to mono-labeled antibody (DAR=1), and the peak at 5.7 min to bi-labeled antibody (DAR=2). (B) The bar graph representation shows the amount of generated ADC with a DAR of 2 as a function of CoA-MC-MMAF substrate concentration. The titration series was performed at an Sfp enzyme concentration of either 0.25 μM (black bars) or 1.0 μM (white bars).

FIG. 15. Thermal stability of peptide-tagged ADCs as measured by differential scanning fluorometry (DSF) using SYPRO Orange gel stain. (A) Determination of the thermal stability of the immunoconjugate anti-hHER2-HC-T359-GDS-ppan-MC-MMAF-LSWLLRLLN-K360 (SEQ ID NO:1117). Two transition temperatures of 68.5 and 81.5 degrees Celsius are observed by DSF (average of two measurements). (B) Determination of the thermal stability of the immunoconjugate anti-hHER2-HC-E388-GDS-ppan-MC-MMAF-LSWLLRLLN-N389 (SEQ ID NO:1118). Two transition temperatures of 66.3 and 81.0 degrees Celsius are observed by DSF (single measurement). (C) Determination of the thermal stability of unmodified Trastuzumab IgG1 (anti-hHER2) which was used as reference for comparison with peptide-tagged ADCs. Two transition temperatures of 69.7 and 81.1 degrees Celsius are observed by DSF (average of two measurements).

FIG. 16. Pharmacokinetic (PK) study of two peptide-tagged Trastuzumab immunoconjugates. Plasma titers of both ADCs were determined by capturing the respective immunoconjugates with plate-absorbed human HER2 (extracellular domains 3-4) followed by detection with anti-human IgG and anti-MMAF antibodies. (A) Comparison of plasma titers of anti-hHER2-HC-T359-GDS-ppan-MC-MMAF-LSWLLRLLN-K360 (SEQ ID NO:1117) and unmodified Trastuzumab (anti-hHER2) antibody by ELISA. The plasma titer of the immunoconjugate exhibits a rapid decay within 4 days. (B) Comparison of plasma titers of anti-hHER2-HC-E388-GDS-ppan-MC-MMAF-LSWLLRLLN-N389 (SEQ ID NO:1118) and unmodified Trastuzumab (anti-hHER2) antibody by ELISA. The plasma titer of the immunoconjugate closely parallels the control titer of the unmodified anti-hHER2 antibody within a 14 day period.

FIG. 17. In vitro cell-killing assay of peptide-tagged immunoconjugates using the HER2-expressing MDA-231 cell line. Plots are based on cell viability measurements using the Cell Titer Glo Luminescent Cell Viability Assay (Promega). Figure discloses ‘anti-hHER2-HC-T359-GDS-ppan-MC-MMAF-LSWLLRLLN-K360,’ ‘anti-hHER2-HC-E388-GDS-ppan-MC-MMAF-LSWLLRLLN-N389,’ ‘anti-hHER2-HC-T359-GDS-ppan-MC-ValCit-PABC-MMAF-LSWLLRLLN-K360,’ and ‘anti-hHER2-HC-E388-GDS-ppan-MC-ValCit-PABC-MMAF-LSWLLRLLN-N389’ as SEQ ID NOS 1117, 1118, 1108, and 1107, respectively.

FIG. 18. Plot illustrating the influence of peptide tag insertion site on IgG antibody thermal stability. According to differential scanning fluorometry (DSF) using SYPRO Orange gel stain, the first transition temperature (Tm1) is significantly decreased for antibodies containing peptide tag insertions in the CH2 domain of the Fc region (amino acid residues 228-340). In contrast to that, peptide tag insertions in the CH1 domain of the Fab region destabilize the antibody scaffold to a much lesser extent, with Tm1 values generally not more than 3 degree Celcius lower than unmodified Trastuzumab IgG1 with a Tm1 of 69.7° C.

FIG. 19. Enzymatic generation of ADCs with a DAR of 4. (A) ADCs with a DAR of 4 can be generated by incorporating multiple peptide tags into an antibody, such as the ybbR— and the S6-tags. (B) HPLC analysis of Sfp-catalyzed conjugation of CoA-MC-MMAF to Trastuzumab IgG containing an S6 tag in the VH domain as well as a ybbR tag in the CH3 domain (anti-hHER2-HC-V2-GDSLSWLLRLLN-Q3-E388-DSLEFIASKLA-N389 (SEQ ID NO:142)). Room temperature incubation of 2.5 μM of antibody and 50 μM of CoA substrate in the presence of 1 μM of Sfp enzyme leads to near quantitative formation of an ADC with a DAR of 4 (tR=6.1 min, bottom trace). The top trace represents the corresponding uncoupled antibody (DAR=0, tR=5.2 min).

FIG. 20. Pharmacokinetic profiles of peptide-tagged trastuzumab immunoconjugates displaying high and low AUC IgG values. Each of the six peptide-tagged ADCs corresponding to SEQ ID NO:248 (A), SEQ ID NO:33 (B), SEQ ID NO:251 (C), SEQ ID NO:218 (D), SEQ ID NO:202 (E), and SEQ ID NO:244 (F) was administered intravenously into three mice at a single dose of 1 mg/kg. After collection of plasma samples over a time period of 340 hours, trastuzumab ADC molecules were captured by using the immobilized extracellular domain of human HER2. Plasma titers were then determined by two ELISA formats based on either anti-MMAF or anti-hIgG antibodies. While the first format provides readout on the concentration of “intact” ADC, the latter format generates a signal proportional to the concentration of total IgG, comprising both conjugated and unconjugated trastuzumab molecules. A C exemplify PK curves of peptide-tagged MMAF ADCs displaying high AUC IgG values, whereas D F show examples of immunoconjugates exhibiting very low AUC IgG values. In all cases, anti-MMAF and anti-hIgG titers closely parallel each other indicating negligible deconjugation of the MMAF payload during the time course of the PK study.

FIG. 21. Correlation between anti-MMAF and anti-hIgG titers of 86 peptide-tagged ADCs. According to this plot, the concentration readouts of total IgG and “intact” ADC are in close agreement to each other, thereby suggesting a highly stable ppan-MC linkage between MMAF payload and peptide-tagged antibody. Besides negligible deconjugation of the MMAF drug in vivo, this highly linear correlation also indicates that covalent payload attachment does not negatively affect the pharmacokinetic profile of the immunoconjugate.

FIG. 22. Two-step method involving the post-translational modification of an A1-tagged antibody with a carbonyl-functionalized CoA analogue for subsequent attachment of the terminal group (TG) via oxime ligation. In the first step, the A1-tagged antibody is site-specifically labeled with a ketone- or aldehyde-functionalized CoA analogue in cell-culture medium. Following protein A affinity chromatography, the carbonyl group of the ppan moiety is reacted with an aminooxy-derivatized TG.

FIG. 23. In vivo efficacy study of the ybbR-tagged trastuzumab ADC anti-hHER2-HC-E388-DS-ppan-MC-MMAF-LEFIASKLA-N389 (SEQ ID NO: 1122) in immune-deficient nude mice implanted with a human tumor cell line. The xenograft tumor model was performed with nu/nu mice which were subcutaneously administered with the HER2-dependent breast cancer cell line MDA-MB231 clone 16. After the tumor has grown to a size of about 200 mm3, single doses of 3 mg/kg (▴), 5 mg/kg () of the ybbR-tagged ADC or vehicle alone (▪) were intravenously injected into nine mice per treatment group. The vertical arrow indicates the time point of ADC administration. Weekly monitoring of tumor growth revealed that both dose levels resulted in tumor regression demonstrating in vivo efficacy of the peptide-tagged ADC.

DETAILED DESCRIPTION

The present invention provides methods of site-specific labeling of antibodies, using proteins having 4′-phosphopantetheinyl transferase activity (“PPTases”) that catalyze post-translational modification of peptide sequences (“peptide tags”) incorporated into one or more specific sites of an antibody of interest. Enzymatic labeling under ambient reaction conditions enables quantitative and irreversible covalent modification of a specific serine residue within the peptide tags incorporated into the antibody, and thus creates desirable antibody conjugates.

Given the broad substrate tolerance of PPTases, site-specific antibody labeling according to the present invention can be achieved with a variety of chemically accessible labeling reagents, such as anti-cancer agents, fluorophores, peptides, sugars, detergents, polyethylene glycols, immune potentiators, radio-imaging probes, prodrugs, and other molecules. Furthermore, PPTases can be used to immobilize peptide-tagged antibodies on solid support, such as polystyrene nanoparticles and gold surfaces (see, e.g., Wong et al., Org. Biomol. Chem. 8: 782-787, 2010; Wong et al., Nanoscale 4:659-666, 2012, for methodology of immobilization of functional enzymes).

Accordingly, the present invention provides methods of preparation of homogeneous immunoconjugates with a defined drug-to-antibody ratio for use in cancer therapy, and immunoconjugates prepared thereby, as well as pharmaceutical compositions comprising these immunoconjugates. The methods of the instant invention can be used in combination with other conjugation methods known in the art.

1. Antibody Engineering Site-Specific Labeling

A “structural loop” or “non-CDR-loop” according to the present invention is to be understood in the following manner: antibodies are made of domains with immunoglobulin folds. In essence, anti-parallel beta sheets are connected by loops to form a compressed antiparallel beta barrel. In the variable region, some of the loops of the domains contribute essentially to the specificity of the antibody, i.e., the binding to an antigen. These loops are called “CDR-loops.” All other loops of antibody domains are rather contributing to the structure of the molecule and/or the effector function. These loops are defined herein as “structural loops” or “non-CDR-loops.”

The antibodies (e.g., a parent or native antibody, optionally containing one or more non-naturally occurring amino acids) of the present invention are numbered according to the Eu numbering system as set forth in Edelman et al., Proc. Natl. Acad. USA 63:78-85 (1969). Human IgG1 constant region is used as a representative throughout the application. However, the invention is not limited to human IgG1; corresponding amino acid positions can be readily deduced by sequence alignment. For example, FIG. 3 (A) shows IgG1 heavy chain constant region where the structural loops are underlined, these underlined structural loops can be readily identified for IgG2, IgG3, and IgG4 as shown in the sequence alignment of FIG. 4 (A). FIG. 3 (B) shows the light chain constant region where the structural loops are underlined. For the light chain constant region, IgG1, IgG2, IgG3 and IgG4 are the same. Table 1 below lists the amino acid positions in the structural loop of IgG1, IgG2, IgG3 and IgG4, respectively.

TABLE 1 Identified Structural Loop Positions (IgG1 according to Eu numbering) IgG1 IgG2 IgG3 IgG4 Heavy 119(S)120(T)121(K) 119(S)120(T)121(K) 119(S)120(T)121(K) 119(S)120(T)121(K) Chain 131(S)132(S)133(K) 131(C)132(S)133(R) 131(C)132(S)133(R) 131(C)132(S)133(R) 134(S)135(T)136(S) 134(S)135(T)136(S) 134(S)135(T)136(S) 134(S)135(T)136(S) 137(G)138(G)139(T) 137(E)138(S)139(T) 137(G)138(G)139(T) 137(E)138(S)139(T) (SEQ ID NO: 1018) (SEQ ID NO: 1019) (SEQ ID NO: 1020) (SEQ ID NO: 1019) 152(E)153(P)154(V) 152(E)153(P)154(V) 152(E)153(P)154(V) 152(E)153(P)154(V) 159(N)160(S)161(G) 159(N)160(S)161(G) 159(N)160(S)161(G) 159(N)160(S)161(G) 162(A)163(L)164(T) 162(A)163(L)164(T) 162(A)163(L)164(T) 162(A)163(L)164(T) 165(S)166(G) (SEQ 165(S)166(G) (SEQ 165(S)166(G) (SEQ 165(S)166(G) (SEQ ID NO: 1021) ID NO: 1021) ID NO: 1021) ID NO: 1021) 171(P)172(A) 171(P)172(A) 171(P)172(A) 171(P)172(A) 176(S)177(S)178(G) 176(S)177(S)178(G) 176(S)177(S)178(G) 176(S)177(S)178(G) 189(P)190(S)191(S) 189(P)190(S)191(S) 189(P)190(S)191(S) 189(P)190(S)191(S) 192(S)193(L)194(G) 192(N)193(F)194(G) 192(S)193(L)194(G) 192(S)193(L)194(G) 195(T)196(Q)197(T) 195(T)196(Q)197(T) 195(T)196(Q)197(T) 195(T)196(K)197(T) (SEQ ID NO: 1022) (SEQ ID NO: 1023) (SEQ ID NO: 1022) (SEQ ID NO: 1024) 205(K)206(P)207(S) 205(K)206(P)207(S) 205(K)206(P)207(S) 205(K)206(P)207(S) 208(N) (SEQ ID NO: 208(N) (SEQ ID NO: 208(N) (SEQ ID NO: 208(N) (SEQ ID NO: 1025) 1025) 1025) 1025) 230(P)231(A)232(P) 227(P)228(A)229(P) 277(P)278(A)279(P) 227(P)228(A)229(P) 233(E)234(L)235(L) 230(P)231(V)232(A) 280(E)281(L)282(L) 230(E)231(F)232(L) 236(G)236(G) (SEQ 233(G) (SEQ ID NO: 283(G)284(G) (SEQ 233(G)234(G) (SEQ ID NO: 1026) 1027) ID NO: 1026) ID NO: 1028) 244(P)245(P)246(K) 240(P)241(P)242(K) 291(P)292(P)293(K) 241(P)242(P)243(K) 253(I)254(S)255(R) 249(I)250(S)251(R) 300(I)301(S)302(R) 250(I)251(S)252(R) 256(T)257(P)258(E) 252(T)253(P)254(E) 303(T)304(P)305(E) 253(T)254(P)255(E) (SEQ ID NO: 1029) (SEQ ID NO: 1029) (SEQ ID NO: 1029) (SEQ ID NO: 1029) 267(S)268(H)269(E) 263(S)264(H)265(E) 314(S)315(H)316(E) 264(S)265(Q)266(E) 270(D)271(P)272(E) 266(D)267(P)268(E) 317(D)318(P)319(E) 267(D)268(P)269(E) (SEQ ID NO: 1030) (SEQ ID NO: 1030) (SEQ ID NO: 1030) (SEQ ID NO: 1031) 280(D)281(G) 276(D)277(G) 327(D)328(G) 277(D)278(G) 285(H)286(N)287(A) 281(H)282(N)283(A) 332(H)333(N)334(A) 282(H)283(N)284(A) 291(P)292(R) 287(P)288(R) 338(P)339(R) 288(P)289(R) 295(Q)296(Y)297(N) 291(Q)292(F)293(N) 342(Q)343(Y)344(N) 292(Q)293(F)294(N) 298(S)299(T) (SEQ 294(S)295(T) (SEQ 345(S)346(T) (SEQ 295(S)296(T) (SEQ ID NO: 1032) ID NO: 1033) ID NO: 1032) ID NO: 1033) 307(T)308(V)309(L) 303(T)304(V)305(V) 354(T)355(V)356(L) 304(T)305(V)306(L) 310(H)311(Q) (SEQ 306(H)307(Q) (SEQ 357(H)358(Q) (SEQ 307(H)308(Q) (SEQ ID NO: 1034) ID NO: 1035) ID NO: 1034) ID NO: 1034) 315(N)316(G)317(K) 311(N)312(G)313(K) 362(N)363(G)364(K) 312(N)313(G)314(K) 318(E) (SEQ ID NO: 314(E) (SEQ ID NO: 365(E) (SEQ ID NO: 315(E) (SEQ ID NO: 1036) 1036) 1036) 1036) 326(K)327(A)328(L) 322(K)323(G)324(L) 373(K)374(A)375(L) 323(K)324(G)325(L) 329(P)330(A)331(P) 325(P)326(A)327(P) 376(P)377(A)378(P) 326(P)327(S)328(S) (SEQ ID NO: 1037) (SEQ ID NO: 1038) (SEQ ID NO: 1037) (SEQ ID NO: 1039) 339(A)340(K)341(G) 335(T)336(K)337(G) 386(T)387(K)388(G) 336(A)337(K)338(G) 342(Q)343(P)344(R) 338(Q)339(P)340(R) 389(Q)390(P)391(R) 339(Q)340(P)341(R) 345(E) (SEQ ID NO: 341(E) (SEQ ID NO: 392(E) (SEQ ID NO: 342(E) (SEQ ID NO: 1040) 1041) 1041) 1040) 355(R)356(D/E) 351(R)352(E)353(E) 402(R)403(E)404(E) 352(Q)353(E)354(E) 357(E)358(L/M) 354(M)355(T)356(K) 405(M)406(T)407(K) 355(M)356(T)357(K) 359(T)360(K)361(N) 357(N) (SEQ ID NO: 408(N) (SEQ ID NO: 358(N) (SEQ ID NO: (SEQ ID NO: 1042) 1043) 1043) 1044) 384(N)385(G) 380(N)381(G) 431(S)432(G) 381(N)382(G) 388(E)389(N)390(N) 384(E)385(N)386(N) 435(E)436(N)437(N) 385(E)386(N)387(N) 394(T)395(P)396(P) 390(T)391(P)392(P) 441(T)442(P)443(P) 391(T)392(P)393(P) 399(D)400(S)401(D) 395(D)396(S)397(D) 446(D)447(S)448(D) 396(D)397(S)398(D) 402(G) (SEQ ID NO: 398(G) (SEQ ID NO: 449(G) (SEQ ID NO: 399(G) (SEQ ID NO: 1045) 1045) 1045) 1045) 415(S)416(R)417(W) 411(S)412(R)413(W) 462(S)463(R)464(W) 412(S)413(R)414(W) 418(Q)419(Q)420(G) 414(Q)415(Q)416(G) 465(Q)466(Q)467(G) 415(Q)416(E)417(G) 421(N)422(V) (SEQ 417(N)418(V) (SEQ 468(N)469(I) (SEQ 418(N)419(V) (SEQ ID NO: 1046) ID NO: 1046) ID NO: 1047) ID NO: 1048) 433(H)434(N)435(H) 429(H)430(N)431(H) 480(H)481(N)482(R) 430(H)431(N)432(H) 442(S)443(L)444(S) 438(S)439(L)440(S) 489(S)490(L)491(S) 439(S)440(L)441(S) 445(P)446(G) (SEQ 441(P)442(G) (SEQ 492(P)493(G) (SEQ 442(L)443(G) (SEQ ID NO: 1049) ID NO: 1049) ID NO: 1049) ID NO: 1050) Light 109(T)110(V)111(A) 109(T)110(V)111(A) 109(T)110(V)111(A) 109(T)110(V)111(A) Chain 112(A) (SEQ ID NO: 112(A) (SEQ ID NO: 112(A) (SEQ ID NO: 112(A) (SEQ ID NO: 1051) 1051) 1051) 1051) 119(P)120(P)121(S) 119(P)120(P)121(S) 119(P)120(P)121(S) 119(P)120(P)121(S) 122(D)123(E) (SEQ 122(D)123(E) (SEQ 122(D)123(E) (SEQ 122(D)123(E) (SEQ ID NO: 1052) ID NO: 1052) ID NO: 1052) ID NO: 1052) 140(Y)141(P)142(R) 140(Y)141(P)142(R) 140(Y)141(P)142(R) 140(Y)141(P)142(R) 143(E)144(A) (SEQ 143(E)144(A) (SEQ 143(E)144(A) (SEQ 143(E)144(A) (SEQ ID NO: 1053) ID NO: 1053) ID NO: 1053) ID NO: 1053) 151(D)152(N)153(A) 151(D)152(N)153(A) 151(D)152(N)153(A) 151(D)152(N)153(A) 154(L)155(Q)156(S) 154(L)155(Q)156(S) 154(L)155(Q)156(S) 154(L)155(Q)156(S) (SEQ ID NO: 1054) (SEQ ID NO: 1054) (SEQ ID NO: 1054) (SEQ ID NO: 1054) 161(E)162(S)163(V) 161(E)162(S)163(V) 161(E)162(S)163(V) 161(E)162(S)163(V) 164(T)165(E)166(Q) 164(T)165(E)166(Q) 164(T)165(E)166(Q) 164(T)165(E)166(Q) 167(D)168(S) (SEQ 167(D)168(S) (SEQ 167(D)168(S) (SEQ 167(D)168(S) (SEQ ID NO: 1055) ID NO: 1055) ID NO: 1055) ID NO: 1055) 197(T)198(H)199(Q) 197(T)198(H)199(Q) 197(T)198(H)199(Q) 197(T)198(H)199(Q) 200(G)201(L)202(S) 200(G)201(L)202(S) 200(G)201(L)202(S) 200(G)201(L)202(S) 203(S)204(P) (SEQ 203(S)204(P) (SEQ 203(S)204(P) (SEQ 203(S)204(P) (SEQ ID NO: 1056) ID NO: 1056) ID NO: 1056) ID NO: 1056) 207(K)208(S) 207(K)208(S) 207(K)208(S) 207(K)208(S)

FIG. 3 as well as SEQ ID NOs 24 and 93 represent the sequences of the Ig kappa light chain constant region and the Ig gamma-1 heavy chain constant region, respectively. X′1, X′2, X′3, X′4, X′5, and X′6 in SEQ ID NOs: 24 and 93 indicate residues that are present at allotypic positions within the IgG1 subclass and the kappa isotype (according to Jefferis et al., MAbs. 1:332-338 (2009)). X′1 can be Arg or Lys, X′2 can be Asp or Glu, X′3 can be Leu or Met, X′4 can be Ala or Gly, X′5 can be Val or Ala, and X′6 can be Leu or Val.

Because of the high sequence homology of constant regions of IgG1, IgG2, IgG3 and IgG4 antibodies, findings of the invention are not limited to any specific antibodies. In addition, the findings of the invention are not limited to using PPTases. The positions in the antibody structural loops identified herein can also be used for incorporating other peptide tags, which are substrates for other enzymatic conjugation approaches such as the enzyme biotin protein ligase (BPL), transglutaminases, and formylglycine forming enzymes.

In one aspect, the present invention provides immunoconjugates comprising a modified antibody or fragment thereof, and a terminal group, wherein said modified antibody or fragment thereof comprises a peptide tag that by itself is a substrate of a 4′-phosphopantetheinyl transferase, and wherein said peptide tag is located within a structural loop, or C- or N-terminus of the modified antibody or fragment thereof. The present invention also provides modified antibodies or fragments thereof comprising a peptide tag that is a substrate of a 4′-phosphopantetheinyl transferase, and wherein said peptide tag is located within a structural loop, or C- or N-terminus of the antibody or fragment thereof. In a specific embodiment, said peptide tag is one or more peptides selected from those described in Table 2. In one aspect, the peptide tag is inserted between two amino acids of a structural loop of said antibody or fragment thereof. In another aspect, the peptide tag is grafted into a structural loop, C- or N-terminus of said antibody or fragment thereof, wherein the peptide tag replaces one or more amino acids of the parent antibody or fragment thereof. In one aspect, the structural loop refers to a structural loop located at the CH1, CH2, CH3, or CL region of said antibody or fragment thereof. The modified antibody heavy chain and/or light chain (or fragment thereof) may contain 1, 2, 3, 4, 5, 6, 7, 8, or more protein tags in its structural loops. In one aspect, the modified antibodies or antibody fragments contain 2, 4, 6, 8, or more protein tags in its structural loops. In another aspect, said 4′-phosphopantetheinyl transferase is Sfp, AcpS, T. maritima PPTase, human PPTase, or a mutant form thereof that retains the 4′-phosphopantetheinyl transferase activity. In one aspect, said 4′-phosphopantetheinyl transferase originates from Homo sapiens, Bacillus subtilis, Escherichia coli, Thermotoga maritima, Clostridium thermocellum, as well as any other mammalian, bacterial or fungal genome. In another aspect, said 4′-phosphopantetheinyl transferase is a homologous protein to Sfp, AcpS, T. maritima PPTase, human PPTase, or a mutant thereof. In one embodiment, said 4′-phosphopantetheinyl transferase is from a thermophilic organism. In some embodiments, the parental antibody (antibody without incorporating the peptide tag) is an IgG, IgM, IgE, or IgA antibody. In some embodiments, the parental antibody is an IgG1 antibody. In some other embodiments, the parental antibody is an IgG2, IgG3, or IgG4 antibody.

“A substrate of 4′-phosphopantetheinyl transferase” as used herein means the structure being described can serve as an acceptor for a 4′-phosphopantetheine (ppan) or modified ppan group as illustrated in Scheme 1a herein when contacted with 4′-phosphopantetheinyl transferase and CoA or a CoA analogue having a terminal group attached to it.

In one aspect, the present invention provides immunoconjugates comprising a modified antibody or fragment thereof, and a terminal group, wherein said modified antibody or fragment thereof comprises a CH1, CH2, CH3, and/or CL region, and wherein said CH1, CH2, CH3, and/or CL region further comprises a peptide tag that by itself is a substrate of a 4′-phosphopantetheinyl transferase. The present invention also provides modified antibodies or fragments thereof comprising a CH1, CH2, CH3, and/or CL region, and wherein said CH1, CH2, CH3, and/or CL region further comprises a peptide tag that is a substrate of a 4′-phosphopantetheinyl transferase. In some embodiments, said peptide tag is one or more peptides selected from those described in Table 2. In some embodiments, the peptide tag is inserted between two amino acids of a structural loop of said antibody or fragment thereof. In some embodiments, the peptide tag is grafted into a structural loop of said antibody or fragment thereof. The modified antibody heavy chain and/or light chain (or fragment thereof) may contain 1, 2, 3, 4, 5, 6, 7, 8, or more protein tags in its structural loops. In some embodiments, the modified antibodies or fragments contain 2, 4, 6, 8, or more protein tags in its structural loops. In some embodiments, said 4′-phosphopantetheinyl transferase is Sfp, AcpS, T. maritima PPTase, human PPTase, or a mutant form thereof that retains the 4′-phosphopantetheinyl transferase activity. In some embodiments, said 4′-phosphopantetheinyl transferase originates from Homo sapiens, Bacillus subtilis, Escherichia coli, Thermotoga maritima, Clostridium thermocellum, as well as any other mammalian, bacterial or fungal genome. In some embodiments, said 4′-phosphopantetheinyl transferase is a homologous protein to Sfp, AcpS, T. maritima PPTase, or a mutant thereof. In one embodiment, said 4′-phosphopantetheinyl transferase is from a thermophilic organism. In some embodiments, the parental antibody is an IgG, IgM, IgE, or IgA antibody. In a specific embodiment, the parental antibody is an IgG1 antibody. In some embodiments, the parental antibody is an IgG2, IgG3, or IgG4 antibody.

As used herein, “retains” activity means the enzyme being described maintains at least about 10% of the activity of the reference material, which is the B. subtilis Sfp 4′-phosphopantetheinyl transferase (see, e.g., Quadri et al., Biochemistry 37: 1585-1595 (1998)). For example, a different 4′-phosphopantetheinyl transferase or a mutant form of the enzyme retains at least about 10% of the 4′-phosphopantetheinyl transferase activity compared to Sfp under identical reaction conditions, i.e., using the same CoA substrate, the same peptide-tagged antibody, identical buffer conditions, identical substrate and enzyme concentrations, the same temperature, and the same reaction duration.

In one aspect, the present invention provides immunoconjugates comprising a modified antibody or fragment thereof, and a terminal group, wherein said modified antibody or fragment thereof comprises a peptide tag that by itself is a substrate of a 4′-phosphopantetheinyl transferase, and wherein said peptide tag is inserted between positions 2 and 3 of the VH domain, positions 63 and 64 of the VH domain, positions 64 and 65 of the VH domain, positions 138 and 139 of the CH1 domain, positions 197 and 198 of the CH1 domain, positions 359 and 360 of the CH3 domain, positions 388 and 389 of the CH3 domain, the C-terminus of the CH3 domain (after Lys447), and/or positions 2 and 3 of the VL domain of a parental antibody or fragment thereof. In another aspect, the present invention provides immunoconjugates comprising a modified antibody or fragment thereof, and a terminal group, wherein said modified antibody or fragment thereof comprises a peptide tag that by itself is a substrate of a 4′-phosphopantetheinyl transferase, and wherein the peptide tag is inserted between amino acid residues 2 and 3 of the VH or VL domain, or between amino acid residue 110 and 111 of the light chain, or between 119 and 120, or between 120 and 121, or between 135 and 136, or between 136 and 137, or between 138 and 139, or between 164 and 165, or between 165 and 166, or between 194 and 195 of the CH1 domain, or between 388 and 389, or between 445 and 446, or between 446 and 447 of the CH3 domain of a parental antibody or fragment thereof. In some embodiments, the peptide tag is inserted between amino acid residue 110 and 111 of the light chain, or between 119 and 120, or between 120 and 121, or between 135 and 136, or between 136 and 137, or between 138 and 139, or between 165 and 166 of the CH1 domain, or between 388 and 389 of the CH3 domain of a parental antibody or fragment thereof,

In one aspect, the invention provides immunoconjugates comprising a modified antibody or fragment thereof, and a terminal group, wherein said modified antibody or fragment thereof comprises SEQ ID NO: 103, SEQ ID NO: 109, SEQ ID NO:113, SEQ ID NO:121, SEQ ID NO:122, SEQ ID NO:127, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:131, and/or SEQ ID NO:141. In another aspect, the invention provides immunoconjugates comprising a modified antibody or fragment thereof, and a terminal group, wherein said modified antibody or antibody fragment comprises comprises SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:32, SEQ ID NO:63, SEQ ID NO:94, SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO:126, SEQ ID NO:127, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:131, SEQ ID NO:132, SEQ ID NO:139, SEQ ID NO:149, SEQ ID NO:151, SEQ ID NO:152, SEQ ID NO:157, SEQ ID NO:158, SEQ ID NO:160, SEQ ID NO:168, SEQ ID NO:169, SEQ ID NO:178, SEQ ID NO:248, SEQ ID NO:250, SEQ ID NO:251, SEQ ID NO:256, SEQ ID NO:257, SEQ ID NO:259, SEQ ID NO:267, SEQ ID NO:268, SEQ ID NO:277, SEQ ID NO:348, SEQ ID NO:349, SEQ ID NO:356, SEQ ID NO:358, SEQ ID NO:359, SEQ ID NO:364, SEQ ID NO:365, SEQ ID NO:367, SEQ ID NO:373, SEQ ID NO:374, SEQ ID NO:380, SEQ ID NO:384, SEQ ID NO:386, SEQ ID NO:387, or SEQ ID NO:388. In some embodiments, the modified antibody or antibody fragment comprises SEQ ID NO:32, SEQ ID NO:63, SEQ ID NO:127, SEQ ID NO:129, SEQ ID NO:132, SEQ ID NO:151, SEQ ID NO:152, SEQ ID NO:157, SEQ ID NO:158, SEQ ID NO:160, SEQ ID NO:169, SEQ ID NO:250, SEQ ID NO:251, SEQ ID NO:256, SEQ ID NO:257, SEQ ID NO:259, SEQ ID NO:268, SEQ ID NO:358, SEQ ID NO:359, SEQ ID NO:364, SEQ ID NO:365, SEQ ID NO:367, SEQ ID NO:374, or SEQ ID NO:384.

With respect to the immunoconjugates described herein, in one aspect, said peptide tag is one or more peptides selected from those described in Table 2. The modified antibody heavy chain and/or light chain (or fragment thereof) may contain 1, 2, 3, 4, 5, 6, 7, 8, or more protein tags in its structural loops. In one embodiment, the modified antibodies or antibody fragments contain 2, 4, 6, 8, or more protein tags in its structural loops. In another embodiment, said 4′-phosphopantetheinyl transferase is Sfp, AcpS, T. maritima PPTase, human PPTase, or a mutant form thereof that retains the 4′-phosphopantetheinyl transferase activity. In one embodiment, said 4′-phosphopantetheinyl transferase originates from Homo sapiens, Bacillus subtilis, Escherichia coli, Thermotoga maritima, Clostridium thermocellum, as well as any other mammalian, bacterial or fungal genome. In a specific embodiment, said 4′-phosphopantetheinyl transferase is Sfp and the peptide tag is selected from GDSLSWLLRLLN (SEQ ID NO:1), GDSLSWL (SEQ ID NO:2), DSLEFIASKLA (SEQ ID NO:9), GDSLDMLEWSLM (SEQ ID NO:10), DSLEFIASKL (SEQ ID NO:18), and DSLEFIASK (SEQ ID NO:19). In one embodiment, the parental antibody is an IgG, IgM, IgE, or IgA antibody. In a specific embodiment, the parental antibody is an IgG1 antibody. In another specific embodiment, the parental antibody is an IgG2, IgG3, or IgG4 antibody.

In another aspect, the present invention provides immunoconjugates comprising a modified antibody or fragment thereof, and a terminal group, wherein said modified antibody or fragment thereof comprises a peptide tag that by itself is a substrate of a 4′-phosphopantetheinyl transferase, and wherein said peptide tag is grafted into a structural loop, or C- or N-terminus of the antibody or fragment thereof. In a specific embodiment, said peptide tag is grafted at amino acid positions from 62 to 64 of the VH domain (mutations at amino acids 62 and 63, and insertion of the rest of the peptide tag between amino acids 63 and 64), at amino acid positions from 62 to 65 of the VH domain (mutations at amino acids 62-64, and insertion of the rest of the peptide tag between amino acids 64 and 65); at amino acid positions from 133 to 139 of the CH1 domain (mutations of amino acids 133-138, and insertion of the rest of the peptide tag between amino acids 138-139), amino acid positions from 189 to 195 of the CH1 domain, and/or amino acid positions from 190 to 198 of the CH1 domain (mutations from amino acids 190-197, and insertion of the rest of the peptide tag between 197 and 198) of a parental antibody or fragment thereof. In one embodiment, said peptide tag is one or more peptides selected from those described in Table 2. The modified antibody heavy chain and/or light chain (or fragment thereof) may contain 1, 2, 3, 4, 5, 6, 7, 8, or more protein tags in its structural loops. In one embodiment, the modified antibodies or antibody fragments contain 2, 4, 6, 8, or more protein tags in its structural loops. In another embodiment, said 4′-phosphopantetheinyl transferase is Sfp, AcpS, T. maritima PPTase, human PPTase, or a mutant form thereof that retains the 4′-phosphopantetheinyl transferase activity. In one embodiment, said 4′-phosphopantetheinyl transferase originates from Homo sapiens, Bacillus subtilis, Escherichia coli, Thermotoga maritima, Clostridium thermocellum, as well as any other mammalian, bacterial or fungal genome. In a specific embodiment, said 4′-phosphopantetheinyl transferase is Sfp and the peptide tag is selected from GDSLSWLLRLLN (SEQ ID NO:1), GDSLSWL (SEQ ID NO:2), DSLEFIASKLA (SEQ ID NO:9), GDSLDMLEWSLM (SEQ ID NO:10), DSLEFIASKL (SEQ ID NO:18), and DSLEFIASK (SEQ ID NO:19). In one embodiment, the parental antibody is an IgG, IgM, IgE, or IgA antibody. In a specific embodiment, the parental antibody is an IgG1 antibody. In another specific embodiment, the parental antibody is an IgG2, IgG3, or IgG4 antibody.

In another aspect, the present invention provides modified antibodies or fragments thereof comprising a peptide tag that is a substrate of a 4′-phosphopantetheinyl transferase, and wherein said peptide tag is inserted between positions 2 and 3 of the VH domain, positions 63 and 64 of the VH domain, positions 64 and 65 of the VH domain, positions 138 and 139 of the CH1 domain, positions 197 and 198 of the CH1 domain, positions 359 and 360 of the CH3 domain, positions 388 and 389 of the CH3 domain, the C-terminus of the CH3 domain (after Lys447), and/or positions 2 and 3 of the VL domain of a parental antibody or fragment thereof. In another aspect, the peptide tag is inserted between amino acid residues 2 and 3 of the VH or VL domain, or between amino acid residue 110 and 111 of the light chain, or between 119 and 120, or between 120 and 121, or between 135 and 136, or between 136 and 137, or between 138 and 139, or between 164 and 165, or between 165 and 166, or between 194 and 195 of the CH1 domain, or between 388 and 389, or between 445 and 446, or between 446 and 447 of the CH3 domain of a parental antibody or fragment thereof. In some embodiments, the peptide tag is inserted between amino acid residue 110 and 111 of the light chain, or between 119 and 120, or between 120 and 121, or between 135 and 136, or between 136 and 137, or between 138 and 139, or between 165 and 166 of the CH1 domain, or between 388 and 389 of the CH3 domain of a parental antibody or fragment thereof.

In another aspect, the present invention provides a modified antibody or fragment thereof comprising SEQ ID NO: 103, SEQ ID NO: 109, SEQ ID NO:113, SEQ ID NO:121, SEQ ID NO:122, SEQ ID NO:127, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:131, and/or SEQ ID NO:141. In another aspect, the present invention provides a modified antibody or fragment thereof comprising SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:32, SEQ ID NO:63, SEQ ID NO:94, SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO:126, SEQ ID NO:127, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:131, SEQ ID NO:132, SEQ ID NO:139, SEQ ID NO:149, SEQ ID NO:151, SEQ ID NO:152, SEQ ID NO:157, SEQ ID NO:158, SEQ ID NO:160, SEQ ID NO:168, SEQ ID NO:169, SEQ ID NO:178, SEQ ID NO:248, SEQ ID NO:250, SEQ ID NO:251, SEQ ID NO:256, SEQ ID NO:257, SEQ ID NO:259, SEQ ID NO:267, SEQ ID NO:268, SEQ ID NO:277, SEQ ID NO:348, SEQ ID NO:349, SEQ ID NO:356, SEQ ID NO:358, SEQ ID NO:359, SEQ ID NO:364, SEQ ID NO:365, SEQ ID NO:367, SEQ ID NO:373, SEQ ID NO:374, SEQ ID NO:380, SEQ ID NO:384, SEQ ID NO:386, SEQ ID NO:387, or SEQ ID NO:388. In some embodiments, the present invention provides a modified antibody or fragment thereof comprising SEQ ID NO:32, SEQ ID NO:63, SEQ ID NO:127, SEQ ID NO:129, SEQ ID NO:132, SEQ ID NO:151, SEQ ID NO:152, SEQ ID NO:157, SEQ ID NO:158, SEQ ID NO:160, SEQ ID NO:169, SEQ ID NO:250, SEQ ID NO:251, SEQ ID NO:256, SEQ ID NO:257, SEQ ID NO:259, SEQ ID NO:268, SEQ ID NO:358, SEQ ID NO:359, SEQ ID NO:364, SEQ ID NO:365, SEQ ID NO:367, SEQ ID NO:374, or SEQ ID NO:384.

In one aspect, said peptide tag is one or more peptides selected from those described in Table 2. The antibody heavy chain and/or light chain (or fragment thereof) may contain 1, 2, 3, 4, 5, 6, 7, 8, or more protein tags in its structural loops. In some embodiments, the antibodies or antibody fragments contain 2, 4, 6, 8, or more protein tags in its structural loops. In some embodiments, said 4′-phosphopantetheinyl transferase is Sfp, AcpS, T. maritima PPTase, human PPTase, or a mutant form thereof that retains the 4′-phosphopantetheinyl transferase activity. In some embodiments, said 4′-phosphopantetheinyl transferase originates from Homo sapiens, Bacillus subtilis, Escherichia coli, Thermotoga maritima, Clostridium thermocellum, as well as any other mammalian, bacterial or fungal genome. In a specific embodiment, said 4′-phosphopantetheinyl transferase is Sfp and the peptide tag is selected from GDSLSWLLRLLN (SEQ ID NO:1), GDSLSWL (SEQ ID NO:2), DSLEFIASKLA (SEQ ID NO:9), GDSLDMLEWSLM (SEQ ID NO:10), DSLEFIASKL (SEQ ID NO:18), and DSLEFIASK (SEQ ID NO:19). In some embodiments, the parental antibody is an IgG, IgM, IgE, or IgA antibody. In a specific embodiment, the parental antibody is an IgG1 antibody. In some embodiments, the parental antibody is an IgG2, IgG3, or IgG4 antibody.

In another aspect, the present invention provides modified antibodies or fragments thereof comprising a peptide tag that is a substrate of a 4′-phosphopantetheinyl transferase, and wherein said peptide tag is grafted into a structural loop, or C- or N-terminus of the antibody or fragment thereof. In some embodiments, said peptide tag is grafted at amino acid positions from 62 to 64 of the VH domain (mutations at amino acids 62 and 63, and insertion of the rest of the peptide tag between amino acids 63 and 64), at amino acid positions from 62 to 65 of the VH domain (mutations at amino acids 62-64, and insertion of the rest of the peptide tag between amino acids 64 and 65); at amino acid positions from 133 to 139 of the CH1 domain (mutations of amino acids 133-138, and insertion of the rest of the peptide tag between amino acids 138-139), amino acid positions from 189 to 195 of the CH1 domain, and/or amino acid positions from 190 to 198 of the CH1 domain (mutations from amino acids 190-197, and insertion of the rest of the peptide tag between 197 and 198) of a parental antibody or fragment thereof. In one embodiment, said peptide tag is one or more peptides selected from those described in Table 2. The modified antibody heavy chain and/or light chain (or fragment thereof) may contain 1, 2, 3, 4, 5, 6, 7, 8, or more protein tags in its structural loops. In one embodiment, the modified antibodies or antibody fragments contain 2, 4, 6, 8, or more protein tags in its structural loops. In another embodiment, said 4′-phosphopantetheinyl transferase is Sfp, AcpS, T. maritima PPTase, human PPTase, or a mutant form thereof that retains the 4′-phosphopantetheinyl transferase activity. In one embodiment, said 4′-phosphopantetheinyl transferase originates from Homo sapiens, Bacillus subtilis, Escherichia coli, Thermotoga maritima, Clostridium thermocellum, as well as any other mammalian, bacterial or fungal genome. In some embodiments, said 4′-phosphopantetheinyl transferase is Sfp and the peptide tag is selected from GDSLSWLLRLLN (SEQ ID NO:1), GDSLSWL (SEQ ID NO:2), DSLEFIASKLA (SEQ ID NO:9), GDSLDMLEWSLM (SEQ ID NO:10), DSLEFIASKL (SEQ ID NO:18), and DSLEFIASK (SEQ ID NO:19). In one embodiment, the parental antibody is an IgG, IgM, IgE, or IgA antibody. In a specific embodiment, the parental antibody is an IgG1 antibody. In some embodiments, the parental antibody is an IgG2, IgG3, or IgG4 antibody.

In certain aspects, the modified antibodies provided herein are engineered to contain one or more orthogonal conjugation sites. Such orthogonal conjugation sites include, but are not limited to, a substrate of Sfp 4′-phosphopantetheinyl transferase, a substrate of AcpS 4′-phosphopantetheinyl transferase, T. maritima 4′-phosphopantetheinyl transferase, human 4′-phosphopantetheinyl transferase, a lysine, a cysteine, a tyrosine, a histidine, an unnatural amino acid, pyrrolysine and pyrroline-carboxy-lysine. The orthogonal conjugation sites may also be peptide sequences that can be enzymatically or chemically modified, e.g., a tetracysteine tag, a LPXTG-sortase peptide (SEQ ID NO:1057) (X is any amino acid), a biotin acceptor peptide, a CXPXR-aldehyde tag (SEQ ID NO:1058) (X is any amino acid), or a His tag. In certain embodiments, such engineered antibodies are labeled using the methods of the invention in combination with other conjugation methods known in the art including, but not limited to, chemoselective conjugation through cysteine, lysine, histidine, tyrosine, formyl-glycine, pyrrolysine, pyrroline-carboxylysine and unnatural amino acids.

In certain aspects, the enzymes Sfp and AcpS are used for orthogonal site-specific labeling of the same or two different labels onto an antibody engineered to contain an S-series peptide (for example, S1, S2, S3, S4, S5, S6 and S7) and an A-series peptide (for example, A1, A-1, A-2, A-3, A-4 and A-6) located in the VH, VL, CH1, CH2, CH3, or CL region of the antibody (see also Table 2).

In other aspects, the enzymes Sfp and AcpS are used for orthogonal site-specific labeling of two different labels onto an antibody engineered to contain an ybbR-series peptide (for example, ybbR11, ybbR12 and ybbR13) and an A-series peptide (for example, A1, A-1, A-2, A-3, A-4 and A-6) located in the CH1, CH2, CH3, or CL region of the antibody.

In other aspects, the enzymes Sfp or AcpS are used for orthogonal site-specific labeling onto an antibody engineered to contain an ybbR-series peptide (for example, ybbR11, ybbR12 and ybbR13) and an A-series peptide (for example, A1, A-1, A-2, A-3, A-4 and A-6) located in the VH, VL, CH1, CH2, CH3, or CL region of the antibody in combination with other conjugation methods. Such methods include but are not limited to conjugation to lysine, cysteine, tyrosine, histidine, formyl glycine, unnatural amino acids, pyrrolysine and/or pyrroline-carboxy-lysine. Such methods can be used to attached the same or different labels than used for the enzymatic conjugation through Sfp or AcpS.

Proteins Having 4′-Phosphopantetheinyl Transferase Activity and Peptide Substrates

As used herein, the terms “4′-phosphopantetheinyl transferase” (PPTases) and “protein having 4′-phosphopantetheinyl transferase activity” are used interchangeably and refer to any protein or a fragment thereof, which is capable of transferring a ppan group from a donor molecule, such as coenzyme A (CoA) or an analogue thereof, to a substrate, such as a peptide tag or an acyl carrier protein.

PPTases are enzymes which catalyze post-translational modification of carrier proteins associated with fatty acid synthases (FASs), polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs). These carrier proteins are commonly referred to as ACP, acyl carrier proteins (FASs and PKSs) or to as PCP, peptidyl carrier proteins (NRPSs). ACPs and PCPs consist of about 80 amino acids and are usually integrated as domains in FAS, PKS, or NRPS multienzyme complexes. In some instances, ACPs and PCPs are also found as free-standing autonomously folded proteins. The ACP is essential for fatty acid and polyketide biosynthesis, because it carries the corresponding metabolic intermediates via covalent attachment to its flexible ppan prosthetic group. The PCP carries out the analogous function in nonribosomal peptide synthesis by transporting peptide intermediates between active sites in NRPS multienzyme complexes. PPTases have been classified into three groups, based on sequence and structural similarity and substrate specificity. Members of the first group of PPTases, for example, AcpS of Escherichia coli, are about 120 amino acid residues long, function as homotrimers, and have fairly narrow substrate specificities limited to, for example, to the acyl carrier proteins (ACPs) of type II FAS and PKS systems. Members of the second group, exemplified by Sfp of Bacillus subtilis or the human PPTase, function as monomers, and have been reported to have broad substrate specificities that include carrier proteins associated with NRPs, FASs and PKSs. (see, e.g., Suo et al., Proc. Natl. Acad. Sci. USA3 98:99-104, 2001; Quadri et al., Biochem., 37:1585-95, 1998; Liu et al., Arch. Microbiol, 183:37-44, 2005; Joshi et al., J. Biol. Chem., 278:33142-33149, 2003). The third group includes PPTases that are attached covalently to the type I FASs, such as those associated with the yeast cytosolic FAS. (see, e.g., Fichtlscherer et al., Eur. J. Biochem., 267:2666-71, 2000).

According to the present invention, PPTases include naturally occurring proteins having 4′-phosphopantetheinyl transferase activity, including but not limited to, AcpS from E. coli (type I PPTase) and Sfp from B. subtilis (type II PPTase), integrated PPTase domains (type III PPTase) associated with fatty acid synthases (FAS) from S. cerevisiae, S. pombe, C. albacans, E. nidulans, and P. patulum, EntD from E. coli, S. flexneri, S. typhimurium and S. austin, Psf-1 from B. pumilus, Gsp from B. brevis, Hetl from Anabaena sp., Lys5 from S. cerevisiae, Lpa-14 from B. subtilis and 0195 from E. coli, PPTase (NP228501) of T. maritima MSB8, PPTase (NP056238) of Homo sapiens, and homologs and mutants thereof. PPTases of the present invention also include proteins having 4′-phosphopantetheinyl transferase activity from species other than the ones described above, as well as those artificially or recombinantly produced proteins, which are capable of 4′-phosphopantetheinylating a peptide moiety described herein.

Sfp and AcpS represent two classes of 4′-phosphopantetheinyl transferases that show differences both in their substrate specificity for the carrier protein domains and in their structures (Flugal et al., J. Biol. Chem., 275:959-968, 2000; Lambalot et al., Chem. Biol., 3:923-936, 1996). The Sfp class of pseudodimeric PPTases are about 230 residues in size and the crystal structure of Sfp suggests it has a twofold symmetry with the N— and the C-terminal halves of the molecule adopting similar folds, with the active site of the enzyme at the interface (Hodneland et al., Proc. Natl. Acad. Sci. USA, 99:5048-5052, 2002; Koglin et al., Science, 312:273-276, 2006). In contrast, AcpS is about 120 residues in length, about half the size of Sfp, and the crystal structures of AcpS show that the enzyme assembles into trimers and the ACP and CoA binding sites are formed at the interface between each monomer (Reuter et al., Embo. J., 18:6823-6831, 1999; Chirgadze et al., Embo. J., 19:5281-5287, 2000). It has been reported that Sfp exhibits a much broader substrate specificity than AcpS in that Sfp can modify both PCP and ACP domains from nonribosomal peptides synthetases, polyketide synthases, and fatty acid synthases, while AcpS modifies only ACP (Flugel et al., J. Biol. Chem., 275:959-968, 2000; Parris et al., Structure, 8:883-895, 2000; Mofid et al., J. Biol. Chem., 277:17023-17031, 2002).

ACP and PCP substrates of both kinds of PPTases adopt similar folds as four-helix bundle proteins with the serine residue to be modified by the ppan prosthetic group at the top of the second alpha-helix, which has been shown to play an important role for interacting with Sfp and AcpS (Hodneland et al., Proc. Natl. Acad. Sci. USA, 99:5048-5052, 2002; Chirgadze et al., Embo. J., 19:5281-5287, 2000; Quadri et al., Biochem., 37:1585-1595, 1998; L1 et al., Biochem., 42:4648-4657, 2003). Although there is not an obvious consensus sequence difference between PCPs and ACPs, the most significant difference between the two is the electrostatic surface potential of the carrier proteins, with a neutral protein surface for PCPs and a negatively charged acidic surface for ACP domains in FAS and PKS systems (Parris et al., Structure, 8:883-895, 2000).

Groups of short peptides have been identified as efficient substrates for PPTases. For example, ybbR13 is an 11 amino acid residue peptide, which is a substrate of Sfp (J. Yin et al., Proc. Natl. Acad. Sci. USA, 102:15815-15820, 2005; Z. Zhou et al., ACS Chem. Biol., 2:337-346, 2007; Z. Zhou et al., J. Am. Chem. Soc., 130: 9925-9930, 2008). The ybbR13 peptide (DSLEFIASKLA (SEQ ID NO:9)) was isolated from a phage displayed library of the B. subtilis genome (J. Yin et al., Proc. Natl. Acad. Sci. USA, 102:15815-15820, 2005). A part of the sequence of the ybbR13 peptide is derived from a B. subtilis open reading frame, called ybbR, and it includes the (H/D)S(L/I) tri-peptide sequence at the N-terminus, which is conserved in known substrates of PPTases such as ACPs, PCPs, and aryl carrier proteins (ArCPs). The ybbR peptide does not include the amino acid sequence, DxFFxxLGG (SEQ ID NO:1059) at its N-terminus, which is found to be conserved in PCPs. Modifications and variants of the ybbR13 peptide have been described which can be used as substrates in 4′-phosphopantetheinylation reactions for site specific labeling (J. Yin et al., Proc. Natl. Acad. Sci. USA, 102:15815-15820, 2005). Additional peptide substrates for PPTases are the S series of peptides and the A series of peptides, designated as “S” or “A” based on their reactivity with Sfp or AcpS, respectively (Z. Zhou et al. ACS Chem Biol., 2:337-346, 2007 and Z. Zhou et al. J. Am. Chem. Soc., 130:9925-9930, 2008). Exemplary S series of peptides include, but are not limited to, S6, which is an efficient substrate for Sfp, and exemplary A series of peptides include, but are not limited to, A1, which is an efficient substrate for AcpS. Both S6 and A1 peptides are 12 amino acid residues in length.

Examples of peptide substrates are listed in Table 2 below. According to the present invention, these short peptide tags can be used for the site-specific labeling of target proteins (including antibodies) in reactions catalyzed by PPTases. Additionally, a pairing of peptide tags and respective PPTases described herein, e.g., ybbR13/Sfp or S6/Sfp and A1/AcpS, can also be used for orthogonal site-specific labeling of one (or multiple) target proteins, e.g., in cell lysates or on the surface of live cells.

TABLE 2 PPTase peptide substrate examples. Sequence SEQ ID NO: Name GDSLSWLLRLLN 1 S6 GDSLSWL 2 S6 truncate GDSLSWLVRCLN 3 S1 GDSLSWLLRCLN 4 S2 GDSLSWLVRLLN 5 S3 GDSLSWLLRSLN 6 S7 GSQDVLDSLEFIASKLA 7 Ybbr11 VLDSLEFIASKLA 8 Ybbr12 DSLEFIASKLA 9 Ybbr13 GDSLDMLEWSLM 10 A1 GDSLDMLEWSL 11 A-1 GDSLDMLEWS 12 A-2 GDSLDMLEW 13 A-3 DSLDMLEW 14 A-4 GDSLDM 15 A-6 LDSVRMMALAAR 16 E0 LDSLDMLEWSLR 17 E2 DSLEFIASKL 18 ybbR truncate 1 DSLEFIASK 19 ybbR truncate 2 DVLDSLEFI 20 ybbR8 VLDSLEFIAS 21 ybbR14 DSLDMLEWSL 1132 A1 truncate The modified serine residue is underlined.

Accordingly, the present invention provides engineered antibodies which contain one or more of the peptide tags listed in Table 2, and methods of labeling such antibodies, e.g., conjugating with a cytotoxin. The labeling chemistry is illustrated below and in the Examples.

2. Labeling Chemistry

The modified antibody or fragment thereof provided herein are site-specifically labeled by post-translational modification of the short peptide tag (inserted or grafted or combination thereof) using PPTases or mutants thereof, including, but not limited to, Sfp, AcpS, human PPTase or T. maritima PPTase. Such post-translational modifications involve a PPTase catalyzed reaction between a conserved serine residue in the short peptide tag and a 4′-phosphopantetheinyl (ppan) group of coenzyme A (CoA) or a coenzyme A analogue. In this reaction, the ppan prosthetic group of CoA, or modified ppan prosthetic group of the CoA analogue, is attached to the short peptide tag through the formation of a phosphodiester bond with the hydroxyl group of the conserved serine residue of the short peptide tag which has been incorporated (i.e. inserted or grafted or combination thereof) into the antibody. The ppan or modified ppan is linked to a terminal group (TG) and the formation of the phosphodiester bond thereby conjugates the terminal group (TG) to the modified antibody or fragment thereof via a linker which includes the ppan or modified ppan moiety.

In certain embodiments the modified antibodies or fragment thereof provided herein are labeled by a one-step method wherein the post-translational modification occurs by reacting a CoA linked to a terminal group (TG), or a CoA analogue linked to a terminal group (TG), with the conserved serine of the short peptide tag engineered into the antibody, as shown in Schemes (Ia)-(Ic) below. Alternatively, in other embodiments of the post-translational modification of the modified antibodies or fragment thereof provided herein, the modified antibodies or fragment thereof are labeled by a two-step method wherein the post-translational modification involves first reacting an activated CoA or an activated CoA analogue with the conserved serine of the short peptide tag engineered into the antibody, followed by reacting a functionalized terminal group (TG) with the reactive group on the activated CoA or an activated CoA. Such two-step methods are illustrated in Schemes (IIa)-(IIf) below. In other embodiments of the post-translational modification of the modified antibodies or fragment thereof provided herein, the modified antibodies or fragment thereof are labeled by a three-step method, wherein the post-translational modification involves first reacting a CoA having a protected ppan prosthetic group, or a CoA analogue having protected ppan prosthetic group, with the conserved serine of the short peptide tag engineered into the antibody, thereby attaching the CoA or CoA analogue to the antibody. In the second step the protected ppan prosthetic group is deprotected thereby generating a reactive functional group on the protected ppan prosthetic group. In the third step, this reactive functional group is linked to a terminal group (TG), thereby attaching the terminal group to the modified antibody or fragment thereof. Such three-step methods are illustrated in Schemes (IIIa)-(IIIf) below

One-Step Method

The One-step method used to label the modified antibodies or fragment thereof provided herein is shown in Scheme (Ia):

where:

R2 is H or P(═O)(OH)2;

  • Linker Unit (LU) is a chemical moiety that links the terminal group (TG) to the modified ppan prosthetic group of the CoA analogue and
  • terminal group (TG) is a drug moiety selected from an anti-cancer agent, an anti-inflammatory agent, an antifungal agent, an antibacterial agent, an anti-parasitic agent, an anti-viral agent, and an anesthetic agent, a biophysical probe, a fluorophore, an affinity probe, a chelator, a spectroscopic probe, a radioactive probe, a lipid molecule, a polyethylene glycol, a polymer, a spin label, DNA, RNA, a protein, a peptide, an antibody, an antibody fragment, a nanoparticle, a quantum dot, a liposome, a PLGA particle, a polysaccharide, or a surface.
  • In certain embodiments the Linker Unit (LU) comprises a linker selected from a non-enzymatically cleavable linker, a non-cleavable linker, an enzymatically cleavable linker, a photo stable linker, a photo-cleavable linker or any combination thereof, and the Linker Unit (LU) optionally contains a self-immolative spacer.
  • In certain embodiments the Linker Unit (LU) is -L1-L2-L3-L4-, wherein
  • L1 is a bond, a non-enzymatically cleavable linker, a non-cleavable linker, an enzymatically cleavable linker, a photo stable linker or a photo-cleavable linker;
  • L2 is a bond, a non-enzymatically cleavable linker, a non-cleavable linker, an enzymatically cleavable linker, a photo stable linker or a photo-cleavable linker;
  • L3 is a bond, a non-enzymatically cleavable linker, a non-cleavable linker, an enzymatically cleavable linker, a photo stable linker or a photo-cleavable linker, and
  • L4 is a bond, a non-enzymatically cleavable linker, a non-cleavable linker, an enzymatically cleavable linker, a photo stable linker, a photo-cleavable linker or a self-immolative spacer.
    In certain embodiments the Linker Unit (LU) is -L1-L2-L3-L4-, wherein
  • L1 is a non-enzymatically cleavable linker, a non-cleavable linker, an enzymatically cleavable linker, a photo stable linker or a photo-cleavable linker;
  • L2 is a bond, a non-enzymatically cleavable linker, a non-cleavable linker, an enzymatically cleavable linker, a photo stable linker or a photo-cleavable linker;
  • L3 is a bond, a non-enzymatically cleavable linker, a non-cleavable linker, an enzymatically cleavable linker, a photo stable linker or a photo-cleavable linker, and
  • L4 is a bond, a non-enzymatically cleavable linker, a non-cleavable linker, an enzymatically cleavable linker, a photo stable linker, a photo-cleavable linker or a self-immolative spacer.
    In certain embodiments the Linker Unit (LU) is -L1-L2-L3-L4-, wherein
  • L1 is a bond, -A1-, -A1X2— or —X2—; where:
    • A1 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(C(R4)2)n—, —(O(CH2)n)m—, —(O(C(R4)2)n)m—, —((CH2)nO)m—, —(((C(R4)2)nO)m—, —((CH2)nO)m(CH2)n—, —(((C(R4)2)nO)mC(R4)2)n—, —(CH2)nC(═O)NH—, —(C(R4)2)nC(═O)NH—, —(CH2)nNHC(═O)—, —(C(R4)2)nNHC(═O)—, —NHC(═O)(CH2)n—, —NHC(═O)(C(R4)2)n—, —C(═O)NH(CH2)nS—, —C(═O)NH(C(R4)2)nS—, —S(CH2)nC(═O)NH—, —S(C(R4)2)nC(═O)NH—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —C(═O)NH(C(R4)2)nNHC(═O)(C(R4)2)n—, —C(═O)(CH2)n—, —C(═O)(C(R4)2)n—, —(CH2)nC(═O)—, —(C(R4)2)nC(═O)—, —(CH2)n(O(CH2)n)mNHC(═O)(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—, —(CH2)nNHC(═O)(CH2)n—, —(C(R4)2)nNHC(═O)(C(R4)2)n—, —(CH2)nNH((CH2)nO)m(CH2)n—, —(C(R4)2)nNH((C(R4)2)nO)m(C(R4)2)n—, —(O(CH2)n)mNHC(═O)(CH2)n—, or —(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—;
    • each X2 is independently selected from a bond,

    •  —S—, —Si(OH)2O—,

    •  CHR4(CH2)nC(═O)NH—, —CHR4(CH2)nNHC(═O)—, —C(═O)NH— and —NHC(═O)—;
    • each R4 is independently selected from H, C1-4alkyl, —C(═O)OH and —OH,
    • each R5 is independently selected from H, C1-4alkyl, phenyl or C1-4alkyl substituted with 1 to 3 —OH groups;
    • each R6 is independently selected from H, fluoro, benzyloxy substituted with —C(═O)OH, benzyl substituted with —C(═O)OH, C1-4alkoxy substituted with —C(═O)OH and C1-4alkyl substituted with —C(═O)OH;
    • R7 is independently selected from H, phenyl and pyridine;
    • R8 is independently selected from

    • R9 is independently selected from H and C1-6haloalkyl;
    • each n is independently selected from 1, 2, 3, 4, 5, 6, 7, 8 and 9, and
    • each m is independently selected from 1, 2, 3, 4, 5, 6, 7, 8 and 9;
  • L2 is a bond, a non-enzymatically cleavable linker, a non-cleavable linker, an enzymatically cleavable linker, a photo stable linker or a photo-cleavable linker;
  • L3 is a bond, a non-enzymatically cleavable linker, a non-cleavable linker, an enzymatically cleavable linker, a photo stable linker or a photo-cleavable linker, and
  • L4 is a bond, a non-enzymatically cleavable linker, a non-cleavable linker, an enzymatically cleavable linker, a photo stable linker, a photo-cleavable linker or a self-immolative spacer.
    In certain embodiments, L1 is —C(═O)—CH2CH2—NH—C(═O)—CH2CH2—S—, so LU is —C(═O)—CH2CH2—NH—C(═O)—CH2CH2—S-L2-L3-L4-.
    In certain embodiments the Linker Unit (LU) is -L1-L2-L3-L4-, wherein
  • L1 is a bond, -A1-, -A1X2— or —X2—; where:
    • A1 is —C(═O)NH—, —C(═O)NH(CH2)n—, —(O(CH2)n)m—, —((CH2)nO)m—, —((CH2)nO)m(CH2)n—, —(CH2)nC(═O)NH—, —(CH2)nNHC(═O)—, —NHC(═O)(CH2)n—, —C(═O)NH(CH2)nS—, —S(CH2)nC(═O)NH—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —C(═O)(CH2)n—, —(CH2)nC(═O)—, —(CH2)n(O(CH2)n)mNHC(═O)(CH2)n—, —(CH2)nNHC(═O)(CH2)n—, —(CH2)nNH((CH2)nO)m(CH2)n—, or —(O(CH2)n)mNHC(═O)(CH2)n—;
    • each X2 is independently selected from a bond,

    •  —S—, —Si(OH)2O—,

    •  CHR4(CH2)nC(═O)NH—, —CHR4(CH2)nNHC(═O)—, —C(═O)NH— and —NHC(═O)—;
    • each R4 is independently selected from H, C1-4alkyl, —C(═O)OH and —OH,
    • each R5 is independently selected from H, C1-4alkyl, phenyl or C1-4alkyl substituted with 1 to 3 —OH groups;
    • each R6 is independently selected from H, fluoro, benzyloxy substituted with —C(═O)OH, benzyl substituted with —C(═O)OH, C1-4alkoxy substituted with —C(═O)OH and C1-4alkyl substituted with —C(═O)OH;
    • R7 is independently selected from H, phenyl and pyridine;
    • R8 is independently selected from

    • R9 is independently selected from H and C1-6haloalkyl;
    • each n is independently selected from 1, 2, 3, 4, 5, 6, 7, 8 and 9, and
    • each m is independently selected from 1, 2, 3, 4, 5, 6, 7, 8 and 9;
  • L2 is a bond, a non-enzymatically cleavable linker, a non-cleavable linker, an enzymatically cleavable linker, a photo stable linker or a photo-cleavable linker;
  • L3 is a bond, a non-enzymatically cleavable linker, a non-cleavable linker, an enzymatically cleavable linker, a photo stable linker or a photo-cleavable linker;
  • L4 is a bond, a non-enzymatically cleavable linker, a non-cleavable linker, an enzymatically cleavable linker, a photo stable linker, a photo-cleavable linker or a self-immolative spacer.
    In certain embodiments the Linker Unit (LU) is -L1-L2-L3-L4-, wherein
  • L1 is a bond, -A1-, -A1X2— or —X2—; where:
    • A1 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(CH2)nS—, —(O(CH2)n)m—, —((CH2)nO)m(CH2)n—, —NHC(═O)(CH2)n—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —(CH2)nNH((CH2)nO)m(CH2)n— or —(O(CH2)n)mNHC(═O)(CH2)n—;
    • each X2 is independently selected from a bond,

    •  —S—, —Si(OH)2O—,

    •  CHR4(CH2)nC(═O)NH—, —CHR4(CH2)nNHC(═O)—, —C(═O)NH— and —NHC(═O)—;
    • each R4 is independently selected from H, C1-4alkyl, —C(═O)OH and —OH,
    • each R5 is independently selected from H, C1-4alkyl, phenyl or C1-4alkyl substituted with 1 to 3 —OH groups;
    • each R6 is independently selected from H, fluoro, benzyloxy substituted with —C(═O)OH, benzyl substituted with —C(═O)OH, C1-4alkoxy substituted with —C(═O)OH and C1-4alkyl substituted with —C(═O)OH;
    • R7 is independently selected from H, phenyl and pyridine;
    • R8 is independently selected from

    • R9 is independently selected from H and C1-6haloalkyl;
    • each n is independently selected from 1, 2, 3, 4, 5, 6, 7, 8 and 9, and
    • each m is independently selected from 1, 2, 3, 4, 5, 6, 7, 8 and 9;
  • L2 is a bond, a non-enzymatically cleavable linker, a non-cleavable linker, an enzymatically cleavable linker, a photo stable linker or a photo-cleavable linker;
  • L3 is a bond, a non-enzymatically cleavable linker, a non-cleavable linker, an enzymatically cleavable linker, a photo stable linker or a photo-cleavable linker, and
  • L4 is a bond, a non-enzymatically cleavable linker, a non-cleavable linker, an enzymatically cleavable linker, a photo stable linker, a photo-cleavable linker or a self-immolative spacer.
    In certain embodiments the Linker Unit (LU) is -L1-L2-L3-L4-, wherein
  • L1 is a bond, -A1-, -A1X2— or —X2—; where:
    • A1 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(CH2)nS—, —(O(CH2)n)m—, —((CH2)nO)m(CH2)n—, —NHC(═O)(CH2)n—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —(CH2)nNH((CH2)nO)m(CH2)n— or —(O(CH2)n)mNHC(═O)(CH2)n—;
    • each X2 is independently selected from a bond,

    •  —S—, —Si(OH)2O—,

    •  —CHR4(CH2)nC(═O)NH—, —CHR4(CH2)nNHC(═O)—, —C(═O)NH— and —NHC(═O)—;
    • each R4 is independently selected from H, C1-4alkyl, —C(═O)OH and —OH,
    • each R5 is independently selected from H, C1-4alkyl, phenyl or C1-4alkyl substituted with 1 to 3 —OH groups;
    • each R6 is independently selected from H, fluoro, benzyloxy substituted with —C(═O)OH, benzyl substituted with —C(═O)OH, C1-4alkoxy substituted with —C(═O)OH and C1-4alkyl substituted with —C(═O)OH;
    • R7 is independently selected from H, phenyl and pyridine;
    • R8 is independently selected from

    • R9 is independently selected from H and C1-6haloalkyl;
    • each n is independently selected from 1, 2, 3, 4, 5, 6, 7, 8 and 9, and
    • each m is independently selected from 1, 2, 3, 4, 5, 6, 7, 8 and 9;
  • L2 is a bond, a non-enzymatically cleavable linker or a non-cleavable linker;
  • L3 is a bond, a non-enzymatically cleavable linker or a non-cleavable linker;
  • L4 is a bond, an enzymatically cleavable linker or a self-immolative spacer.
    In certain embodiments the Linker Unit (LU) is -L1-L2-L3-L4-, wherein
  • L1 is a bond, -A1-, -A1X2— or —X2—;
  • L2 is a bond, -A2-, or -A2X2—;
  • L3 is a bond, -A3-, or -A3X2—;
  • L4 is a bond, -A4-, -A4X2—,

  • A1 is —C(═O)NH—, —NHC(═O)—, —C(═O)NH(CH2)n—, —C(═O)NH(C(R4)2)n—, —(O(CH2)n)m—, —(O(C(R4)2)n)m—, —((CH2)nO)m, —(((C(R4)2)nO)m, —((CH2)nO)m(CH2)n—, —(((C(R4)2)nO)mC(R4)2)n—, —(CH2)nC(═O)NH—, —(C(R4)2)nC(═O)NH—, —(CH2)nNHC(═O)—, —(C(R4)2)nNHC(═O)—, —NHC(═O)(CH2)n—, —NHC(═O)(C(R4)2)n—, —C(═O)NH(CH2)nS—, —C(═O)NH(C(R4)2)nS—, —S(CH2)nC(═O)NH—, —S(C(R4)2)nC(═O)NH—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —C(═O)NH(C(R4)2)nNHC(═O)(C(R4)2)n—, —C(═O)(CH2)n—, —C(═O)(C(R4)2)n—, —(CH2)nC(═O)—, —(C(R4)2)nC(═O)—, —(CH2)n(O(CH2)n)mNHC(═O)(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—, —(CH2)nNHC(═O)(CH2)n—, —(C(R4)2)nNHC(═O)(C(R4)2)n—, —(CH2)nNH((CH2)nO)m(CH2)n—, —(C(R4)2)nNH((C(R4)2)nO)m(C(R4)2)n—, —(O(CH2)n)mNHC(═O)(CH2)n—, or —(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—;
  • A2 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(C(R4)2)n—, —(O(CH2)n)m—, —(O(C(R4)2)n)m—, —((CH2)nO)m—, —(((C(R4)2)nO)m—, —((CH2)nO)m(CH2)n—, —(((C(R4)2)nO)mC(R4)2)n—, —(CH2)nC(═O)NH—, —(C(R4)2)nC(═O)NR4—, —(CH2)nNHC(═O)—, —(C(R4)2)nNHC(═O)—, —NHC(═O)(CH2)n—, —NHC(═O)(C(R4)2)n—, —C(═O)NH(CH2)nS—, —C(═O)NH(C(R4)2)nS—, —S(CH2)nC(═O)NH—, —S(C(R4)2)nC(═O)NH—, —(CH2)nS—, —(C(R4)2)nS—, —S(CH2)n—, —S(C(R4)2)n—, —(CH2)nNH—, —(C(R4)2)nNH—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —C(═O)NH(C(R4)2)nNHC(═O)(C(R4)2)n—, —C(═O)(CH2)n—, —C(═O)(C(R4)2)n—, —(CH2)nC(═O)—, —(C(R4)2)nC(═O)—, —(CH2)n(O(CH2)n)mNHC(═O)(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—, —(CH2)n(O(CH2)n)mOC(═O)NH(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mOC(═O)NH(C(R4)2)n—, —(CH2)nNHC(═O)(CH2)n—, —(C(R4)2)nNHC(═O)(C(R4)2)n—, —(CH2)nNH((CH2)nO)m(CH2)n—, —(C(R4)2)nNH((C(R4)2)nO)m(C(R4)2)n—, —(O(CH2)n)mNHC(═O)(CH2)n—, —(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—,

  • A3 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(C(R4)2)n—, —(O(CH2)n)m—, —(O(C(R4)2)n)m—, —((CH2)nO)m—, —(((C(R4)2)nO)m—, —((CH2)nO)m(CH2)n—, —(((C(R4)2)nO)mC(R4)2)n—, —(CH2)nC(═O)NH—, —(C(R4)2)nC(═O)NH—, —(CH2)nNHC(═O)—, —(C(R4)2)nNHC(═O)—, —NHC(═O)(CH2)n—, —NHC(═O)(C(R4)2)n—, —C(═O)NH(CH2)nS—, —C(═O)NH(C(R4)2)nS—, —S(CH2)nC(═O)NH—, —S(C(R4)2)nC(═O)NH—, —(CH2)nS—, —(C(R4)2)nS—, —S(CH2)n—, —S(C(R4)2)n—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —C(═O)NH(C(R4)2)nNHC(═O)(C(R4)2)n—, —C(═O)(CH2)n—, —C(═O)(C(R4)2)n—, —(CH2)nC(═O)—, —(C(R4)2)nC(═O)—, —(CH2)n(O(CH2)n)mNHC(═O)(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—, —(CH2)n(O(CH2)n)mOC(═O)NH(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mOC(═O)NH(C(R4)2)n—, —(CH2)n(O(CH2)n)mOC(═O)—, —(C(R4)2)n(O(C(R4)2)n)mOC(═O)—, —(CH2)n(O(CH2)n)mOC(═O)—, —(C(R4)2)n(O(C(R4)2)n)mOC(═O)—, —(CH2)nNHC(═O)(CH2)n—, —(C(R4)2)nNHC(═O)(C(R4)2)n—, —(O(CH2)n)mNHC(═O)(CH2)n—, —(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—,

  • A4 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(C(R4)2)n—, —(O(CH2)n)m—, —(C)(C(R4)2)n)m—, —((CH2)nO)m—, —(((C(R4)2)nO)m—, —((CH2)nO)m(CH2)n—, —(((C(R4)2)nO)mC(R4)2)n—, —(CH2)nC(═O)NH—, —(C(R4)2)nC(═O)NH—, —(CH2)nNHC(═O)—, —(C(R4)2)nNHC(═O)—, —NHC(═O)(CH2)n—, —NHC(═O)(C(R4)2)n—, —C(═O)NH(CH2)nS—, —C(═O)NH(C(R4)2)nS—, —S(CH2)nC(═O)NH—, —S(C(R4)2)nC(═O)NH—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —C(═O)NH(C(R4)2)nNHC(═O)(C(R4)2)n—, —C(═O)(CH2)n—, —C(═O)(C(R4)2)n—, —(CH2)nC(═O)—, —(C(R4)2)nC(═O)—, —(CH2)n(O(CH2)n)mNHC(═O)(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—, —(CH2)nNHC(═O)(CH2)n—, —(C(R4)2)nNHC(═O)(C(R4)2)n—, —(CH2)nNH((CH2)nO)m(CH2)n—, —(C(R4)2)nNH((C(R4)2)nO)m(C(R4)2)n—, —(O(CH2)n)mNHC(═O)(CH2)n—, or —(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—;
  • each X2 is independently selected from a bond,

  •  —S—, —Si(OH)2O—,

  •  CHR4(CH2)nC(═O)NH—, —CHR4(CH2)nNHC(═O)—, —C(═O)NH— and —NHC(═O)—;
  • each R4 is independently selected from H, C1-4alkyl, —C(═O)OH and —OH,
  • each R5 is independently selected from H, C1-4alkyl, phenyl or C1-4alkyl substituted with 1 to 3 —OH groups;
  • each R6 is independently selected from H, fluoro, benzyloxy substituted with —C(═O)OH, benzyl substituted with —C(═O)OH, C1-4alkoxy substituted with —C(═O)OH and C1-4alkyl substituted with —C(═O)OH;
  • R7 is independently selected from H, phenyl and pyridine;
  • R8 is independently selected from

  • R9 is independently selected from H and C1-6haloalkyl;
  • each n is independently selected from 1, 2, 3, 4, 5, 6, 7, 8 and 9, and
  • each m is independently selected from 1, 2, 3, 4, 5, 6, 7, 8 and 9.
    In certain embodiments the Linker Unit (LU) is -L1-L2-L3-L4-, wherein
  • L1 is a bond, -A1-, -A1X2— or —X2—;
  • L2 is a bond, -A2-, or -A2X2—;
  • L3 is a bond, -A3-, or -A3X2—;
  • L4 is a bond, -A4-, -A4X2—,

  • A1 is —C(═O)NH—, —C(═O)NH(CH2)n—, —(O(CH2)n)m—, —((CH2)nO)m—, —((CH2)nO)m(CH2)n—, —(CH2)nC(═O)NH—, —NHC(═O)(CH2)n—, —(CH2)nNHC(═O)—, —C(═O)NH(CH2)nS—, —S(CH2)nC(═O)NH—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —C(═O)(CH2)n—, —(CH2)nC(═O)—, —(CH2)n(O(CH2)n)mNHC(═O)(CH2)n—, —(CH2)nNHC(═O)(CH2)n—, —(CH2)nNH((CH2)nO)m(CH2)n— or —(O(CH2)n)mNHC(═O)(CH2)n—;
  • A2 is —C(═O)NH—, —C(═O)NH(CH2)n—, —(O(CH2)n)m—, —((CH2)nO)m, —((CH2)nO)m(CH2)n—, —(CH2)nC(═O)NH—, —NHC(═O)(CH2)n—, —(CH2)nNHC(═O)—, —C(═O)NH(CH2)nS—, —S(CH2)nC(═O)NH—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —C(═O)(CH2)n—, —(CH2)nC(═O)—, —(CH2)n(O(CH2)n)mNHC(═O)(CH2)n—, —(CH2)nNHC(═O)(CH2)n—, —(CH2)nNH((CH2)nO)m(CH2)n—, —(O(CH2)n)mNHC(═O)(CH2)n— or

  • A3 is —C(═O)NH—, —C(═O)NH(CH2)n—, —(O(CH2)n)m—, —((CH2)nO)m—, —((CH2)nO)m(CH2)n—, —(CH2)nC(═O)NH—, —NHC(═O)(CH2)n—, —(CH2)nNHC(═O)—, —C(═O)NH(CH2)nS—, —S(CH2)nC(═O)NH—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —C(═O)(CH2)n—, —(CH2)nC(═O)—, —(CH2)n(O(CH2)n)mNHC(═O)(CH2)n—, —(CH2)nNHC(═O)(CH2)n—, —(CH2)nNH((CH2)nO)m(CH2)n—, —(O(CH2)n)mNHC(═O)(CH2)n— or

  • A4 —C(═O)NH—, —C(═O)NH(CH2)n—, —(O(CH2)n)m—, —((CH2)nO)m—, —((CH2)nO)m(CH2)n—, —(CH2)nC(═O)NH—, —NHC(═O)(CH2)n—, —(CH2)nNHC(═O)—, —C(═O)NH(CH2)nS—, —S(CH2)nC(═O)NH—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —C(═O)(CH2)n—, —(CH2)nC(═O)—, —(CH2)n(O(CH2)n)mNHC(═O)(CH2)n—, —(CH2)nNHC(═O)(CH2)n—, —(CH2)nNH((CH2)nO)m(CH2)n— or —(O(CH2)n)mNHC(═O)(CH2)n—;
  • each X2 is independently selected from a bond,

  •  —S—, —Si(OH)2O—,

  •  —CHR4(CH2)nC(═O)NH—, —CHR4(CH2)nNHC(═O)—, —C(═O)NH— and —NHC(═O)—;
  • each R4 is independently selected from H, C1-4alkyl, —C(═O)OH and —OH,
  • each R5 is independently selected from H, C1-4alkyl, phenyl or C1-4alkyl substituted with 1 to 3 —OH groups;
  • each n is independently selected from 1, 2, 3, 4, 5, 6, 7, 8 and 9, and
  • each m is independently selected from 1, 2, 3, 4, 5, 6, 7, 8 and 9.
    In certain embodiments the Linker Unit (LU) is -L1-L2-L3-L4-, wherein
  • L1 is a bond, -A1-, -A1X2— or —X2—;
  • L2 is a bond, -A2-, or -A2X2—;
  • L3 is a bond, -A3-, or -A3X2—;
  • L4 is a bond, -A4-, -A4X2—,

  • A1 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(CH2)nS—, —(O(CH2)n)m—, —((CH2)nO)m(CH2)n—, —NHC(═O)(CH2)n—, —(CH2)nNHC(═O)—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —(CH2)nNH((CH2)nO)m(CH2)n— or —(O(CH2)n)mNHC(═O)(CH2)n—;
  • A2 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(CH2)nS—, —(O(CH2)n)m—, —((CH2)nO)m(CH2)n—, —NHC(═O)(CH2)n—, —(CH2)nNHC(═O)—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —(CH2)nNH((CH2)nO)m(CH2)n—, —(O(CH2)n)mNHC(═O)(CH2)n— or

  • A3 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(CH2)nS—, —(O(CH2)n)m—, —((CH2)nO)m(CH2)n—, —NHC(═O)(CH2)n—, —(CH2)nNHC(═O)—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —(CH2)nNH((CH2)nO)m(CH2)n—, —(O(CH2)n)mNHC(═O)(CH2)n— or

  • A4 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(CH2)nS—, —(O(CH2)n)m—, —((CH2)nO)m(CH2)n—, —NHC(═O)(CH2)n—, —(CH2)nNHC(═O)—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —(CH2)nNH((CH2)nO)m(CH2)n— or —(O(CH2)n)mNHC(═O)(CH2)n—;
  • each X2 is independently selected from a bond,

  •  —S—, —Si(OH)2O—,

  •  CHR4(CH2)nC(═O)NH—, —CHR4(CH2)nNHC(═O)—, —C(═O)NH— and —NHC(═O)—;
  • each R4 is independently selected from H, C1-4alkyl, —C(═O)OH and —OH,
  • each R5 is independently selected from H, C1-4alkyl, phenyl or C1-4alkyl substituted with 1 to 3 —OH groups;
  • each R6 is independently selected from H, fluoro, benzyloxy substituted with —C(═O)OH, benzyl substituted with —C(═O)OH, C1-4alkoxy substituted with —C(═O)OH and C1-4alkyl substituted with —C(═O)OH;
  • R7 is independently selected from H, phenyl and pyridine;
  • R8 is independently selected from

  • R9 is independently selected from H and C1-6haloalkyl;
  • each n is independently selected from 1, 2, 3, 4, 5, 6, 7, 8 and 9, and
  • each m is independently selected from 1, 2, 3, 4, 5, 6, 7, 8 and 9.

In certain embodiments of any of the compounds or methods described herein, L1 is —C(═O)—NH—CH2—CH2—S-[L2-L3-L4-TG]. (Portions of these formulas depicted in brackets such as [L2-L3-L4-TG] are added to the formula being described in order to identify which open valence of the formula is attached to the bracket-enclosed part of the remainder of the structure.)

In certain embodiments of any of the compounds or methods described herein, L2 is selected from:

In certain embodiments of any of the compounds or methods described herein, L3 is selected from —(CH2)2-6—C(═O)-[L4-TG]; —(CH2)2-6—NH-[L4-TG]; (CH2)2-6—S-[L4-TG]; —(CH2)2-6—Z-[L4-TG]; and —(CH2)2-6—Z—C(═O)-[L4-TG], where Z is O, NH or S.

In certain embodiments of any of the compounds or methods described herein, L4 is a bond or a val-cit linker of this formula:

When L4 is a val-cit linker, L3 is preferably —(CH2)2-6—C(═O),

In certain embodiments of any of the compounds or methods described herein, TG is a maytansinoid such as DM1 or DM4, or a dolostatin 10 compound, e.g. auristatins MMAF or MMAE, or a calicheamicin such as N-acetyl-γ-calicheamicin, or a label or dye such as rhodamine or tetramethylrhodamine.

As used herein, a “linker” is any chemical moiety that is capable of linking an antibody or a fragment thereof to a terminal group. Linkers can be susceptible to cleavage, such as, acid-induced cleavage, light-induced cleavage, peptidase-induced cleavage, esterase-induced cleavage, and disulfide bond cleavage, at conditions under which the compound or the antibody remains active. Alternatively, linkers can be substantially resistant to cleavage. A linker may or may not include a self-immolative spacer.

Non-limiting examples of the non-enzymatically cleavable linkers as used herein to conjugate a terminal group (TG) to the modified antibodies or fragment thereof provided herein include, acid-labile linkers, linkers containing a disulfide moiety, linkers containing a triazole moiety, linkers containing a hydrazine moiety, linkers containing a thioether moiety, linkers containing a diazo moiety, linkers containing an oxime moiety, linkers containing an amide moiety and linkers containing an acetamide moiety.

Non-limiting examples of the enzymatically cleavable linkers as used herein to conjugate a terminal group (TG) to the modified antibodies or fragment thereof provided herein include, but are not limited to, linkers which are cleaved by a protease, linkers which are cleaved by an amidase, and linkers which are cleaved by β-glucuronidase.

In certain embodiments, such enzyme cleavable linkers are linkers which are cleaved by cathepsin, including cathepsin Z, cathepsin B, cathepsin H and cathepsin C. In certain embodiments the enzymatically cleavable linker is a dipeptide cleaved by cathepsin, including dipeptides cleaved by cathepsin Z, cathepsin B, cathepsin H or cathepsin C. In certain embodiments the enzymatically cleavable linker is a cathepsin B-cleavable peptide linker. In certain embodiments the enzymatically cleavable linker is a cathepsin B-cleavable dipeptide linker. In certain embodiments the enzymatically cleavable linker is a cathepsin B-cleavable dipeptide linker is valine-citrulline or phenylalanine-lysine. Other non-limiting examples of the enzymatically cleavable linkers as used herein conjugate a terminal group (TG) to the modified antibodies or fragment thereof provided herein include, but are not limited to, linkers which are cleaved by β-glucuronidase, e.g.,

See Ducry et al, Bioconjugate Chem, vol. 21(1), 5-13 (2010).

“Self-immolative spacers” are bifunctional chemical moieties covalently linked at one termini to a first chemical moiety and at the other termini to a second chemical moiety, thereby forming a stable tripartate molecule. Upon cleavage of a bond between the self-immolative spacer and the first chemical moiety, self-immolative spacers undergoing rapid and spontaneous intramolecular reactions and thereby separate from the second chemical moiety. These intramolecular reactions generally involve electronic rearrangements such as 1,4, or 1,6, or 1,8 elimination reactions or cyclizations to form highly favored five- or six-membered rings. In certain embodiments of the present invention, the first moiety is an enzyme cleavable linker and this cleavage results from an enzymatic reaction, while in other embodiments the first moiety is an acid labile linker and this cleavage occurs due to a change in pH. As applied to the present invention, the second moiety is the “Label” group as defined herein. In certain embodiments, cleavage of the first moiety from the self-immolative spacer results from cleavage by a proteolytic enzyme, while in other embodiments it results from cleaved by a hydrolase. In certain embodiments, cleavage of the first moiety from the self-immolative spacer results from cleavage by a cathepsin enzyme.

In certain embodiments, the enzyme cleavable linker is a peptide linker and the self-immolative spacer is covalently linked at one of its ends to the peptide linker and covalently linked at its other end to a drug moiety. This tripartite molecule is stable and pharmacologically inactive in the absence of an enzyme, but which is enzymatically cleavable by enzyme at the bond covalently linking the spacer moiety and the peptide moiety. The peptide moiety is cleaved from the tripartate molecule which initiates the self-immolating character of the spacer moiety, resulting in spontaneous cleavage of the bond covalently linking the spacer moiety to the drug moiety, to thereby effect release of the drug in pharmacologically active form.

Non-limiting examples of the self-immolative spacer optionally used in the conjugation of a terminal group (TG) to the modified antibodies or fragment thereof provided herein include, but are not limited to, moieties which include a benzyl carbonyl moiety, a benzyl ether moiety, a 4-aminobutyrate moiety, a hemithioaminal moiety or a N-acylhemithioaminal moiety.

Other examples of self-immolative spacers include, but are not limited to, p-aminobenzyloxycarbonyl groups, aromatic compounds that are electronically similar to the p-aminobenzyloxycarbonyl group, such as 2-aminoimidazol-5-methanol derivatives and ortho or para-aminobenzylacetals. In certain embodiments, self-immolative spacers used herein which undergo cyclization upon amide bond hydrolysis, include substituted and unsubstituted 4-aminobutyric acid amides and 2-aminophenylpropionic acid amides.

In certain embodiments, the self-immolative spacer is

while in other embodiments the self-immolative spacer is

where n is 1 or 2. In other embodiments the self-immolative spacer is

where n is 1 or 2. In other embodiments the self-immolative spacer is

where n is 1 or 2. In other embodiments the self-immolative spacer is

where n is 1 or 2. In other embodiments the self-immolative spacer is

where n is 1 or 2.

Scheme (Ib) illustrates the post-translational modification of the modified antibodies or fragment thereof provided herein wherein the Linker Unit (LU) is -L1-L2-L3-L4-.

where R2, L1, L2, L3, L4 and TG are as defined herein.

The CoA analogues of Scheme (Ia) and Scheme (Ib) may be obtained by total chemical synthesis, however the CoA analogues of Scheme (Ia) and Scheme (Ib) are preferably obtained by a chemoenzymatic process wherein pantetheine analogues are chemically synthesized and then biosynthetically converted into the corresponding CoA analogue (see Kristine M. Clarke et al., “In Vivo Reporter Labeling of Proteins via Metabolic Delivery of Coenzyme A Analogues”, J. Am. Chem. Soc., 2005, 127, p. 11234-11235 and Jordan L. Meier et al., “Synthesis and Evaluation of Bioorthogonal Pantetheine Analogues for in Vivo Protein Modification”, J. Am. Chem. Soc., 2006, 128, p. 12174-12184). The biosynthetic conversion for CoA analogues of Scheme (Ia) is shown below:

while the biosynthetic conversion for CoA analogues of Scheme (Ib) is shown below:

where LU, L1, L2, L3, L4 and TG are as defined herein.

In certain embodiments the biosynthetic conversion occurs “in-vivo”, wherein the pantetheine analogue enters a cell from the surrounding media whereby once inside the cell it is converted by the CoA enzymatic pathway into the corresponding CoA analogue. In a specific embodiment, E. coli is used for the biosynthetic conversion of pantetheine analogues into the corresponding CoA analogues, wherein the pantetheine analogue enters E. coli from the surrounding media and once inside the cell the pantetheine analogue is initially phosphorylated by the pantothenate kinase (PanK or CoaA) using adenosine-5′-triphosphate (ATP), then adenylated by the phosphopantetheine adenylyltransferase (PPAT or CoaD) to give the dephospho-CoA analogue and then further phosphorylated by the dephosphocoenzyme A kinase (DPCK or CoaE) to yield the CoA analogue.

In other embodiments the biosynthetic conversion occurs “in-vitro”, wherein the enzymatic CoA pathway is reconstituted with the pantetheine analogue, whereby it is converted “in-vitro” by the reconstituted CoA enzymatic pathway into the corresponding CoA analogue. In a specific embodiment of “in-vitro” conversion, the reconstituted CoA enzymatic pathway is the E. coli CoA enzymatic pathway, wherein the pantetheine analogue is initially phosphorylated by CoaA and ATP, then adenylated by CoaD to give the dephospho-CoA analogue and then further phosphorylated by CoaE to yield the CoA analogue.

In certain embodiments the Linker Unit (LU) is —C(═O)NH(CH2)2S-L2-L3-L4- and R2 is —P(═O)(OH)2, and in such an embodiment the terminal group is linked to CoA. Scheme (Ic) illustrates the post-translational modification of the modified antibodies or fragment thereof provided herein for the specific embodiment wherein the PPTase catalyzes the reaction between the conserved serine residue in the incorporated short peptide tag and a terminal group (TG) linked to coenzyme A (CoA):

where L2, L3, L4 and TG are as defined herein

In certain embodiments, the modified antibodies or fragment thereof provided herein are site-specifically labeled by a one-step method as shown in Scheme (Ia), Scheme (Ib) and Scheme (Ic), wherein a terminal group linked to CoA or a CoA analogue reacts with the conserved serine of the short peptide tag engineered into the antibody.

The one step method includes the steps of:

    • (a) providing a modified antibody or fragment thereof which has been engineered to contain a small peptide tag, and wherein the peptide tag is a substrate of an enzyme having 4′-phosphopantetheinyl transferase activity, and
    • (b) labeling the modified antibody or fragment thereof with a terminal group by incubating the modified antibody or fragment thereof with an enzyme having 4′-phosphopantetheinyl transferase activity in the presence of a compound having the structure of Formula (A):

wherein:

  • R2, Linker Unit (LU) and TG are as described herein.

In such One-Step methods using a compound of Formula (A) the terminal group (TG) is thereby conjugated to the modified antibody or fragment thereof via a linker having the structure according to Formula (I-a). The linker of Formula (I-a) is attached to the small peptide tag by a phosphodiester bond formed between the 4′-phosphopantetheinyl moiety and the hydroxyl group of the conserved serine residue of the short peptide tag engineered into the antibody:

where LU is as defined herein and the * denotes that the 4′-phosphopantetheinyl moiety is attached to the small peptide tag.

In certain embodiments, the one step method includes the steps of:

    • (a) providing a modified antibody or fragment thereof which has been engineered to contain a small peptide tag, and wherein the peptide tag is a substrate of an enzyme having 4′-phosphopantetheinyl transferase activity, and
    • (b) labeling the modified antibody or fragment thereof with a terminal group by incubating the modified antibody or fragment thereof with an enzyme having 4′-phosphopantetheinyl transferase activity in the presence of a compound having the structure of Formula (B):

where R2, L1, L2, L3, L4 and TG are as defined herein.

In such One-Step methods using a compound of Formula (B) described above the terminal group is thereby attached to the modified antibody or fragment thereof via a linker having the structure according to Formula (I-b). The linker of Formula (I-b) is attached to the small peptide tag by a phosphodiester bond formed between the 4′-phosphopantetheinyl moiety and the hydroxyl group of the conserved serine residue of the short peptide tag engineered into the antibody:

where L1, L2, L3 and L4 are as defined herein and the * denotes that the 4′-phosphopantetheinyl moiety is attached to the small peptide tag.
In other embodiments, the one step method includes the steps of:

    • (a) providing a modified antibody or fragment thereof which has been engineered to contain a small peptide tag, and wherein the peptide tag is a substrate of an enzyme having 4′-phosphopantetheinyl transferase activity, and
    • (b) labeling the modified antibody or fragment thereof with a terminal group by incubating the modified antibody or fragment thereof with an enzyme having 4′-phosphopantetheinyl transferase activity in the presence of a compound having the structure of Formula (C):

where L2, L3, L4 and TG are as defined herein.

In such One-Step methods using a compound of Formula (C) described above the terminal group is thereby attached to the modified antibody or fragment thereof via a linker having the structure according to Formula (I-c). The linker of Formula (I-c) is attached to the small peptide tag by a phosphodiester bond formed between the 4′-phosphopantetheinyl moiety and the hydroxyl group of the conserved serine residue of the short peptide tag engineered into the antibody:

where L2, L3 and L4 are as defined herein and the * denotes that the 4′-phosphopantetheinyl moiety is attached to the small peptide tag.

In certain embodiments of the One-Step Methods described herein, the modified antibody or fragment thereof is contacted with a compound having the structure of Formula (A), Formula (B) or Formula (C) and a 4′-phosphopantetheinyl transferase enzyme that is co-expressed in the same cell as the expressed modified antibody or fragment thereof. In certain embodiments of the One-Step Methods described herein, the modified antibody or fragment thereof is contacted in the cell culture media with a compound having the structure of Formula (A), Formula (B) or Formula (C) and 4′-phosphopantetheinyl transferase enzyme produced in the same or in another cell. In certain embodiments of the One-Step Methods described herein, the 4′-phosphopantetheinyl transferase enzyme is immobilized on solid support. In certain embodiments the solid support is optionally comprised of a polymer on a bead or a column.

In certain embodiments of methods, compounds and immunoconjugates provided herein: L1 is -A1X2—, L2 is a bond, L3 is a bond, L4 is -A4-, A1 is —C(═O)NH(CH2)nS—,

  • A4 is —(CH2)nNHC(═O)—, and X2 is

In certain embodiments of methods, compounds and immunoconjugates provided herein: L1 is -A1X2—, L2 is a bond, L3 is a bond, L4 is -A4-, A1 is —C(═O)NH(CH2)nS—, A4 is —(CH2)nNHC(═O)—; X2 is

and TG is a fluorescent probe.

In certain embodiments of the compound of Formula (B) is

In certain embodiments of methods, compounds and immunoconjugates provided herein: L1 is -A1X2—, L2 is a bond, L3 is a bond, L4 is -A4-, A1 is —C(═O)NH(CH2)nS—, A4 is —(CH2)nC(═O)—, and X2 is

In certain embodiments of methods, compounds and immunoconjugates provided herein: L1 is -A1X2—, L2 is a bond, L3 is a bond, L4 is -A4-, A1 is —C(═O)NH(CH2)nS—, A4 is —(CH2)nC(═O)—; X2 is

and TG is a drug moiety.

In certain embodiments the compound of Formula (B) is

In certain embodiments of methods, compounds and immunoconjugates provided herein: L1 is -A1X2—, L2 is -A2-, L3 is -A3-, L is

A1 is —C(═O)NH(CH2)nS—, A2 is —(CH2)nC(═O, A3 is

and X2 is

In certain embodiments of methods, compounds and immunoconjugates provided herein: L1 is -A1X2—, L2 is -A2-, L3 is -A3-, L4 is

A1 is —C(═O)NH(CH2)nS—, A2 is —(CH2)nC(═O, A3 is

X2 is

and TG is a drug moiety.

In certain embodiments the compound of Formula (B) is

In certain embodiments of methods, compounds and immunoconjugates provided herein: L1 is a -A1X2—, L2 is a bond-, L3 is -A3-, L4 is a bond, A1 is —C(═O)NH(CH2)nS—, A3 is —(CH2)nC(═O)—, and X2 is —(CH2)nC(═O)NH—.

In certain embodiments of methods, compounds and immunoconjugates provided herein: L1 is a -A1X2—, L2 is a bond-, L3 is -A3-, L4 is a bond, A1 is —C(═O)NH(CH2)nS—, A3 is —(CH2)nC(═O)—, X2 is —(CH2)nC(═O)NH—, and TG is a drug moiety.

In certain embodiments the compound of Formula (B) is

In certain embodiments of methods, compounds and immunoconjugates provided herein: L1 is a -A1X2—, L2 is a bond, L3 is -A3-, L4 is a bond, A1 is —C(═O)NH(CH2)nS, A3 is —(CH2)nC(═O)—, X2 is —CHR4(CH2)nC(═O)NH—, and R4 is —C(═O)OH.

In certain embodiments of methods, compounds and immunoconjugates provided herein: L1 is a -A1X2—, L2 is a bond, L3 is -A3-, L4 is a bond, A1 is —C(═O)NH(CH2)nS, A3 is —(CH2)nC(═O)—, X2 is —CHR4(CH2)nC(═O)NH—, R4 is —C(═O)OH, and TG is a drug moiety.

In certain embodiments the compound of Formula (B) is

In certain embodiments of methods, compounds and immunoconjugates provided herein: L1 is -A1X2—, where A1 is —C(═O)NH(CH2)nS— and X2 is —(CH2)C(═O)NH—; L2 is a bond; L3 is a bond, and L4 is -A4- wherein A4 is —(CH2)nNHC(═O)—.

In certain embodiments of methods, compounds and immunoconjugates provided herein: L1 is -A1X2—, wherein A1 is —C(═O)NH(CH2)nS— and X2 is —(CH2)C(═O)NH—; L2 is a bond; L3 is a bond; L4 is -A4-, wherein A4 is —(CH2)nC(═O)—.

In certain embodiments of methods, compounds and immunoconjugates provided herein: L1 is -A1X2—, wherein A1 is —C(═O)NH(CH2)nS— and X2 is —(CH2)C(═O)NH—; L2 is -A2-, wherein A2 is —(CH2)nC(═O; L3 is -A3-, wherein A3 is

and L4 is

In certain embodiments of methods, compounds and immunoconjugates provided herein: L1 is a -A1X2—, wherein A1 is —C(═O)NH(CH2)nS— and X2 is —(CH2)C(═O)NH—; L2 is a bond-; L3 is -A3-, wherein A3 is —(CH2)nC(═O)—, and L4 is a bond.

Two-Step Method

Alternatively, the modified antibodies or fragment thereof provided herein are site-specifically labeled by a two-step method, wherein, in the first step the ppan prosthetic group of CoA, or modified ppan prosthetic group of the CoA analogue, which contain a functional group (R1), is attached to the short peptide tag by a phosphodiester bond formed between the 4′-phosphopantetheinyl moiety and the hydroxyl group of the conserved serine residue of the short peptide tag which has been incorporated into the antibody. In the second step a terminal group (TG) linked, or directly attached to, a group which is reactive with the functional group (R1) is reacted with the functional group (R1) on the ppan prosthetic group of CoA, or on the modified ppan prosthetic group of the CoA analogue, thereby directly attaching the terminal group to the modified antibody or fragment thereof or attaching the terminal group to the modified antibody or fragment thereof via a Linker Unit (LU).

One embodiment of the Two-Step Method is shown in Scheme (IIa).

wherein X and a corresponding R1 are as given below in Table 3, and where R2, A1, L2, X2, L3, L4 and TG are as defined herein:

TABLE 3 X R1 a thiol a thiol, a maleimide or a haloacetamide an azide an alkyne, a triaryl phosphine, a cyclooctene or an oxanobornadiene a triaryl phosphine an azide an oxanobornadiene an azide an alkyne an azide an alkene an azide a cyclooctene a diaryl tetrazine a diaryl tetrazine a cyclooctene a monoaryl tetrazine a norbornene a norbornene a monoaryl tetrazine an aldehyde a hydroxylamine or a hydrazine or NH2—NH—C(═O)— a ketone a hydroxylamine or a hydrazine or NH2—NH—C(═O)— a hydroxylamine an aldehyde or a ketone a hydrazine an aldehyde or a ketone NH2—NH—C(═O)— an aldehyde or a ketone a haloacetamide a thiol a maleimide a thiol

The alkene, alkyne, triaryl phosphine, cyclooctene, oxanobornadiene, diaryl tetrazine, monoaryl tetrazine and norbornene of X and R1 are optionally substituted.
The Two-Step Method of Scheme (IIa) includes the steps of:
    • (a) providing a modified antibody or fragment thereof which has been engineered to contain a peptide tag, and wherein the peptide tag is a substrate of an enzyme having 4′-phosphopantetheinyl transferase activity;
    • (b) labeling the modified antibody or fragment thereof by:
      • incubating the modified antibody or fragment thereof with an enzyme having 4′-phosphopantetheinyl transferase activity in the presence of a compound of Formula (D),

      • thereby attaching an activated 4′-phosphopantetheinyl group of Formula (D-a) to the peptide tag;

    • and
    • (c) reacting the activated 4′-phosphopantetheinyl group with a compound of Formula (IIa):


X-L2-L3-L4-TG  Formula (II-a),

where X, R1, R2, A1, L2, L3, L4 and TG are as defined herein.

As a result of the Two-Step Method of Scheme (IIa) the Terminal group is attached to the modified antibody or fragment thereof via a linker having the structure according to Formula (IIb):

where A1, X2, L2, L3 and L4 are as defined herein and the * denotes that the modified 4′-phosphopantetheinyl moiety is attached to the small peptide tag.

Another embodiment of the Two-Step Method is shown in Scheme (IIb).

where X, R1, R2, L1, A2, X2, L3, L4 and TG are as defined herein.
The Two-Step Method of Scheme (IIb) includes the steps of:

    • (a) providing a modified antibody or fragment thereof which has been engineered to contain a short peptide tag, and wherein the peptide tag is a substrate of an enzyme having 4′-phosphopantetheinyl transferase activity;
    • (b) labeling the modified antibody or fragment thereof by:
      • incubating the modified antibody or fragment thereof with an enzyme having 4′-phosphopantetheinyl transferase activity in the presence of a compound of Formula (E),

      •  thereby attaching an activated 4′-phosphopantetheinyl group of Formula (E-a) to the short peptide tag;

    • and
    • (c) reacting the activated 4′-phosphopantetheinyl group with a compound of Formula (II-c):


X-L3-L4-TG  Formula (II-c),

where X, R1, R2, L1, A2, L3, L4 and TG are as defined herein.

As a result of the Two-Step Method of Scheme (IIb) the terminal group is attached to the modified antibody or fragment thereof via a linker having the structure according to Formula (II-d):

where L1, A2, X2, L3 and L4 are as defined herein and the * denotes that the modified 4′-phosphopantetheinyl moiety is attached to the small peptide tag.

Another embodiment of the Two-Step Method is shown in Scheme (II-c).

where X, R1, R2, L1, L2, X2, A3, L4 and TG are as defined herein.
The Two-Step Method of Scheme (IIc) includes the steps of:

    • (a) providing a modified antibody or fragment thereof which has been engineered to contain a short peptide tag, and wherein the peptide tag is a substrate of an enzyme having 4′-phosphopantetheinyl transferase activity;
    • (b) labeling the modified antibody or fragment thereof by:
      • incubating the modified antibody or fragment thereof with an enzyme having 4′-phosphopantetheinyl transferase activity in the presence of a compound of Formula (F),

      •  thereby attaching an activated 4′-phosphopantetheinyl group of Formula (F-a) to the short peptide tag;

    • and
    • (c) reacting the activated 4′-phosphopantetheinyl group with a compound of Formula (IIe):


X-L4-TG  Formula (II-e),

where X, R1, R2, L1, L2, L3, L4 and TG are as defined herein.

As a result of the Two-Step Method of Scheme (IIc) the terminal group is attached to the modified antibody or fragment thereof via a linker having the structure according to Formula (II-f):

where L1, L2, A3, X2 and L4 are as defined herein and the * denotes that the modified 4′-phosphopantetheinyl moiety is attached to the small peptide tag.

Another embodiment of the Two-Step Method is shown in Scheme (IId).

where X, R1, R2, L1, L2, L3, A4, X2 and TG are as defined herein.
The Two-Step Method of Scheme (IId) includes the steps of:

    • (a) providing a modified antibody or fragment thereof which has been engineered to contain a short peptide tag, and wherein the peptide tag is a substrate of an enzyme having 4′-phosphopantetheinyl transferase activity;
    • (b) labeling the modified antibody or fragment thereof by:
      • incubating the modified antibody or fragment thereof with an enzyme having 4′-phosphopantetheinyl transferase activity in the presence of a compound of Formula (G),

      •  thereby attaching an activated 4′-phosphopantetheinyl of Formula (G-a) to the short peptide tag;

    • and
    • (c) reacting the activated 4′-phosphopantetheinyl group with a compound of Formula (II-g):


X-TG  Formula (II-g),

where X, R1, R2, L1, L2, L3, L4 and TG are as defined herein.

As a result of the Two-Step Method of Scheme (IId) the terminal group is attached to the modified antibody or fragment thereof via a linker having the structure according to Formula (II-h):

where L1, L2, L3, A4 and X2 are as defined herein and the * denotes that the modified 4′-phosphopantetheinyl moiety is attached to the small peptide tag.

In certain embodiments of the Two-Step Methods described herein, the modified antibody or fragment thereof is contacted with a compound having the structure of Formula (D), Formula (E), Formula (F) or Formula (G) and a 4′-phosphopantetheinyl transferase enzyme that is co-expressed in the same cell as the expressed modified antibody or fragment thereof. In certain embodiments of the Two-Step Methods described herein, the modified antibody or fragment thereof is contacted in the cell culture media with a compound having the structure of Formula (D), Formula (E), Formula (F) or Formula (G) and 4′-phosphopantetheinyl transferase enzyme produced in the same or in another cell. In certain embodiments of the Two-Step Methods described herein, the 4′-phosphopantetheinyl transferase enzyme is immobilized on solid support. In certain embodiments the solid support is optionally comprised of a polymer on a bead or a column.

Table 4 shows certain embodiments of the activated 4′-phosphopantetheinyl groups of Formula (D-a) and compounds of Formula (II-a) used in the Two-step methods and the Three-step methods described herein and the resulting modified serine located in the modified antibody or fragment thereof. Note A1, L2, L3, L4, R5, R6, R7, R8 and TG are as defined herein, and Y is

TABLE 4           X—L2—L3—L4—TG Formula (IIa) HC≡C—L2—L3—L4—TG HC≡C—L2—L3—L4—TG N3—L2—L3—L4—TG N3—L2—L3—L4—TG NH2—O—L2—L3—L4—TG NH2—O—L2—L3—L4—TG CH3C(═O)—L2—L3—L4—TG HC(═O)—L2—L3—L4—TG HS—L2—L3—L4—TG HS—L2—L3—L4—TG HS—L2—L3—L4—TG NH2—NH—C(═O)—L2—L3—L4—TG NH2—NH—C(═O)—L2—L3—L4—TG R5C(═O)—L2—L3—L4—TG HC(═O)—L2—L3—L4—TG HS—L2—L3—L4—TG N3—L2—L3—L4—TG N3—L2—L3—L4—TG N3—L2—L3—L4—TG N3—L2—L3—L4—TG N3—L2—L3—L4—TG

Table 5 shows certain embodiments of the activated 4′-phosphopantetheinyl groups of Formula (E-a) and compounds of Formula (II-c) used in the Two-step methods and the Three-step methods described herein and the resulting modified serine located in the modified antibody or fragment thereof. Note L1, A2, L3, L4, R5, R6, R7, R8 and TG are as defined herein, and Y is

TABLE 5           X—L3—L4—TG Formula (II-c) HC≡C—L3—L4—TG HC≡C—L3—L4—TG N3—L3—L4—TG N3—L3—L4—TG NH2—O—L3—L4—TG NH2—O—L3—L4—TG CH3C(═O)—L3—L4—TG HC(═O)—L3—L4—TG HS—L3—L4—TG HS—L3—L4—TG HS—L3—L4—TG NH2—NH—C(═O)—L3—L4—TG NH2—NH—C(═O)—L3—L4—TG R5C(═O)—L3—L4—TG HC(═O)—L3—L4—TG SH—L3—L4—TG N3—L3—L4—TG N3—L3—L4—TG N3—L3—L4—TG N3—L3—L4—TG N3—L3—L4—TG

Table 6 shows certain embodiments of the activated 4′-phosphopantetheinyl groups of Formula (F-a) and compounds of Formula (II-e) used in the Two-step methods and the Three-step methods described herein and the resulting modified serine located in the modified antibody or fragment thereof. Note L1, L2, A3, L4, R5, R6, R7, R8 and TG are as defined herein, and Y is

TABLE 6           X—L4—TG Formula (II-e) HC≡C—L4—TG HC≡C—L4—TG N3—L4—TG N3—L4—TG NH2—O—L4—TG NH2—O—L4—TG CH3C(═O)—L4—TG HC(═O)—L4—TG HS—L4—TG HS—L4—TG HS—L4—TG NH2—NH—C(═O)—L4—TG NH2—NH—C(═O)—L4—TGI R5C(═O)—L4—TG HC(═O)—L4—TG HS—L4—TG N3—L4—TG N3—L4—TG N3—L4—TG N3—L4—TG N3—L4—TG

Table 7 shows certain embodiments of the activated 4′-phosphopantetheinyl groups of Formula (G-a) and compounds of Formula (II-g) used in the Two-step methods and the Three-step methods described herein and the resulting modified serine located in the modified antibody or fragment thereof. Note L1, L2, L3, A4, R5, R6, R7, R8 and TG are as defined herein, and Y is

TABLE 7           X—TG Formula (II-g) HC≡C—TG HC≡C—TG N3—TG N3—TG NH2—O—TG NH2—O—TG CH3C(═O)—TG HC(═O)—TG HS—TG HS—TG HS—TG NH2—NH—C(═O)—TG NH2—NH—C(═O)—TG R5C(═O)—TG HC(═O)—TG HS—TG N3—TG N3—TG N3—TG N3—TG N3—TG

Three-Step Method

Alternatively, the modified antibodies or fragment thereof provided herein are site-specifically labeled by a three-step method, wherein, in the first step a protected ppan prosthetic group of CoA, or a protected modified ppan prosthetic group of the CoA analogue, is attached to the short peptide tag by a phosphodiester bond formed between the 4′-phosphopantetheinyl moiety and the hydroxyl group of the conserved serine residue of the short peptide tag incorporated into the antibody. In the second step the protected ppan prosthetic group of CoA, or protected modified ppan prosthetic group of the CoA analogue, is deprotected; thereby generating a reactive functional group (R1). In the third step a terminal group (TG) linked, or directly attached to, a group which is reactive with the functional group (R1) is reacted with the functional group (R1) on the ppan prosthetic group of CoA, or on the modified ppan prosthetic group of the CoA analogue, thereby directly attaching the terminal group to the modified antibody or fragment thereof or attaching the terminal group to the modified antibody or fragment thereof via a Linker Unit (LU).

One embodiment of the Three-Step Method is shown in Scheme (IIIa).

wherein X and a corresponding R1 are as given in Table 3, and where PG is a protecting group and R2, A1, L2, X2, L3, L4 and TG are as defined herein.
The Three-Step Method of Scheme (IIIa) includes the steps of:

    • (a) providing a modified antibody or fragment thereof which has been engineered to contain a short peptide tag, and wherein the peptide tag is a substrate of an enzyme having 4′-phosphopantetheinyl transferase activity;
    • (b) labeling the modified antibody or fragment thereof by:
      • incubating the modified antibody or fragment thereof with an enzyme having 4′-phosphopantetheinyl transferase activity in the presence of a compound of Formula H,

      •  thereby attaching a protected 4′-phosphopantetheinyl group of Formula (H-a) to the short peptide tag;

    • (c) deprotecting the protected 4′-phosphopantetheinyl group to give an activated 4′-phosphopantetheinyl group of Formula (D-a)

    • and
    • (d) reacting the activated 4′-phosphopantetheinyl group with a compound of Formula (IIa):


X-L2-L3-L4-TG  Formula (II-a),

where PG is a protecting group and X, R1, R2, A1, L2, L3, L4 and TG are as defined herein.

As a result of the Three-Step Method of Scheme (IIIa) the terminal group is attached to the modified antibody or fragment thereof via a linker having the structure according to Formula (IIb):

where A1, X2, L2, L3 and L4 are as defined herein and the * denotes that the modified 4′-phosphopantetheinyl moiety is attached to the small peptide tag.

Another embodiment of the Three-Step Method is shown in Scheme (IIIb).

where PG is a protecting group and X, R1, R2, L1, A2, X2, L3, L4 and TG are as defined herein.
The Three-Step Method of Scheme (IIIb) includes the steps of:

    • (a) providing a modified antibody or fragment thereof which has been engineered to contain a short peptide tag, and wherein the peptide tag is a substrate of an enzyme having 4′-phosphopantetheinyl transferase activity;
    • (b) labeling modified antibody or fragment thereof by:
      • incubating the modified antibody or fragment thereof with an enzyme having 4′-phosphopantetheinyl transferase activity in the presence of a compound of Formula (J),

      •  thereby attaching an protected 4′-phosphopantetheinyl group of Formula (I-a) to the short peptide tag;

    • (c) deprotecting the protected 4′-phosphopantetheinyl group to give an activated 4′-phosphopantetheinyl group of Formula (E-a)

    • and
    • (d) reacting the activated 4′-phosphopantetheinyl group with a compound of Formula (II-c):


X-L3-L4-TG  Formula (II-c),

where PG is a protecting group and X, R1, R2, L1, A2, L3, L4 and TG are as defined herein.

As a result of the Three-Step Method of Scheme (IIIb) the terminal group is attached to the modified antibody or fragment thereof via a linker having the structure according to Formula (II-d):

where L1, A2, X2, L3 and L4 are as defined herein and the * denotes that the modified 4′-phosphopantetheinyl moiety is attached to the small peptide tag.

Another embodiment of the Three-Step Method is shown in Scheme (IIIc).

where PG is a protecting group and X, R1, R2, L1, L2, X2, A3, L4 and TG are as defined herein.
The Three-Step Method of Scheme (IIIc) includes the steps of:

    • (a) providing a modified antibody or fragment thereof which has been engineered to contain a short peptide tag, and wherein the peptide tag is a substrate of an enzyme having 4′-phosphopantetheinyl transferase activity;
    • (b) labeling the modified antibody or fragment thereof by:
      • incubating the modified antibody or fragment thereof with an enzyme having 4′-phosphopantetheinyl transferase activity in the presence of a compound of Formula (K),

      •  thereby attaching an protected 4′-phosphopantetheinyl group of Formula (K-a) to the short peptide tag;

    • (c) deprotecting the protected 4′-phosphopantetheinyl group to give an activated 4′-phosphopantetheinyl group of Formula (F-a)

    • and
    • (d) reacting the activated 4′-phosphopantetheinyl group with a compound of Formula (IIe):


X-L4-TG  Formula (II-e),

where PG is a protecting group and X, R1, R2, L1, L2, L3, L4 and TG are as defined herein.

As a result of the Two-Step Method of Scheme (IIIc) the terminal group is attached to the modified antibody or fragment thereof via a linker having the structure according to Formula (II-f):

where L1, L2, A3, X2 and L4 are as defined herein and the * denotes that the modified 4′-phosphopantetheinyl moiety is attached to the small peptide tag.

Another embodiment of the Three-Step Method is shown in Scheme (IIId).

where PG is a protecting group and X, R1, R2, L1, L2, L3, A4, X2 and TG are as defined herein.
The Three-Step Method of Scheme (IIId) includes the steps of:

    • (a) providing a modified antibody or fragment thereof which has been engineered to contain a short peptide tag, and wherein the peptide tag is a substrate of an enzyme having 4′-phosphopantetheinyl transferase activity;
    • (b) labeling the modified antibody or fragment thereof by:
      • incubating the modified antibody or fragment thereof with an enzyme having 4′-phosphopantetheinyl transferase activity in the presence of a compound of Formula (L),

      •  thereby attaching an activated 4′-phosphopantetheinyl of Formula (L-a) to the short peptide tag;

    • (c) deprotecting the protected 4′-phosphopantetheinyl group to give an activated 4′-phosphopantetheinyl group of Formula (G-a)

    • and
    • (d) reacting the activated 4′-phosphopantetheinyl group with a compound of Formula (II-g):


X-TG  Formula (II-g),

where PG is a protecting group X, R1, R2, L1, L2, L3, L4 and TG are as defined herein.

As a result of the Three-Step Method of Scheme (IIId) the terminal group is attached to the modified antibody or fragment thereof via a linker having the structure according to Formula (II-h):

where L1, L2, L3, A4 and X2 are as defined herein and the * denotes that the modified 4′-phosphopantetheinyl moiety is attached to the small peptide tag.

Scheme (IIIe) shows a certain embodiment of the Three-Step Method where the modified antibodies or fragment thereof provided herein are site-specifically labeled by a CoA analogue where the thiol of the 4′-phosphopantetheinyl prosthetic group is protected. In step 1 the protected CoA analogue reacts with the conserved serine of the short peptide tag engineered into the antibody thereby attaching the prosthetic group containing the protected thiol to the short peptide tag through the formation of a phosphodiester bond with the hydroxyl group of the conserved serine residue of the short peptide tag. In the second step the thiol protecting group is removed and the resulting modified antibody or fragment thereof having a pendant 4′-phosphopantetheinyl group is reacted with a thiol reactive group linked to a terminal group (TG).

where XSH, protecting group (PG), R2, A2, L3, L4 and TG are as defined herein.

Scheme (IIIf) shows a certain embodiment of the Three-Step Method where the modified antibodies or fragment thereof provided herein are site-specifically labeled using a CoA where the thiol of the 4′-phosphopantetheinyl prosthetic group is protected. In step 1 the protected CoA reacts with the conserved serine of the short peptide tag engineered into the antibody thereby attaching the prosthetic group containing the protected thiol to the short peptide tag through the formation of a phosphodiester bond with the hydroxyl group of the conserved serine residue of the short peptide tag. In the second step the thiol protecting group is removed and the resulting modified antibody or fragment thereof having a pendant 4′-phosphopantetheinyl group is reacted with a thiol reactive group linked to a terminal group (TG).

where XSH, protecting group (PG), R2, A2, L3, L4 and TG are as defined herein.
In the Three-Step Method of Scheme (IIIe) and Scheme (IIIf), the thiol protecting group includes, but is not limited to, acetyl, acetamidomethyl, benzyl, 4-methylbenzyl, 4-methoxybenzyl, trityl, methoxytrityl, t-butyl, t-butylthiol and 3-nitro-2-pyridinesulphenyl. The thiol reactive group of Scheme (IIIe) and Scheme (IIIf) includes, but is not limited to, maleimide, a haloacetyl, a haloacetamide, a pyridyldisulfide and a vinyl sulfone.
The Three-Step Method of Scheme (IIIf) includes the steps of:

    • (a) providing a modified antibody or fragment thereof which has been engineered to contain a short peptide tag, and wherein the peptide tag is a substrate of an enzyme having 4′-phosphopantetheinyl transferase activity;
    • (b) labeling the modified antibody or fragment thereof by:
      • (i) incubating the modified antibody or fragment thereof with an enzyme having 4′-phosphopantetheinyl transferase activity in the presence of a thiol protected coenzyme A, thereby attaching the thiol protected prosthetic group of coenzyme A to the short peptide tag;
      • (ii) deprotecting the thiol group thereby forming a 4′-phosphopantetheinyl group having a pendant thiol,
      • and
      • (iii) reacting the pendant thiol of the 4′-phosphopantetheinyl group with a compound of Formula (IIIf):


XSH-L2-L3-L4-TG  Formula (IIIf).

where XSH is a thiol reactive group including, but not limited to, a maleimide, a haloacetyl, a haloacetamide, a pyridyldisulfide and a vinyl sulfone. A2, L3, L4 and TG are as defined herein. In addition, in the Two-Step Method of Scheme (IIIf) the terminal group is attached to the modified antibody or fragment thereof via a linker having the structure according to Formula (III-a):

The * denotes the 4′-phosphopantetheinyl moiety is attached to the small peptide tag and L2, L3, L4 and TG are as defined herein. In this embodiment X2 is a group formed by reaction of XSH and the pendant thiol, including, but not limited to,

and —S—S—.

In certain embodiments XSH-L2-L3-L4-TG is

wherein:

    • X1 is a bond, —C(═O)—, —NH—, —NHC(═O)—, (C(═O)NH(CH2)n)m—,

In other embodiments XSH-L2-L3-L4-TG is

In certain embodiments of the Three-Step Methods described herein, the modified antibody or fragment thereof is contacted with a compound having the structure of Formula (H), Formula (J), Formula (K) or Formula (L) and a 4′-phosphopantetheinyl transferase enzyme that is co-expressed in the same cell as the expressed modified antibody or fragment thereof. In certain embodiments of the Two-Step Methods described herein, the modified antibody or fragment thereof is contacted in the cell culture media with a compound having the structure of Formula (H), Formula (J), Formula (K) or Formula (L) and 4′-phosphopantetheinyl transferase enzyme co-expressed by the same or another cell. In certain embodiments of the Two-Step Methods described herein, the 4′-phosphopantetheinyl transferase enzyme is immobilized on solid support. In certain embodiments the solid support is optionally comprised of a polymer on a bead or a column.

In certain embodiments of the Three-Step Method, the modified antibody or fragment thereof will be contacted with a 4′-phosphopantetheinyl transferase enzyme that is coexpressed in the same cell. In certain embodiments of the Three-Step Method, the thiol protected coenzyme A is acetyl-coenzyme A. In certain embodiments of the Three-Step Method, the modified antibody or fragment thereof is contacted in the cell culture media with the thiol protected coenzyme A and a 4′-phosphopantetheinyl transferase enzyme co-expressed by the same or another cell. In certain embodiments of the Three-Step Method, the 4′-phosphopantetheinyl transferase enzyme is immobilized on solid support. The solid support is optionally comprised of a polymer on a bead or a column.

In certain embodiments of the One-Step Method, Two-Step Methods or the Three-Step Methods described herein, the modified antibody or fragment thereof is contacted, depending on the Method used, with a compound having the structure of Formula (A), Formula (B), Formula (C), Formula (D), Formula (E), Formula (F), Formula (G), Formula (H), Formula (J), Formula (K) or Formula (L) and a 4′-phosphopantetheinyl transferase enzyme at temperatures between 0 and 37 degree Celsius in buffer or media adjusted to pH values between 3 and 10, preferably between 7 and 9 and most preferably around 8, for reaction times between 5 mins and 48 hours.

In certain embodiments of the One-Step Method, Two-Step Methods or the Three-Step Methods described herein, the modified antibody or fragment thereof is contacted, depending on the Method used, with a compound having the structure of Formula (A), Formula (B), Formula (C), Formula (D), Formula (E), Formula (F), Formula (G), Formula (H), Formula (J), Formula (K) or Formula (L) in the presence of 4′-phosphopantetheinyl transferase in solution. In other embodiments of the One-Step Method, Two-Step Methods or the Three-Step Methods described herein, the modified antibody or fragment thereof is contacted, depending on the Method used, with a compound having the structure of Formula (A), Formula (B), Formula (C), Formula (D), Formula (E), Formula (F), Formula (G), Formula (H), Formula (J), Formula (K) or Formula (L) in the presence of 4′-phosphopantetheinyl transferase in cell media. In certain embodiments of the One-Step Method, Two-Step Methods or the Three-Step Methods described herein, the modified antibody or fragment thereof is contacted, depending on the Method used, with a compound having the structure of Formula (A), Formula (B), Formula (C), Formula (D), Formula (E), Formula (F), Formula (G), Formula (H), Formula (J), Formula (K) or Formula (L) in the presence of 4′-phosphopantetheinyl transferase inside a cell.

In certain embodiments of the One-Step Method, Two-Step Methods or the Three-Step Methods described herein, the modified antibody or fragment thereof is contacted, depending on the Method used, with a compound having the structure of Formula (A), Formula (B), Formula (C), Formula (D), Formula (E), Formula (F), Formula (G), Formula (H), Formula (J), Formula (K) or Formula (L) in the presence of 4′-phosphopantetheinyl transferase, wherein the 4′-phosphopantetheinyl transferase is immobilized on a surface. In certain embodiments the surface is polymer bead.

In certain embodiments of the One-Step Method, Two-Step Methods or the Three-Step Methods described herein, the modified antibody or fragment thereof is contacted, depending on the Method used, with a compound having the structure of Formula (A), Formula (B), Formula (C), Formula (D), Formula (E), Formula (F), Formula (G), Formula (H), Formula (J), Formula (K) or Formula (L) in the presence of 4′-phosphopantetheinyl transferase, wherein the modified antibody or fragment thereof is immobilized on a surface. In certain embodiments the surface is polymer bead.

In certain embodiments, the modified antibody or fragment thereof provided herein are labeled with a terminal group (“TG”)-to-antibody ratio of 1, 2, 3, 4, 5, 6, 7, or 8, wherein the modified antibody or fragment thereof contains 1, 2, 3, 4, 5, 6, 7, or 8 short peptide tags located in the structural loop of the antibody and where the short peptide tags are substrates of Sfp 4′-phosphopantetheinyl transferase, AcpS 4′-phosphopantetheinyl transferase, T. maritima 4′-phosphopantetheinyl transferase, C. thermocellum 4′-phosphopantetheinyl transferase, human 4′-phosphopantetheinyl transferase, or a mutant form thereof. For example, a TG-to-antibody ratio of 4 is achieved by conjugating the terminal group to four copies of inserted S6 tags, or to four copies of inserted ybbR tags or to four copies of inserted A1 tags, or to a combination of two copies of inserted S6 tags and two copies of inserted ybbR tags. In certain embodiments, the modified antibodiesor fragment thereof provided herein are labeled with two different terminal groups using two different peptide tags and two different 4′-phosphopantetheinyl transferases. By way of example, two copies of the A1 tag are conjugated to a first terminal group using the AcpS 4′-phosphopantetheinyl transferase. Then a second terminal group is attached to two copies of an S6 tag using the Sfp 4′-phosphopantetheinyl transferase (see, e.g., Zhou et al., ACS Chem. Biol. 2:337-346, 2007).

In certain embodiments, the modified antibodies or fragment thereof provided herein are labeled with a terminal group (TG)-to-antibody ratio (e.g., DAR) of 1, 2, 3, 4, 5, 6, 7, or 8, wherein the modified antibody or fragment thereof contains 1, 2, 3, 4, 5, 6, 7, or 8 short peptide tags located in the structural loop of the antibody and where the short peptide tags are substrates of Sfp 4′-phosphopantetheinyl transferase, AcpS 4′-phosphopantetheinyl transferase, T. maritima 4′-phosphopantetheinyl transferase, C. thermocellum 4′-phosphopantetheinyl transferase, human 4′-phosphopantetheinyl transferase, or a mutant form thereof. For example, a TG-to-antibody ratio of 4 is achieved by conjugating a drug moiety to four copies of inserted S6 tags, or to four copies of inserted ybbR tags, or to four copies of inserted A1 tags, or to a combination of two copies of inserted S6 tags and two copies of inserted ybbR tags. In certain embodiments, the modified antibodies or fragment thereof provided herein are labeled with two different drug moieties using two different peptide tags and two different 4′-phosphopantetheinyl transferases. By way of example, two copies of the A1 tag are conjugated to a first drug moiety using the AcpS 4′-phosphopantetheinyl transferase. Then a second drug moiety is attached to two copies of an S6 tag using the Sfp 4′-phosphopantetheinyl transferase (see, e.g., Zhou et al., ACS Chem. Biol. 2:337-346, 2007).

3. Further Alteration of the Framework of Fc Region

The present invention provides site-specific labeled immunoconjugates. The immunoconjugates of the invention may comprise modified antibodies or fragments thereof that further comprise modifications to framework residues within VH and/or VL, e.g. to improve the properties of the antibody. Typically such framework modifications are made to decrease the immunogenicity of the antibody. For example, one approach is to “back-mutate” one or more framework residues to the corresponding germline sequence. More specifically, an antibody that has undergone somatic mutation may contain framework residues that differ from the germline sequence from which the antibody is derived. Such residues can be identified by comparing the antibody framework sequences to the germline sequences from which the antibody is derived. To return the framework region sequences to their germline configuration, the somatic mutations can be “back-mutated” to the germline sequence by, for example, site-directed mutagenesis. Such “back-mutated” antibodies are also intended to be encompassed by the invention.

Another type of framework modification involves mutating one or more residues within the framework region, or even within one or more CDR regions, to remove T-cell epitopes to thereby reduce the potential immunogenicity of the antibody. This approach is also referred to as “deimmunization” and is described in further detail in U.S. Patent Publication No. 20030153043 by Carr et al.

In addition or alternative to modifications made within the framework or CDR regions, antibodies of the invention may be engineered to include modifications within the Fc region, typically to alter one or more functional properties of the antibody, such as serum half-life, complement fixation, Fc receptor binding, and/or antigen-dependent cellular cytotoxicity. Furthermore, an antibody of the invention may be chemically modified (e.g., one or more chemical moieties can be attached to the antibody) or be modified to alter its glycosylation, again to alter one or more functional properties of the antibody. Each of these embodiments is described in further detail below.

In one embodiment, the hinge region of CH1 is modified such that the number of cysteine residues in the hinge region is altered, e.g., increased or decreased. This approach is described further in U.S. Pat. No. 5,677,425 by Bodmer et al. The number of cysteine residues in the hinge region of CH1 is altered to, for example, facilitate assembly of the light and heavy chains or to increase or decrease the stability of the antibody.

In another embodiment, the Fc hinge region of an antibody is mutated to decrease the biological half-life of the antibody. More specifically, one or more amino acid mutations are introduced into the CH2—CH3 domain interface region of the Fc-hinge fragment such that the antibody has impaired Staphylococcyl protein A (SpA) binding relative to native Fc-hinge domain SpA binding. This approach is described in further detail in U.S. Pat. No. 6,165,745 by Ward et al.

In yet other embodiments, the Fc region is altered by replacing at least one amino acid residue with a different amino acid residue to alter the effector functions of the antibody. For example, one or more amino acids can be replaced with a different amino acid residue such that the antibody has an altered affinity for an effector ligand but retains the antigen-binding ability of the parent antibody. The effector ligand to which affinity is altered can be, for example, an Fc receptor or the Cl component of complement. This approach is described in, e.g., U.S. Pat. Nos. 5,624,821 and 5,648,260, both by Winter et al.

In another embodiment, one or more amino acids selected from amino acid residues can be replaced with a different amino acid residue such that the antibody has altered Clq binding and/or reduced or abolished complement dependent cytotoxicity (CDC). This approach is described in, e.g., U.S. Pat. No. 6,194,551 by Idusogie et al.

In another embodiment, one or more amino acid residues are altered to thereby alter the ability of the antibody to fix complement. This approach is described in, e.g., the PCT Publication WO 94/29351 by Bodmer et al. In a specific embodiment, one or more amino acids of an antibody or fragment thereof of the present invention are replaced by one or more allotypic amino acid residues, such as those shown in FIG. 4 for the IgG1 subclass and the kappa isotype. Allotypic amino acid residues also include, but are not limited to, the constant region of the heavy chain of the IgG1, IgG2, and IgG3 subclasses as well as the constant region of the light chain of the kappa isotype as described by Jefferis et al., MAbs. 1:332-338 (2009).

In yet another embodiment, the Fc region is modified to increase the ability of the antibody to mediate antibody dependent cellular cytotoxicity (ADCC) and/or to increase the affinity of the antibody for an Fcγ receptor by modifying one or more amino acids. This approach is described in, e.g., the PCT Publication WO 00/42072 by Presta. Moreover, the binding sites on human IgG1 for FcγRI, FcγRII, FcγRIII and FcRn have been mapped and variants with improved binding have been described (see Shields et al., J. Biol. Chem. 276:6591-6604, 2001).

In still another embodiment, the glycosylation of an antibody is modified. For example, an aglycosylated antibody can be made (i.e., the antibody lacks glycosylation). Glycosylation can be altered to, for example, increase the affinity of the antibody for “antigen.” Such carbohydrate modifications can be accomplished by, for example, altering one or more sites of glycosylation within the antibody sequence. For example, one or more amino acid substitutions can be made that result in elimination of one or more variable region framework glycosylation sites to thereby eliminate glycosylation at that site. Such aglycosylation may increase the affinity of the antibody for antigen. Such an approach is described in, e.g., U.S. Pat. Nos. 5,714,350 and 6,350,861 by Co et al.

Additionally or alternatively, an antibody can be made that has an altered type of glycosylation, such as a hypofucosylated antibody having reduced amounts of fucosyl residues or an antibody having increased bisecting GlcNac structures. Such altered glycosylation patterns have been demonstrated to increase the ADCC ability of antibodies. Such carbohydrate modifications can be accomplished by, for example, expressing the antibody in a host cell with altered glycosylation machinery. Cells with altered glycosylation machinery have been described in the art and can be used as host cells in which to express recombinant antibodies of the invention to thereby produce an antibody with altered glycosylation. For example, EP 1,176,195 by Hang et al. describes a cell line with a functionally disrupted FUT8 gene, which encodes a fucosyl transferase, such that antibodies expressed in such a cell line exhibit hypofucosylation. PCT Publication WO 03/035835 by Presta describes a variant CHO cell line, LecI3 cells, with reduced ability to attach fucose to Asn(297)-linked carbohydrates, also resulting in hypofucosylation of antibodies expressed in that host cell (see also Shields et al., (2002) J. Biol. Chem. 277:26733-26740). PCT Publication WO 99/54342 by Umana et al. describes cell lines engineered to express glycoprotein-modifying glycosyl transferases (e.g., beta(1,4)-N acetylglucosaminyltransferase III (GnTIII)) such that antibodies expressed in the engineered cell lines exhibit increased bisecting GlcNac structures which results in increased ADCC activity of the antibodies (see also Umana et al., Nat. Biotech. 17:176-180, 1999).

In another embodiment, the antibody is modified to increase its biological half-life. Various approaches are possible. For example, one or more of the following mutations can be introduced: T252L, T254S, T256F, as described in U.S. Pat. No. 6,277,375 to Ward. Alternatively, to increase the biological half-life, the antibody can be altered within the CH1 or CL region to contain a salvage receptor binding epitope taken from two loops of a CH2 domain of an Fc region of an IgG, as described in U.S. Pat. Nos. 5,869,046 and 6,121,022 by Presta et al.

4. Antibody Conjugates

The present invention provides site-specific labeling methods, modified antibodies and fragments thereof, and immunoconjugates prepared accordingly. Using the methods of the invention, a modified antibody or fragments thereof can be conjugated to a label, such as a drug moiety, e.g., an anti-cancer agent, an autoimmune treatment agent, an anti-inflammatory agent, an antifungal agent, an antibacterial agent, an anti-parasitic agent, an anti-viral agent, or an anesthetic agent. An antibody or fragments thereof can also be conjugated using several identical or different labeling moieties combining the methods of the invention with other conjugation methods.

In certain embodiments, the terminal group of the immunoconjugates of the present invention is selected from a V-ATPase inhibitor, a HSP90 inhibitor, an IAP inhibitor, an mTor inhibitor, a microtubule stabilizer, a microtubule destabilizers, an auristatin, a dolastatin, a maytansinoid, a MetAP (methionine aminopeptidase), an inhibitor of nuclear export of proteins CRM1, a DPPIV inhibitor, proteasome inhibitors, an inhibitors of phosphoryl transfer reactions in mitochondria, a protein synthesis inhibitor, a kinase inhibitor, a CDK2 inhibitor, a CDK9 inhibitor, an Eg5 inhibitor, an HDAC inhibitor, a RNA polymerase inhibitor, a DNA damaging agent, a DNA alkylating agent, a DNA intercalator, a DNA minor groove binder and a DHFR inhibitor.

Further, the modified antibodies or antibody fragments of the present invention may be conjugated to a therapeutic moiety or drug moiety that modifies a given biological response. Therapeutic moieties or drug moieties are not to be construed as limited to classical chemical therapeutic agents. For example, the drug moiety may be a protein, peptide, or polypeptide possessing a desired biological activity. Such proteins may include, for example, a toxin such as abrin, ricin A, pseudomonas exotoxin, cholera toxin, or diphtheria toxin, a protein such as tumor necrosis factor, α-interferon, β-interferon, nerve growth factor, platelet derived growth factor, tissue plasminogen activator, a cytokine, an apoptotic agent, an anti-angiogenic agent, or, a biological response modifier such as, for example, a lymphokine.

In one embodiment, the modified antibodies or antibody fragments of the present invention are conjugated to a therapeutic moiety, such as a cytotoxin, a drug (e.g., an immunosuppressant) or a radiotoxin. Examples of cytotoxin include but not limited to, taxanes (see, e.g., International (PCT) Patent Application Nos. WO 01/38318 and PCT/US03/02675), DNA-alkylating agents (e.g., CC-1065 analogs), anthracyclines, tubulysin analogs, duocarmycin analogs, auristatin E, auristatin F, maytansinoids, and cytotoxic agents comprising a reactive polyethylene glycol moiety (see, e.g., Sasse et al., J. Antibiot. (Tokyo), 53, 879-85 (2000), Suzawa et al., Bioorg. Med. Chem., 8, 2175-84 (2000), Ichimura et al., J. Antibiot. (Tokyo), 44, 1045-53 (1991), Francisco et al., Blood (2003) (electronic publication prior to print publication), U.S. Pat. Nos. 5,475,092, 6,340,701, 6,372,738, and 6,436,931, U.S. Patent Application Publication No. 2001/0036923 A1, Pending U.S. patent application Ser. Nos. 10/024,290 and 10/116,053, and International (PCT) Patent Application No. WO 01/49698), taxon, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, t. colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs or homologs thereof. Therapeutic agents also include, for example, anti-metabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine), ablating agents (e.g., mechlorethamine, thioepa chloraxnbucil, meiphalan, carmustine (BSNU) and lomustine (CCNU), cyclothosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis-dichlorodiamine platinum (II) (DDP) cisplatin, anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), and anti-mitotic agents (e.g., vincristine and vinblastine). (See e.g., Seattle Genetics US20090304721).

Other examples of therapeutic cytotoxins that can be conjugated to the modified antibodies or antibody fragments of the invention include duocarmycins, calicheamicins, maytansines and auristatins, and derivatives thereof. An example of a calicheamicin antibody conjugate is commercially available (Mylotarg™; Wyeth-Ayerst).

For further discussion of types of cytotoxins, linkers and methods for conjugating therapeutic agents to antibodies, see also Saito et al., (2003) Adv. Drug Deliv. Rev. 55:199-215; Trail et al., (2003) Cancer Immunol. Immunother. 52:328-337; Payne, (2003) Cancer Cell 3:207-212; Allen, (2002) Nat. Rev. Cancer 2:750-763; Pastan and Kreitman, (2002) Curr. Opin. Investig. Drugs 3:1089-1091; Senter and Springer, (2001) Adv. Drug Deliv. Rev. 53:247-264.

According to the present invention, modified antibodies or fragments thereof can also be conjugated to a radioactive isotope to generate cytotoxic radiopharmaceuticals, referred to as radioimmunoconjugates. Examples of radioactive isotopes that can be conjugated to antibodies for use diagnostically or therapeutically include, but are not limited to, iodine131, indium111, yttrium90, and lutetium177. Methods for preparing radioimmunoconjugates are established in the art. Examples of radioimmunoconjugates are commercially available, including Zevalin™ (DEC Pharmaceuticals) and Bexxar™ (Corixa Pharmaceuticals), and similar methods can be used to prepare radioimmunoconjugates using the antibodies of the invention. In certain embodiments, the macrocyclic chelator is 1,4,7,10-tetraazacyclododecane-N,N′,N″,N′″-tetraacetic acid (DOTA) which can be attached to the antibody via a linker molecule. Such linker molecules are commonly known in the art and described in Denardo et al., (1998) Clin Cancer Res. 4(10):2483-90; Peterson et al., (1999) Bioconjug. Chem. 10(4):553-7; and Zimmerman et al., (1999) Nucl. Med. Biol. 26(8):943-50, each incorporated by reference in their entireties.

The present invention further provides modified antibodies or fragments thereof that specifically bind to an antigen conjugated to a heterologous protein or polypeptide (or fragment thereof, preferably to a polypeptide of at least 10, at least 20, at least 30, at least 40, at least 50, at least 60, at least 70, at least 80, at least 90 or at least 100 amino acids) to generate fusion proteins. In particular, the invention provides fusion proteins comprising an antibody fragment described herein (e.g., a Fab fragment, Fd fragment, Fv fragment, F(ab)2 fragment, a VH domain, a VH CDR, a VL domain or a VL CDR) and a heterologous protein, polypeptide, or peptide.

Additional fusion proteins may be generated through the techniques of gene-shuffling, motif-shuffling, exon-shuffling, and/or codon-shuffling (collectively referred to as “DNA shuffling”). DNA shuffling may be employed to alter the activities of antibodies of the invention or fragments thereof (e.g., antibodies or fragments thereof with higher affinities and lower dissociation rates). See, generally, U.S. Pat. Nos. 5,605,793, 5,811,238, 5,830,721, 5,834,252, and 5,837,458; Patten et al., (1997) Curr. Opinion Biotechnol. 8:724-33; Harayama, (1998) Trends Biotechnol. 16(2):76-82; Hansson et al., (1999) J. Mol. Biol. 287:265-76; and Lorenzo and Blasco, (1998) Biotechniques 24(2):308-313 (each of these patents and publications are hereby incorporated by reference in its entirety). Antibodies or fragments thereof, or the encoded antibodies or fragments thereof, may be altered by being subjected to random mutagenesis by error-prone PCR, random nucleotide insertion or other methods prior to recombination. A polynucleotide encoding an antibody or fragment thereof that specifically binds to an antigen may be recombined with one or more components, motifs, sections, parts, domains, fragments, etc. of one or more heterologous molecules.

Moreover, the modified antibodies or fragments thereof of the present invention can be conjugated to marker sequences, such as a peptide to facilitate purification. In preferred embodiments, the marker amino acid sequence is a hexa-histidine peptide (SEQ ID NO:1106), such as the tag provided in a pQE vector (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, Calif., 91311), among others, many of which are commercially available. As described in Gentz et al., (1989) Proc. Natl. Acad. Sci. USA 86:821-824, for instance, hexa-histidine (SEQ ID NO:1106) provides for convenient purification of the fusion protein. Other peptide tags useful for purification include, but are not limited to, the hemagglutinin (“HA”) tag, which corresponds to an epitope derived from the influenza hemagglutinin protein (Wilson et al., (1984) Cell 37:767), and the “FLAG” tag (A. Einhauer et al., J. Biochem. Biophys. Methods 49: 455-465, 2001). According to the present invention, antibodies or antibody fragments can also be conjugated to tumor-penetrating peptides in order to enhance their efficacy.

In other embodiments, modified antibodies or antibody fragments of the present invention are conjugated to a diagnostic or detectable agent. Such immunoconjugates can be useful for monitoring or prognosing the onset, development, progression and/or severity of a disease or disorder as part of a clinical testing procedure, such as determining the efficacy of a particular therapy. Such diagnosis and detection can accomplished by coupling the antibody to detectable substances including, but not limited to, various enzymes, such as, but not limited to, horseradish peroxidase, alkaline phosphatase, beta-galactosidase, or acetylcholinesterase; prosthetic groups, such as, but not limited to, streptavidin/biotin and avidin/biotin; fluorescent materials, such as, but not limited to, Alexa Fluor 350, Alexa Fluor 405, Alexa Fluor 430, Alexa Fluor 488, Alexa Fluor 500, Alexa Fluor 514, Alexa Fluor 532, Alexa Fluor 546, Alexa Fluor 555, Alexa Fluor 568, Alexa Fluor 594, Alexa Fluor 610, Alexa Fluor 633, Alexa Fluor 647, Alexa Fluor 660, Alexa Fluor 680, Alexa Fluor 700, Alexa Fluor 750, umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; luminescent materials, such as, but not limited to, luminol; bioluminescent materials, such as but not limited to, luciferase, luciferin, and aequorin; radioactive materials, such as, but not limited to, iodine (131I, 125I, 123I, and 121I,), carbon (14C), sulfur (35S), tritium (3H), indium (115In, 113In, 112In, and 111In,), technetium (99Tc), thallium (201Ti), gallium (68Ga, 67Ga), palladium (103Pd), molybdenum (99Mo), xenon (133Xe), fluorine (18F), 153Sm, 177Lu, 159Gd, 149Pm, 140La, 175Yb, 166Ho, 90Y, 47Sc, 186Re, 188Re, 142Pr, 105Rh, 97Ru, 68Ge, 57Co, 65Zn, 85Sr, 32P, 153Gd, 169Yb, 51Cr, 54Mn, 75Se, 64Cu, 113Sn, and 117Sn; and positron emitting metals using various positron emission tomographies, and non-radioactive paramagnetic metal ions.

Modified antibodies or antibody fragments of the invention may also be attached to solid supports, which are particularly useful for immunoassays or purification of the target antigen. Such solid supports include, but are not limited to, glass, cellulose, polyacrylamide, nylon, polystyrene, polyvinyl chloride or polypropylene.

5. Pharmaceutical Composition

To prepare pharmaceutical or sterile compositions including immunoconjugates, the immunoconjugates of the invention are mixed with a pharmaceutically acceptable carrier or excipient. The compositions can additionally contain one or more other therapeutic agents that are suitable for treating or preventing cancer (breast cancer, colorectal cancer, lung cancer, multiple myeloma, ovarian cancer, liver cancer, gastric cancer, pancreatic cancer, acute myeloid leukemia, chronic myeloid leukemia, osteosarcoma, squamous cell carcinoma, peripheral nerve sheath tumors schwannoma, head and neck cancer, bladder cancer, esophageal cancer, Barretts esophageal cancer, glioblastoma, clear cell sarcoma of soft tissue, malignant mesothelioma, neurofibromatosis, renal cancer, melanoma, prostate cancer, benign prostatic hyperplasia (BPH), gynacomastica, and endometriosis).

Formulations of therapeutic and diagnostic agents can be prepared by mixing with physiologically acceptable carriers, excipients, or stabilizers in the form of, e.g., lyophilized powders, slurries, aqueous solutions, lotions, or suspensions (see, e.g., Hardman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, McGraw-Hill, New York, N.Y., 2001; Gennaro, Remington: The Science and Practice of Pharmacy, Lippincott, Williams, and Wilkins, New York, N.Y., 2000; Avis, et al. (eds.), Pharmaceutical Dosage Forms: Parenteral Medications, Marcel Dekker, NY, 1993; Lieberman, et al. (eds.), Pharmaceutical Dosage Forms Tablets, Marcel Dekker, NY, 1990; Lieberman, et al. (eds.) Pharmaceutical Dosage Forms: Disperse Systems, Marcel Dekker, NY, 1990; Weiner and Kotkoskie, Excipient Toxicity and Safety, Marcel Dekker, Inc., New York, N.Y., 2000).

Selecting an administration regimen for a therapeutic depends on several factors, including the serum or tissue turnover rate of the entity, the level of symptoms, the immunogenicity of the entity, and the accessibility of the target cells in the biological matrix. In certain embodiments, an administration regimen maximizes the amount of therapeutic delivered to the patient consistent with an acceptable level of side effects. Accordingly, the amount of biologic delivered depends in part on the particular entity and the severity of the condition being treated. Guidance in selecting appropriate doses of antibodies, cytokines, and small molecules are available (see, e.g., Wawrzynczak, Antibody Therapy, Bios Scientific Pub. Ltd, Oxfordshire, UK, 1996; Kresina (ed.), Monoclonal Antibodies, Cytokines and Arthritis, Marcel Dekker, New York, N.Y., 1991; Bach (ed.), Monoclonal Antibodies and Peptide Therapy in Autoimmune Diseases, Marcel Dekker, New York, N.Y., 1993; Baert et al., New Engl. J. Med. 348:601-608, 2003; Milgrom et al., New Engl. J. Med. 341:1966-1973, 1999; Slamon et al., New Engl. J. Med. 344:783-792, 2001; Beniaminovitz et al., New Engl. J. Med. 342:613-619, 2000; Ghosh et al., New Engl. J. Med. 348:24-32, 2003; Lipsky et al., New Engl. J. Med. 343:1594-1602, 2000).

Determination of the appropriate dose is made by the clinician, e.g., using parameters or factors known or suspected in the art to affect treatment or predicted to affect treatment. Generally, the dose begins with an amount somewhat less than the optimum dose and it is increased by small increments thereafter until the desired or optimum effect is achieved relative to any negative side effects. Important diagnostic measures include those of symptoms of, e.g., the inflammation or level of inflammatory cytokines produced.

Actual dosage levels of the active ingredients in the pharmaceutical compositions of the present invention may be varied so as to obtain an amount of the active ingredient which is effective to achieve the desired therapeutic response for a particular patient, composition, and mode of administration, without being toxic to the patient. The selected dosage level will depend upon a variety of pharmacokinetic factors including the activity of the particular compositions of the present invention employed, or the ester, salt or amide thereof, the route of administration, the time of administration, the rate of excretion of the particular compound being employed, the duration of the treatment, other drugs, compounds and/or materials used in combination with the particular compositions employed, the age, sex, weight, condition, general health and prior medical history of the patient being treated, and like factors known in the medical arts.

Compositions comprising antibodies or fragments thereof of the invention can be provided by continuous infusion, or by doses at intervals of, e.g., one day, one week, or 1-7 times per week. Doses may be provided intravenously, subcutaneously, topically, orally, nasally, rectally, intramuscular, intracerebrally, or by inhalation. A specific dose protocol is one involving the maximal dose or dose frequency that avoids significant undesirable side effects.

For the immunoconjugates of the invention, the dosage administered to a patient may be 0.0001 mg/kg to 100 mg/kg of the patient's body weight. The dosage may be between 0.0001 mg/kg and 20 mg/kg, 0.0001 mg/kg and 10 mg/kg, 0.0001 mg/kg and 5 mg/kg, 0.0001 and 2 mg/kg, 0.0001 and 1 mg/kg, 0.0001 mg/kg and 0.75 mg/kg, 0.0001 mg/kg and 0.5 mg/kg, 0.0001 mg/kg to 0.25 mg/kg, 0.0001 to 0.15 mg/kg, 0.0001 to 0.10 mg/kg, 0.001 to 0.5 mg/kg, 0.01 to 0.25 mg/kg or 0.01 to 0.10 mg/kg of the patient's body weight. The dosage of the antibodies or fragments thereof of the invention may be calculated using the patient's weight in kilograms (kg) multiplied by the dose to be administered in mg/kg.

Doses of the immunoconjugates the invention may be repeated and the administrations may be separated by at least 1 day, 2 days, 3 days, 5 days, 10 days, 15 days, 30 days, 45 days, 2 months, 75 days, 3 months, or at least 6 months. In a specific embodiment, does of the immunoconjugates of the invention are repeated every 3 weeks.

An effective amount for a particular patient may vary depending on factors such as the condition being treated, the overall health of the patient, the method route and dose of administration and the severity of side effects (see, e.g., Maynard et al., A Handbook of SOPs for Good Clinical Practice, Interpharm Press, Boca Raton, Fla., 1996; Dent, Good Laboratory and Good Clinical Practice, Urch Publ., London, UK, 2001).

The route of administration may be by, e.g., topical or cutaneous application, injection or infusion by intravenous, intraperitoneal, intracerebral, intramuscular, intraocular, intraarterial, intracerebrospinal, intralesional, or by sustained release systems or an implant (see, e.g., Sidman et al., Biopolymers 22:547-556, 1983; Langer et al., J. Biomed. Mater. Res. 15:167-277, 1981; Langer, Chem. Tech. 12:98-105, 1982; Epstein et al., Proc. Natl. Acad. Sci. USA 82:3688-3692, 1985; Hwang et al., Proc. Natl. Acad. Sci. USA 77:4030-4034, 1980; U.S. Pat. Nos. 6,350,466 and 6,316,024). Where necessary, the composition may also include a solubilizing agent and a local anesthetic such as lidocaine to ease pain at the site of the injection. In addition, pulmonary administration can also be employed, e.g., by use of an inhaler or nebulizer, and formulation with an aerosolizing agent. See, e.g., U.S. Pat. Nos. 6,019,968, 5,985,320, 5,985,309, 5,934,272, 5,874,064, 5,855,913, 5,290,540, and 4,880,078; and PCT Publication Nos. WO 92/19244, WO 97/32572, WO 97/44013, WO 98/31346, and WO 99/66903, each of which is incorporated herein by reference their entirety.

A composition of the present invention may also be administered via one or more routes of administration using one or more of a variety of methods known in the art. As will be appreciated by the skilled artisan, the route and/or mode of administration will vary depending upon the desired results. Selected routes of administration for the immunoconjugates of the invention include intravenous, intramuscular, intradermal, intraperitoneal, subcutaneous, spinal or other parenteral routes of administration, for example by injection or infusion. Parenteral administration may represent modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal, epidural and intrasternal injection and infusion. Alternatively, a composition of the invention can be administered via a non-parenteral route, such as a topical, epidermal or mucosal route of administration, for example, intranasally, orally, vaginally, rectally, sublingually or topically. In one embodiment, the immunoconjugates of the invention is administered by infusion. In another embodiment, the immunoconjugates of the invention is administered subcutaneously.

If the immunoconjugates of the invention are administered in a controlled release or sustained release system, a pump may be used to achieve controlled or sustained release (see Langer, supra; Sefton, CRC Crit. Ref Biomed. Eng. 14:20, 1987; Buchwald et al., Surgery 88:507, 1980; Saudek et al., N. Engl. J. Med. 321:574, 1989). Polymeric materials can be used to achieve controlled or sustained release of the therapies of the invention (see e.g., Medical Applications of Controlled Release, Langer and Wise (eds.), CRC Pres., Boca Raton, Fla., 1974; Controlled Drug Bioavailability, Drug Product Design and Performance, Smolen and Ball (eds.), Wiley, New York, 1984; Ranger and Peppas, J. Macromol. Sci. Rev. Macromol. Chem. 23:61, 1983; see also Levy et al., Science 228:190, 1985; During et al., Ann. Neurol. 25:351, 1989; Howard et al., J. Neurosurg. 7 1:105, 1989; U.S. Pat. No. 5,679,377; U.S. Pat. No. 5,916,597; U.S. Pat. No. 5,912,015; U.S. Pat. No. 5,989,463; U.S. Pat. No. 5,128,326; PCT Publication No. WO 99/15154; and PCT Publication No. WO 99/20253. Examples of polymers used in sustained release formulations include, but are not limited to, poly(2-hydroxy ethyl methacrylate), poly(methyl methacrylate), poly(acrylic acid), poly(ethylene-co-vinyl acetate), poly(methacrylic acid), polyglycolides (PLG), polyanhydrides, poly(N-vinyl pyrrolidone), poly(vinyl alcohol), polyacrylamide, poly(ethylene glycol), polylactides (PLA), poly(lactide-co-glycolides) (PLGA), and polyorthoesters. In one embodiment, the polymer used in a sustained release formulation is inert, free of leachable impurities, stable on storage, sterile, and biodegradable. A controlled or sustained release system can be placed in proximity of the prophylactic or therapeutic target, thus requiring only a fraction of the systemic dose (see, e.g., Goodson, in Medical Applications of Controlled Release, supra, vol. 2, pp. 115-138, 1984).

Controlled release systems are discussed in the review by Langer, Science 249:1527-1533, 1990). Any technique known to one of skill in the art can be used to produce sustained release formulations comprising one or more immunoconjugates of the invention. See, e.g., U.S. Pat. No. 4,526,938, PCT publication WO 91/05548, PCT publication WO 96/20698, Ning et al., Radiotherapy & Oncology 39:179-189, 1996; Song et al., PDA Journal of Pharmaceutical Science & Technology 50:372-397, 1995; Cleek et al., Pro. Inn Symp. Control. Rel. Bioact. Mater. 24:853-854, 1997; and Lam et al., Proc. Inn Symp. Control Rel. Bioact. Mater. 24:759-760, 1997, each of which is incorporated herein by reference in their entirety.

If the immunoconjugates of the invention are administered topically, they can be formulated in the form of an ointment, cream, transdermal patch, lotion, gel, shampoo, spray, aerosol, solution, emulsion, or other form well-known to one of skill in the art. See, e.g., Remington's Pharmaceutical Sciences and Introduction to Pharmaceutical Dosage Forms, 19th ed., Mack Pub. Co., Easton, Pa. (1995). For non-sprayable topical dosage forms, viscous to semi-solid or solid forms comprising a carrier or one or more excipients compatible with topical application and having a dynamic viscosity, in some instances, greater than water are typically employed. Suitable formulations include, without limitation, solutions, suspensions, emulsions, creams, ointments, powders, liniments, salves, and the like, which are, if desired, sterilized or mixed with auxiliary agents (e.g., preservatives, stabilizers, wetting agents, buffers, or salts) for influencing various properties, such as, for example, osmotic pressure. Other suitable topical dosage forms include sprayable aerosol preparations wherein the active ingredient, in some instances, in combination with a solid or liquid inert carrier, is packaged in a mixture with a pressurized volatile (e.g., a gaseous propellant, such as freon) or in a squeeze bottle. Moisturizers or humectants can also be added to pharmaceutical compositions and dosage forms if desired. Examples of such additional ingredients are well-known in the art.

If the compositions comprising the immunoconjugates are administered intranasally, it can be formulated in an aerosol form, spray, mist or in the form of drops. In particular, prophylactic or therapeutic agents for use according to the present invention can be conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebuliser, with the use of a suitable propellant (e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas). In the case of a pressurized aerosol the dosage unit may be determined by providing a valve to deliver a metered amount. Capsules and cartridges (composed of, e.g., gelatin) for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch.

Methods for co-administration or treatment with a second therapeutic agent, e.g., a cytokine, steroid, chemotherapeutic agent, antibiotic, or radiation, are known in the art (see, e.g., Hardman et al., (eds.) (2001) Goodman and Gilman's The Pharmacological Basis of Therapeutics, 10.sup.th ed., McGraw-Hill, New York, N.Y.; Poole and Peterson (eds.) (2001) Pharmacotherapeutics for Advanced Practice: A Practical Approach, Lippincott, Williams & Wilkins, Phila., Pa.; Chabner and Longo (eds.) (2001) Cancer Chemotherapy and Biotherapy, Lippincott, Williams & Wilkins, Phila., Pa.). An effective amount of therapeutic may decrease the symptoms by at least 10%; by at least 20%; at least about 30%; at least 40%, or at least 50%.

Additional therapies (e.g., prophylactic or therapeutic agents), which can be administered in combination with the immunoconjugates of the invention may be administered less than 5 minutes apart, less than 30 minutes apart, 1 hour apart, at about 1 hour apart, at about 1 to about 2 hours apart, at about 2 hours to about 3 hours apart, at about 3 hours to about 4 hours apart, at about 4 hours to about 5 hours apart, at about 5 hours to about 6 hours apart, at about 6 hours to about 7 hours apart, at about 7 hours to about 8 hours apart, at about 8 hours to about 9 hours apart, at about 9 hours to about 10 hours apart, at about 10 hours to about 11 hours apart, at about 11 hours to about 12 hours apart, at about 12 hours to 18 hours apart, 18 hours to 24 hours apart, 24 hours to 36 hours apart, 36 hours to 48 hours apart, 48 hours to 52 hours apart, 52 hours to 60 hours apart, 60 hours to 72 hours apart, 72 hours to 84 hours apart, 84 hours to 96 hours apart, or 96 hours to 120 hours apart from the immunoconjugates of the invention. The two or more therapies may be administered within one same patient visit.

In certain embodiments, the immunoconjugates of the invention can be formulated to ensure proper distribution in vivo. For example, the blood-brain barrier (BBB) excludes many highly hydrophilic compounds. To ensure that the therapeutic compounds of the invention cross the BBB (if desired), they can be formulated, for example, in liposomes. For methods of manufacturing liposomes, see, e.g., U.S. Pat. Nos. 4,522,811; 5,374,548; and 5,399,331. The liposomes may comprise one or more moieties which are selectively transported into specific cells or organs, thus enhance targeted drug delivery (see, e.g., Ranade, (1989) J. Clin. Pharmacol. 29:685). Exemplary targeting moieties include folate or biotin (see, e.g., U.S. Pat. No. 5,416,016 to Low et al.); mannosides (Umezawa et al., (1988) Biochem. Biophys. Res. Commun. 153:1038); antibodies (Bloeman et al., (1995) FEBS Lett. 357:140; Owais et al., (1995) Antimicrob. Agents Chemother. 39:180); surfactant protein A receptor (Briscoe et al., (1995) Am. J. Physiol. 1233:134); p 120 (Schreier et al, (1994) J. Biol. Chem. 269:9090); see also K. Keinanen; M. L. Laukkanen (1994) FEBS Lett. 346:123; J. J. Killion; I. J. Fidler (1994) Immunomethods 4:273.

The invention provides protocols for the administration of pharmaceutical composition comprising immunoconjugates of the invention alone or in combination with other therapies to a subject in need thereof. The therapies (e.g., prophylactic or therapeutic agents) of the combination therapies of the present invention can be administered concomitantly or sequentially to a subject. The therapy (e.g., prophylactic or therapeutic agents) of the combination therapies of the present invention can also be cyclically administered. Cycling therapy involves the administration of a first therapy (e.g., a first prophylactic or therapeutic agent) for a period of time, followed by the administration of a second therapy (e.g., a second prophylactic or therapeutic agent) for a period of time and repeating this sequential administration, i.e., the cycle, in order to reduce the development of resistance to one of the therapies (e.g., agents) to avoid or reduce the side effects of one of the therapies (e.g., agents), and/or to improve, the efficacy of the therapies.

The therapies (e.g., prophylactic or therapeutic agents) of the combination therapies of the invention can be administered to a subject concurrently.

The term “concurrently” is not limited to the administration of therapies (e.g., prophylactic or therapeutic agents) at exactly the same time, but rather it is meant that a pharmaceutical composition comprising antibodies or fragments thereof the invention are administered to a subject in a sequence and within a time interval such that the antibodies of the invention can act together with the other therapy(ies) to provide an increased benefit than if they were administered otherwise. For example, each therapy may be administered to a subject at the same time or sequentially in any order at different points in time; however, if not administered at the same time, they should be administered sufficiently close in time so as to provide the desired therapeutic or prophylactic effect. Each therapy can be administered to a subject separately, in any appropriate form and by any suitable route. In various embodiments, the therapies (e.g., prophylactic or therapeutic agents) are administered to a subject less than 15 minutes, less than 30 minutes, less than 1 hour apart, at about 1 hour apart, at about 1 hour to about 2 hours apart, at about 2 hours to about 3 hours apart, at about 3 hours to about 4 hours apart, at about 4 hours to about 5 hours apart, at about 5 hours to about 6 hours apart, at about 6 hours to about 7 hours apart, at about 7 hours to about 8 hours apart, at about 8 hours to about 9 hours apart, at about 9 hours to about 10 hours apart, at about 10 hours to about 11 hours apart, at about 11 hours to about 12 hours apart, 24 hours apart, 48 hours apart, 72 hours apart, or 1 week apart. In other embodiments, two or more therapies (e.g., prophylactic or therapeutic agents) are administered to a within the same patient visit.

The prophylactic or therapeutic agents of the combination therapies can be administered to a subject in the same pharmaceutical composition. Alternatively, the prophylactic or therapeutic agents of the combination therapies can be administered concurrently to a subject in separate pharmaceutical compositions. The prophylactic or therapeutic agents may be administered to a subject by the same or different routes of administration.

The invention having been fully described, it is further illustrated by the following examples and claims, which are illustrative and are not meant to be further limiting.

EXAMPLES Example 1 Design of Peptide-Tagged IgG Constructs

Visual inspection of the NMR structure of the 4′-phosphopantetheinyl transferase (PPTase) Sfp (PDB ID: 2GE1, Koglin et al., (2006) Science 312: 273-276) model with a peptide substrate reveals that the reactive Ser residue of the S6 tag is inserted deeply into the enzyme active site and is positioned near the alpha phosphate of coenzyme A. The peptide substrate adopts a helix-kink-loop conformation with the Ser residue at the kink. Based on these observations, several loops on the surface of IgG antibodies were selected. The selection procedure involved the following steps. We first built a Trastuzumab homology model using human IgG1 B12 antibody (PDB ID: 1 HZH, Saphire et al., (2001) Science 293: 1155-1159) as a template. Next, the loops with significant content of solvent exposed residues were selected and transformed into S6 tag loops.

To that end, different strategies were exploited: grafting of full-length peptide tag, grafting of truncated peptide tag, and insertions (both truncated and full-length). One example of the grafting of a full-length ybbR tag is exemplified by the mutant anti-hHER2-HC-S132D-K133S-S134L-T135E-S136F-G1371-G138A-T139S-A140K-A141L-L142A (SEQ ID NO:102), while the Trastuzumab anti-hHER2-HC-P189G-S190D-S191-S192L-L193S-G194W-T195L (SEQ ID NO:109) mutant constitutes grafting of a truncated S6 tag. Another variant of the grafting strategy was employed, for example, in mutant anti-hHER2-HC-S190G-S191D-S192-L193-G194S-T195W-Q196L-T197L-RLLN-Y198 (SEQ ID NO:113) wherein residues S190 and S191 were mutated to glycine and aspartic acid, respectively, G194 to serine, T195 to tryptophan, Q196 and T197 to leucine and the truncated S6 tag RLLN (SEQ ID NO:1060) was inserted between L197 and Y198. Alternatively, both truncated and full-length peptide tags were inserted into loops between antibody residues.

Through out the Example section, the peptide-tagged antibodies are named according to the immunoglobulin heavy or light chain, which contains the grafted or inserted peptide tag. For simplicity, the associated unmodified heavy or light chain is not explicitly mentioned. For example, anti-hHER2-HC-T359-GDSLSWLLRLLN-K360 (SEQ ID NO:121) refers to an IgG1, which comprises the corresponding peptide-tagged heavy chain and the associated unmodified kappa light chain anti-hHER2-LC (SEQ ID NO:1131) with X′5=Ala and X′6=Val (see FIG. 3). In contrast, the peptide-tagged mAb2 heavy chain constructs are associated with the unmodified lambda light chain mAb2-LC (SEQ ID NO:25). As another example, anti-hHER2-LC-S76D-S77-L78-EFIASKLA-Q79 (SEQ ID NO:30) refers to an IgG1 antibody containing a peptide-tagged light chain that is associated with the unmodified Ig gamma 1 heavy chain anti-hHER2-HC (SEQ ID NO:1130) with X′1=Lys, X′2=Glu, X′3=Met, and X′4=Ala (see FIG. 3). In cases where the peptide tag(s) is inserted or grafted into the constant region of the heavy or light chain of an antibody, only sequences of the constant region are given.

In all cases, the peptide tag was mapped on the selected loops in such a way that the reactive Ser residue was at or near the tip of the loop in order to allow a deeper fit into the active site of Sfp enzyme. The complexes between IgG and Sfp enzyme were constructed next and examined for clashes. Those with significant clashes were rejected and the corresponding loops were excluded from the selection.

To systematically insert the S6 and ybbR tag sequences into structural loops of the constant regions of Trastuzumab IgG1, insertion sites were chosen both by visual inspection of the crystal structure of the human IgG1 B12 antibody (PDB ID: 1 HZH) as well as by calculating the solvent-accessible surface area of residues by using the program ICM from MolSoft LLC.

Example 2 Production of Peptide-Tagged IgG Constructs

The heavy and light chains of Trastuzumab IgG1 were transiently expressed in mammalian cells using the pOG expression vector under the control of a CMV promoter. Peptide tags for labeling with 4′-phosphopantetheinyl transferases were incorporated into Trastuzumab IgG1 at various positions by standard molecular biology methods. All primers used for cloning are listed in Table 8.

Cell culture and transfection of HEK293F cells was performed using the PEI method as described previously (see for example Erbacher et al., J Gene Med., 1: 210-222 (1999)). Briefly, HEK293F cells were co-transfected with plasmid DNA encoding the heavy and light chains of Trastuzumab (human kappa isotype). The mammalian cells were cultured in FreeStyle™ 293 Expression Medium at 37° C. under 5% CO2, and were split to 0.7×106 cells/ml one day prior to transfection. Following transfection, the HEK293F cells were cultured for five days before harvest by centrifugation at 2000×g for 30 minutes at 4° C.

The resulting medium supernatant was filtered through a 0.22-μm-pore-size filter. The filtrate was then loaded at a flow rate of about 1 mL/min on a protein A affinity column that was previously equilibrated with 20 column volumes of PBS. After washing the column with 20 column volumes of PBS, the antibody was eluted with 5 column volumes of 0.1 M sodium acetate (pH 3.0). The eluate was immediately neutralized with 10% (v/v) 1 M Tris/HCl (pH 10). Dialysis into PBS was performed using Slide-a-Lyzer dialysis cassettes with 3.5 or 7.0 kDa molecular weight cut-off (Pierce).

The purity of the final product was assessed by SDS-PAGE. Protein yields were determined by either the Bradford method or by ultraviolet spectroscopy at 280 nm using an ND-1000 UV-Vis Spectrophotometer. Protein yields of peptide-tagged Trastuzumab IgGs are listed in Table 9.

TABLE 8 DNA sequences of primers used for constructing recombinant PPTase enzymes and mutants thereof as well as Trastuzumab IgGs with inserted/grafted peptide-tags (HC, heavy chain; LC, light chain) SEQ ID SEQ ID Sequence name NO Sequence NO anti-hHER2-HC-A118- 150 CTGAGCTGGCTGCTGAGACTGCTGAACAGCACCAAGGGCCCCAGCG 1061 GDSLSWLLRLLN-S119 TCTCAGCAGCCAGCTCAGGCTGTCGCCAGCCGAGGAGACGGTGACCAG 1062 anti-hHER2-HC-S119- 151 CTGAGCTGGCTGCTGAGACTGCTGAACACCAAGGGCCCCAGCGTGTTC 1063 GDSLSWLLRLLN-T120 TCTCAGCAGCCAGCTCAGGCTGTCGCCGCTAGCCGAGGAGACGGTGAC 1064 anti-hHER2-HC-T120- 152 CTGAGCTGGCTGCTGAGACTGCTGAACAAGGGCCCCAGCGTGTTCCC 1065 GDSLSWLLRLLN-K121 TCTCAGCAGCCAGCTCAGGCTGTCGCCGGTGCTAGCCGAGGAGACGG 1066 anti-hHER2-HC-S131- 153 CTGAGCTGGCTGCTGAGACTGCTGAACAGCAAGAGCACCAGCGGCGG 1067 GDSLSWLLRLLN-S132 TCTCAGCAGCCAGCTCAGGCTGTCGCCGCTGGGGGCCAGGGGGAAC 1068 anti-hHER2-HC-S132- 154 CTGAGCTGGCTGCTGAGACTGCTGAACAAGAGCACCAGCGGCGGCAC 1069 GDSLSWLLRLLN-K133 TCTCAGCAGCCAGCTCAGGCTGTCGCCGCTGCTGGGGGCCAGGGG 1070 anti-hHER2-HC-K133- 155 CTGAGCTGGCTGCTGAGACTGCTGAACAGCACCAGCGGCGGCACAG 1071 GDSLSWLLRLLN-S134 TCTCAGCAGCCAGCTCAGGCTGTCGCCCTTGCTGCTGGGGGCCAGG 1072 anti-hHER2-HC-S134- 156 CTGAGCTGGCTGCTGAGACTGCTGAACACCAGCGGCGGCACAGCC 1073 GDSLSWLLRLLN-T135 TCTCAGCAGCCAGCTCAGGCTGTCGCCGCTCTTGCTGCTGGGGGCC 1074 anti-hHER2-HC-T135- 157 CTGAGCTGGCTGCTGAGACTGCTGAACAGCGGCGGCACAGCCGCC 1075 GDSLSWLLRLLN-S136 TCTCAGCAGCCAGCTCAGGCTGTCGCCGGTGCTCTTGCTGCTGGGGG 1076 anti-hHER2-HC-S136- 158 CTGAGCTGGCTGCTGAGACTGCTGAACGGCGGCACAGCCGCCCTG 1077 GDSLSWLLRLLN-G137 TCTCAGCAGCCAGCTCAGGCTGTCGCCGCTGGTGCTCTTGCTGCTGGG 1078 anti-hHER2-HC-G137- 159 CTGAGCTGGCTGCTGAGACTGCTGAACGGCACAGCCGCCCTGGGC 1079 GDSLSWLLRLLN-G138 TCTCAGCAGCCAGCTCAGGCTGTCGCCGCCGCTGGTGCTCTTGCTGC 1080 anti-hHER2-HC-G138- 160 CTGAGCTGGCTGCTGAGACTGCTGAACACAGCCGCCCTGGGCTGC 1081 GDSLSWLLRLLN-T139 TCTCAGCAGCCAGCTCAGGCTGTCGCCGCCGCCGCTGGTGCTCTTG 1082 anti-hHER2-HC-E152- 161 CTGAGCTGGCTGCTGAGACTGCTGAACCCCGTGACCGTGTCCTGGAAC 1083 GDSLSWLLRLLN-P153 TCTCAGCAGCCAGCTCAGGCTGTCGCCCTCGGGGAAGTAGTCCTTCACC 1084 anti-hHER2-HC-P153- 162 CTGAGCTGGCTGCTGAGACTGCTGAACGTGACCGTGTCCTGGAACAGCG 1085 GDSLSWLLRLLN-V154 TCTCAGCAGCCAGCTCAGGCTGTCGCCGGGCTCGGGGAAGTAGTCCTTC 1086 anti-hHER2-HC-N159- 163 CTGAGCTGGCTGCTGAGACTGCTGAACAGCGGAGCCCTGACCTCCG 1087 GDSLSWLLRLLN-S160 TCTCAGCAGCCAGCTCAGGCTGTCGCCGTTCCAGGACACGGTCACGGG 1088 anti-hHER2-HC-S160- 164 CTGAGCTGGCTGCTGAGACTGCTGAACGGAGCCCTGACCTCCGGCGTGCAC 1089 GDSLSWLLRLLN-G161 TCTCAGCAGCCAGCTCAGGCTGTCGCCGCTGTTCCAGGACACGGTCACG 1090 anti-hHER2-HC-G161- 165 CTGAGCTGGCTGCTGAGACTGCTGAACGCCCTGACCTCCGGCGTG 1091 GDSLSWLLRLLN-A162 TCTCAGCAGCCAGCTCAGGCTGTCGCCTCCGCTGTTCCAGGACACGG 1092 anti-hHER2-HC-A162- 166 CTGAGCTGGCTGCTGAGACTGCTGAACCTGACCTCCGGCGTGCACAC 1093 GDSLSWLLRLLN-L163 TCTCAGCAGCCAGCTCAGGCTGTCGCCGGCTCCGCTGTTCCAGGACAC 1094 anti-hHER2-HC-L163- 167 CTGAGCTGGCTGCTGAGACTGCTGAACACCTCCGGCGTGCACACCTTC 389 GDSLSWLLRLLN-T164 TCTCAGCAGCCAGCTCAGGCTGTCGCCCAGGGCTCCGCTGTTCCAGG 390 anti-hHER2-HC-T164- 168 CTGAGCTGGCTGCTGAGACTGCTGAACTCCGGCGTGCACACCTTCCC 391 GDSLSWLLRLLN-S165 TCTCAGCAGCCAGCTCAGGCTGTCGCCGGTCAGGGCTCCGCTGTTCC 392 anti-hHER2-HC-S165- 169 CTGAGCTGGCTGCTGAGACTGCTGAACGGCGTGCACACCTTCCCCG 393 GDSLSWLLRLLN-G166 TCTCAGCAGCCAGCTCAGGCTGTCGCCGGAGGTCAGGGCTCCGCTG 394 anti-hHER2-HC-P171- 170 CTGAGCTGGCTGCTGAGACTGCTGAACGCCGTGCTGCAGAGCAGCG 395 GDSLSWLLRLLN-A172 TCTCAGCAGCCAGCTCAGGCTGTCGCCGGGGAAGGTGTGCACGCCG 396 anti-hHER2-HC-S176- 171 CTGAGCTGGCTGCTGAGACTGCTGAACAGCGGCCTGTACAGCCTGTCC 397 GDSLSWLLRLLN-S177 TCTCAGCAGCCAGCTCAGGCTGTCGCCGCTCTGCAGCACGGCGGG 398 anti-hHER2-HC-S177- 172 CTGAGCTGGCTGCTGAGACTGCTGAACGGCCTGTACAGCCTGTCCAGC 399 GDSLSWLLRLLN-G178 TCTCAGCAGCCAGCTCAGGCTGTCGCCGCTGCTCTGCAGCACGGCG 400 anti-hHER2-HC-P189- 173 CTGAGCTGGCTGCTGAGACTGCTGAACAGCAGCAGCCTGGGCACCC 401 GDSLSWLLRLLN-S190 TCTCAGCAGCCAGCTCAGGCTGTCGCCGGGCACTGTCACCACGCTGG 402 anti-hHER2-HC-S190- 174 CTGAGCTGGCTGCTGAGACTGCTGAACAGCAGCCTGGGCACCCAGAC 403 GDSLSWLLRLLN-S191 TCTCAGCAGCCAGCTCAGGCTGTCGCCGCTGGGCACTGTCACCACGC 404 anti-hHER2-HC-S191- 175 CTGAGCTGGCTGCTGAGACTGCTGAACAGCCTGGGCACCCAGACCTAC 405 GDSLSWLLRLLN-S192 TCTCAGCAGCCAGCTCAGGCTGTCGCCGCTGCTGGGCACTGTCACCAC 406 anti-hHER2-HC-S192- 176 CTGAGCTGGCTGCTGAGACTGCTGAACCTGGGCACCCAGACCTACATC 407 GDSLSWLLRLLN-L193 TCTCAGCAGCCAGCTCAGGCTGTCGCCGCTGCTGCTGGGCACTGTCAC 408 anti-hHER2-HC-L193- 177 CTGAGCTGGCTGCTGAGACTGCTGAACGGCACCCAGACCTACATCTGC 409 GDSLSWLLRLLN-G194 TCTCAGCAGCCAGCTCAGGCTGTCGCCCAGGCTGCTGCTGGGCACTG 410 anti-hHER2-HC-G194- 178 CTGAGCTGGCTGCTGAGACTGCTGAACACCCAGACCTACATCTGCAACGTG 411 GDSLSWLLRLLN-T195 TCTCAGCAGCCAGCTCAGGCTGTCGCCGCCCAGGCTGCTGCTGGG 412 anti-hHER2-HC-P189G- 110 CTGAGCTGGCTGCTGAGACTGCTGAACCAGACCTACATCTGCAACGTGAAC 413 S190D-S191-S192L-L193S- TCTCAGCAGCCAGCTCAGGCTGTCGCCGGTGCCCAGGCTGCTGCTG 414 G194W-T195L-LRLLN- Q196 anti-hHER2-HC-Q196- 180 CTGAGCTGGCTGCTGAGACTGCTGAACACCTACATCTGCAACGTGAACCAC 415 GDSLSWLLRLLN-T197 TCTCAGCAGCCAGCTCAGGCTGTCGCCCTGGGTGCCCAGGCTGCTG 416 anti-hHER2-HC-K205- 181 CTGAGCTGGCTGCTGAGACTGCTGAACCCCAGCAACACCAAGGTGGAC 417 GDSLSWLLRLLN-P206 TCTCAGCAGCCAGCTCAGGCTGTCGCCCTTGTGGTTCACGTTGCAGATGTAG 418 G anti-hHER2-HC-P206- 182 CTGAGCTGGCTGCTGAGACTGCTGAACAGCAACACCAAGGTGGACAAGAAA 419 GDSLSWLLRLLN-S207 G TCTCAGCAGCCAGCTCAGGCTGTCGCCGGGCTTGTGGTTCACGTTGCAG 420 anti-hHER2-HC-S207- 183 CTGAGCTGGCTGCTGAGACTGCTGAACAACACCAAGGTGGACAAGAAAGTG 421 GDSLSWLLRLLN-N208 G TCTCAGCAGCCAGCTCAGGCTGTCGCCGCTGGGCTTGTGGTTCACGTTG 422 anti-hHER2-HC-P230- 184 CTGAGCTGGCTGCTGAGACTGCTGAACGCCCCAGAGCTGCTGGGC 423 GDSLSWLLRLLN-A231 TCTCAGCAGCCAGCTCAGGCTGTCGCCTGGGCAGGGGGGGCAGGTG 424 anti-hHER2-HC-A231- 185 CTGAGCTGGCTGCTGAGACTGCTGAACCCAGAGCTGCTGGGCGGAC 425 GDSLSWLLRLLN-P232 TCTCAGCAGCCAGCTCAGGCTGTCGCCGGCTGGGCAGGGGGGGC 426 anti-hHER2-HC-P232- 186 CTGAGCTGGCTGCTGAGACTGCTGAACGAGCTGCTGGGCGGACCC 427 GDSLSWLLRLLN-E233 TCTCAGCAGCCAGCTCAGGCTGTCGCCTGGGGCTGGGCAGGGGGG 428 anti-hHER2-HC-E233- 187 CTGAGCTGGCTGCTGAGACTGCTGAACCTGCTGGGCGGACCCTCC 429 GDSLSWLLRLLN-L234 TCTCAGCAGCCAGCTCAGGCTGTCGCCCTCTGGGGCTGGGCAGGG 430 anti-hHER2-HC-L234- 188 CTGAGCTGGCTGCTGAGACTGCTGAACCTGGGCGGACCCTCCGTG 431 GDSLSWLLRLLN-L235 TCTCAGCAGCCAGCTCAGGCTGTCGCCCAGCTCTGGGGCTGGGCAG 432 anti-hHER2-HC-L235- 189 CTGAGCTGGCTGCTGAGACTGCTGAACGGCGGACCCTCCGTGTTCC 433 GDSLSWLLRLLN-G236 TCTCAGCAGCCAGCTCAGGCTGTCGCCCAGCAGCTCTGGGGCTGGG 434 anti-hHER2-HC-G236- 190 CTGAGCTGGCTGCTGAGACTGCTGAACGGACCCTCCGTGTTCCTGTTCC 435 GDSLSWLLRLLN-G237 TCTCAGCAGCCAGCTCAGGCTGTCGCCGCCCAGCAGCTCTGGGGC 436 anti-hHER2-HC-P244- 191 CTGAGCTGGCTGCTGAGACTGCTGAACCCCAAGCCCAAGGACACCCTG 437 GDSLSWLLRLLN-P245 TCTCAGCAGCCAGCTCAGGCTGTCGCCGGGGAACAGGAACACGGAGGG 438 anti-hHER2-HC-P245- 192 CTGAGCTGGCTGCTGAGACTGCTGAACAAGCCCAAGGACACCCTGATGATC 439 GDSLSWLLRLLN-K246 TCTCAGCAGCCAGCTCAGGCTGTCGCCGGGGGGGAACAGGAACACGG 440 anti-hHER2-HC-1253- 193 CTGAGCTGGCTGCTGAGACTGCTGAACAGCAGGACCCCCGAGGTGAC 441 GDSLSWLLRLLN-S254 TCTCAGCAGCCAGCTCAGGCTGTCGCCGATCATCAGGGTGTCCTTGGGC 442 anti-hHER2-HC-S254- 194 CTGAGCTGGCTGCTGAGACTGCTGAACAGGACCCCCGAGGTGACCTG 443 GDSLSWLLRLLN-R255 TCTCAGCAGCCAGCTCAGGCTGTCGCCGCTGATCATCAGGGTGTCCTTGG 444 anti-hHER2-HC-R255- 195 CTGAGCTGGCTGCTGAGACTGCTGAACACCCCCGAGGTGACCTGCG 445 GDSLSWLLRLLN-T256 TCTCAGCAGCCAGCTCAGGCTGTCGCCCCTGCTGATCATCAGGGTGTCC 446 anti-hHER2-HC-T256- 196 CTGAGCTGGCTGCTGAGACTGCTGAACCCCGAGGTGACCTGCGTGG 447 GDSLSWLLRLLN-P257 TCTCAGCAGCCAGCTCAGGCTGTCGCCGGTCCTGCTGATCATCAGGGTG 448 anti-hHER2-HC-P257- 197 CTGAGCTGGCTGCTGAGACTGCTGAACGAGGTGACCTGCGTGGTGGTG 449 GDSLSWLLRLLN-E258 TCTCAGCAGCCAGCTCAGGCTGTCGCCGGGGGTCCTGCTGATCATCAG 450 anti-hHER2-HC-S267- 198 CTGAGCTGGCTGCTGAGACTGCTGAACCACGAGGACCCAGAGGTGAAGTTC 451 GDSLSWLLRLLN-H268 TCTCAGCAGCCAGCTCAGGCTGTCGCCGCTCACGTCCACCACCACGC 452 anti-hHER2-HC-H268- 199 CTGAGCTGGCTGCTGAGACTGCTGAACGAGGACCCAGAGGTGAAGTTCAAC 453 GDSLSWLLRLLN-E269 TCTCAGCAGCCAGCTCAGGCTGTCGCCGTGGCTCACGTCCACCACCAC 454 anti-hHER2-HC-E269- 200 CTGAGCTGGCTGCTGAGACTGCTGAACGACCCAGAGGTGAAGTTCAACTGG 455 GDSLSWLLRLLN-D270 TCTCAGCAGCCAGCTCAGGCTGTCGCCCTCGTGGCTCACGTCCACCAC 456 anti-hHER2-HC-D270- 201 CTGAGCTGGCTGCTGAGACTGCTGAACCCAGAGGTGAAGTTCAACTGGTAC 457 GDSLSWLLRLLN-P271 TCTCAGCAGCCAGCTCAGGCTGTCGCCGTCCTCGTGGCTCACGTCCAC 458 anti-hHER2-HC-P271- 202 CTGAGCTGGCTGCTGAGACTGCTGAACGAGGTGAAGTTCAACTGGTACGTG 459 GDSLSWLLRLLN-E272 G TCTCAGCAGCCAGCTCAGGCTGTCGCCTGGGTCCTCGTGGCTCACGTC 460 anti-hHER2-HC-D280- 203 CTGAGCTGGCTGCTGAGACTGCTGAACGGCGTGGAGGTGCACAACGC 461 GDSLSWLLRLLN-G281 TCTCAGCAGCCAGCTCAGGCTGTCGCCGTCCACGTACCAGTTGAACTTCACC 462 anti-hHER2-HC-H285- 204 CTGAGCTGGCTGCTGAGACTGCTGAACAACGCCAAGACCAAGCCCAGAG 463 GDSLSWLLRLLN-N286 TCTCAGCAGCCAGCTCAGGCTGTCGCCGTGCACCTCCACGCCGTCC 464 anti-hHER2-HC-N286- 205 CTGAGCTGGCTGCTGAGACTGCTGAACGCCAAGACCAAGCCCAGAGAG 465 GDSLSWLLRLLN-A287 TCTCAGCAGCCAGCTCAGGCTGTCGCCGTTGTGCACCTCCACGCCGTC 466 anti-hHER2-HC-P291- 206 CTGAGCTGGCTGCTGAGACTGCTGAACAGAGAGGAGCAGTACAACAGCACC 467 GDSLSWLLRLLN-R292 TCTCAGCAGCCAGCTCAGGCTGTCGCCGGGCTTGGTCTTGGCGTTGTG 468 anti-hHER2-HC-T307- 207 CTGAGCTGGCTGCTGAGACTGCTGAACGTGCTGCACCAGGACTGGCTG 469 GDSLSWLLRLLN-V308 TCTCAGCAGCCAGCTCAGGCTGTCGCCGGTCAGCACGGACACCACCC 470 anti-hHER2-HC-V308- 208 CTGAGCTGGCTGCTGAGACTGCTGAACCTGCACCAGGACTGGCTGAAC 471 GDSLSWLLRLLN-L309 TCTCAGCAGCCAGCTCAGGCTGTCGCCCACGGTCAGCACGGACACCAC 472 anti-hHER2-HC-L309- 209 CTGAGCTGGCTGCTGAGACTGCTGAACCACCAGGACTGGCTGAACGGC 473 GDSLSWLLRLLN-H310 TCTCAGCAGCCAGCTCAGGCTGTCGCCCAGCACGGTCAGCACGGACAC 474 anti-hHER2-HC-H310- 210 CTGAGCTGGCTGCTGAGACTGCTGAACCAGGACTGGCTGAACGGCAAG 475 GDSLSWLLRLLN-Q311 TCTCAGCAGCCAGCTCAGGCTGTCGCCGTGCAGCACGGTCAGCACGG 476 anti-hHER2-HC-N315- 211 CTGAGCTGGCTGCTGAGACTGCTGAACGGCAAGGAATACAAGTGCAAGGTC 477 GDSLSWLLRLLN-G316 TCTCAGCAGCCAGCTCAGGCTGTCGCCGTTCAGCCAGTCCTGGTGCAG 478 anti-hHER2-HC-G316- 212 CTGAGCTGGCTGCTGAGACTGCTGAACAAGGAATACAAGTGCAAGGTCTCCA 479 GDSLSWLLRLLN-K317 AC TCTCAGCAGCCAGCTCAGGCTGTCGCCGCCGTTCAGCCAGTCCTGGTG 480 anti-hHER2-HC-K317- 213 CTGAGCTGGCTGCTGAGACTGCTGAACGAATACAAGTGCAAGGTCTCCAACA 481 GDSLSWLLRLLN-E318 AG TCTCAGCAGCCAGCTCAGGCTGTCGCCCTTGCCGTTCAGCCAGTCCTG 482 anti-hHER2-HC-K326- 214 CTGAGCTGGCTGCTGAGACTGCTGAACGCCCTGCCAGCCCCCATC 483 GDSLSWLLRLLN-A327 TCTCAGCAGCCAGCTCAGGCTGTCGCCCTTGTTGGAGACCTTGCACTTGTATT 484 C anti-hHER2-HC-A327- 215 CTGAGCTGGCTGCTGAGACTGCTGAACCTGCCAGCCCCCATCGAAAAG 485 GDSLSWLLRLLN-L328 TCTCAGCAGCCAGCTCAGGCTGTCGCCGGCCTTGTTGGAGACCTTGCAC 486 anti-hHER2-HC-L328- 216 CTGAGCTGGCTGCTGAGACTGCTGAACCCAGCCCCCATCGAAAAGACC 487 GDSLSWLLRLLN-P329 TCTCAGCAGCCAGCTCAGGCTGTCGCCCAGGGCCTTGTTGGAGACCTTG 488 anti-hHER2-HC-P329- 217 CTGAGCTGGCTGCTGAGACTGCTGAACGCCCCCATCGAAAAGACCATCAG 489 GDSLSWLLRLLN-A330 TCTCAGCAGCCAGCTCAGGCTGTCGCCTGGCAGGGCCTTGTTGGAGAC 490 anti-hHER2-HC-A330- 218 CTGAGCTGGCTGCTGAGACTGCTGAACCCCATCGAAAAGACCATCAGCAAG 491 GDSLSWLLRLLN-P331 TCTCAGCAGCCAGCTCAGGCTGTCGCCGGCTGGCAGGGCCTTGTTGG 492 anti-hHER2-HC-A339- 219 CTGAGCTGGCTGCTGAGACTGCTGAACAAGGGCCAGCCACGGGAGC 493 GDSLSWLLRLLN-K340 TCTCAGCAGCCAGCTCAGGCTGTCGCCGGCCTTGCTGATGGTCTTTTCGATG 494 anti-hHER2-HC-K340- 220 CTGAGCTGGCTGCTGAGACTGCTGAACGGCCAGCCACGGGAGCCC 495 GDSLSWLLRLLN-G341 TCTCAGCAGCCAGCTCAGGCTGTCGCCCTTGGCCTTGCTGATGGTCTTTTC 496 anti-hHER2-HC-G341- 221 CTGAGCTGGCTGCTGAGACTGCTGAACCAGCCACGGGAGCCCCAG 497 GDSLSWLLRLLN-Q342 TCTCAGCAGCCAGCTCAGGCTGTCGCCGCCCTTGGCCTTGCTGATGGTC 498 anti-hHER2-HC-Q342- 222 CTGAGCTGGCTGCTGAGACTGCTGAACCCACGGGAGCCCCAGGTG 499 GDSLSWLLRLLN-P343 TCTCAGCAGCCAGCTCAGGCTGTCGCCCTGGCCCTTGGCCTTGCTGATG 500 anti-hHER2-HC-P343- 223 CTGAGCTGGCTGCTGAGACTGCTGAACCGGGAGCCCCAGGTGTACAC 501 GDSLSWLLRLLN-R344 TCTCAGCAGCCAGCTCAGGCTGTCGCCTGGCTGGCCCTTGGCCTTGC 502 anti-hHER2-HC-R344- 224 CTGAGCTGGCTGCTGAGACTGCTGAACGAGCCCCAGGTGTACACCCTG 503 GDSLSWLLRLLN-E345 TCTCAGCAGCCAGCTCAGGCTGTCGCCCCGTGGCTGGCCCTTGGC 504 anti-hHER2-HC-R355- 225 CTGAGCTGGCTGCTGAGACTGCTGAACGAGGAGATGACCAAGAACCAGGTG 505 GDSLSWLLRLLN-E356 TCTCAGCAGCCAGCTCAGGCTGTCGCCCCGGGAGGGGGGCAGGG 506 anti-hHER2-HC-E356- 226 CTGAGCTGGCTGCTGAGACTGCTGAACGAGATGACCAAGAACCAGGTGTCC 507 GDSLSWLLRLLN-E357 TCTCAGCAGCCAGCTCAGGCTGTCGCCCTCCCGGGAGGGGGGCAG 508 anti-hHER2-HC-E357- 227 CTGAGCTGGCTGCTGAGACTGCTGAACATGACCAAGAACCAGGTGTCCCTG 509 GDSLSWLLRLLN-M358 TCTCAGCAGCCAGCTCAGGCTGTCGCCCTCCTCCCGGGAGGGGGG 510 anti-hHER2-HC-M358- 228 CTGAGCTGGCTGCTGAGACTGCTGAACACCAAGAACCAGGTGTCCCTGAC 511 GDSLSWLLRLLN-T359 TCTCAGCAGCCAGCTCAGGCTGTCGCCCATCTCCTCCCGGGAGGGG 512 anti-hHER2-HC-T359- 121 CTGAGCTGGCTGCTGAGACTGCTGAACAAGAACCAGGTGTCCCTGACCTG 513 GDSLSWLLRLLN-K360 TCTCAGCAGCCAGCTCAGGCTGTCGCCGGTCATCTCCTCCCGGGAGG 514 anti-hHER2-HC-K360- 229 CTGAGCTGGCTGCTGAGACTGCTGAACAACCAGGTGTCCCTGACCTGTC 515 GDSLSWLLRLLN-N361 TCTCAGCAGCCAGCTCAGGCTGTCGCCCTTGGTCATCTCCTCCCGGGAG 516 anti-hHER2-HC-N384- 230 CTGAGCTGGCTGCTGAGACTGCTGAACGGCCAGCCCGAGAACAACTAC 517 GDSLSWLLRLLN-G385 TCTCAGCAGCCAGCTCAGGCTGTCGCCGTTGCTCTCCCACTCCACGGC 518 anti-hHER2-HC-E388- 127 CTGAGCTGGCTGCTGAGACTGCTGAACAACAACTACAAGACCACACCTCCAG 519 GDSLSWLLRLLN-N389 TCTCAGCAGCCAGCTCAGGCTGTCGCCCTCGGGCTGGCCGTTGCTC 520 anti-hHER2-HC-N389- 231 CTGAGCTGGCTGCTGAGACTGCTGAACAACTACAAGACCACACCTCCAGTGC 521 GDSLSWLLRLLN-N390 TCTCAGCAGCCAGCTCAGGCTGTCGCCGTTCTCGGGCTGGCCGTTGC 522 anti-hHER2-HC-T394- 232 CTGAGCTGGCTGCTGAGACTGCTGAACCCTCCAGTGCTGGACAGCGAC 523 GDSLSWLLRLLN-P395 TCTCAGCAGCCAGCTCAGGCTGTCGCCTGTGGTCTTGTAGTTGTTCTCGGGC 524 anti-hHER2-HC-P395- 233 CTGAGCTGGCTGCTGAGACTGCTGAACCCAGTGCTGGACAGCGACGG 525 GDSLSWLLRLLN-P396 TCTCAGCAGCCAGCTCAGGCTGTCGCCAGGTGTGGTCTTGTAGTTGTTCTCG 526 anti-hHER2-HC-D399- 234 CTGAGCTGGCTGCTGAGACTGCTGAACAGCGACGGCAGCTTCTTCCTG 527 GDSLSWLLRLLN-S400 TCTCAGCAGCCAGCTCAGGCTGTCGCCGTCCAGCACTGGAGGTGTGGTC 528 anti-hHER2-HC-5400- 136 CTGAGCTGGCTGCTGAGACTGCTGAACGACGGCAGCTTCTTCCTGTACAG 529 GDSLSWLLRLLN-D401 TCTCAGCAGCCAGCTCAGGCTGTCGCCGCTGTCCAGCACTGGAGGTGTG 530 anti-hHER2-HC-D401- 235 CTGAGCTGGCTGCTGAGACTGCTGAACGGCAGCTTCTTCCTGTACAGCAAG 531 GDSLSWLLRLLN-G402 TCTCAGCAGCCAGCTCAGGCTGTCGCCGTCGCTGTCCAGCACTGGAGG 532 anti-hHER2-HC-5415- 236 CTGAGCTGGCTGCTGAGACTGCTGAACAGGTGGCAGCAGGGCAACGTG 533 GDSLSWLLRLLN-R416 TCTCAGCAGCCAGCTCAGGCTGTCGCCGGACTTGTCCACGGTCAGCTTG 534 anti-hHER2-HC-R416- 237 CTGAGCTGGCTGCTGAGACTGCTGAACTGGCAGCAGGGCAACGTGTTC 535 GDSLSWLLRLLN-W417 TCTCAGCAGCCAGCTCAGGCTGTCGCCCCTGGACTTGTCCACGGTCAG 536 anti-hHER2-HC-W417- 238 CTGAGCTGGCTGCTGAGACTGCTGAACCAGCAGGGCAACGTGTTCAGC 537 GDSLSWLLRLLN-Q418 TCTCAGCAGCCAGCTCAGGCTGTCGCCCCACCTGGACTTGTCCACGGTC 538 anti-hHER2-HC-Q418- 239 CTGAGCTGGCTGCTGAGACTGCTGAACCAGGGCAACGTGTTCAGCTGC 539 GDSLSWLLRLLN-Q419 TCTCAGCAGCCAGCTCAGGCTGTCGCCCTGCCACCTGGACTTGTCCAC 540 anti-hHER2-HC-Q419- 240 CTGAGCTGGCTGCTGAGACTGCTGAACGGCAACGTGTTCAGCTGCAGC 541 GDSLSWLLRLLN-G420 TCTCAGCAGCCAGCTCAGGCTGTCGCCCTGCTGCCACCTGGACTTGTC 542 anti-hHER2-HC-G420- 241 CTGAGCTGGCTGCTGAGACTGCTGAACAACGTGTTCAGCTGCAGCGTGATG 543 GDSLSWLLRLLN-N421 TCTCAGCAGCCAGCTCAGGCTGTCGCCGCCCTGCTGCCACCTGGAC 544 anti-hHER2-HC-N421- 242 CTGAGCTGGCTGCTGAGACTGCTGAACGTGTTCAGCTGCAGCGTGATGC 545 GDSLSWLLRLLN-V422 TCTCAGCAGCCAGCTCAGGCTGTCGCCGTTGCCCTGCTGCCACCTGG 546 anti-hHER2-HC-H433- 243 CTGAGCTGGCTGCTGAGACTGCTGAACAACCACTACACCCAGAAGAGCCTG 547 GDSLSWLLRLLN-N434 TCTCAGCAGCCAGCTCAGGCTGTCGCCGTGCAGGGCCTCGTGCATCAC 548 anti-hHER2-HC-N434- 244 CTGAGCTGGCTGCTGAGACTGCTGAACCACTACACCCAGAAGAGCCTGAG 549 GDSLSWLLRLLN-H435 TCTCAGCAGCCAGCTCAGGCTGTCGCCGTTGTGCAGGGCCTCGTGCATC 550 anti-hHER2-HC-5442- 245 CTGAGCTGGCTGCTGAGACTGCTGAACCTGTCCCCCGGCAAGTAATCTAG 551 GDSLSWLLRLLN-L443 TCTCAGCAGCCAGCTCAGGCTGTCGCCGCTCAGGCTCTTCTGGGTGTAG 552 anti-hHER2-HC-L443- 246 CTGAGCTGGCTGCTGAGACTGCTGAACTCCCCCGGCAAGTAATCTAGACAC 553 GDSLSWLLRLLN-S444 TCTCAGCAGCCAGCTCAGGCTGTCGCCCAGGCTCAGGCTCTTCTGGGTG 554 anti-hHER2-HC-S444- 247 CTGAGCTGGCTGCTGAGACTGCTGAACCCCGGCAAGTAATCTAGACACCTC 555 GDSLSWLLRLLN-P445 TCTCAGCAGCCAGCTCAGGCTGTCGCCGGACAGGCTCAGGCTCTTCTG 556 anti-hHER2-HC-P445- 248 CTGAGCTGGCTGCTGAGACTGCTGAACGGCAAGTAATCTAGACACCTCAGAC 557 GDSLSWLLRLLN-G446 TCTCAGCAGCCAGCTCAGGCTGTCGCCGGGGGACAGGCTCAGGCTC 558 anti-hHER2-HC-G446- 139 CTGAGCTGGCTGCTGAGACTGCTGAACAAGTAATCTAGACACCTCAGACAAT 559 GDSLSWLLRLLN-K447 CAAC TCTCAGCAGCCAGCTCAGGCTGTCGCCGCCGGGGGACAGGCTCAG 560 anti-hHER2-HC-A118- 249 CTGGAGTTCATCGCCAGCAAGCTGGCCAGCACCAAGGGCCCCAGCG 561 DSLEFIASKLA-S119 CTTGCTGGCGATGAACTCCAGGCTGTCAGCCGAGGAGACGGTGACCAG 562 anti-hHER2-HC-S119- 250 CTGGAGTTCATCGCCAGCAAGCTGGCCACCAAGGGCCCCAGCGTGTTC 563 DSLEFIASKLA-T120 CTTGCTGGCGATGAACTCCAGGCTGTCGCTAGCCGAGGAGACGGTGAC 564 anti-hHER2-HC-T120- 251 CTGGAGTTCATCGCCAGCAAGCTGGCCAAGGGCCCCAGCGTGTTCCC 565 DSLEFIASKLA-K121 CTTGCTGGCGATGAACTCCAGGCTGTCGGTGCTAGCCGAGGAGACGG 566 anti-hHER2-HC-S131- 252 CTGGAGTTCATCGCCAGCAAGCTGGCCAGCAAGAGCACCAGCGGCGG 567 DSLEFIASKLA-S132 CTTGCTGGCGATGAACTCCAGGCTGTCGCTGGGGGCCAGGGGGAAC 568 anti-hHER2-HC-S132- 253 CTGGAGTTCATCGCCAGCAAGCTGGCCAAGAGCACCAGCGGCGGCAC 569 DSLEFIASKLA-K133 CTTGCTGGCGATGAACTCCAGGCTGTCGCTGCTGGGGGCCAGGGG 570 anti-hHER2-HC-K133- 254 CTGGAGTTCATCGCCAGCAAGCTGGCCAGCACCAGCGGCGGCACAG 571 DSLEFIASKLA-S134 CTTGCTGGCGATGAACTCCAGGCTGTCCTTGCTGCTGGGGGCCAGG 572 anti-hHER2-HC-S134- 255 CTGGAGTTCATCGCCAGCAAGCTGGCCACCAGCGGCGGCACAGCC 573 DSLEFIASKLA-T135 CTTGCTGGCGATGAACTCCAGGCTGTCGCTCTTGCTGCTGGGGGCC 574 anti-hHER2-HC-T135- 256 CTGGAGTTCATCGCCAGCAAGCTGGCCAGCGGCGGCACAGCCGCC 575 DSLEFIASKLA-S136 CTTGCTGGCGATGAACTCCAGGCTGTCGGTGCTCTTGCTGCTGGGGG 576 anti-hHER2-HC-S136- 257 CTGGAGTTCATCGCCAGCAAGCTGGCCGGCGGCACAGCCGCCCTG 577 DSLEFIASKLA-137 CTTGCTGGCGATGAACTCCAGGCTGTCGCTGGTGCTCTTGCTGCTGGG 578 anti-hHER2-HC-G137- 258 CTGGAGTTCATCGCCAGCAAGCTGGCCGGCACAGCCGCCCTGGGC 579 DSLEFIASKLA-G138 CTTGCTGGCGATGAACTCCAGGCTGTCGCCGCTGGTGCTCTTGCTGC 580 anti-hHER2-HC-G138- 259 CTGGAGTTCATCGCCAGCAAGCTGGCCACAGCCGCCCTGGGCTGC 581 DSLEFIASKLA-T139 CTTGCTGGCGATGAACTCCAGGCTGTCGCCGCCGCTGGTGCTCTTG 582 anti-hHER2-HC-E152- 260 CTGGAGTTCATCGCCAGCAAGCTGGCCCCCGTGACCGTGTCCTGGAAC 583 DSLEFIASKLA-P153 CTTGCTGGCGATGAACTCCAGGCTGTCCTCGGGGAAGTAGTCCTTCACC 584 anti-hHER2-HC-P153- 261 CTGGAGTTCATCGCCAGCAAGCTGGCCGTGACCGTGTCCTGGAACAGCG 585 DSLEFIASKLA-V154 CTTGCTGGCGATGAACTCCAGGCTGTCGGGCTCGGGGAAGTAGTCCTTC 586 anti-hHER2-HC-N159- 262 CTGGAGTTCATCGCCAGCAAGCTGGCCAGCGGAGCCCTGACCTCCG 587 DSLEFIASKLA-S160 CTTGCTGGCGATGAACTCCAGGCTGTCGTTCCAGGACACGGTCACGGG 588 anti-hHER2-HC-S160- 263 CTGGAGTTCATCGCCAGCAAGCTGGCCGGAGCCCTGACCTCCGGCGTGCAC 589 DSLEFIASKLA-G161 CTTGCTGGCGATGAACTCCAGGCTGTCGCTGTTCCAGGACACGGTCACG 590 anti-hHER2-HC-G161- 264 CTGGAGTTCATCGCCAGCAAGCTGGCCGCCCTGACCTCCGGCGTG 591 DSLEFIASKLA-A162 CTTGCTGGCGATGAACTCCAGGCTGTCTCCGCTGTTCCAGGACACGG 592 anti-hHER2-HC-A162- 265 CTGGAGTTCATCGCCAGCAAGCTGGCCCTGACCTCCGGCGTGCACAC 593 DSLEFIASKLA-L163 CTTGCTGGCGATGAACTCCAGGCTGTCGGCTCCGCTGTTCCAGGACAC 594 anti-hHER2-HC-L163- 266 CTGGAGTTCATCGCCAGCAAGCTGGCCACCTCCGGCGTGCACACCTTC 595 DSLEFIASKLA-T164 CTTGCTGGCGATGAACTCCAGGCTGTCCAGGGCTCCGCTGTTCCAGG 596 anti-hHER2-HC-T164- 267 CTGGAGTTCATCGCCAGCAAGCTGGCCTCCGGCGTGCACACCTTCCC 597 DSLEFIASKLA-S165 CTTGCTGGCGATGAACTCCAGGCTGTCGGTCAGGGCTCCGCTGTTCC 598 anti-hHER2-HC-S165- 268 CTGGAGTTCATCGCCAGCAAGCTGGCCGGCGTGCACACCTTCCCCG 599 DSLEFIASKLA-G166 CTTGCTGGCGATGAACTCCAGGCTGTCGGAGGTCAGGGCTCCGCTG 600 anti-hHER2-HC-P171- 269 CTGGAGTTCATCGCCAGCAAGCTGGCCGCCGTGCTGCAGAGCAGCG 601 DSLEFIASKLA-A172 CTTGCTGGCGATGAACTCCAGGCTGTCGGGGAAGGTGTGCACGCCG 602 anti-hHER2-HC-S176- 270 CTGGAGTTCATCGCCAGCAAGCTGGCCAGCGGCCTGTACAGCCTGTCC 603 DSLEFIASKLA-S177 CTTGCTGGCGATGAACTCCAGGCTGTCGCTCTGCAGCACGGCGGG 604 anti-hHER2-HC-S177- 271 CTGGAGTTCATCGCCAGCAAGCTGGCCGGCCTGTACAGCCTGTCCAGC 605 DSLEFIASKLA-G178 CTTGCTGGCGATGAACTCCAGGCTGTCGCTGCTCTGCAGCACGGCG 606 anti-hHER2-HC-P189- 272 CTGGAGTTCATCGCCAGCAAGCTGGCCAGCAGCAGCCTGGGCACCC 607 DSLEFIASKLA-S190 CTTGCTGGCGATGAACTCCAGGCTGTCGGGCACTGTCACCACGCTGG 608 anti-hHER2-HC-S190- 273 CTGGAGTTCATCGCCAGCAAGCTGGCCAGCAGCCTGGGCACCCAGAC 609 DSLEFIASKLA-S191 CTTGCTGGCGATGAACTCCAGGCTGTCGCTGGGCACTGTCACCACGC 610 anti-hHER2-HC-S191- 274 CTGGAGTTCATCGCCAGCAAGCTGGCCAGCCTGGGCACCCAGACCTAC 611 DSLEFIASKLA-S192 CTTGCTGGCGATGAACTCCAGGCTGTCGCTGCTGGGCACTGTCACCAC 612 anti-hHER2-HC-S192- 275 CTGGAGTTCATCGCCAGCAAGCTGGCCCTGGGCACCCAGACCTACATC 613 DSLEFIASKLA-L193 CTTGCTGGCGATGAACTCCAGGCTGTCGCTGCTGCTGGGCACTGTCAC 614 anti-hHER2-HC-L193- 276 CTGGAGTTCATCGCCAGCAAGCTGGCCGGCACCCAGACCTACATCTGC 615 DSLEFIASKLA-G194 CTTGCTGGCGATGAACTCCAGGCTGTCCAGGCTGCTGCTGGGCACTG 616 anti-hHER2-HC-G194- 277 CTGGAGTTCATCGCCAGCAAGCTGGCCACCCAGACCTACATCTGCAACGTG 617 DSLEFIASKLA-T195 CTTGCTGGCGATGAACTCCAGGCTGTCGCCCAGGCTGCTGCTGGG 618 anti-hHER2-HC-T195- 278 CTGGAGTTCATCGCCAGCAAGCTGGCCCAGACCTACATCTGCAACGTGAAC 619 DSLEFIASKLA-Q196 CTTGCTGGCGATGAACTCCAGGCTGTCGGTGCCCAGGCTGCTGCTG 620 anti-hHER2-HC-Q196- 279 CTGGAGTTCATCGCCAGCAAGCTGGCCACCTACATCTGCAACGTGAACCAC 621 DSLEFIASKLA-T197 CTTGCTGGCGATGAACTCCAGGCTGTCCTGGGTGCCCAGGCTGCTG 622 anti-hHER2-HC-K205- 280 CTGGAGTTCATCGCCAGCAAGCTGGCCCCCAGCAACACCAAGGTGGAC 623 DSLEFIASKLA-P206 CTTGCTGGCGATGAACTCCAGGCTGTCCTTGTGGTTCACGTTGCAGATGTAG 624 G anti-hHER2-HC-P206- 281 CTGGAGTTCATCGCCAGCAAGCTGGCCAGCAACACCAAGGTGGACAAGAAA 625 DSLEFIASKLA-S207 G CTTGCTGGCGATGAACTCCAGGCTGTCGGGCTTGTGGTTCACGTTGCAG 626 anti-hHER2-HC-S207- 282 CTGGAGTTCATCGCCAGCAAGCTGGCCAACACCAAGGTGGACAAGAAAGTG 627 DSLEFIASKLA-N208 G CTTGCTGGCGATGAACTCCAGGCTGTCGCTGGGCTTGTGGTTCACGTTG 628 anti-hHER2-HC-P230- 283 CTGGAGTTCATCGCCAGCAAGCTGGCCGCCCCAGAGCTGCTGGGC 629 DSLEFIASKLA-A231 CTTGCTGGCGATGAACTCCAGGCTGTCTGGGCAGGGGGGGCAGGTG 630 anti-hHER2-HC-A231- 284 CTGGAGTTCATCGCCAGCAAGCTGGCCCCAGAGCTGCTGGGCGGAC 631 DSLEFIASKLA-P232 CTTGCTGGCGATGAACTCCAGGCTGTCGGCTGGGCAGGGGGGGC 632 anti-hHER2-HC-P232- 285 CTGGAGTTCATCGCCAGCAAGCTGGCCGAGCTGCTGGGCGGACCC 633 DSLEFIASKLA-E233 CTTGCTGGCGATGAACTCCAGGCTGTCTGGGGCTGGGCAGGGGGG 634 anti-hHER2-HC-E233- 286 CTGGAGTTCATCGCCAGCAAGCTGGCCCTGCTGGGCGGACCCTCC 635 DSLEFIASKLA-L234 CTTGCTGGCGATGAACTCCAGGCTGTCCTCTGGGGCTGGGCAGGG 636 anti-hHER2-HC-L234- 287 CTGGAGTTCATCGCCAGCAAGCTGGCCCTGGGCGGACCCTCCGTG 637 DSLEFIASKLA-L235 CTTGCTGGCGATGAACTCCAGGCTGTCCAGCTCTGGGGCTGGGCAG 638 anti-hHER2-HC-L235- 288 CTGGAGTTCATCGCCAGCAAGCTGGCCGGCGGACCCTCCGTGTTCC 639 DSLEFIASKLA-G236 CTTGCTGGCGATGAACTCCAGGCTGTCCAGCAGCTCTGGGGCTGGG 640 anti-hHER2-HC-G236- 289 CTGGAGTTCATCGCCAGCAAGCTGGCCGGACCCTCCGTGTTCCTGTTCC 641 DSLEFIASKLA-G237 CTTGCTGGCGATGAACTCCAGGCTGTCGCCCAGCAGCTCTGGGGC 642 anti-hHER2-HC-P244- 290 CTGGAGTTCATCGCCAGCAAGCTGGCCCCCAAGCCCAAGGACACCCTG 643 DSLEFIASKLA-P245 CTTGCTGGCGATGAACTCCAGGCTGTCGGGGAACAGGAACACGGAGGG 644 anti-hHER2-HC-P245- 291 CTGGAGTTCATCGCCAGCAAGCTGGCCAAGCCCAAGGACACCCTGATGATC 645 DSLEFIASKLA-K246 CTTGCTGGCGATGAACTCCAGGCTGTCGGGGGGGAACAGGAACACGG 646 anti-hHER2-HC-I253- 292 CTGGAGTTCATCGCCAGCAAGCTGGCCAGCAGGACCCCCGAGGTGAC 647 DSLEFIASKLA-S254 CTTGCTGGCGATGAACTCCAGGCTGTCGATCATCAGGGTGTCCTTGGGC 648 anti-hHER2-HC-S254- 293 CTGGAGTTCATCGCCAGCAAGCTGGCCAGGACCCCCGAGGTGACCTG 649 DSLEFIASKLA-R255 CTTGCTGGCGATGAACTCCAGGCTGTCGCTGATCATCAGGGTGTCCTTGG 650 anti-hHER2-HC-R255- 294 CTGGAGTTCATCGCCAGCAAGCTGGCCACCCCCGAGGTGACCTGCG 651 DSLEFIASKLA-T256 CTTGCTGGCGATGAACTCCAGGCTGTCCCTGCTGATCATCAGGGTGTCC 652 anti-hHER2-HC-T256- 295 CTGGAGTTCATCGCCAGCAAGCTGGCCCCCGAGGTGACCTGCGTGG 653 DSLEFIASKLA-P257 CTTGCTGGCGATGAACTCCAGGCTGTCGGTCCTGCTGATCATCAGGGTG 654 anti-hHER2-HC-P257- 296 CTGGAGTTCATCGCCAGCAAGCTGGCCGAGGTGACCTGCGTGGTGGTG 655 DSLEFIASKLA-E258 CTTGCTGGCGATGAACTCCAGGCTGTCGGGGGTCCTGCTGATCATCAG 656 anti-hHER2-HC-S267- 297 CTGGAGTTCATCGCCAGCAAGCTGGCCCACGAGGACCCAGAGGTGAAGTTC 657 DSLEFIASKLA-H268 CTTGCTGGCGATGAACTCCAGGCTGTCGCTCACGTCCACCACCACGC 658 anti-hHER2-HC-H268- 298 CTGGAGTTCATCGCCAGCAAGCTGGCCGAGGACCCAGAGGTGAAGTTCAAC 659 DSLEFIASKLA-E269 CTTGCTGGCGATGAACTCCAGGCTGTCGTGGCTCACGTCCACCACCAC 660 anti-hHER2-HC-E269- 299 CTGGAGTTCATCGCCAGCAAGCTGGCCGACCCAGAGGTGAAGTTCAACTGG 661 DSLEFIASKLA-D270 CTTGCTGGCGATGAACTCCAGGCTGTCCTCGTGGCTCACGTCCACCAC 662 anti-hHER2-HC-D270- 300 CTGGAGTTCATCGCCAGCAAGCTGGCCCCAGAGGTGAAGTTCAACTGGTAC 663 DSLEFIASKLA-P271 CTTGCTGGCGATGAACTCCAGGCTGTCGTCCTCGTGGCTCACGTCCAC 664 anti-hHER2-HC-P271- 301 CTGGAGTTCATCGCCAGCAAGCTGGCCGAGGTGAAGTTCAACTGGTACGTGG 665 DSLEFIASKLA-E272 CTTGCTGGCGATGAACTCCAGGCTGTCTGGGTCCTCGTGGCTCACGTC 666 anti-hHER2-HC-D280- 302 CTGGAGTTCATCGCCAGCAAGCTGGCCGGCGTGGAGGTGCACAACGC 667 DSLEFIASKLA-G281 CTTGCTGGCGATGAACTCCAGGCTGTCGTCCACGTACCAGTTGAACTTCACC 668 anti-hHER2-HC-H285- 303 CTGGAGTTCATCGCCAGCAAGCTGGCCAACGCCAAGACCAAGCCCAGAG 669 DSLEFIASKLA-N286 CTTGCTGGCGATGAACTCCAGGCTGTCGTGCACCTCCACGCCGTCC 670 anti-hHER2-HC-N286- 304 CTGGAGTTCATCGCCAGCAAGCTGGCCGCCAAGACCAAGCCCAGAGAG 671 DSLEFIASKLA-A287 CTTGCTGGCGATGAACTCCAGGCTGTCGTTGTGCACCTCCACGCCGTC 672 anti-hHER2-HC-P291- 305 CTGGAGTTCATCGCCAGCAAGCTGGCCAGAGAGGAGCAGTACAACAGCACC 673 DSLEFIASKLA-R292 CTTGCTGGCGATGAACTCCAGGCTGTCGGGCTTGGTCTTGGCGTTGTG 674 anti-hHER2-HC-T307- 306 CTGGAGTTCATCGCCAGCAAGCTGGCCGTGCTGCACCAGGACTGGCTG 675 DSLEFIASKLA-V308 CTTGCTGGCGATGAACTCCAGGCTGTCGGTCAGCACGGACACCACCC 676 anti-hHER2-HC-V308- 307 CTGGAGTTCATCGCCAGCAAGCTGGCCCTGCACCAGGACTGGCTGAAC 677 DSLEFIASKLA-L309 CTTGCTGGCGATGAACTCCAGGCTGTCCACGGTCAGCACGGACACCAC 678 anti-hHER2-HC-L309- 308 CTGGAGTTCATCGCCAGCAAGCTGGCCCACCAGGACTGGCTGAACGGC 679 DSLEFIASKLA-H310 CTTGCTGGCGATGAACTCCAGGCTGTCCAGCACGGTCAGCACGGACAC 680 anti-hHER2-HC-H310- 309 CTGGAGTTCATCGCCAGCAAGCTGGCCCAGGACTGGCTGAACGGCAAG 681 DSLEFIASKLA-Q311 CTTGCTGGCGATGAACTCCAGGCTGTCGTGCAGCACGGTCAGCACGG 682 anti-hHER2-HC-N315- 310 CTGGAGTTCATCGCCAGCAAGCTGGCCGGCAAGGAATACAAGTGCAAGGTC 683 DSLEFIASKLA-G316 CTTGCTGGCGATGAACTCCAGGCTGTCGTTCAGCCAGTCCTGGTGCAG 684 anti-hHER2-HC-G316- 311 CTGGAGTTCATCGCCAGCAAGCTGGCCAAGGAATACAAGTGCAAGGTCTCCA 685 DSLEFIASKLA-K317 AC CTTGCTGGCGATGAACTCCAGGCTGTCGCCGTTCAGCCAGTCCTGGTG 686 anti-hHER2-HC-K317- 312 CTGGAGTTCATCGCCAGCAAGCTGGCCGAATACAAGTGCAAGGTCTCCAACA 687 DSLEFIASKLA-E318 AG CTTGCTGGCGATGAACTCCAGGCTGTCCTTGCCGTTCAGCCAGTCCTG 688 anti-hHER2-HC-K326- 313 CTGGAGTTCATCGCCAGCAAGCTGGCCGCCCTGCCAGCCCCCATC 689 DSLEFIASKLA-A327 CTTGCTGGCGATGAACTCCAGGCTGTCCTTGTTGGAGACCTTGCACTTGTATT 690 C anti-hHER2-HC-A327- 314 CTGGAGTTCATCGCCAGCAAGCTGGCCCTGCCAGCCCCCATCGAAAAG 691 DSLEFIASKLA-L328 CTTGCTGGCGATGAACTCCAGGCTGTCGGCCTTGTTGGAGACCTTGCAC 692 anti-hHER2-HC-L328- 315 CTGGAGTTCATCGCCAGCAAGCTGGCCCCAGCCCCCATCGAAAAGACC 693 DSLEFIASKLA-P329 CTTGCTGGCGATGAACTCCAGGCTGTCCAGGGCCTTGTTGGAGACCTTG 694 anti-hHER2-HC-P329- 316 CTGGAGTTCATCGCCAGCAAGCTGGCCGCCCCCATCGAAAAGACCATCAG 695 DSLEFIASKLA-A330 CTTGCTGGCGATGAACTCCAGGCTGTCTGGCAGGGCCTTGTTGGAGAC 696 anti-hHER2-HC-A330- 317 CTGGAGTTCATCGCCAGCAAGCTGGCCCCCATCGAAAAGACCATCAGCAAG 697 DSLEFIASKLA-P331 CTTGCTGGCGATGAACTCCAGGCTGTCGGCTGGCAGGGCCTTGTTGG 698 anti-hHER2-HC-A339- 318 CTGGAGTTCATCGCCAGCAAGCTGGCCAAGGGCCAGCCACGGGAGC 699 DSLEFIASKLA-K340 CTTGCTGGCGATGAACTCCAGGCTGTCGGCCTTGCTGATGGTCTTTTCGATG 700 anti-hHER2-HC-K340- 319 CTGGAGTTCATCGCCAGCAAGCTGGCCGGCCAGCCACGGGAGCCC 701 DSLEFIASKLA-G341 CTTGCTGGCGATGAACTCCAGGCTGTCCTTGGCCTTGCTGATGGTCTTTTC 702 anti-hHER2-HC-G341- 320 CTGGAGTTCATCGCCAGCAAGCTGGCCCAGCCACGGGAGCCCCAG 703 DSLEFIASKLA-Q342 CTTGCTGGCGATGAACTCCAGGCTGTCGCCCTTGGCCTTGCTGATGGTC 704 anti-hHER2-HC-Q342- 321 CTGGAGTTCATCGCCAGCAAGCTGGCCCCACGGGAGCCCCAGGTG 705 DSLEFIASKLA-P343 CTTGCTGGCGATGAACTCCAGGCTGTCCTGGCCCTTGGCCTTGCTGATG 706 anti-hHER2-HC-P343- 322 CTGGAGTTCATCGCCAGCAAGCTGGCCCGGGAGCCCCAGGTGTACAC 707 DSLEFIASKLA-R344 CTTGCTGGCGATGAACTCCAGGCTGTCTGGCTGGCCCTTGGCCTTGC 708 anti-hHER2-HC-R344- 323 CTGGAGTTCATCGCCAGCAAGCTGGCCGAGCCCCAGGTGTACACCCTG 709 DSLEFIASKLA-E345 CTTGCTGGCGATGAACTCCAGGCTGTCCCGTGGCTGGCCCTTGGC 710 anti-hHER2-HC-R355- 324 CTGGAGTTCATCGCCAGCAAGCTGGCCGAGGAGATGACCAAGAACCAGGTG 711 DSLEFIASKLA-E356 CTTGCTGGCGATGAACTCCAGGCTGTCCCGGGAGGGGGGCAGGG 712 anti-hHER2-HC-E356- 325 CTGGAGTTCATCGCCAGCAAGCTGGCCGAGATGACCAAGAACCAGGTGTCC 713 DSLEFIASKLA-E357 CTTGCTGGCGATGAACTCCAGGCTGTCCTCCCGGGAGGGGGGCAG 714 anti-hHER2-HC-E357- 326 CTGGAGTTCATCGCCAGCAAGCTGGCCATGACCAAGAACCAGGTGTCCCTG 715 DSLEFIASKLA-M358 CTTGCTGGCGATGAACTCCAGGCTGTCCTCCTCCCGGGAGGGGGG 716 anti-hHER2-HC-M358- 327 CTGGAGTTCATCGCCAGCAAGCTGGCCACCAAGAACCAGGTGTCCCTGAC 717 DSLEFIASKLA-T359 CTTGCTGGCGATGAACTCCAGGCTGTCCATCTCCTCCCGGGAGGGG 718 anti-hHER2-HC-T359- 122 CTGGAGTTCATCGCCAGCAAGCTGGCCAAGAACCAGGTGTCCCTGACCTG 719 DSLEFIASKLA-K360 CTTGCTGGCGATGAACTCCAGGCTGTCGGTCATCTCCTCCCGGGAGG 720 anti-hHER2-HC-K360- 328 CTGGAGTTCATCGCCAGCAAGCTGGCCAACCAGGTGTCCCTGACCTGTC 721 DSLEFIASKLA-N361 CTTGCTGGCGATGAACTCCAGGCTGTCCTTGGTCATCTCCTCCCGGGAG 722 anti-hHER2-HC-N384- 329 CTGGAGTTCATCGCCAGCAAGCTGGCCGGCCAGCCCGAGAACAACTAC 723 DSLEFIASKLA-G385 CTTGCTGGCGATGAACTCCAGGCTGTCGTTGCTCTCCCACTCCACGGC 724 anti-hHER2-HC-E388- 129 CTGGAGTTCATCGCCAGCAAGCTGGCCAACAACTACAAGACCACACCTCCAG 725 DSLEFIASKLA-N389 CTTGCTGGCGATGAACTCCAGGCTGTCCTCGGGCTGGCCGTTGCTC 726 anti-hHER2-HC-N389- 330 CTGGAGTTCATCGCCAGCAAGCTGGCCAACTACAAGACCACACCTCCAGTGC 727 DSLEFIASKLA-N390 CTTGCTGGCGATGAACTCCAGGCTGTCGTTCTCGGGCTGGCCGTTGC 728 anti-hHER2-HC-T394- 331 CTGGAGTTCATCGCCAGCAAGCTGGCCCCTCCAGTGCTGGACAGCGAC 729 DSLEFIASKLA-P395 CTTGCTGGCGATGAACTCCAGGCTGTCTGTGGTCTTGTAGTTGTTCTCGGGC 730 anti-hHER2-HC-P395- 332 CTGGAGTTCATCGCCAGCAAGCTGGCCCCAGTGCTGGACAGCGACGG 731 DSLEFIASKLA-P396 CTTGCTGGCGATGAACTCCAGGCTGTCAGGTGTGGTCTTGTAGTTGTTCTCG 732 anti-hHER2-HC-D399- 333 CTGGAGTTCATCGCCAGCAAGCTGGCCAGCGACGGCAGCTTCTTCCTG 733 DSLEFIASKLA-S400 CTTGCTGGCGATGAACTCCAGGCTGTCGTCCAGCACTGGAGGTGTGGTC 734 anti-hHER2-HC-S400- 334 CTGGAGTTCATCGCCAGCAAGCTGGCCGACGGCAGCTTCTTCCTGTACAG 735 DSLEFIASKLA-D401 CTTGCTGGCGATGAACTCCAGGCTGTCGCTGTCCAGCACTGGAGGTGTG 736 anti-hHER2-HC-D401- 335 CTGGAGTTCATCGCCAGCAAGCTGGCCGGCAGCTTCTTCCTGTACAGCAAG 737 DSLEFIASKLA-G402 CTTGCTGGCGATGAACTCCAGGCTGTCGTCGCTGTCCAGCACTGGAGG 738 anti-hHER2-HC-S415- 336 CTGGAGTTCATCGCCAGCAAGCTGGCCAGGTGGCAGCAGGGCAACGTG 739 DSLEFIASKLA-R416 CTTGCTGGCGATGAACTCCAGGCTGTCGGACTTGTCCACGGTCAGCTTG 740 anti-hHER2-HC-R416- 337 CTGGAGTTCATCGCCAGCAAGCTGGCCTGGCAGCAGGGCAACGTGTTC 741 DSLEFIASKLA-W417 CTTGCTGGCGATGAACTCCAGGCTGTCCCTGGACTTGTCCACGGTCAG 742 anti-hHER2-HC-W417- 338 CTGGAGTTCATCGCCAGCAAGCTGGCCCAGCAGGGCAACGTGTTCAGC 743 DSLEFIASKLA-Q418 CTTGCTGGCGATGAACTCCAGGCTGTCCCACCTGGACTTGTCCACGGTC 744 anti-hHER2-HC-Q418- 339 CTGGAGTTCATCGCCAGCAAGCTGGCCCAGGGCAACGTGTTCAGCTGC 745 DSLEFIASKLA-Q419 CTTGCTGGCGATGAACTCCAGGCTGTCCTGCCACCTGGACTTGTCCAC 746 anti-hHER2-HC-Q419- 340 CTGGAGTTCATCGCCAGCAAGCTGGCCGGCAACGTGTTCAGCTGCAGC 747 DSLEFIASKLA-G420 CTTGCTGGCGATGAACTCCAGGCTGTCCTGCTGCCACCTGGACTTGTC 748 anti-hHER2-HC-G420- 341 CTGGAGTTCATCGCCAGCAAGCTGGCCAACGTGTTCAGCTGCAGCGTGATG 749 DSLEFIASKLA-N421 CTTGCTGGCGATGAACTCCAGGCTGTCGCCCTGCTGCCACCTGGAC 750 anti-hHER2-HC-N421- 342 CTGGAGTTCATCGCCAGCAAGCTGGCCGTGTTCAGCTGCAGCGTGATGC 751 DSLEFIASKLA-V422 CTTGCTGGCGATGAACTCCAGGCTGTCGTTGCCCTGCTGCCACCTGG 752 anti-hHER2-HC-H433- 343 CTGGAGTTCATCGCCAGCAAGCTGGCCAACCACTACACCCAGAAGAGCCTG 753 DSLEFIASKLA-N434 CTTGCTGGCGATGAACTCCAGGCTGTCGTGCAGGGCCTCGTGCATCAC 754 anti-hHER2-HC-N434- 344 CTGGAGTTCATCGCCAGCAAGCTGGCCCACTACACCCAGAAGAGCCTGAG 755 DSLEFIASKLA-H435 CTTGCTGGCGATGAACTCCAGGCTGTCGTTGTGCAGGGCCTCGTGCATC 756 anti-hHER2-HC-S442- 345 CTGGAGTTCATCGCCAGCAAGCTGGCCCTGTCCCCCGGCAAGTAATCTAG 757 DSLEFIASKLA-L443 CTTGCTGGCGATGAACTCCAGGCTGTCGCTCAGGCTCTTCTGGGTGTAG 758 anti-hHER2-HC-L443- 346 CTGGAGTTCATCGCCAGCAAGCTGGCCTCCCCCGGCAAGTAATCTAGACAC 759 DSLEFIASKLA-S444 CTTGCTGGCGATGAACTCCAGGCTGTCCAGGCTCAGGCTCTTCTGGGTG 760 anti-hHER2-HC-S444- 347 CTGGAGTTCATCGCCAGCAAGCTGGCCCCCGGCAAGTAATCTAGACACCTC 761 DSLEFIASKLA-P445 CTTGCTGGCGATGAACTCCAGGCTGTCGGACAGGCTCAGGCTCTTCTG 762 anti-hHER2-HC-P445- 348 CTGGAGTTCATCGCCAGCAAGCTGGCCGGCAAGTAATCTAGACACCTCAGAC 763 DSLEFIASKLA-G446 CTTGCTGGCGATGAACTCCAGGCTGTCGGGGGACAGGCTCAGGCTC 764 anti-hHER2-HC-G446- 349 CTGGAGTTCATCGCCAGCAAGCTGGCCAAGTAATCTAGACACCTCAGACAAT 765 DSLEFIASKLA-K447 CAAC CTTGCTGGCGATGAACTCCAGGCTGTCGCCGGGGGACAGGCTCAG 766 anti-hHER2-LC-T109- 31 CTGAGCTGGCTGCTGAGACTGCTGAACGTGGCCGCTCCCAGCGTG 767 GDSLSWLLRLLN-V110 TCTCAGCAGCCAGCTCAGGCTGTCGCCCGTTCGTTTGATCTCCACCTTGGT 768 anti-hHER2-LC-V110- 32 CTGAGCTGGCTGCTGAGACTGCTGAACGCCGCTCCCAGCGTGTTCATC 769 GDSLSWLLRLLN-A111 TCTCAGCAGCCAGCTCAGGCTGTCGCCCACCGTTCGTTTGATCTCCACCTTG 770 anti-hHER2-LC-A111- 33 CTGAGCTGGCTGCTGAGACTGCTGAACGCTCCCAGCGTGTTCATCTTCC 771 GDSLSWLLRLLN-A112 TCTCAGCAGCCAGCTCAGGCTGTCGCCGGCCACCGTTCGTTTGATCTCC 772 anti-hHER2-LC-P119- 34 CTGAGCTGGCTGCTGAGACTGCTGAACCCCAGCGACGAGCAGCTGAAG 773 GDSLSWLLRLLN-P120 TCTCAGCAGCCAGCTCAGGCTGTCGCCGGGGAAGATGAACACGCTGGG 774 anti-hHER2-LC-P120- 35 CTGAGCTGGCTGCTGAGACTGCTGAACAGCGACGAGCAGCTGAAGAGC 775 GDSLSWLLRLLN-S121 TCTCAGCAGCCAGCTCAGGCTGTCGCCGGGGGGGAAGATGAACACGCTG 776 anti-hHER2-LC-S121- 36 CTGAGCTGGCTGCTGAGACTGCTGAACGACGAGCAGCTGAAGAGCGGC 777 GDSLSWLLRLLN-D122 TCTCAGCAGCCAGCTCAGGCTGTCGCCGCTGGGGGGGAAGATGAACAC 778 anti-hHER2-LC-D122- 37 CTGAGCTGGCTGCTGAGACTGCTGAACGAGCAGCTGAAGAGCGGCACC 779 GDSLSWLLRLLN-E123 TCTCAGCAGCCAGCTCAGGCTGTCGCCGTCGCTGGGGGGGAAGATGAAC 780 anti-hHER2-LC-Y140- 38 CTGAGCTGGCTGCTGAGACTGCTGAACCCCCGGGAGGCCAAGGTG 781 GDSLSWLLRLLN-P141 TCTCAGCAGCCAGCTCAGGCTGTCGCCGTAGAAGTTGTTCAGCAGGCACAC 782 anti-hHER2-LC-P141- 39 CTGAGCTGGCTGCTGAGACTGCTGAACCGGGAGGCCAAGGTGCAGTG 783 GDSLSWLLRLLN-R142 TCTCAGCAGCCAGCTCAGGCTGTCGCCGGGGTAGAAGTTGTTCAGCAGGC 784 anti-hHER2-LC-R142- 40 CTGAGCTGGCTGCTGAGACTGCTGAACGAGGCCAAGGTGCAGTGGAAG 785 GDSLSWLLRLLN-E143 TCTCAGCAGCCAGCTCAGGCTGTCGCCCCGGGGGTAGAAGTTGTTCAGC 786 anti-hHER2-LC-E143- 41 CTGAGCTGGCTGCTGAGACTGCTGAACGCCAAGGTGCAGTGGAAGGTG 787 GDSLSWLLRLLN-A144 TCTCAGCAGCCAGCTCAGGCTGTCGCCCTCCCGGGGGTAGAAGTTGTTC 788 anti-hHER2-LC-D151- 42 CTGAGCTGGCTGCTGAGACTGCTGAACAACGCCCTGCAGAGCGGCAAC 789 GDSLSWLLRLLN-N152 TCTCAGCAGCCAGCTCAGGCTGTCGCCGTCCACCTTCCACTGCACCTTG 790 anti-hHER2-LC-N152- 43 CTGAGCTGGCTGCTGAGACTGCTGAACGCCCTGCAGAGCGGCAACAG 791 GDSLSWLLRLLN-A153 TCTCAGCAGCCAGCTCAGGCTGTCGCCGTTGTCCACCTTCCACTGCACC 792 anti-hHER2-LC-A153- 44 CTGAGCTGGCTGCTGAGACTGCTGAACCTGCAGAGCGGCAACAGCCAG 793 GDSLSWLLRLLN-L154 TCTCAGCAGCCAGCTCAGGCTGTCGCCGGCGTTGTCCACCTTCCACTG 794 anti-hHER2-LC-L154- 45 CTGAGCTGGCTGCTGAGACTGCTGAACCAGAGCGGCAACAGCCAGGAG 795 GDSLSWLLRLLN-Q155 TCTCAGCAGCCAGCTCAGGCTGTCGCCCAGGGCGTTGTCCACCTTCCAC 796 anti-hHER2-LC-Q155- 46 CTGAGCTGGCTGCTGAGACTGCTGAACAGCGGCAACAGCCAGGAGAGC 797 GDSLSWLLRLLN-S156 TCTCAGCAGCCAGCTCAGGCTGTCGCCCTGCAGGGCGTTGTCCACCTTC 798 anti-hHER2-LC-E161- 47 CTGAGCTGGCTGCTGAGACTGCTGAACAGCGTCACCGAGCAGGACAGC 799 GDSLSWLLRLLN-S162 TCTCAGCAGCCAGCTCAGGCTGTCGCCCTCCTGGCTGTTGCCGCTCTG 800 anti-hHER2-LC-S162- 48 CTGAGCTGGCTGCTGAGACTGCTGAACGTCACCGAGCAGGACAGCAAG 801 GDSLSWLLRLLN-V163 TCTCAGCAGCCAGCTCAGGCTGTCGCCGCTCTCCTGGCTGTTGCCGC 802 anti-hHER2-LC-V163- 49 CTGAGCTGGCTGCTGAGACTGCTGAACACCGAGCAGGACAGCAAGGAC 803 GDSLSWLLRLLN-T164 TCTCAGCAGCCAGCTCAGGCTGTCGCCGACGCTCTCCTGGCTGTTGCC 804 anti-hHER2-LC-T164- 50 CTGAGCTGGCTGCTGAGACTGCTGAACGAGCAGGACAGCAAGGACTCC 805 GDSLSWLLRLLN-E165 TCTCAGCAGCCAGCTCAGGCTGTCGCCGGTGACGCTCTCCTGGCTGTTG 806 anti-hHER2-LC-E165- 51 CTGAGCTGGCTGCTGAGACTGCTGAACCAGGACAGCAAGGACTCCACC 807 GDSLSWLLRLLN-Q166 TCTCAGCAGCCAGCTCAGGCTGTCGCCCTCGGTGACGCTCTCCTGGC 808 anti-hHER2-LC-Q166- 52 CTGAGCTGGCTGCTGAGACTGCTGAACGACAGCAAGGACTCCACCTACAG 809 GDSLSWLLRLLN-D167 TCTCAGCAGCCAGCTCAGGCTGTCGCCCTGCTCGGTGACGCTCTCCTG 810 anti-hHER2-LC-D167- 53 CTGAGCTGGCTGCTGAGACTGCTGAACAGCAAGGACTCCACCTACAGCC 811 GDSLSWLLRLLN-S168 TCTCAGCAGCCAGCTCAGGCTGTCGCCGTCCTGCTCGGTGACGCTCTC 812 anti-hHER2-LC-T197- 54 CTGAGCTGGCTGCTGAGACTGCTGAACCACCAGGGCCTGTCCAGCC 813 GDSLSWLLRLLN-H198 TCTCAGCAGCCAGCTCAGGCTGTCGCCGGTCACCTCGCAGGCGTACAC 814 anti-hHER2-LC-H198- 55 CTGAGCTGGCTGCTGAGACTGCTGAACCAGGGCCTGTCCAGCCCC 815 GDSLSWLLRLLN-Q199 TCTCAGCAGCCAGCTCAGGCTGTCGCCGTGGGTCACCTCGCAGGCG 816 anti-hHER2-LC-Q199- 56 CTGAGCTGGCTGCTGAGACTGCTGAACGGCCTGTCCAGCCCCGTG 817 GDSLSWLLRLLN-G200 TCTCAGCAGCCAGCTCAGGCTGTCGCCCTGGTGGGTCACCTCGCAGG 818 anti-hHER2-LC-G200- 57 CTGAGCTGGCTGCTGAGACTGCTGAACCTGTCCAGCCCCGTGACCAAG 819 GDSLSWLLRLLN-L201 TCTCAGCAGCCAGCTCAGGCTGTCGCCGCCCTGGTGGGTCACCTCG 820 anti-hHER2-LC-L201- 58 CTGAGCTGGCTGCTGAGACTGCTGAACTCCAGCCCCGTGACCAAGAGC 821 GDSLSWLLRLLN-S202 TCTCAGCAGCCAGCTCAGGCTGTCGCCCAGGCCCTGGTGGGTCACC 822 anti-hHER2-LC-S202- 59 CTGAGCTGGCTGCTGAGACTGCTGAACAGCCCCGTGACCAAGAGCTTC 823 GDSLSWLLRLLN-S203 TCTCAGCAGCCAGCTCAGGCTGTCGCCGGACAGGCCCTGGTGGGTC 824 anti-hHER2-LC-S203- 60 CTGAGCTGGCTGCTGAGACTGCTGAACCCCGTGACCAAGAGCTTCAACAG 825 GDSLSWLLRLLN-P204 TCTCAGCAGCCAGCTCAGGCTGTCGCCGCTGGACAGGCCCTGGTGG 826 anti-hHER2-LC-K207- 61 CTGAGCTGGCTGCTGAGACTGCTGAACAGCTTCAACAGGGGCGAGTGC 827 GDSLSWLLRLLN-S208 TCTCAGCAGCCAGCTCAGGCTGTCGCCCTTGGTCACGGGGCTGGACAG 828 anti-hHER2-LC-T109- 62 CTGGAGTTCATCGCCAGCAAGCTGGCCGTGGCCGCTCCCAGCGTG 829 DSLEFIASKLA-V110 CTTGCTGGCGATGAACTCCAGGCTGTCCGTTCGTTTGATCTCCACCTTGGT 830 anti-hHER2-LC-V110- 63 CTGGAGTTCATCGCCAGCAAGCTGGCCGCCGCTCCCAGCGTGTTCATC 831 DSLEFIASKLA-A111 CTTGCTGGCGATGAACTCCAGGCTGTCCACCGTTCGTTTGATCTCCACCTTG 832 anti-hHER2-LC-A111- 64 CTGGAGTTCATCGCCAGCAAGCTGGCCGCTCCCAGCGTGTTCATCTTCC 833 DSLEFIASKLA-A112 CTTGCTGGCGATGAACTCCAGGCTGTCGGCCACCGTTCGTTTGATCTCC 834 anti-hHER2-LC-P119- 65 CTGGAGTTCATCGCCAGCAAGCTGGCCCCCAGCGACGAGCAGCTGAAG 835 DSLEFIASKLA-P120 CTTGCTGGCGATGAACTCCAGGCTGTCGGGGAAGATGAACACGCTGGG 836 anti-hHER2-LC-P120- 66 CTGGAGTTCATCGCCAGCAAGCTGGCCAGCGACGAGCAGCTGAAGAGC 837 DSLEFIASKLA-S121 CTTGCTGGCGATGAACTCCAGGCTGTCGGGGGGGAAGATGAACACGCTG 838 anti-hHER2-LC-S121- 67 CTGGAGTTCATCGCCAGCAAGCTGGCCGACGAGCAGCTGAAGAGCGGC 839 DSLEFIASKLA-D122 CTTGCTGGCGATGAACTCCAGGCTGTCGCTGGGGGGGAAGATGAACAC 840 anti-hHER2-LC-D122- 68 CTGGAGTTCATCGCCAGCAAGCTGGCCGAGCAGCTGAAGAGCGGCACC 841 DSLEFIASKLA-E123 CTTGCTGGCGATGAACTCCAGGCTGTCGTCGCTGGGGGGGAAGATGAAC 842 anti-hHER2-LC-Y140- 69 CTGGAGTTCATCGCCAGCAAGCTGGCCCCCCGGGAGGCCAAGGTG 843 DSLEFIASKLA-P141 CTTGCTGGCGATGAACTCCAGGCTGTCGTAGAAGTTGTTCAGCAGGCACAC 844 anti-hHER2-LC-P141- 70 CTGGAGTTCATCGCCAGCAAGCTGGCCCGGGAGGCCAAGGTGCAGTG 845 DSLEFIASKLA-R142 CTTGCTGGCGATGAACTCCAGGCTGTCGGGGTAGAAGTTGTTCAGCAGGC 846 anti-hHER2-LC-R142- 71 CTGGAGTTCATCGCCAGCAAGCTGGCCGAGGCCAAGGTGCAGTGGAAG 847 DSLEFIASKLA-E143 CTTGCTGGCGATGAACTCCAGGCTGTCCCGGGGGTAGAAGTTGTTCAGC 848 anti-hHER2-LC-E143- 72 CTGGAGTTCATCGCCAGCAAGCTGGCCGCCAAGGTGCAGTGGAAGGTG 849 DSLEFIASKLA-A144 CTTGCTGGCGATGAACTCCAGGCTGTCCTCCCGGGGGTAGAAGTTGTTC 850 anti-hHER2-LC-D151- 73 CTGGAGTTCATCGCCAGCAAGCTGGCCAACGCCCTGCAGAGCGGCAAC 851 DSLEFIASKLA-N152 CTTGCTGGCGATGAACTCCAGGCTGTCGTCCACCTTCCACTGCACCTTG 852 anti-hHER2-LC-N152- 74 CTGGAGTTCATCGCCAGCAAGCTGGCCGCCCTGCAGAGCGGCAACAG 853 DSLEFIASKLA-A153 CTTGCTGGCGATGAACTCCAGGCTGTCGTTGTCCACCTTCCACTGCACC 854 anti-hHER2-LC-A153- 75 CTGGAGTTCATCGCCAGCAAGCTGGCCCTGCAGAGCGGCAACAGCCAG 855 DSLEFIASKLA-L154 CTTGCTGGCGATGAACTCCAGGCTGTCGGCGTTGTCCACCTTCCACTG 856 anti-hHER2-LC-L154- 76 CTGGAGTTCATCGCCAGCAAGCTGGCCCAGAGCGGCAACAGCCAGGAG 857 DSLEFIASKLA-Q155 CTTGCTGGCGATGAACTCCAGGCTGTCCAGGGCGTTGTCCACCTTCCAC 858 anti-hHER2-LC-Q155- 77 CTGGAGTTCATCGCCAGCAAGCTGGCCAGCGGCAACAGCCAGGAGAGC 859 DSLEFIASKLA-S156 CTTGCTGGCGATGAACTCCAGGCTGTCCTGCAGGGCGTTGTCCACCTTC 860 anti-hHER2-LC-E161- 78 CTGGAGTTCATCGCCAGCAAGCTGGCCAGCGTCACCGAGCAGGACAGC 861 DSLEFIASKLA-S162 CTTGCTGGCGATGAACTCCAGGCTGTCCTCCTGGCTGTTGCCGCTCTG 862 anti-hHER2-LC-S162- 79 CTGGAGTTCATCGCCAGCAAGCTGGCCGTCACCGAGCAGGACAGCAAG 863 DSLEFIASKLA-V163 CTTGCTGGCGATGAACTCCAGGCTGTCGCTCTCCTGGCTGTTGCCGC 864 anti-hHER2-LC-V163- 80 CTGGAGTTCATCGCCAGCAAGCTGGCCACCGAGCAGGACAGCAAGGAC 865 DSLEFIASKLA-T164 CTTGCTGGCGATGAACTCCAGGCTGTCGACGCTCTCCTGGCTGTTGCC 866 anti-hHER2-LC-T164- 81 CTGGAGTTCATCGCCAGCAAGCTGGCCGAGCAGGACAGCAAGGACTCC 867 DSLEFIASKLA-E165 CTTGCTGGCGATGAACTCCAGGCTGTCGGTGACGCTCTCCTGGCTGTTG 868 anti-hHER2-LC-E165- 82 CTGGAGTTCATCGCCAGCAAGCTGGCCCAGGACAGCAAGGACTCCACC 869 DSLEFIASKLA-Q166 CTTGCTGGCGATGAACTCCAGGCTGTCCTCGGTGACGCTCTCCTGGC 870 anti-hHER2-LC-Q166- 83 CTGGAGTTCATCGCCAGCAAGCTGGCCGACAGCAAGGACTCCACCTACAG 871 DSLEFIASKLA-D167 CTTGCTGGCGATGAACTCCAGGCTGTCCTGCTCGGTGACGCTCTCCTG 872 anti-hHER2-LC-D167- 84 CTGGAGTTCATCGCCAGCAAGCTGGCCAGCAAGGACTCCACCTACAGCC 873 DSLEFIASKLA-S168 CTTGCTGGCGATGAACTCCAGGCTGTCGTCCTGCTCGGTGACGCTCTC 874 anti-hHER2-LC-T197- 85 CTGGAGTTCATCGCCAGCAAGCTGGCCCACCAGGGCCTGTCCAGCC 875 DSLEFIASKLA-H198 CTTGCTGGCGATGAACTCCAGGCTGTCGGTCACCTCGCAGGCGTACAC 876 anti-hHER2-LC-H198- 86 CTGGAGTTCATCGCCAGCAAGCTGGCCCAGGGCCTGTCCAGCCCC 877 DSLEFIASKLA-Q199 CTTGCTGGCGATGAACTCCAGGCTGTCGTGGGTCACCTCGCAGGCG 878 anti-hHER2-LC-Q199- 87 CTGGAGTTCATCGCCAGCAAGCTGGCCGGCCTGTCCAGCCCCGTG 879 DSLEFIASKLA-G200 CTTGCTGGCGATGAACTCCAGGCTGTCCTGGTGGGTCACCTCGCAGG 880 anti-hHER2-LC-G200- 88 CTGGAGTTCATCGCCAGCAAGCTGGCCCTGTCCAGCCCCGTGACCAAG 881 DSLEFIASKLA-L201 CTTGCTGGCGATGAACTCCAGGCTGTCGCCCTGGTGGGTCACCTCG 882 anti-hHER2-LC-L201- 89 CTGGAGTTCATCGCCAGCAAGCTGGCCTCCAGCCCCGTGACCAAGAGC 883 DSLEFIASKLA-S202 CTTGCTGGCGATGAACTCCAGGCTGTCCAGGCCCTGGTGGGTCACC 884 anti-hHER2-LC-S202- 90 CTGGAGTTCATCGCCAGCAAGCTGGCCAGCCCCGTGACCAAGAGCTTC 885 DSLEFIASKLA-S203 CTTGCTGGCGATGAACTCCAGGCTGTCGGACAGGCCCTGGTGGGTC 886 anti-hHER2-LC-S203- 91 CTGGAGTTCATCGCCAGCAAGCTGGCCCCCGTGACCAAGAGCTTCAACAG 887 DSLEFIASKLA-P204 CTTGCTGGCGATGAACTCCAGGCTGTCGCTGGACAGGCCCTGGTGG 888 anti-hHER2-LC-K207- 92 CTGGAGTTCATCGCCAGCAAGCTGGCCAGCTTCAACAGGGGCGAGTGC 889 DSLEFIASKLA-S208 CTTGCTGGCGATGAACTCCAGGCTGTCCTTGGTCACGGGGCTGGACAG 890 B. subtilis Sfp pET22b GAAGGAGATATACATATGAAAATTTATGGGATTTACATGGATCGC 891 GTGGTGGTGGTGGTGGTGCAGCAATTCTTCATAGGAGACCATCG 892 pET22b CACCACCACCACCACCACTGAG 893 CATATGTATATCTCCTTCTTAAAGTTAAACAAAATTATTTC 894 TEV into B. subtilis Sfp GAGAACCTGTACTTCCAAGGCCACCACCACCACCACCACTGAG 895 pET22b GCCTTGGAAGTACAGGTTCTCCAGCAATTCTTCATAGGAGACCATCG 896 B. subtilis Sfp K28E GTCTTTCATTTCACCAGAGGAGCGCGAAAAATGCCGTCGCT 897 AGCGACGGCATTTTTCGCGCTCCTCTGGTGAAATGAAAGAC 898 B. subtilis Sfp T44E AAAGAAGATGCTCACCGCGAGCTGCTGGGAGATGTGCTG 899 CAGCACATCTCCCAGCAGCTCGCGGTGAGCATCTTCTTT 900 B. subtilis Sfp C77Y GCAGGAATATGGCAAACCGTATATTCCAGATCTTCCAGATGC 901 GCATCTGGAAGATCTGGAATATACGGTTTGCCATATTCCTGC 902 E. coli AcpS pET22b AATAATTTTGTTTAACTTTAAGAAGGAGATATACATATGGCAATATTAGGTTT 903 AGGCACG CAGTGGTGGTGGTGGTGGTGACTTTCAATAATTACCGTGGCACAAGC 904 pET22b CACCACCACCACCACCACTG 905 ATGTATATCTCCTTCTTAAAGTTAAACAAAATTATT 906 anti-hHER2-HC-V64L- 99 CTGGAGTTCATCGCCAGCAAGCTGGCCAAGGGCCGTTTCACTATAAGCGC 907 EFIASKLA-K65 CTTGCTGGCGATGAACTCCAGGCTATCGGCATATCTAGTATAACCATTCGTAG 908 G anti-hHER2-HC-S63- 97 GACAGCCTGGAGTTCATCGCCAGCAAGGTCAAGGGCCGTTTCACTATAAGC 909 LEFIASK-V64 CTTGCTGGCGATGAACTCCAGGCTGTCGGCATATCTAGTATAACCATTCGTAG 910 G anti-hHER2-HC-V64L- 98 GACAGCCTGGAGTTCATCGCCAGCAAGGGCCGTTTCACTATAAGCGCAGAC 911 EFIAS-K65 CTTGCTGGCGATGAACTCCAGGCTGTCGGCATATCTAGTATAACCATTCGTAG 912 G anti-hHER2-LC-S76D-S77- 30 CTGGAGTTCATCGCCAGCAAGCTGGCCCAGCCGGAAGACTTCGCAACTTATT 913 L78-EFIASKLA-Q79 AC CTTGCTGGCGATGAACTCCAGGCTGTCGATGGTCAGAGTGAAATCCGTCC 914 anti-hHER2-HC-S132G- 101 CTGAGCTGGCTGCTGAGACTGCTGAACTGCCTGGTGAAGGACTACTTCC 915 K133D-S134-T135L-S136- TCTCAGCAGCCAGCTCAGGCTGTCGCCGCTGGGGGCCAGGGGG 916 G137W-G138L-T139L- A140R-A141L-L142- G143N anti-hHER2-HC-K133G- 103 CTGAGCTGGCTGCTGAGACTGCTGAACACAGCCGCCCTGGGCTGC 917 S134D-T135S-S136L- TCTCAGCAGCCAGCTCAGGCTGTCGCCGCTGCTGGGGGCCAGGG 918 G137S-G138W-LLRLLN- T139 anti-hHER2-HC-S134G- 105 GGCGACAGCCTGAGCTGGCTGGCCCTGGGCTGCCTGGTG 919 T135D-S136-G137L- CAGCCAGCTCAGGCTGTCGCCCTTGCTGCTGGGGGCCAGG 920 G138S-T139W-A140L anti-hHER2-HC-S134G- 106 CTGAGACTGCTGAACGCCCTGGGCTGCCTGGTG 921 T135D-S136-G137L- GTTCAGCAGTCTCAGCAGCCAGCTCAGGCTGTCGC 922 G138S-T139W-A140L- LRLLN-A141 anti-hHER2-HC-T135G- 108 CTGAGCTGGCTGCTGAGACTGCTGAACGCCGCCCTGGGCTGCCTG 923 S136D-G137S-G138L- TCTCAGCAGCCAGCTCAGGCTGTCGCCGCTCTTGCTGCTGGGGGCC 924 T139S-WLLRLLN-A140 anti-hHER2-HC-T359G- 123 GGCGACAGCCTGAGCTGGCTGACCTGTCTGGTGAAGGGCTTC 925 K360D-N361S-Q362L- CAGCCAGCTCAGGCTGTCGCCCATCTCCTCCCGGGAGGGG 926 V363S-S364W anti-hHER2-HC-S132G- 100 GGCGACAGCCTGAGCTGGCTGACAGCCGCCCTGGGCTGC 927 K133D-S134-T135L-S136- CAGCCAGCTCAGGCTGTCGCCGCTGGGGGCCAGGGGG 928 G137W-G138L anti-hHER2-HC-S134G- 107 CTGAGCTGGCTGCTGAGACTGCTGAACGTGAAGGACTACTTCCCCGAGC 929 T135D-S136-G137L- TCTCAGCAGCCAGCTCAGGCTGTCGCCCTTGCTGCTGGGGGCCAGG 930 G1385-T139W-A140L- A141L-L142R-G143L- C144L-L145N anti-hHER2-HC-L193G- 117 GGCGACAGCCTGAGCTGGCTGTGCAACGTGAACCACAAGCCCAG 931 G194D-T195S-Q196L- CAGCCAGCTCAGGCTGTCGCCGCTGCTGCTGGGCACTGTC 932 T197S-Y198W-I199L anti-hHER2-HC-L193G- 118 CTGAGACTGCTGAACTGCAACGTGAACCACAAGCCCAG 933 G194D-T195S-Q196L- GTTCAGCAGTCTCAGCAGCCAGCTCAGGCTGTCGC 934 T197S-Y198W-I199L- LRLLN-C200 anti-hHER2-HC-L193G- 119 CTGAGCTGGCTGCTGAGACTGCTGAACAAGCCCAGCAACACCAAGGTGG 935 G194D-T195S-Q196L- TCTCAGCAGCCAGCTCAGGCTGTCGCCGCTGCTGCTGGGCACTGTC 936 T197S-Y198W-I199L- C200L-N201R-V202L- N203L-H204N anti-hHER2-HC-E357G- 120 GGCGACAGCCTGAGCTGGCTGTCCCTGACCTGTCTGGTGAAGG 937 M358D-T359S-K360L- CAGCCAGCTCAGGCTGTCGCCCTCCCGGGAGGGGGGC 938 N361S-Q362W-V363L anti-hHER2-HC-E388- 126 GGCGACAGCCTGAGCTGGCTGAACAACTACAAGACCACACCTCCAG 939 GDSLSWL-N389 CAGCCAGCTCAGGCTGTCGCCCTCGGGCTGGCCGTTGCTC 940 anti-hHER2-HC-P189G- 109 GCGACAGCCTGAGCTGGCTGCAGACCTACATCTGCAACGTGAAC 941 S190D-S191-S192L-L193S- CAGCCAGCTCAGGCTGTCGCCCACTGTCACCACGCTGGACAG 942 G194W-T195L anti-hHER2-HC-P189G- 111 CTGAGCTGGCTGCTGAGACTGCTGAACAACGTGAACCACAAGCCCAGCAAC 943 S190D-S191-S192L-L193S- TCTCAGCAGCCAGCTCAGGCTGTCGCCCACTGTCACCACGCTGGACAG 944 G194W-T195L-Q196L- T197R-Y198L-I199L- C200N anti-hHER2-HC-L398G- 134 CTGAGCTGGCTGCTGAGACTGCTGAACTTCCTGTACAGCAAGCTGACCGTG 945 D399-S400-D401L-G402S- TCTCAGCAGCCAGCTCAGGCTGTCGCCCACTGGAGGTGTGGTCTTGTAG 946 S403W-F404L-LRLLN-F405 anti-hHER2-HC-P189G- 110 CTGAGACTGCTGAACCAGACCTACATCTGCAACGTGAAC 947 S190D-S191-S192L-L193S- GTTCAGCAGTCTCAGCAGCCAGCTCAGGCTGTCGC 948 G194W-T195L-LRLLN- Q196 anti-hHER2-HC-P189D- 112 CTGGAGTTCATCGCCAGCAAGCTGGCCTGCAACGTGAACCACAAGCCCAG 949 S190-S191L-S192E-L193F- CTTGCTGGCGATGAACTCCAGGCTGTCCACTGTCACCACGCTGGACAG 950 G1941-T195A-Q196S- T197K-Y198L-I199A anti-hHER2-HC-S190G- 113 CTGAGCTGGCTGCTGAGACTGCTGAACTACATCTGCAACGTGAACCACAAGC 951 S191D-S192-L193-G194S- TCTCAGCAGCCAGCTCAGGCTGTCGCCGGGCACTGTCACCACGCTGG 952 T195W-Q196L-T197L- RLLN-Y198 anti-hHER2-HC-S190D- 115 CTGGAGTTCATCGCCAGCAAGCTGGCCAACGTGAACCACAAGCCCAGCAAC 953 S191-S192L-L193E- CTTGCTGGCGATGAACTCCAGGCTGTCGGGCACTGTCACCACGCTGG 954 G194F-T1951-Q196A- T197S-Y198K-I199L- C200A anti-hHER2-HC-D413- 137 AGCCTGAGCTGGCTGCTGAGACTGCTGTTCAGCTGCAGCGTGATGCACG 955 K414S-S415L-R416S- CAGCAGTCTCAGCAGCCAGCTCAGGCTGTCCACGGTCAGCTTGCTGTAC 956 W417-Q418L-Q419L- G420R-N421L-V422L anti-hHER2-HC-D413- 138 AGCCTGGAGTTCATCGCCAGCAAGCTGTTCAGCTGCAGCGTGATGCACG 957 K414S-S415L-R416E- CAGCTTGCTGGCGATGAACTCCAGGCTGTCCACGGTCAGCTTGCTGTAC 958 W417F-Q4181-Q419A- G420S-N421K-V422L anti-hHER2-HC-E382D- 125 GACAGCCTGGAGTTCATCGCCAACAACTACAAGACCACACCTCCAG 959 S383-N384L-G385E- GGCGATGAACTCCAGGCTGTCCCACTCCACGGCGATGTCGC 960 Q386F-P3871-E388A anti-hHER2-HC-E382D- 124 GACAGCCTGAGCTGGCTGCTGAACAACTACAAGACCACACCTCCAG 961 S383-N384L-G385S- CAGCAGCCAGCTCAGGCTGTCCCACTCCACGGCGATGTCGC 962 Q386W-P387L-E388L anti-hHER2-HC-V2- 94 CTGAGCTGGCTGCTGAGACTGCTGAACCAGCTGGTGGAGTCTGGCGG 963 GDSLSWLLRLLN-Q3 TCTCAGCAGCCAGCTCAGGCTGTCGCCAACCTCAGCAGTGGCACCGGG 964 anti-hHER2-LC-I2- 26 CTGAGCTGGCTGCTGAGACTGCTGAACCAGATGACCCAGTCCCCGAGC 965 GDSLSWLLRLLN-Q3 TCTCAGCAGCCAGCTCAGGCTGTCGCCGATATCAGCAGTGGCACCGGG 1095 anti-hHER2-LC-C214- 28 CTGAGCTGGCTGCTGAGACTGCTGAACTAATCTAGACACCTCAGACAATCAA 966 GDSLSWLLRLLN CC TCTCAGCAGCCAGCTCAGGCTGTCGCCGCACTCGCCCCTGTTGAAGC 967 anti-hHER2-LC-I2- 27 CTGGAGTTCATCGCCAGCAAGCTGGCCCAGATGACCCAGTCCCCGAG 968 DSLEFIASKLA-Q3 CTTGCTGGCGATGAACTCCAGGCTGTCGATATCAGCAGTGGCACCGGG 969 anti-hHER2-LC-C214- 29 CTGGAGTTCATCGCCAGCAAGCTGGCCTAATCTAGACACCTCAGACAATCAAC 970 DSLEFIASKLA C CTTGCTGGCGATGAACTCCAGGCTGTCGCACTCGCCCCTGTTGAAGC 971 anti-hHER2-HC-V2- 95 CTGGAGTTCATCGCCAGCAAGCTGGCCCAGCTGGTGGAGTCTGGCGG 972 DSLEFIASKLA-Q3 CTTGCTGGCGATGAACTCCAGGCTGTCAACCTCAGCAGTGGCACCGG 973 anti-hHER2-HC-K447- 140 CTGAGCTGGCTGCTGAGACTGCTGAACTAATCTAGACACCTCAGACAATCAA 974 GDSLSWLLRLLN CC TCTCAGCAGCCAGCTCAGGCTGTCGCCCTTGCCGGGGGACAGGCTC 975 anti-hHER2-HC-K447- 141 CTGGAGTTCATCGCCAGCAAGCTGGCCTAATCTAGACACCTCAGACAATCAAC 976 DSLEFIASKLA C CTTGCTGGCGATGAACTCCAGGCTGTCCTTGCCGGGGGACAGGCTC 977 anti-hHER2-HC-S132D- 102 CTGGAGTTCATCGCCAGCAAGCTGGCCGGCTGCCTGGTGAAGGACTAC 978 K133S-S134L-T135E- CTTGCTGGCGATGAACTCCAGGCTGTCGCTGGGGGCCAGGGGG 979 S136F-G137I-G138A- T139S-A140K-A141L- L142A anti-hHER2-HC-S190D- 114 AGCCTGGAGTTCATCGCCAGCAAGCTGTGCAACGTGAACCACAAGCCCAG 980 S191-S192L-L193E- CTTGCTGGCGATGAACTCCAGGCTGTCGGGCACTGTCACCACGCTGG 981 G194F-T195I-Q196A- T197S-Y198K-I199L anti-hHER2-HC-S191D- 116 GACAGCCTGGAGTTCATCGCCAGCAAGTGCAACGTGAACCACAAGCCCAG 982 S192-L193-G194E-T195F- CTTGCTGGCGATGAACTCCAGGCTGTCGCTGGGCACTGTCACCACGC 983 Q1961-T197A-Y198S- I199K anti-hHER2-HC-L398D- 135 CTGGAGTTCATCGCCAGCAAGCTGGCCAAGCTGACCGTGGACAAGTCCAG 984 D399S-S400L-D401E- CTTGCTGGCGATGAACTCCAGGCTGTCCACTGGAGGTGTGGTCTTGTAG 985 G402F-S4031-F404A- F405S-L406K-Y407L- S408A anti-hHER2-HC-E388- 131 GACAGCCTGGAGTTCATCGCCAGCAAGAACAACTACAAGACCACACCTCCAG 986 DSLEFIASK-N389 CTTGCTGGCGATGAACTCCAGGCTGTCCTCGGGCTGGCCGTTGCTC 987 anti-hHER2-HC-E388- 130 AGCCTGGAGTTCATCGCCAGCAAGCTGAACAACTACAAGACCACACCTCCAG 988 DSLEFIASKL-N389 CTTGCTGGCGATGAACTCCAGGCTGTCCTCGGGCTGGCCGTTGCTC 989 pET22b/TEV GAGAACCTGTACTTCCAAGGCCAC 990 ATGTATATCTCCTTCTTAAAGTTAAACAAAATTATTTC 991 CACCACCACCACCACCACTGAG 992 PPTase_C. TTGGAAGTACAGGTTCTCACGTTCGCAGAGGAATTTACACACTTC 993 thermocellum_pET22b/TEV TAAGAAGGAGATATACATATGGGTTTTCTGCCGAAAGAGAAAAAG 994 ACP_C. thermocellum_ GTGGTGGTGGTGGTGGTGGCTATTATTTTTAATATATTCAACGACGTCGC 995 pET22b TAAGAAGGAGATATACATATGTTCGAGAAAGTCCGTAAAATCATTGC 996 ACP_E.coli_pET22b GTGGTGGTGGTGGTGGTGCGCCTGGTGGCCGTTGATGTAATC 997 TAAGAAGGAGATATACATATGAGCACTATCGAAGAACGCGTTAAG 998 anti-hHER2-HC-E388- 132 CTGGACATGCTGGAGTGGAGCCTGATGAACAACTACAAGACCACACCTCCAG 999 GDSLDMLEWSLM-N389 CCACTCCAGCATGTCCAGGCTGTCGCCCTCGGGCTGGCCGTTGCTC 1000 anti-hHER2-HC-V2- 96 CTGGACATGCTGGAGTGGAGCCTGATGCAGCTGGTGGAGTCTGGCGG 1001 GDSLDMLEWSLM-Q3 CCACTCCAGCATGTCCAGGCTGTCGCCAACCTCAGCAGTGGCACCGG 1002 mAb2-HC-T359- 148 CTGAGCTGGCTGCTGAGACTGCTGAACAAGAACCAGGTCAGCCTGACCTG 1003 GDSLSWLLRLLN-K360 TCTCAGCAGCCAGCTCAGGCTGTCGCCGGTCATCTCCTCCCGGGATG 1004 mAb2-HC-E388- 149 CTGAGCTGGCTGCTGAGACTGCTGAACAACAACTACAAGACCACGCCTCCC 1005 GDSLSWLLRLLN-N389 TCTCAGCAGCCAGCTCAGGCTGTCGCCCTCCGGCTGCCCATTGCTCTC 1006 anti-hHER2-HC-Y296- 143 CTGAGCTGGCTGCTGAGACTGCTGAACAACAGCACCTACAGGGTGGTGTC 1007 GDSLSWLLRLLN-N297 TCTCAGCAGCCAGCTCAGGCTGTCGCCGTACTGCTCCTCTCTGGGCTTG 1096 anti-hHER2-HC-N297- 145 CTGAGCTGGCTGCTGAGACTGCTGAACAGCACCTACAGGGTGGTGTCC 1008 GDSLSWLLRLLN-S298 TCTCAGCAGCCAGCTCAGGCTGTCGCCGTTGTACTGCTCCTCTCTGGGC 1097 anti-hHER2-HC-Y296- 144 CTGGAGTTCATCGCCAGCAAGCTGGCCAACAGCACCTACAGGGTGGTGTC 1009 DSLEFIASKLA-N297 CTTGCTGGCGATGAACTCCAGGCTGTCGTACTGCTCCTCTCTGGGCTTG 1098 anti-hHER2-HC-N297- 146 CTGGAGTTCATCGCCAGCAAGCTGGCCAGCACCTACAGGGTGGTGTCC 1010 DSLEFIASKLA-S298 CTTGCTGGCGATGAACTCCAGGCTGTCGTTGTACTGCTCCTCTCTGGGC 1099 Tras_HC_S6_i415_S418A GCCCGAGGGCGACGCCCTGAGCTGGCTG 1011 CAGCCAGCTCAGGGCGTCGCCCTCGGGC 1100 Human PPTase_N-His6 CATCACCATCACCATCACGTTTTCCCTGCCAAACGGTTCTGC 1012 (PIPE cloning)(‘His6’ ACGGGCCCTCTAGACTTATGACTTTGTACCATTTCGTATTGGAATTTC 1101 disclosed as SEQ ID NO: 1106) pRS_N-His6 (PIPE cloning) TAAGTCTAGAGGGCCCGTTTAAACC 1013 (‘His6’ disclosed as SEQ ID GTGATGGTGATGGTGATGAGGCTGAGCAGTGGCACCGG 1102 NO: 1106) Human PPTase_C-His6 GGTGCCACTGCTCAGCCTGTTTTCCCTGCCAAACGGTTCTGC 1014 (PIPE cloning)(‘His6’ GTGATGGTGATGGTGATGTGACTTTGTACCATTTCGTATTGGAATTTC 1103 disclosed as SEQ ID NO: 1106) pRS_C-His6 (PIPE cloning) CATCACCATCACCATCACTAAGTCTAG 1015 (‘His6’ disclosed as SEQ ID AGGCTGAGCAGTGGCACCGG 1104 NO: 1106) T. maritima PPTase ATGATAGTCGGTGTGGGTATTGATG 1016 TTACTCTCCGATGAGGATGTTACC 1105 Top = Forward primer Bottom = Reverse primer

TABLE 9 Expression yields of Trastuzumab IgGs with inserted/grafted peptide-tags (HC, heavy chain; LC, light chain). The values in brackets, ( ) [ ], correspond to antibody yields after scale-up. Construct (whole antibody tested, the name represents part of Yield per the HC or LC that contains the peptide tag, the paired wildtype liter culture/ Expression chain is not listed) mg scale/L SEQ ID NO anti-hHER2-HC-S134G-T135D-S136-G137L-G138S-T139W-A140L 26 0.02 105 anti-hHER2-HC-L193G-G194D-T195S-Q196L-T197S-Y198W-I199L 73 0.02 117 anti-hHER2-HC-P189G-S190D-S191-S192L-L193S-G194W-T195L 61 (36) 0.02 (1) 109 anti-hHER2-HC-T359G-K360D-N361S-Q362L-V363S-S364W 43 0.02 123 anti-hHER2-HC-T359-GDSLSWLLRLLN-K360 45 (29) 0.02 (1) 121 mAb2-HC-T359-GDSLSWLLRLLN-K360 78 0.05 148 mAb2-HC-E388-GDSLSWLLRLLN-N389 26 0.05 149 anti-hHER2-HC-E357G-M358D-T359S-K360L-N361S-Q362W-V363L 59 0.02 120 anti-hHER2-HC-E388-GDSLSWLLRLLN-N389 39 (13) [16] 0.02 (1) [0.5] 127 anti-hHER2-HC-E388-GDSLSWL-N389 39 0.02 126 anti-hHER2-LC-C214-GDSLSWLLRLLN 42 0.02 28 anti-hHER2-HC-S134G-T135D-S136-G137L-G138S-T139W-A140L-  2 0.05 106 LRLLN-A141 anti-hHER2-HC-K133G-S134D-T135S-S136L-G137S-G138W- 19 0.05 103 LLRLLN-T139 anti-hHER2-HC-P189G-S190D-S191-S192L-L193S-G194W-T195L- 48 0.3 110 LRLLN-Q196 anti-hHER2-HC-S190G-S191D-S192-L193-G194S-T195W-Q196L- 33 0.05 113 T197L-RLLN-Y198 anti-hHER2-HC-V2-GDSLSWLLRLLN-Q3 20 (11) 0.05 (0.5) 94 anti-hHER2-LC-I2-GDSLSWLLRLLN-Q3  3 0.05 26 anti-hHER2-LC-I2-DSLEFIASKLA-Q3 43 (29) 0.05 (0.4) 27 anti-hHER2-LC-C214-DSLEFIASKLA 55 0.05 29 anti-hHER2-HC-V2-DSLEFIASKLA-Q3 34 (20) 0.05 (0.4) 95 anti-hHER2-HC-K447-DSLEFIASKLA 32 0.05 141 anti-hHER2-HC-S132D-K133S-S134L-T135E-S136F-G137I-G138A- 32 0.05 102 T139S-A140K-A141L-L142A anti-hHER2-HC-S190D-S191-S192L-L193E-G194F-T195I-Q196A- 41 0.05 114 T197S-Y198K-I199L anti-hHER2-HC-S191D-S192-L193-G194E-T195F-Q196I-T197A- 30 0.05 116 Y198S-I199K anti-hHER2-HC-L398D-D399S-S400L-D401E-G402F-S403I-F404A- 13 0.05 135 F405S-L406K-Y407L-S408A anti-hHER2-HC-Y296-GDSLSWLLRLLN-N297 23 0.05 143 anti-hHER2-HC-N297-GDSLSWLLRLLN-S298 23 0.05 145 anti-hHER2-HC-Y296-DSLEFIASKLA-N297 21 0.05 144 anti-hHER2-HC-N297-DSLEFIASKLA-S298 23 0.05 146 anti-hHER2-HC-E388-DSLEFIASKLA-N389 36 (15) 0.05 (0.5) 129 anti-hHER2-HC-E388-DSLEFIASKL-N389 35 (20) 0.05 (0.5) 130 anti-hHER2-HC-E388-DSLEFIASK-N389 56 0.05 131 anti-hHER2-HC-T359-DSLEFIASKLA-K360 43 (18) 0.05 (0.5) 122 anti-hHER2-HC-S190D-S191-S192L-L193E-G194F-T195I-Q196A- 19 0.05 115 T197S-Y198K-I199L-C200A anti-hHER2-HC-P189D-S190-S191L-S192E-L193F-G194I-T195A- 40 0.05 112 Q196S-T197K-Y198L-I199A anti-hHER2-HC-D413-K414S-S415L-R416E-W417F-Q418I-Q419A- 29 0.05 138 G420S-N421K-V422L anti-hHER2-HC-E382D-S383-N384L-G385E-Q386F-P387I-E388A 39 0.05 125 anti-hHER2-HC-E382D-S383-N384L-G385S-Q386W-P387L-E388L 33 0.05 124 anti-hHER2-LC-S76D-S77-L78-EFIASKLA-Q79 13 0.05 30 anti-hHER2-HC-S63-LEFIASK-V64 12 0.05 97 anti-hHER2-HC-V64L-EFIAS-K65 23 0.05 98 anti-hHER2-HC-V64L-EFIASKLA-K65 11 0.05 99 anti-hHER2-HC-V2-GDSLSWLLRLLN-Q3-E388-DSLEFIASKLA-N389  8 (19) 0.05 (0.4) 142 anti-hHER2-HC-V2-GDSLDMLEWSLM-Q3 56 0.05 96 anti-hHER2-HC-E388-GDSLDMLEWSLM-N389 32 0.05 132

Example 3 Production of Sfp 4′-Phosphopantetheinyl Transferase (PPTase)

The B. subtilis Sfp PPTase was cloned into the pET22b expression vector by using the PIPE method (see Klock et al., Proteins 71:982-994 (2008)). To allow cleavage of the C-terminal His6 tag (SEQ ID NO:1106), a TEV (tobacco etch virus) protease recognition site was inserted downstream of the Sfp coding sequence. All primers used for cloning are listed in Table 8.

Protein expression and purification were performed according to Yin et al. (see Nat. Protoc. 1:280-285 (2006)) with some minor modifications. First, a 5 mL LB starter culture was inoculated from the glycerol stock of E. coli BL21 (DE3) cells harboring the pET22b/sfp expression plasmid. The culture was grown to saturation by overnight incubation at 37° C. at 300 rpm. The next day, the starter culture was used to inoculate 1 L of TB medium (Sigma), which was agitated at 300 rpm and maintained at 37° C. After reaching an optical density of 0.5 at 600 nm, the culture was induced by the addition of IPTG to a final concentration of 1 mM and the temperature was reduced to 30° C. The culture was shaken for another 12-16 hours and the bacterial cells were harvested by centrifugation. Prior to use, the cell pellet was stored at −20° C.

To initiate protein purification, the frozen pellet was thawed for 15 minutes on ice and re-suspended in a buffer containing 20 mM Tris/HCl (pH 7.9), 0.5 M NaCl, 5 mM imidazole, and 2 U/mL DNase I (3 mL of buffer per g wet weight of cells). Cell lysis was induced by sonication for 4 min, with intervals of 0.5 sec on and 0.5 sec off. In order to remove insoluble cell debris, the resulting lysate was centrifuged at 40,000×g for 20 min at 4° C. The His6-tagged Sfp enzyme (‘His6’ disclosedas SEQ ID NO: 1106) was then captured by the addition of 4 mL of 50% Ni-NTA slurry (Qiagen) to the cleared lysate. After shaking for 1 hour at 4° C., the resin-lysate mixture was poured into a disposable column (Bio-Rad). The settled resin was washed with 25 column volumes of 50 mM NaH2PO4, 300 mM NaCl, 20 mM imidazole (pH 8.0) and eluted with 5 column volumes of 50 mM NaH2PO4, 300 mM NaCl, 250 mM imidazole (pH 8.0). Purified Sfp enzyme was then dialyzed twice against 10 mM Tris/HCl, 1 mM EDTA, 10% glycerol (pH 7.5) using a Slide-A-Lyzer Dialysis Cassette (Pierce) with a 3.5 kDa cut-off, and subsequently concentrated to a final concentration of at least 100 μM using an Amicon Ultra-15 Centrifugal Filter Unit (Millipore) with a 10 kDa cut-off. Finally, the concentrated enzyme was aliquoted, flash-frozen in liquid nitrogen, and stored at −80° C.

In order to improve the purity of Sfp using reverse Ni-NTA chromatography, a TEV cleavage site was introduced before the C-terminal His6 tag (SEQ ID NO:1106). Ni-NTA purification of this construct was performed as described above. However, after elution, the Sfp enzyme was exchanged into TEV cleavage buffer containing 50 mM Tris/HCl, 50 mM NaCl (pH 8.0). His6 tag (SEQ ID NO:1106) removal was carried out by digestion with 7% (w/w) TEV protease at 23° C. for 1 hour and then at 4° C. for 16 hours. The TEV-digested Sfp enzyme was then reloaded onto a Ni-NTA column equilibrated with 1×PBS (pH 7.2). The cleaved enzyme was collected from the column flow-through and from a washing step involving 5 column volumes of 50 mM NaH2PO4, 300 mM NaCl, 20 mM imidazole (pH 8.0). Purified Sfp enzyme was then dialyzed twice against 10 mM Tris/HCl, 1 mM EDTA, 10% glycerol (pH 7.5) using a Slide-A-Lyzer Dialysis Cassette (Pierce) with a 3.5 kDa cut-off. Following dialysis, Sfp was concentrated to a final concentration of at least 100 μM using an Amicon Ultra-15 Centrifugal Filter Unit (Millipore) with a 10 kDa cut-off. Finally, the concentrated enzyme was aliquoted, flash-frozen in liquid nitrogen, and stored at −80° C.

The purity of Sfp was assessed by SDS-PAGE. His6 tag (SEQ ID NO:1106) removal was verified by LC-MS and Sfp yield was quantified by ultraviolet spectroscopy at 280 nm (ND-1000 UV-Vis Spectrophotometer, NanoDrop Technologies, Wilmington, Del.) using a molar extinction coefficient of 28620 M−1 cm−1. 48 mg of TEV-cleaved Sfp enzyme was obtained per liter culture.

Example 4 Identification and Production of PPTase Homologs and Mutants Sfp Mutant R4-4

Using standard molecular biology methods, we inserted the following mutations into the B. subtilis Sfp PPTase: Lys28Glu, Thr44Glu, and Cys77Tyr. The sequences of the oligonucleotides used for the mutagenesis reactions are listed in Table 8.

For protein expression, 0.5 L of TB medium was inoculated with a 5 mL starter culture. The culture was agitated at 300 rpm and maintained at 37° C. After reaching an optical density of 0.5 at 600 nm, the culture was induced by the addition of IPTG to a final concentration of 1 mM and the temperature was reduced to 30° C. The culture was shaken for another 16 hours at 300 rpm and the bacterial cells were harvested by centrifugation (15 min at 3400 rpm). Prior to use, the cell pellet was stored at −20° C.

The frozen pellet was thawed for 10 minutes on ice and re-suspended in a buffer containing 50 mM Tris/HCl (pH 8), 300 mM NaCl, 10 mM imidazole, 1 U/mL DNase I, and Complete™ EDTA-free protease inhibitor cocktail tablets (Roche) (3 mL of buffer per g wet weight of cells). Cell lysis was induced by sonication for 3 min on ice, with intervals of 0.5 sec on and 0.5 sec off. After incubation for another 10 min on ice, the lysate was centrifuged at 40,000×g for 30 min at 4° C. The His6-tagged Sfp mutant R4-4 (‘His6’ disclosed as SEQ ID NO: 1106) was then captured by the addition of 2 mL of 50% Ni-NTA slurry (Qiagen) to the cleared lysate. After shaking for 1 hour at 4° C., the resin-lysate mixture was poured into a disposable column (Bio-Rad). The flowthrough was collected and the settled resin was washed with 50 column volumes of 50 mM Tris, 300 mM NaCl, 20 mM imidazole (pH 8.0) and eluted with 5 column volumes of 50 mM Tris, 300 mM NaCl, 250 mM imidazole (pH 8.0). After buffer-exchanging the eluate into TEV protease cleavage buffer containing 50 mM Tris/HCl, 50 mM NaCl (pH 8.0) using a PD-10 column, His6 tag (SEQ ID NO:1106) removal was carried out by digestion with 7% (w/w) TEV protease at 23° C. for 1 hour and then at 4° C. for 16 hours.

The TEV-digested Sfp mutant R4-4 was then reloaded onto a Ni-NTA column (1 mL bed volume), which was equilibrated with 1×PBS (pH 7.2). The cleaved enzyme was collected from the column flow-through and from a washing step involving 5 column volumes of 50 mM Tris, 300 mM NaCl, 20 mM imidazole (pH 8.0). The purified Sfp mutant R4-4 was then buffer-exchanged against 10 mM Tris/HCl, 1 mM EDTA, 10% glycerol (pH 7.5) using PD-10 columns. According to Bradford assay using BSA as standard, the enzyme had a final concentration of 3.1 mg/mL at a final volume of 17 mL, which corresponds to 105 mg of TEV-cleaved R4-4 mutant per liter culture. Finally, the enzyme was aliquoted into 100 to 1000 μL fractions, flash-frozen in liquid nitrogen, and stored at −80° C. The purity of the enzyme was assessed by SDS-PAGE analysis and His6 tag (SEQ ID NO:1106) removal was verified by ESI-MS.

AcpS

Using standard molecular biology methods, we cloned the acpS gene from E. coli K-12 into a pET22b vector that allows expression of the recombinant enzyme with a C-terminal His6 tag (SEQ ID NO:1106). The sequences of the oligonucleotides used for cloning are listed in Table 8.

Following inoculation from a saturated 5 mL starter culture, the AcpS enzyme was expressed in 1 L of TB medium. After shaking the culture at 37° C. with 300 rpm, protein production was induced by the addition of 1 mM IPTG at an optical density of 0.5 (600 nm). Protein expression was carried out overnight at 30° C. and 300 rpm. The next day, the cells were harvested by centrifugation at 3400 rpm for 15 min. The cell pellet was stored at −20° C. prior to protein purification.

To initiate protein purification, the frozen pellet was thawed for 10 min on ice and resuspended in buffer (3 mL of buffer per g wet weight of cells) containing 50 mM Tris/HCl (pH 8), 300 mM NaCl, 10 mM imidazole, 1 U/mL DNase I, and Complete™ EDTA-free protease inhibitor cocktail tablets (Roche). Cell lysis was achieved by sonicating the cell suspension on ice for 3 min with intervals of 0.5 sec on and 0.5 sec off. After another incubation period of 10 min on ice, the lysate was centrifuged at 40,000 g for 30 min at 4° C. Then 2 mL of 50% Ni-NTA slurry was added to the cleared lysate and the lysate/resin mixture was shaken for 1 hour at 4° C. The lysate/resin mixture was poured into a disposable column. After collecting the flowthrough, the Ni-NTA column was washed with 50 column volumes of buffer containing 50 mM Tris (pH 8), 300 mM NaCl, and 20 mM imidazole. Elution was performed with 5 column volumes of buffer containing 50 mM Tris (pH 8), 300 mM NaCl, and 250 mM imidazole. Using a 3.5 kDa cut-off dialysis cassette (Slide-A-Lyzer, Thermo Scientific), the eluate was dialyzed overnight into buffer containing 50 mM Tris (pH 8), and 300 mM NaCl. Precipitated protein was removed by using a 0.45 μm filter (Millipore). After addition of glycerol to a final concentration of 10% (v/v), the Ni-NTA-purified protein was flash-frozen in liquid nitrogen and stored at −80° C. (100 and 200 μL aliquots). The purity of AcpS was assessed by SDS-PAGE and the yield was quantified by Bradford assay using BSA as standard. About 13 mg of AcpS enzyme was obtained per liter culture.

T. maritima PPTase

T. maritima PPTase expression was carried out at a 1 L scale in native FM medium by inoculation with a 10 mL saturated starter culture. The 1 L culture was shaken at 300 rpm at a temperature of 37° C. After 2.5 hours, the culture reached an optical density of 0.5 at 600 nm. Protein production was induced by the addition of arabinose to a final concentration of 0.1% (w/v) and the culture was shaken for an additional 4 hours. Cells were harvested by centrifugation at 4000 rpm for 15 minutes and the cell pellets were stored at −20° C. Initial purification of T. maritima PPTase was performed by IMAC (immobilized metal affinity chromatography) using Ni-NTA agarose resin (Qiagen). Cell pellets were thawed and resuspended in 60 mL lysis buffer (40 mM Tris buffer (pH 8.0), 300 mM NaCl, 10 mM Imidazole, 1 mM TCEP). The cell suspension was sonicated on ice for 1.5 minutes (using 1 sec pulses) and centrifuged at 15000 rpm for 30 minutes at 5° C. The cleared lysate was loaded onto a 1.5 mL Ni-NTA column. After collecting the flowthrough, the column was washed with 5 column volumes of wash buffer (40 mM Tris buffer (pH 8.0), 300 mM NaCl, 40 mM imidazole, 10% glycerol, 1 mM TCEP). Protein elution was carried out with 2 column volumes of elution buffer (20 mM Tris buffer (pH 8.0), 150 mM NaCl, 300 mM Imidazole, 1 mM TCEP).

The Ni-NTA eluate was further purified using a Superdex 75 column (GE Healthcare) connected to an Akta FPLC system. Size-exclusion chromatography (SEC) was performed at flow rate of 1 mL/min in 10 mM Tris buffer (pH 7.4) supplemented with 1 mM EDTA and 10% (v/v) glycerol. After analyzing protein-containing fractions by SDS-PAGE, fractions containing the T. maritima PPTase were pooled and dialyzed again against the buffer previously used for SEC. The purified enzyme was then concentrated using an Amicon Ultra-15 Centrifugal Filter Unit (Millipore) with a 10 kDa cut-off. Precipitate was removed by centrifugation at 13000 rpm for 2 min using a table top centrifuge. The concentrated protein (1.0 mg/mL, 48 μM) was aliquoted into 100 μL fractions, flash-frozen in liquid nitrogen, and stored at minus 80° C. The purity of T. maritima PPTase was assessed by SDS-PAGE and the yield was quantified by Bradford assay using BSA as standard. After all purification steps, 1.4 mg of AcpS enzyme was obtained per liter culture.

Example 5 Synthesis of Coenzyme A (CoA) Analogs CoA-Maleimidoethylamido-Tetramethylrhodamine

Tetramethylrhodamine-C2-maleimide (5.5 mg, 10.4 mmol) dissolved in 300 μL of DMSO was added to CoA (10.4 μmol in 150 μL water) in 750 μL of 10×PBS buffer and stirred at 23° C. for 1 hour. After the reaction, the reaction mixture was lyophilized to obtain the crude product, which was purified by RP-C18 flash chromatography. Fractions of the desired product were combined and lyophilized to afford CoA-maleimidoethylamido-tetramethylrhodamine (9.8 mg with 94.4% purity) as a dark purple powder. ESI-MS calculated for C52H64N11O22P3S [MH]+: 1320.3; observed: 1320.3.

CoA-Maleimidocaproyl (MC)-MMAF

MC-MMAF (see Doronina et al., Bioconj. Chem. 17:114-124 (2006)) (36.0 mg, 38.9 μmol) dissolved in 1.8 mL of DMSO was added to CoA (39.0 μmol in 312 μL water) in 2.9 mL of 10×PBS buffer and stirred at 23° C. for 1 hour. After the reaction, the reaction mixture was lyophilized to obtain the crude material, which was purified by RP-C18 flash chromatography. Fractions of the desired product were combined and lyophilized to afford CoA-MC-MMAF (35.5 mg with 97.5% purity) as a white powder. ESI-MS calculated for C70H112N13O27P3S [MH]+: 1691.7; observed: 1691.2.

CoA-MC-Val-Cit-PABC-MMAF

MC-Val-Cit-PABC-MMAF (see Doronina et al., Bioconj. Chem. 17:114-124 (2006)) (5.7 mg, 4.3 mmol) dissolved in 300 μL of DMSO was added to CoA (4.3 μmol in 34 μL water) in 2666 μL of 10×PBS buffer and stirred at 23° C. for 1 hour. After the reaction, the reaction mixture was lyophilized to obtain the crude material, which was purified by RP-C18 flash chromatography. Fractions of the desired product were combined and lyophilized to afford CoA-MC-Val-Cit-PABC-MMAF (6.1 mg with 98.0% purity) as a white powder. ESI-MS calculated for C89H139N18O32P3S [MH2]2+/2: 1049.4; observed: 1049.4.

CoA-Ac-Ahx-M MAF

Bromoacetyl-Ahx-MMAF (see, Alley et al., Bioconj. Chem. 19:759-765 (2008)) (1.3 mg, 1.4 μmol) dissolved in 400 μL of DMSO was added to CoA (5.4 μmol in 43 μL water) in 3.6 mL of borate buffer (6.7 mM at pH 8.5) and stirred at 23° C. for 24 hours. After the reaction, the reaction mixture was lyophilized to obtain the crude material, which was purified by RP-C18 flash chromatography. Fractions of the desired product were combined and lyophilized to afford CoA-Ac-Ahx-MMAF (1.1 mg with 96.9% purity) as a white powder. ESI-MS calculated for C68H112N13O26P3S [MH]+: 1651.7; observed: 1651.3.

CoA-Open-Ring-MC-MMAF

CoA-MC-MMAF (5 μmol in 1 mL of water) was added to 9 mL of 1 M NH4OH(aq) and stirred at 23° C. for 30 minutes. After the reaction, the reaction mixture was lyophilized to obtain the crude material, which was purified by RP-C18 flash chromatography. Fractions of the desired product were combined and lyophilized to afford 3.9 mg of maleimide-ring-opened CoA-MC-MMAF as a mixture of four positional and diastereomeric isomers as shown in the scheme above (white powder, 96.6% purity). ESI-MS calculated for C70H114N13O28P3S [MH]+: 1709.7; observed: 1709.2.

Example 6 Labeling of Peptide-Tagged IgGs with CoA Analogues In Vitro

To exemplify the single-step conjugation of CoA analogues to peptide-tagged IgGs in vitro, various peptide-tagged Trastuzumab constructs were reacted with CoA-MC-MMAF in the presence of Sfp enzyme. Generally, conjugation reactions were carried out in 50 or 75 mM HEPES or Tris buffer, pH 7.5 or 8.0 supplemented with 10.0 or 12.5 mM MgCl2. The final concentration of peptide-tagged Trastuzumab was kept constant at 2.5 μM, which corresponds to 5.0 μM per peptide tag, while the final concentration of the CoA substrates was usually varied between 40 μM and 100 μM. To initiate the conjugation reaction, Sfp enzyme was added to give a final concentration of typically 1 μM. The enzymatic reaction was allowed to proceed at either 23° C. or 37° C. for 16 hours. After this time period, the reaction progress was analyzed by ESI-MS and HPLC.

Example 7 Labeling of Insertions

Nearly quantitative conjugation of CoA-MC-MMAF to six Trastuzumab antibodies and one 2nd antibody (“mAb2”) against a different target with inserted S6- or ybbR-tags was accomplished by incubating reaction mixtures with Sfp as described in Example 6. HPLC of single-step conjugation reaction mixtures (Table 10) of anti-hHER2-HC-T359-GDSLSWLLRLLN-K360 (SEQ ID NO:121, FIG. 5A), anti-hHER2-HC-E388-GDSLSWLLRLLN-N389 (SEQ ID NO:127, FIG. 5B), anti-hHER2-HC-V2-DSLEFIASKLA-Q3 (SEQ ID NO:95, FIG. 5C), anti-hHER2-HC-V2-GDSLSWLLRLLN-Q3 (SEQ ID NO:94, FIG. 5D), anti-hHER2-HC-E388-DSLEFIASKL-N389 (SEQ ID NO:130, FIG. 5E), anti-hHER2-HC-E388-DSLEFIASKLA-N389 (SEQ ID NO: 129, FIG. 5F), and mAb2-HC-T359-GDSLSWLLRLLN-K360 (SEQ ID NO:148, FIG. 5G) indicate near complete conversion of the tagged antibodies into an immunoconjugate with an approximate drug-to-antibody-ratio (DAR) of 2. ESI-MS of reduced conjugate samples suggest site-specific modification of only the heavy chain as designed. For anti-hHER2-LC-I2-DSLEFIASKLA-Q3 (SEQ ID NO:27, FIG. 5H), HPLC suggests only partial formation of the immunoconjugate as significant amounts of unmodified antibody (39%, retention time 4.8 mins) remain and a mixture of DAR=1 (46%, retention time 5.4 mins) and DAR=2 (16%, retention time 5.9 mins) species is observed.

TABLE 10 MS and HPLC analysis of conjugation reactions with inserted tags: Antibody construct (whole antibody tested, the name represents part Expected of the HC or LC that mass contains the peptide tag, Expected mass unmodified DAR = 2 SEQ ID the paired wildtype chain Observed immunoconjugate antibody according NO is not listed) mass (Da) (Da) (Da) to HPLC 121 anti-hHER2-HC-T359- 51785.20 51791 50525 92% GDSLSWLLRLLN-K360 127 anti-hHER2-HC-E388- 51786.40 51791 50525 97% GDSLSWLLRLLN-N389 95 anti-hHER2-HC-V2- 51588.00 51598 50332 96% DSLEFIASKLA-Q3 94 anti-hHER2-HC-V2- 51780.40 51791 50525 100% GDSLSWLLRLLN-Q3 130 anti-hHER2-HC-E388- 51517.20 51527 50261 94% DSLEFIASKL-N389 129 anti-hHER2-HC-E388- 51588.00 51598 50332 100% DSLEFIASKLA-N389 27 anti-hHER2-LC-I2- 25878.40 25884 24618 16% DSLEFIASKLA-Q3 148 mAb2-HC-T359- 52848.80 52849 51597 95% GDSLSWLLRLLN-K360 (major); 51600.40 (minor)

As shown in FIG. 6, the trastuzumab immunoconjugates (A) anti-hHER2-HC-V2-GDS-ppan-MC-MMAF-LSWLLRLLN-Q3 (SEQ ID NO:1120), (B) anti-hHER2-HC-E388-DS-ppan-MC-MMAF-LEFIASKLA-N389 (SEQ ID NO:1122), and (C) anti-hHER2-HC-E388-DS-ppan-MC-MMAF-LEFIASKL-N389 (SEQ ID NO:1121) were analyzed by analytical size-exclusion chromatography (AnSEC) on a Shodex PROTEIN KW-803 column. In all three cases, the ADCs were monomeric (no detectable amounts of aggregated material).

Example 8 Labeling of Constructs with Grafted Peptide Tags

Single-step, in vitro Sfp-catalyzed conjugation of CoA-MC-MMAF to Trastuzumab antibody with a grafted ybbR tag was also attempted. The Sfp-catalyzed reaction of the IgG1 construct anti-hHER2-HC-S190D-S191-S192L-L193E-G194F-T195I-Q196A-T197S-Y198K-I199L (SEQ ID NO:114) was performed as described in Example 6. HPLC (FIG. 7) and ESI-MS analysis of the reaction mixture indicate that the immunoconjugate with MMAF (expected mass conjugate: 50489 Da, expected mass unmodified antibody: 49223 Da, observed: 49216.8 Da) was not formed. Other grafted constructs also failed to react and failed to form immunoconjugates.

Example 9 Labeling of Mixed Grafting/Insertion Constructs

Single-step, in vitro Sfp-catalyzed conjugation of CoA-MC-MMAF to Trastuzumab antibodies with grafted/inserted S6- or ybbR-tags was also attempted. Two Trastuzumab mutants anti-hHER2-HC-V64L-EFIASKLA-K65 (SEQ ID NO:99) and anti-hHER2-LC-S76D-S77-L78-EFIASKLA-Q79 (SEQ ID NO:30) were reacted with CoA-MC-MMAF and Sfp as described in Example 6. While anti-hHER2-HC-V64L-EFIASKLA-K65 (SEQ ID NO:99) is partially modified as indicated by HPLC of the reaction mixture (FIG. 8A), anti-hHER2-LC-S76D-S77-L78-EFIASKLA-Q79 (SEQ ID NO:30) (FIG. 8B) failed to react under identical conditions (Table 11).

TABLE 11 ESI-MS results of conjugation reactions with mixed grafted/inserted tags: Antibody construct (whole antibody tested, the name represents part of the HC or LC that contains Expected the peptide tag, the Observed Expected mass mass DAR = 2 paired wildtype chain mass immunoconjugate unmodified according SEQ ID NO is not listed) (Da) (Da) antibody (Da) to HPLC 99 anti-hHER2-HC- 51287.20 51297 50031 32% V64L-EFIASKLA-K65 30 anti-hHER2-LC- 24324.80 25597 24331 0% S76D-S77-L78- EFIASKLA-Q79

Example 10 Labeling with Fluorescent Dyes

To extend enzymatic antibody labeling beyond the site-specific attachment of cytotoxins, we demonstrate the feasibility of Sfp-catalysis to generate antibody-fluorophore conjugates. This example represents two Sfp-catalyzed conjugations of CoA-tetramethylrhodamine (CoA-TMR) to Trastuzumab antibodies with either grafted or inserted S6 tags performed as described in Example 6. HPLC traces of reaction mixtures were monitored at both 280 nm and 555 nm (FIG. 9). The latter wavelength is near the absorption maximum of the TMR dye (˜550 nm).

Furthermore, the data of the deconvoluted mass spectra of the antibody-fluorophore conjugates is summarized in Table 12.

For the anti-hHER2-HC-P189G-S190D-S191-S192L-L193S-G194W-T195L (SEQ ID NO:109) that contains a truncated grafted S6 tag, conjugation resulted primarily in the formation of a two-dye per antibody conjugate (FIG. 9A). Likewise, the anti-hHER2-HC-T359-GDSLSWLLRLLN-K360 (SEQ ID NO:121) with a full-length S6 tag inserted between residue T359 and K360 showed predominantly conjugation of two dye molecules to each antibody (FIG. 9B). The results illustrate the S6 tags can be used for conjugation of fluorescent labeling of modified antibodies.

TABLE 12 ESI-MS results of the conjugation reactions with a fluorescent dye: Antibody construct (whole antibody tested, the name represents part of the HC or LC that contains the peptide tag, Expected mass Expected mass the paired wildtype chain is Observed fluorophore unmodified SEQ ID NO not listed) mass (Da) conjugate (Da) antibody (Da) 109 anti-hHER2-HC-P189G- 50177.20 50180 49286 S190D-S191-S192L-L193S- G194W-T195L 121 anti-hHER2-HC-T359- 51422.00 51419 50525 GDSLSWLLRLLN-K360

Example 11 Near Quantitative Labeling with Cytotoxins Linked Through Thioether or Hydrolyzed Maleimide Linkage

Although not observed for conjugates of the invention, maleimide-linked payloads may undergo deconjugation in plasma via maleimide exchange with reactive thiols of albumin, glutathione, and cysteine (Alley et al., Bioconjugate Chem. 2008, 19, 759-765). Maleimide-based conjugates can be stabilized through chemical ring-opening of the maleimidocaproyl linkage (see, Shen et al., Nature Biotech. 30:184-189 (2012)). To test this hydrolysis procedure, the respective ADC of anti-hHER2-HC-T359-GDSLSWLLRLLN-K360 (SEQ ID NO:121) was prepared using CoA-open-ring-MC-MMAF. Moreover, to test alternative thiol-reactive chemistries, we attached the MMAF cytotoxin to the terminal thiol of CoA via an acetamide-based thioether linkage resulting in CoA-Ac-Ahx-MMAF (see, Alley et al., Bioconj. Chem. 19:759-765 (2008)). The ESI-MS and HPLC results of these enzymatic conjugation reactions (according to the protocol described in Example 6) are summarized in Table 13. Near quantitative labeling with DAR=2 was observed for anti-hHER2-HC-T359-GDSLSWLLRLLN-K360 (SEQ ID NO: 121) reacted with CoA-open-ring-MC-MMAF (FIG. 10A) and anti-hHER2-HC-T359-GDSLSWLLRLLN-K360 (SEQ ID NO:121) reacted with CoA-Ac-Ahx-MC-MMAF (FIG. 10B).

TABLE 13 ESI-MS results of the conjugation reactions with alternative linkers: SEQ ID NO of the antibody (whole antibody tested, the name represents part of the HC or LC that Expected contains the peptide mass tag, the paired Expected mass unmodified DAR = 2 wildtype chain is not CoA Observed immunoconjugate antibody according listed) substrate mass (Da) (Da) (Da) to HPLC 121 maleimide- 51802.00 51809 50525 85% ring-opened CoA-MC- MMAF 121 CoA-Ac-Ahx- 51742.40 51750 50525 80% MMAF

Example 12 Near Quantitative Labeling with Cytotoxin with Cleavable Linker

To demonstrate the labeling of peptide-tagged IgGs with cytotoxins that are attached via cleavable linkers, we conjugated CoA-MC-Val-Cit-PABC-MMAF containing the cathepsin B-sensitive valine-citrulline linker to either anti-hHER2-HC-T359-GDSLSWLLRLLN-K360 (SEQ ID NO:121) (FIG. 11A) or anti-hHER2-HC-E388-GDSLSWLLRLLN-N389 (SEQ ID NO:127) (FIG. 11B) in the presence of Sfp. HPLC and ESI-MS results of this single-step enzymatic conjugation are summarized in Table 14 and indicate near quantitative labeling with a DAR=2 for both tag positions.

TABLE 14 ESI-MS results of the conjugation reactions with CoA-MC-Val-Cit-PABC-MMAF: Expected mass Expected mass DAR = 2 Antibody Observed immunoconjugate unmodified according to SEQ ID NO construct mass (Da) (Da) antibody (Da) HPLC 121 anti-hHER2- 52189.60 52196 50525 91% HC-T359- GDSLSWLL RLLN-K360 127 anti-hHER2- 52188.40, 52196 50525 95% HC-E388- 51412.40 GDSLSWLL RLLN-N389

Example 13 Optimization of Labeling Reaction as a Function of pH

The purpose of this experiment was to determine the optimal pH range for Sfp-catalyzed conjugation of CoA substrates to peptide-tagged antibodies. In three experiments, 2.5 μM of anti-hHER2-HC-E388-GDSLSWLLRLLN-N389 (SEQ ID NO:127) or 2.5 μM of anti-hHER2-HC-T359-GDSLSWLLRLLN-K360 (SEQ ID NO:121) were reacted with 10 μM of CoA-MC-MMAF in the presence of 0.25 μM of Sfp (for anti-hHER2-HC-E388-GDSLSWLLRLLN-N389 (SEQ ID NO:127)) or 1.0 μM of Sfp (for anti-hHER2-HC-T359-GDSLSWLLRLLN-K360 (SEQ ID NO:121)), and the pH was titrated from pH 5.0 to 10.0. In order to cover this pH range, five buffers were utilized: 75 mM sodium acetate buffer for pH 5.0; 75 mM MES buffer for pH 5.5, 6.0, and 6.5; 75 mM HEPES buffer for pH 7.0, 7.5, and 8.0; 75 mM sodium borate buffer for pH 9.0; 75 mM sodium carbonate buffer for pH 10.0. All buffers were supplemented with 12.5 mM of MgCl2 to ensure enzyme activity. The pH titration series was performed at 23° C. for 25 to 35 min in a volume of 100 μL for each reaction. After quenching the enzymatic reaction by the addition of 30 μL of 4% (v/v) trifluoroacetic acid (TFA), reaction mixtures were analyzed by HPLC at 280 nm as summarized in Table 15.

TABLE 15 HPLC results of labeling reactions as a function of pH: Antibody construct (whole antibody tested, the name represents part of the HC or LC that contains the peptide tag, the paired wildtype chain is not SEQ ID NO listed) pH value DAR = 0 DAR = 1 DAR = 2 127 anti-hHER2-HC-E388- 5.0 100%; 100% 0%; 0% 0%; 0% GDSLSWLLRLLN-N389 121 anti-hHER2-HC-T359- 100% 0% 0% GDSLSWLLRLLN-K360 127 anti-hHER2-HC-E388- 5.5 100% 0% 0% GDSLSWLLRLLN-N389 127 anti-hHER2-HC-E388- 6.0 88%; 90% 12%; 10% 0%; 0% GDSLSWLLRLLN-N389 121 anti-hHER2-HC-T359- 100% 0% 0% GDSLSWLLRLLN-K360 127 anti-hHER2-HC-E388- 6.5 68% 23% 9.2% GDSLSWLLRLLN-N389 127 anti-hHER2-HC-E388- 7.0 25%; 26% 48%; 44% 28%; 31% GDSLSWLLRLLN-N389 121 anti-hHER2-HC-T359- 77% 23% 0% GDSLSWLLRLLN-K360 127 anti-hHER2-HC-E388- 7.5 12% 41% 47% GDSLSWLLRLLN-N389 127 anti-hHER2-HC-E388- 8.0 7.7%; 11%  36%; 36% 56%; 52% GDSLSWLLRLLN-N389 121 anti-hHER2-HC-T359- 52% 37% 11% GDSLSWLLRLLN-K360 127 anti-hHER2-HC-E388- 9.0 12% 31% 57% GDSLSWLLRLLN-N389 121 anti-hHER2-HC-T359- 32% 46% 23% GDSLSWLLRLLN-K360 127 anti-hHER2-HC-E388- 10.0 100% 0% 0% GDSLSWLLRLLN-N389 121 anti-hHER2-HC-T359- 53% 36% 11% GDSLSWLLRLLN-K360

The HPLC results indicate that the pH range 8 to 9 is optimal for the conjugation of CoA-MC-MMAF to peptide-tagged Trastuzumab. In this pH range, the lowest amount of uncoupled antibody (DAR=0) and the highest amount of bi-conjugated ADC (DAR=2) could be detected by HPLC. Furthermore, plotting the percentage of ADC with a DAR of 2 against the pH (FIG. 12) indicates that the pH optimum is independent of the insertion site of the S6 tag for the two sites tested.

Example 14 Optimization of Labeling Reaction as a Function of Enzyme Concentration

To test the amount of Sfp required for efficient enzymatic conjugation, 2.5 μM of anti-hHER2-HC-E388-GDSLSWLLRLLN-N389 (SEQ ID NO: 127) was incubated at 37° C. for 16 hours with 50 μM CoA-MC-MMAF in 50 mM HEPES buffer (pH 7.5) supplemented with 10 mM MgCl2 in the presence of no Sfp enzyme or 0.1, 0.25, 0.5, 1, 2.5, 5 or 10 μM Sfp enzyme. After 16 hours, aliquots of the reaction were analyzed by ESI-MS. For Sfp concentrations of 0.1 μM, mainly non-conjugated modified antibody is detectable by ESI-MS (FIG. 13A). Quantitative conjugation was obtained for all Sfp concentrations equal (FIG. 13B) or greater than 0.25 μM, such as 0.5 μM of Sfp (FIG. 13C).

Example 15 Optimization of Labeling Reaction as a Function of CoA Analogue

To determine the minimal concentration of CoA substrate that would be required for quantitative labeling of an peptide-tagged IgG1 antibody, 2.5 μM anti-hHER2-HC-E388-GDSLSWLLRLLN-N389 (SEQ ID NO:127) was incubated with 0.25 μM or 1.0 μM Sfp in 75 mM Tris buffer (pH 8.0) containing 12.5 mM MgCl2 and supplemented with CoA-MC-MMAF at the following concentrations: 2.5, 5, 7.5, 10, 15, 25, and 50 μM. The reaction was allowed to proceed for 13 hours at 23° C. and then quenched with 30 μL of 4% (v/v) trifluoroacetic acid (TFA). According to HPLC analysis (FIGS. 14A and 14B, Table 16), nearly quantitative antibody conjugation was achieved for all CoA-MC-MMAF concentrations equal or higher than 7.5 μM. The degree of labeling was almost independent on the Sfp concentration, with 86% DAR 2 species observed at 0.25 μM Sfp and 92% DAR 2 species observed at 1.0 μM Sfp.

TABLE 16 HPLC results of labeling reactions as a function of CoA concentration: Retention time 4.9 min 5.3 min 5.7 min CoA-MC-MMAF (μM) Sfp (μM) DAR = 0 DAR = 1 DAR = 2 50 0.25 3.8% 7.1% 89% 25 0.25 3.7% 7.0% 89% 15 0.25 3.2% 6.9% 90% 10 0.25 3.9% 7.2% 89% 7.5 0.25 5.0% 8.6% 86% 5 0.25 5.7% 20.5%  74% 2.5 0.25  28% 48.3%  24% 50 1.0 7.1% 93% 25 1.0 6.3% 94% 15 1.0 5.7% 94% 10 1.0 5.7% 94% 7.5 1.0 1.0% 6.7% 92% 5 1.0 2.8%  24% 73% 2.5 1.0  31%  48% 21%

To determine the aggregation state of the anti-hHER2-HC-E388-GDS-MC-MMAF-LSWLLRLLN-N389 (SEQ ID NO:1129) immunoconjugate, 5.6 mg of anti-hHER2-HC-E388-GDSLSWLLRLLN-N389 (SEQ ID NO:127) (2.5 μM) were reacted with 40 μM CoA-MC-MMAF in the presence of 1 μM Sfp in 50 mM HEPES buffer (pH 7.5) supplemented with 10 mM MgCl2. After incubation at 23° C. for 3 days, the reaction mixture was purified on a Sephacryl 100-HR size-exclusion column (Sigma). After confirming quantitative conjugation by ESI-MS (observed mass, 51786.40 Da; expected mass immunoconjugate, 51791 Da; expected mass unmodified antibody, 50525 Da), the quaternary structure of the respective ADC was analyzed on a Tricorn S200 column (Agilent). The ADC was primarily monomeric (98%) and contained trace amounts of an oligomerized species (2%).

Example 16 Thermal Stability of S6 Antibodies and ADCs

To examine the thermal stability of peptide-tagged immunoconjugates, purified ADC samples were measured by differential scanning fluorometry (DSF) (Table 17) or differential scanning calorimetry (DSC) (Table 18). Samples were diluted to a final concentration of 0.25 mg/mL (1.67 μM) in PBS, pH 7.4. For DSF, SYPRO Orange gel stain (Sigma) was added to a final concentration of 5× as the tracer to indicate thermal unfolding of the ADCs. Samples were heated with 20 fluorescence scans/degree in a Lightcycler (Roche) instrument. For DSC, thermal unfolding was monitored by measuring heat capacity as temperature was increased at a rate of 1 degree Celsius per min in a MicroCal VP-DSC instrument. Melting temperatures were calculated using in the respective controller software packages assuming a 3-state model.

As described previously (Wakankar et al. Bioconjugate Chem. 2010, 21, 1588-1595), unmodified trastuzumab exhibits two transitions. The transitions were observed at 69.7 and 81.1 degrees Celsius by DSF and 72.3 and 81.0 degrees Celsius by DSC. Similar to the unmodified antibody, most CoA-MC-MMAF immunoconjugates exhibit two transitions although with different amplitudes (FIG. 15). DSF and DSC measurements of thermal melting points agree well although DSF reports a roughly 2 degree lower first transition. Generally, most engineered, non-conjugated antibodies and the respective peptide-tagged ADCs show little destabilization as compared to the wild-type antibody anti-hHER2.

TABLE 17 Thermal stability as measured by DSF. ΔTm values are relative to unmodified anti-hHER2 antibody. Sample (whole antibody tested, the name represents part of the HC or LC that SEQ ID contains the peptide tag, the paired NO wildtype chain is not listed) Tm1/° C. Tm2/° C. ΔTm1/° C. ΔTm2/° C. 93/25 anti-hHER2 69.7 81.2 94 anti-hHER2-HC-V2-GDSLSWLLRLLN-Q3 70.8 1.1 95 anti-hHER2-HC-V2-DSLEFIASKLA-Q3 70.0 78.0 0.3 −3.1 102 anti-hHER2-HC-S132D-K133S-S134L-T135E- 69.3 −0.4 S136F-G137I-G138A-T139S-A140K-A141L- L142A 103 anti-hHER2-HC-K133G-S134D-T135S-S136L- 68.4 81.0 −1.3 −0.1 G137S-G138W-LLRLLN-T139 109 anti-hHER2-HC-P189G-S190D-S191-S192L- 69.6; 81.0; −0.1; −0.1; L193S-G194W-T195L 69.3 80.6 −0.4 −0.5 110 anti-hHER2-HC-P189G-S190D-S191-S192L- 69.4 80.7 −0.3 −0.4 L193S-G194W-T195L-LRLLN-Q196 112 anti-hHER2-HC-P189D-S190-S191L-S192E- 69.4 78.6 −0.3 −2.5 L193F-G194I-T195A-Q196S-T197K-Y198L- I199A 113 anti-hHER2-HC-S190G-S191D-S192-L193- 68.1 78.1 −1.7 −3.1 G194S-T195W-Q196L-T197L-RLLN-Y198 114 anti-hHER2-HC-S190D-S191-S192L-L193E- 67.8 −1.9 G194F-T195I-Q196A-T1975-Y198K-I199L 115 anti-hHER2-HC-S190D-S191-S192L-L193E- 67.1 −2.6 G194F-T195I-Q196A-T197S-Y198K-I199L- C200A 116 anti-hHER2-HC-S191D-S192-L193-G194E- 69.3 −0.4 T195F-Q196I-T197A-Y1985-I199K 121 anti-hHER2-HC-T359-GDSLSWLLRLLN-K360 70.1; 81.7; 0.3; 0.6; 70.3 81.7 0.5 0.6 1117 anti-hHER2-HC-T359-GDS-ppan-MC-MMAF- 68.4; 81.5; −1.3; 0.4; LSWLLRLLN-K360 68.6 81.4 −1.2 0.3 122 anti-hHER2-HC-T359-DSLEFIASKLA-K360 70.1 81.7 0.3 0.6 127 anti-hHER2-HC-E388-GDSLSWLLRLLN-N389 66.6 81.5 −3.1 0.4 1118 anti-hHER2-HC-E388-GDS-ppan-MC-MMAF- 66.3 81.0 −3.4 −0.1 LSWLLRLLN-N389 1107 anti-hHER2-HC-E388-GDS-ppan-MC-ValCit- 66.7 80.9 −3.0 −0.2 PABC-MMAF-LSWLLRLLN-N389 131 anti-hHER2-HC-E388-DSLEFIASK-N389 69.4 81.6 −0.3 0.5 130 anti-hHER2-HC-E388-DSLEFIASKL-N389 68.9 81.5 −0.9 0.4 129 anti-hHER2-HC-E388-DSLEFIASKLA-N389 69.3 81.6 −0.4 0.5 135 anti-hHER2-HC-L398D-D399S-S400L-D401E- 49.2 81.2 −20.6 0.1 G402F-S403I-F404A-F405S-L406K-Y407L- S408A 141 anti-hHER2-HC-K447-DSLEFIASKLA 70.1 81.0 0.4 −0.1 27 anti-hHER2-LC-I2-DSLEFIASKLA-Q3 70.0 78.8 0.2 −2.3 29 anti-hHER2-LC-C214-DSLEFIASKLA 69.7 80.9 0.0 −0.2

TABLE 18 Thermal stability as measured by DSC. ΔTm values are relative to unmodified anti-hHER2 antibody. SEQ ID No Tm1/ Tm2/ Tm3/ (antibody) Sample ° C. ° C. ° C. ΔTm1/° C. ΔTm2/° C. 93/25 anti-hHER2 72.3; 80.9; 72.3 81.0 95 anti-hHER2-HC-V2-DSLEFIASKLA- 72.3 77.9 83.3 0.1 −3.1 Q3 1120 anti-hHER2-HC-V2-GDS-ppan-MC- 70.4 82.6 −1.9 1.7 MMAF-LSWLLRLLN-Q3 102 anti-hHER2-HC-S132D-K133S- 70.3 76.2 83.3 −2.0 −4.8 S134L-T135E-S136F-G137I-G138A- T139S-A140K-A141L-L142A 103 anti-hHER2-HC-K133G-S134D- 69.7 80.5 −2.6 −0.5 T135S-S136L-G137S-G138W- LLRLLN-T139 109 anti-hHER2-HC-P189G-S190D- 72.8; 80.1; 0.5; −0.9; S191-S192L-L193S-G194W-T195L 70.7 79.9 −1.6 −1.1 110 anti-hHER2-HC-P189G-S190D- 71.2 80.0 −1.1 −1.0 S191-S192L-L193S-G194W-T195L- LRLLN-Q196 121 anti-hHER2-HC-T359- 70.4; 80.9; −1.9; 0.1; GDSLSWLLRLLN-K360 70.6 80.6 −1.6 −0.4 1117 anti-hHER2-HC-T359-GDS-ppan- 68.7 80.6 −3.6 −0.4 MC-MMAF-LSWLLRLLN-K360 1117 anti-hHER2-HC-T359-GDS-ppan- 68.8 80.4 −3.5 −0.6 MC-MMAF-LSWLLRLLN-K360 122 anti-hHER2-HC-T359- 71.8 80.9 −0.5 −0.1 DSLEFIASKLA-K360 1118 anti-hHER2-HC-E388-GDS-ppan- 67.0 80.2 −5.3 −0.8 MC-MMAF-LSWLLRLLN-N389 1107 anti-hHER2-HC-E388-GDS-ppan- 66.0 80.1 −6.3 −0.9 MC-ValCit-PABC-MMAF- LSWLLRLLN-N389 131 anti-hHER2-HC-E388-DSLEFIASK- 71.2 80.8 −1.0 −0.2 N389 130 anti-hHER2-HC-E388- 70.7 80.8 −1.6 −0.2 DSLEFIASKL-N389 1121 anti-hHER2-HC-E388-DS-ppan-MC- 69.9 80.2 −2.3 −0.8 MMAF-LEFIASKL-N389 129 anti-hHER2-HC-E388- 71.1 80.8 −1.2 −0.2 DSLEFIASKLA-N389 1122 anti-hHER2-HC-E388-DS-ppan-MC- 70.2 80.3 −2.1 −0.7 MMAF-LEFIASKLA-N389 135 anti-hHER2-HC-L398D-D399S- 81.0 0.1 S400L-D401E-G402F-S403I-F404A- F405S-L406K-Y407L-S408A 141 anti-hHER2-HC-K447- 72.7 81.0 0.4 0.1 DSLEFIASKLA 29 anti-hHER2-LC-C214- 71.6 81.1 −0.7 0.1 DSLEFIASKLA

Example 17 Pharmacokinetic Properties of Peptide-Tagged ADCs

To check the in vivo stability of two peptide-tagged Trastuzumab ADCs with MMAF payload (DAR of 2), we conducted a pharmacokinetic (PK) study in mice. Anti-hHER2-HC-T359-GDS-ppan-MC-MMAF-LSWLLRLLN-K360 (SEQ ID NO:1117) and anti-hHER2-HC-E388-GDS-ppan-MC-MMAF-LSWLLRLLN-N389 (SEQ ID NO:1118) were injected i.v. into 3 mice using ADC concentrations of 1.0 mg/kg. 10 samples were collected at 0.2, 1, 3, 7, 24, 48, 96, 168, 240, and 336 hours. The plasma titers of both ADCs were monitored up to two weeks using ELISA assays with anti-human IgG as well as anti-MMAF antibodies and ELISA plates coated with truncated human HER2 (extracellular domains 3-4). The ELISA results were then compared to PK studies of an unmodified Trastuzumab IgG1. While anti-hHER2-HC-T359-GDS-ppan-MC-MMAF-LSWLLRLLN-K360 (SEQ ID NO:1117) showed a fast decay in mice in comparison to unmodified trastuzumab, anti-hHER2-HC-E388-GDS-ppan-MC-MMAF-LSWLLRLLN-N389 (SEQ ID NO:1118) exhibited a serum clearance similar to unmodified trastuzumab over a two week time period (FIG. 16). For both ADCs, anti-hIgG and anti-MMAF titers track each other, suggesting that little if any drug is lost during the in vivo exposure in mice.

Example 18 In Vitro Potency of Peptide-Tagged ADCs

In vitro cell-killing assays of peptide-tagged ADCs were carried out with the HER2-expressing MDA-231 cell line. ADCs with DAR=2 were prepared as described in Example 6 by reacting anti-hHER2-HC-T359-GDSLSWLLRLLN-K360 (SEQ ID NO:121) and anti-hHER2-HC-E388-GDSLSWLLRLLN-N389 (SEQ ID NO:127) with non-cleavable MC-MMAF and cleavable MC-ValCit-PABC-MMAF (Example 12). The in vitro potency of the corresponding ADCs, anti-hHER2-HC-T359-GDS-ppan-MC-MMAF-LSWLLRLLN-K360 (SEQ ID NO:1117), anti-hHER2-HC-E388-GDS-ppan-MC-MMAF-LSWLLRLLN-N389 (SEQ ID NO:1118), anti-hHER2-HC-T359-GDS-ppan-MC-ValCit-PABC-MMAF-LSWLLRLLN-K360 (SEQ ID NO:1108), and anti-hHER2-HC-E388-GDS-ppan-MC-ValCit-PABC-MMAF-LSWLLRLLN-N389 (SEQ ID NO:1107) were tested in PC3-31 (high copy number of HER2) and PC3 (low copy number of HER2) ErbB2 engineered cells. Regarding the PC3-31 cell line, all peptide-tagged ADCs revealed potent cytotoxic activities with half maximal effective concentrations (EC50) in the picomolar range. In contrast, the corresponding EC50 values on PC3 cells were higher than 60 nM. The results are summarized in Table 19 and FIG. 17 and indicate that all four conjugates are highly potent ADCs and kill HER2/neu-positive cells in an antigen-dependent manner.

TABLE 19 In vitro potency of S6-tag conjugated MMAF immunoconjugates. EC50 value SEQ ID NO ADC PC3-31 cell line PC3 cell line 1117 anti-hHER2-HC-T359-GDS-ppan-MC-MMAF- 7.9 ng/mL; 53 pM >9,000 ng/mL; >60 nM LSWLLRLLN-K360 1118 anti-hHER2-HC-E388-GDS-ppan-MC-MMAF- 8.5 ng/mL; 57 pM >9,000 ng/mL; >60 nM LSWLLRLLN-N389 1108 anti-hHER2-HC-T359-GDS-ppan-MC-ValCit- 7.7 ng/mL; 51 pM >9,000 ng/mL; >60 nM PABC-MMAF-LSWLLRLLN-K360 1107 anti-hHER2-HC-E388-GDS-ppan-MC-ValCit- 1.6 ng/mL; 11 pM >9,000 ng/mL; >60 nM PABC-MMAF-LSWLLRLLN-N389

Example 19 Labeling of Peptide-Tagged IgGs with a Cytotoxic CoA Analogue in Cell Culture Media

The bioorthogonality of PPTase-catalyzed 4′-phosphopantetheinylation enables the site-specific labeling of peptide-tagged IgGs in complex mixtures such as conditioned medium. Following the secretion of the peptide-tagged antibody, exogenously added PPTase (such as Sfp) and drug-CoA substrate (such as CoA-MC-MMAF) lead to the formation of homogeneous ADCs, which can be purified in a single step using protein A affinity chromatography.

For example, HEK293F cells were transfected with plasmid DNA coding for IgG1 heavy chain with S6 tag insertion in the CH3 domain and plasmid DNA coding for unmodified kappa light chain. The 40 mL HEK293F suspension culture was cultured for five days at 37° C. After harvesting by centrifugation at 2000 rpm for 10 minutes, the medium supernatant was supplemented to a final concentration of 40 μM of CoA-MC-MMAF, 10 mM of MgCl2, and 50 mM of HEPES (pH 7.5). The medium supernatant was then split into two 20 mL aliquots. Recombinantly produced Sfp enzyme (5 μM) was added to one of the aliquots (see Table 20, Experiment #2) and the enzymatic reaction was allowed to proceed for 24 hours at room temperature.

TABLE 20 In-medium labeling scheme. Experiment # 1 2 Addition of CoA-MC-MMAF (40 μM) X X to medium supernatant Addition of Sfp (5 μM) to medium X supernatant

Antibody purification was carried out using Protein A Sepharose Fast Flow columns with 0.25 mL bed volume for each experiment. After equilibration with PBS, the medium supernatants were applied to the columns at a flow rate of about 1 mL/min and the flowthrough was collected. Following washing with 20 column volumes of PBS, bound antibody was eluted using 6 column volumes of 0.1 M sodium acetate (pH 3.0) followed by immediate neutralization with 1 M Tris/HCl (pH 10) to reach a final pH of about 8. The purity of the eluates was assessed by SDS-PAGE analysis and the antibody yield was determined by the Bradford method. Finally, Sfp-dependent in-medium ADC formation was confirmed by ESI-MS and HPLC analysis of the Protein A eluates.

Example 20 In Vitro Labeling of Peptide-Tagged IgGs with Acetyl CoA and Subsequent Conjugation with a Cytotoxin

The principle of the preparation of immune conjugates via acetyl CoA is a three-step chemoenzymatic conjugation protocol in which the acetyl moiety serves as a protecting group for the reactive thiol group of CoA. Furthermore, although PPTases such as Sfp tolerate large CoA analogues (e.g. peptidyl-CoA) for catalysis, the catalytic efficiency (kcat/KM) is significantly reduced compared to CoA itself (see, Sieber et al., J. Am. Chem. Soc. 125: 10862-10866 (2003)). Hence, it is expected that the small acetyl group ensures similar enzyme kinetics as seen for the native CoA substrate.

For example, covalent conjugation of the acetylated ppan moiety to a peptide-tagged

IgG antibody is carried out as described in Example 6 using acetyl CoA instead of CoA-MC-MMAF. After confirming quantitative conjugation by ESI-MS, the conjugate is dialyzed into Reaction Buffer (0.1 M sodium phosphate (pH 7.2), 0.15 M NaCl). The dialyzed conjugate is concentrated to about 5 mg/mL and supplemented with 10% (v/v) of Deacetylation Solution containing Reaction Buffer (pH 7.2) with 0.5 M hydroxylamine and 25 mM EDTA. This chemical thioester cleavage reaction is allowed to proceed for 3 hours at room temperature, followed by buffer-exchanging the reaction mixture into Reaction Buffer (pH 7.2) supplemented with 10 mM EDTA. After confirmation of quantitative deacetylation by ESI-MS, the deprotected ppan moiety is then conjugated with 15 equivalents of thiol-reactive maleimide-MC-MMAF (0.5 mM) for 1 hour at room temperature. The reaction is quenched by buffer-exchange into PBS. Finally, quantitative ADC formation is confirmed by ESI-MS and HPLC analysis.

Example 21 Labeling of Peptide-Tagged IgGs with Acetyl CoA in Cell Culture Media and Subsequent Conjugation with a Cytotoxin

The bioorthogonality of PPTase-catalyzed generation of homogeneous ADCs allows the site-specific labeling of IgGs in cell culture media (see Example 19). Instead of directly attaching the cytotoxic drug molecule to the antibody, it is also possible to carry out in-medium labeling with acetyl CoA for ADC generation via a three-step chemoenzymatic conjugation process. The small acetyl CoA analogue allows conjugation reactions with improved catalytic efficiency (kcat/KM) as compared to large cytotoxic CoA analogues, thereby significantly decreasing the amount of enzyme needed for quantitative conjugation. Furthermore, for process development, it would be advantageous to perform labeling reactions in large culture volumes with non-toxic compounds. The peptide-tagged IgG conjugated with the acetyl-ppan moiety can be purified in a single step using protein A affinity chromatography. In order to prepare the immune conjugate starting from the purified acetyl-ppan-conjugated antibody, the two subsequent chemical reactions are carried out as described in Example 20.

Example 22 Labeling of Peptide-Tagged IgGs with Acetyl CoA or Bioorthogonal CoA Analogues in Cell Culture Media and Subsequent Conjugation with a Cytotoxin

The bioorthogonality of PPTase-catalyzed generation of homogeneous ADCs also allows the site-specific labeling of IgGs in cell culture media (see Example 19). Instead of directly attaching the cytotoxic drug molecule to the antibody, it is also possible to carry out in-medium labeling with acetyl CoA for ADC generation via a three-step chemoenzymatic conjugation process. The small acetyl CoA analogue allows conjugation reactions with improved catalytic efficiency (kcat/KM) as compared to large cytotoxic CoA analogues, thereby significantly decreasing the amount of enzyme needed for quantitative conjugation. Furthermore, for process development, it would be advantageous to perform labeling reactions in large culture volumes with non-toxic compounds. The peptide-tagged IgG conjugated with the acetyl-ppan moiety can be purified in a single step using protein A affinity chromatography. In order to prepare the immune conjugate starting from the purified acetyl-ppan-conjugated antibody, the two subsequent chemical reactions are carried out as described in Example 20.

Alternatively, instead of using acetyl CoA, in-medium labeling can also be performed with CoA analogues covalently linked to bioorthogonal groups, such as azido, alkene, alkyne, ketone, or aldehyde moieties. Following in-medium PPTase catalysis, the peptide-tagged antibody with the ppan-bound bioorthogonal group is purified to homogeneity using protein A affinity chromatography. As the last step of this two-step chemoenzymatic labeling strategy for ADC preparation, the reaction with the complementary bioorthogonal group leads to the site-specific attachment of the drug moiety to the antibody. FIG. 22 exemplifies the two-step method for the site-specific attachment of carbonyl-functionalized CoA analogues to an A1-tagged antibody followed by oxime ligation of the terminal group (TG). After performing the first step in cell-culture medium, the resulting carbonyl-functionalized antibody is purified by protein A affinity purification. The second step then involves reaction of the ppan-linked carbonyl group with an aminooxy-derivatized TG. Following reaction, excess TG is removed by dialysis or buffer exchange. The synthesis of a carbonyl-functionalized CoA analogue (ketone CoA) is described in Example 23.

Example 23 Synthesis of Ketone CoA

784 μL of a 25 mM aqueous solution of CoA-SH (20 μmol, Sigma-Aldrich) was added to 9.0 mL of 100 mM sodium phosphate buffer (pH 7.1). After diluting methyl vinyl ketone (30 μmol, Sigma-Aldrich) 10-fold in H2O, 25 μL of the resulting aqueous solution was added to the 2 mM CoA-SH solution. The reaction mixture was shaken at room temperature for 1 hour. The reaction was quenched in liquid nitrogen and stored at −80° C.
The reaction mixture was purified on a SunFire Prep C18 Column (Waters) with 5 μm particle size and 10×100 mm dimensions. After injecting 4-6 mL of reaction mixture, the following gradient between 0.1% (v/v) TFA/water (A) and 0.1% (v/v) TFA/acetonitrile (B) was applied at a flowrate of 5 mL/min.

Time (min) % B 0 5 5 5 30 100

The HPLC-purified ketone CoA was confirmed by LC-MS. ESI-MS calculated for C25H43N7O17P3S [MH]+: 838.2; observed: 838.1. The desired product was lyophilized and 2.93 mg (3.5 μmol) of ketone CoA was obtained in 18% yield.

Example 24 Production and Properties of ADCs with a DAR of 4

ADCs with a DAR of 4 can be generated by inserting/grafting multiple peptide tags into an antibody, which are substrates of the same enzyme (FIG. 19A). For instance, both the ybbR- and the S6-tags are recognized as substrates by the PPTase Sfp. Conversely, labeling of antibodies with multiple different ligands is achieved by inserting/grafting peptide tags into an antibody, which are substrates of two different PPTases. For example, the A1 tag is exclusively recognized by the AcpS PPTase, while the S6 tag is preferentially modified by the Sfp PPTase. Furthermore, immunoconjugates with higher DARs (e.g., DARs of 6, 8, 10, 12, etc.) may be generated by adding additional tags. Enzymatic conjugation can also be combined with other labeling strategies such as site-specific conjugation through cysteine, pyrrolysine, pyrroline-carboxy-lysine, and unnatural amino acids as well as chemoselective methods such as Lys, Cys or Tyr selective chemistries.

In order to prepare homogeneous ADCs with a DAR of 4, two peptide tags were incorporated into the heavy chain of Trastuzumab IgG1, namely an S6 tag into the VH domain and a ybbR tag into the CH3 domain (anti-hHER2-HC-V2-GDSLSWLLRLLN-Q3-E388-DSLEFIASKLA-N389 (SEQ ID NO:142)). This dual-tagged antibody was expressed in HEK293F cells on a 50 mL scale. Following transfection, the HEK293F cells were cultured for five days before harvest by centrifugation at 3400 rpm for 15 min. The resulting medium supernatant was filtered through a 0.22-μm-pore-size filter. Purification was accomplished using a Protein A Sepharose Fast Flow column (GE Healthcare) with a bed volume of 0.6 mL, which was equilibrated with 20 column volumes of PBS. The filtered medium supernatant was loaded at a flow rate of about 1 mL/min. After washing the column with 20 column volumes of PBS, the peptide-tagged antibody was eluted with 5 column volumes of 0.1 M sodium acetate (pH 3.0) followed by immediate neutralization with 1 M Tris/HCl (pH 10) to a final pH of about 8. According to the Bradford method, the total yield was 8 mg of purified antibody per liter culture.

The purity of the antibody construct was assessed by SDS-gel electrophoresis. After concentration with a 30 kDa cut-off Amicon Ultra Centrifugal Filter Unit, 2.5 μM anti-hHER2-HC-V2-GDSLSWLLRLLN-Q3-E388-DSLEFIASKLA-N389 (SEQ ID NO:142) was incubated with 50 μM CoA-MC-MMAF, 1 μM Sfp, 12.5 mM MgCl2, in 75 mM HEPES buffer, pH 7.5, at 23° C. for 16 hours to enzymatically label the dual-tagged antibody with four drug molecules.

The deconvoluted mass spectrum of the reduced and deglycosylated antibody construct confirmed the covalent attachment of two ppan-MC-MMAF units to each heavy chain of Trastuzumab (observed mass, 54223.20 Da; expected mass, 54231 Da). Neither uncoupled (expected mass, 51700 Da) nor mono-labeled species (expected mass, 52966 Da) were observed by ESI-MS. Near quantitative conversion to an ADC with a DAR of 4 (95% according to peak area integration) was further confirmed by HPLC analysis (FIG. 19B).

Example 25 Generation of a Comprehensive Library of Peptide-Tagged ADCs Using the Protein Expression and Purification Platform (PEPP)

Based on the examination of the crystal structure of human IgG1 B12 antibody as well as surface accessibility calculations (Example 1), a library of 268 peptide-tagged trastuzumab IgG1 constructs was proposed. Systematic insertion of S6 and ybbR tag sequences into the constant regions was accomplished by standard molecular biology methods using the oligonucleotides listed in Table 8. Sequence confirmed plasmids harboring either the heavy or light chain genes of trastuzumab were used for transient co-transfection of 293 Freestyle™ cells according to the PEI method (Meissner et al., 2001). Culturing of each library member in a volume of 35 mL of Freestyle™ expression media (Invitrogen) for five days at 37° C. under 5% CO2 was carried out on the PEPP system (Gonzalez R, Jennings L L, Knuth M, Orth A P, Klock H E, Ou W, Feuerhelm J, Hull M V, Koesema E, Wang Y, Zhang J, Wu C, Cho C Y, Su A I, Batalov S, Chen H, Johnson K, Laffitte B, Nguyen D G, Snyder E Y, Schultz P G, Harris J L, Lesley S A. Proc Natl Acad Sci USA. 2010, 107(8):3552-7). Following automated cell harvest, the same system was used to purify the library of peptide-tagged antibodies by Protein A affinity chromatography. Briefly, after 0.22 μm filtration of the medium supernatant, each filtrate was loaded onto a Protein A affinity column containing 0.2 mL of settled resin at an approximate flow rate of 1 mL/min. The column was then washed with 20 column volumes of PBS followed by elution with 5 column volumes of 0.1 M sodium acetate, pH 3.0. The eluate was immediately neutralized with 25% (v/v) of 1 M Tris-HCl (pH 8.0).

To determine the yield of the Protein A-purified antibodies (Table 21), protein concentrations of the eluates were measured in duplicate on a ND-1000 UV-Vis spectrophotometer (NanoDrop Technologies) at 280 nm using the preset molar extinction coefficient for IgG molecules. After concentrating the peptide-tagged antibodies using 30 kDa cut-off Amicon Ultra-0.5 centrifugal filter devices (EMD Millipore), enzyme-catalyzed conjugation reactions were performed for about 16 hours at 20° C. with 2.5 μM of peptide-tagged antibody, 20 μM of CoA-MC-MMAF substrate, and 1 μM of Sfp enzyme in Tris-HCl buffer (75 mM, pH 8.0) supplemented with 12.5 mM of MgCl2 and 20 mM of NaCl. The degree of labeling of the peptide-tagged antibodies was quantified by analytical HPLC on a PLRP-S column (4000 Å, 5 IAA, 50×4.6 mm, Agilent Technologies) with a 6-min linear gradient of 25-50% acetonitrile in water containing 0.1% trifluoroacetic acid. The corresponding uncoupled antibodies were used as negative controls (Table 21). After concentrating the antibody conjugates using Amicon Ultra-4 centrifugal filter devices (EMD Millipore), the enzymatic reactions were further analyzed by mass spectrometry on an Agilent 6520 Q-TOF instrument (Agilent Technologies). Deconvoluted ESI-MS spectra of the reduced and deglycosylated antibody conjugates were obtained by using 10 μL of concentrated reaction mixture (Table 21).

The peptide-tagged ADC constructs were further purified by Ni-NTA (nickel-nitrilotriacetic acid) chromatography to remove Sfp enzyme and excess CoA-MC-MMAF substrate. After equilibration of the Ni-NTA columns (0.2 mL bed volume each) with PBS, the concentrated conjugation samples were loaded onto the columns at an approximate flow rate of 1 mL/min. Next, the columns were washed with 20 column volumes of PBS followed by elution with 5 column volumes of Tris-HCl buffer (50 mM, pH 8.0) supplemented with 250 mM imidazole and 300 mM NaCl. According to Bradford assay, the recovery of the peptide-tagged ADCs averaged 39% of the Protein A-purified starting material. The PEPP system was then used to buffer-exchange each sample into PBS using NAP-10 Columns (GE Healthcare). Following buffer-exchange, the peptide-tagged ADCs were concentrated using Amicon Ultra-4 centrifugal filter devices (EMD Millipore), and the concentrations of the conjugates were adjusted by dilution with PBS. Adjusted to the appropriate concentration, the ADC samples were further characterized by DSF (differential scanning fluorimetry), LC90 (LabChip 90), AnSEC (analytical size-exclusion chromatography), and in vitro potency assays (data not shown).

Of the originally planned 268 peptide-tagged trastuzumab antibodies, expression was tested for 183 constructs (68%). The expression levels exhibit a great variability ranging from 0 to more than 30 mg of antibody per liter culture (Table 21), with the average being 16 mg (±8 mg standard deviation) of antibody per liter culture. Furthermore, the expression levels correlate with the position of the peptide tag insertion with the 46 light chain constructs (13±8 mg per liter culture) exhibiting lower average expressions levels than the 137 heavy chain constructs (17±8 mg per liter culture). The expression levels also depend on the type of peptide tag: 95 antibody constructs with ybbR tag insertions on average show higher expression levels (19±7 mg per liter culture) than the corresponding 88 constructs with S6 tag insertions (13±8 mg per liter culture). The opposite trend is observed for the conjugation efficiencies based on reverse-phase HPLC analysis: 44 (72%) peptide-tagged constructs with near quantitative ADC formation (drug-to-antibody ratio 1.9) are based on insertion of the S6 peptide sequence, while only 17 (28%) ybbR-tagged antibodies displayed near quantitative conversion to the corresponding ADC.

On average, heavy chain constructs were conjugated more efficiently than peptide insertions in the light chain: 19% (8 out of 43) of the constructs with peptide tag insertions in the light chain revealed DARs of at least 1.9 while 40% (53 out of 131) of the constructs with peptide tag insertions in the heavy chain could be conjugated with the same efficiency. The best overall conjugation efficiencies are displayed by peptide tag insertions in several loop regions of the CH1 domain. Overall, of the 183 expressed peptide-tagged antibodies, conjugation efficiencies of 174 constructs could be determined with 61 (35%) constructs yielding drug-to-antibody ratios (DARs) of 1.9 or higher.

Thermostability of the resulting ADCs depends on the site of peptide tag insertion. For instance, most peptide tag insertions in the CH2 domain lead to a significant decrease of the lowest observed thermal transition (Tm1) according to DSF (differential scanning fluorimetry) measurements as will be illustrated in more detail in Example 26. Little aggregation or antibody oligomers were observed for 135 (87%) out of 156 peptide-tagged ADCs that were examined by analytical size-exclusion chromatography 90% monomeric species). The in vitro potency of the peptide-tagged ADCs correlated as expected with their degree of labeling. Although a large number of peptide-tagged ADCs with preferred properties can be generated, the data also illustrate that expression yield, thermal stability, conjugation efficiency and other properties are greatly affected by the choice of tag insertion site.

TABLE 21 ADC preparation and characterization of material prepared on PEPP system. Anti- Anti- ADC body Expected Expected body SEQ ID yieldb mass anti- mass Observed SEQ ID ADC namea NO (mg/L) DARc bodyd (Da) ADCe (Da) massf (Da) SEQ ID anti-hHER2-HC-A118- SEQ ID 10 2.0 50525.0 51790.5 51792.7 NO: 150 GDS-ppan-MC-MMAF- NO: 1136 51814.6 LSWLLRLLN-S119 SEQ ID anti-hHER2-HC-S119- SEQ ID 12 2.0 50525.0 51790.5 51792.4 NO: 151 GDS-ppan-MC-MMAF- NO: 1137 LSWLLRLLN-T120 SEQ ID anti-hHER2-HC-T120- SEQ ID 11 2.0 50525.0 51790.5 51797.2 NO: 152 GDS-ppan-MC-MMAF- NO: 1138 LSWLLRLLN-K121 SEQ ID anti-hHER2-HC-T135- SEQ ID 24 2.0 50525.0 51790.5 51792.8 NO: 157 GDS-ppan-MC-MMAF- NO: 1139 LSWLLRLLN-S136 SEQ ID anti-hHER2-HC-S136- SEQ ID 20 2.0 50525.0 51790.5 51792.0 NO: 158 GDS-ppan-MC-MMAF- NO: 1140 LSWLLRLLN-G137 SEQ ID anti-hHER2-HC-G138- SEQ ID 14 2.0 50525.0 51790.5 51792.3 NO: 160 GDS-ppan-MC-MMAF- NO: 1141 51814.6 LSWLLRLLN-T139 SEQ ID anti-hHER2-HC-E152- SEQ ID 3 0.2 50525.0 51790.5 50528.4 NO: 161 GDS-ppan-MC-MMAF- NO: 1142 51794.8 LSWLLRLLN-P153 SEQ ID anti-hHER2-HC-P153- SEQ ID 0 N/A 50525.0 51790.5 N/A NO: 162 GDS-ppan-MC-MMAF- NO: 1143 LSWLLRLLN-V154 SEQ ID anti-hHER2-HC-N159- SEQ ID 0 N/A 50525.0 51790.5 N/A NO: 163 GDS-ppan-MC-MMAF- NO: 1144 LSWLLRLLN-S160 SEQ ID anti-hHER2-HC-S160- SEQ ID 10 1.4 50525.0 51790.5 51792.0 NO: 164 GDS-ppan-MC-MMAF- NO: 1145 LSWLLRLLN-G161 SEQ ID anti-hHER2-HC-G161- SEQ ID 9 1.3 50525.0 51790.5 51798.0 NO: 165 GDS-ppan-MC-MMAF- NO: 1146 50529.2 LSWLLRLLN-A162 SEQ ID anti-hHER2-HC-A162- SEQ ID 15 2.0 50525.0 51790.5 51798.4 NO: 166 GDS-ppan-MC-MMAF- NO: 1147 LSWLLRLLN-L163 SEQ ID anti-hHER2-HC-T164- SEQ ID 22 2.0 50525.0 51790.5 51796.8 NO: 168 GDS-ppan-MC-MMAF- NO: 1148 LSWLLRLLN-S165 SEQ ID anti-hHER2-HC-S165- SEQ ID 15 2.0 50525.0 51790.5 51794.4 NO: 169 GDS-ppan-MC-MMAF- NO: 1149 LSWLLRLLN-G166 SEQ ID anti-hHER2-HC-P171- SEQ ID 3 N/A 50525.0 51790.5 N/A NO: 170 GDS-ppan-MC-MMAF- NO: 1150 LSWLLRLLN-A172 SEQ ID anti-hHER2-HC-S176- SEQ ID 8 1.9 50525.0 51790.5 51791.7 NO: 171 GDS-ppan-MC-MMAF- NO: 1151 51812.9 LSWLLRLLN-S177 SEQ ID anti-hHER2-HC-P189- SEQ ID 24 1.5 50525.0 51790.5 51792.4 NO: 173 GDS-ppan-MC-MMAF- NO: 1152 LSWLLRLLN-S190 SEQ ID anti-hHER2-HC-S191- SEQ ID 21 2.0 50525.0 51790.5 51792.0 NO: 175 GDS-ppan-MC-MMAF- NO: 1153 51814.0 LSWLLRLLN-S192 SEQ ID anti-hHER2-HC-S192- SEQ ID 32 2.0 50525.0 51790.5 51792.0 NO: 176 GDS-ppan-MC-MMAF- NO: 1154 51813.7 LSWLLRLLN-L193 SEQ ID anti-hHER2-HC-L193- SEQ ID 18 2.0 50525.0 51790.5 51791.0 NO: 177 GDS-ppan-MC-MMAF- NO: 1155 LSWLLRLLN-G194 SEQ ID anti-hHER2-HC-G194- SEQ ID 19 2.0 50525.0 51790.5 51796.8 NO: 178 GDS-ppan-MC-MMAF- NO: 1156 LSWLLRLLN-T195 SEQ ID anti-hHER2-HC-T195- SEQ ID 17 2.0 50525.0 51790.5 51800.0 NO: 179 GDS-ppan-MC-MMAF- NO: 1157 53918.8 LSWLLRLLN-Q196 SEQ ID anti-hHER2-HC-Q196- SEQ ID 23 1.9 50525.0 51790.5 51791.9 NO: 180 GDS-ppan-MC-MMAF- NO: 1158 51813.5 LSWLLRLLN-T197 SEQ ID anti-hHER2-HC-K205- SEQ ID 22 0.2 50525.0 51790.5 50526.7 NO: 181 GDS-ppan-MC-MMAF- NO: 1159 51792.6 LSWLLRLLN-P206 50548.6 SEQ ID anti-hHER2-HC-P206- SEQ ID 25 1.9 50525.0 51790.5 51792.1 NO: 182 GDS-ppan-MC-MMAF- NO: 1160 51813.9 LSWLLRLLN-S207 SEQ ID anti-hHER2-HC-A231- SEQ ID 35 2.0 50525.0 51790.5 51789.5 NO: 185 GDS-ppan-MC-MMAF- NO: 1161 51810.4 LSWLLRLLN-P232 SEQ ID anti-hHER2-HC-E233- SEQ ID 13 1.9 50525.0 51790.5 51789.5 NO: 187 GDS-ppan-MC-MMAF- NO: 1162 51770.4 LSWLLRLLN-L234 51809.6 SEQ ID anti-hHER2-HC-L235- SEQ ID 16 1.9 50525.0 51790.5 51790.1 NO: 189 GDS-ppan-MC-MMAF- NO: 1163 51811.8 LSWLLRLLN-G236 SEQ ID anti-hHER2-HC-P244- SEQ ID 12 0.8 50525.0 51790.5 50522.7 NO: 191 GDS-ppan-MC-MMAF- NO: 1164 51790.6 LSWLLRLLN-P245 50545.4 SEQ ID anti-hHER2-HC-I253- SEQ ID 23 1.9 50525.0 51790.5 51789.0 NO: 193 GDS-ppan-MC-MMAF- NO: 1165 51809.6 LSWLLRLLN-S254 SEQ ID anti-hHER2-HC-S254- SEQ ID 20 2.0 50525.0 51790.5 51789.5 NO: 194 GDS-ppan-MC-MMAF- NO: 1166 51810.5 LSWLLRLLN-R255 SEQ ID anti-hHER2-HC-R255- SEQ ID 25 2.0 50525.0 51790.5 51792.2 NO: 195 GDS-ppan-MC-MMAF- NO: 1167 51814.5 LSWLLRLLN-T256 SEQ ID anti-hHER2-HC-S267- SEQ ID 20 2.0 50525.0 51790.5 51789.2 NO: 198 GDS-ppan-MC-MMAF- NO: 1168 51810.1 LSWLLRLLN-H268 SEQ ID anti-hHER2-HC-H268- SEQ ID 10 2.0 50525.0 51790.5 51789.6 NO: 199 GDS-ppan-MC-MMAF- NO: 1169 51810.0 LSWLLRLLN-E269 SEQ ID anti-hHER2-HC-E269- SEQ ID 0 N/A 50525.0 51790.5 N/A NO: 200 GDS-ppan-MC-MMAF- NO: 1170 LSWLLRLLN-D270 SEQ ID anti-hHER2-HC-D270- SEQ ID 18 2.0 50525.0 51790.5 51789.8 NO: 201 GDS-ppan-MC-MMAF- NO: 1171 51771.0 LSWLLRLLN-P271 51811.2 SEQ ID anti-hHER2-HC-P271- SEQ ID 8 2.0 50525.0 51790.5 51796.4 NO: 202 GDS-ppan-MC-MMAF- NO: 1172 LSWLLRLLN-E272 SEQ ID anti-hHER2-HC-P291- SEQ ID 23 1.8 50525.0 51790.5 51789.8 NO: 206 GDS-ppan-MC-MMAF- NO: 1173 51811.3 LSWLLRLLN-R292 SEQ ID anti-hHER2-HC-T307- SEQ ID 4 n.d. 50525.0 51790.5 51793.6 NO: 207 GDS-ppan-MC-MMAF- NO: 1174 50526.4 LSWLLRLLN-V308 SEQ ID anti-hHER2-HC-L309- SEQ ID 10 n.d. 50525.0 51790.5 51795.6 NO: 209 GDS-ppan-MC-MMAF- NO: 1175 50530.8 LSWLLRLLN-H310 SEQ ID anti-hHER2-HC-N315- SEQ ID 13 0.9 50525.0 51790.5 51788.9 NO: 211 GDS-ppan-MC-MMAF- NO: 1176 50523.3 LSWLLRLLN-G316 51810.4 SEQ ID anti-hHER2-HC-G316- SEQ ID 7 0.8 50525.0 51790.5 50524.1 NO: 212 GDS-ppan-MC-MMAF- NO: 1177 51789.7 LSWLLRLLN-K317 50545.9 SEQ ID anti-hHER2-HC-A327- SEQ ID 14 0.5 50525.0 51790.5 51789.9 NO: 215 GDS-ppan-MC-MMAF- NO: 1178 50522.7 LSWLLRLLN-L328 SEQ ID anti-hHER2-HC-L328- SEQ ID 16 1.0 50525.0 51790.5 51789.8 NO: 216 GDS-ppan-MC-MMAF- NO: 1179 50523.2 LSWLLRLLN-P329 51810.9 SEQ ID anti-hHER2-HC-P329- SEQ ID 18 1.5 50525.0 51790.5 51790.1 NO: 217 GDS-ppan-MC-MMAF- NO: 1180 51811.9 LSWLLRLLN-A330 SEQ ID anti-hHER2-HC-A330- SEQ ID 9 1.7 50525.0 51790.5 51792.4 NO: 218 GDS-ppan-MC-MMAF- NO: 1181 50527.6 LSWLLRLLN-P331 SEQ ID anti-hHER2-HC-K340- SEQ ID 6 1.8 50525.0 51790.5 51792.4 NO: 220 GDS-ppan-MC-MMAF- NO: 1182 51604.8 LSWLLRLLN-G341 SEQ ID anti-hHER2-HC-G341- SEQ ID 26 1.9 50525.0 51790.5 51790.0 NO: 221 GDS-ppan-MC-MMAF- NO: 1183 LSWLLRLLN-Q342 SEQ ID anti-hHER2-HC-Q342- SEQ ID 0 N/A 50525.0 51790.5 N/A NO: 222 GDS-ppan-MC-MMAF- NO: 1184 LSWLLRLLN-P343 SEQ ID anti-hHER2-HC-P343- SEQ ID 14 2.0 50525.0 51790.5 51792.2 NO: 223 GDS-ppan-MC-MMAF- NO: 1185 51809.3 LSWLLRLLN-R344 SEQ ID anti-hHER2-HC-R344- SEQ ID 16 2.0 50525.0 51790.5 51794.4 NO: 224 GDS-ppan-MC-MMAF- NO: 1186 LSWLLRLLN-E345 SEQ ID anti-hHER2-HC-K360- SEQ ID 26 2.0 50525.0 51790.5 51796.8 NO: 229 GDS-ppan-MC-MMAF- NO: 1187 LSWLLRLLN-N361 SEQ ID anti-hHER2-HC-N384- SEQ ID 2 2.0 50525.0 51790.5 51792.8 NO: 230 GDS-ppan-MC-MMAF- NO: 1188 LSWLLRLLN-G385 SEQ ID anti-hHER2-HC-E388- SEQ ID 23 2.0 50525.0 51790.5 51794.4 NO: 127 GDS-ppan-MC-MMAF- NO: 1118 LSWLLRLLN-N389 SEQ ID anti-hHER2-HC-T394- SEQ ID 3 0.7 50525.0 51790.5 51793.2 NO: 232 GDS-ppan-MC-MMAF- NO: 1189 50525.2 LSWLLRLLN-P395 SEQ ID anti-hHER2-HC-P395- SEQ ID 4 n.d. 50525.0 51790.5 51794.6 NO: 233 GDS-ppan-MC-MMAF- NO: 1190 51773.9 LSWLLRLLN-P396 51820.4 SEQ ID anti-hHER2-HC-D401- SEQ ID 10 0.2 50525.0 51790.5 51793.7 NO: 235 GDS-ppan-MC-MMAF- NO: 1191 51818.2 LSWLLRLLN-G402 SEQ ID anti-hHER2-HC-S415- SEQ ID 5 1.1 50525.0 51790.5 51792.8 NO: 236 GDS-ppan-MC-MMAF- NO: 1192 50526.8 LSWLLRLLN-R416 SEQ ID anti-hHER2-HC-R416- SEQ ID 5 1.7 50525.0 51790.5 51794.1 NO: 237 GDS-ppan-MC-MMAF- NO: 1193 LSWLLRLLN-W417 SEQ ID anti-hHER2-HC-W417- SEQ ID 15 1.4 50525.0 51790.5 51798.8 NO: 238 GDS-ppan-MC-MMAF- NO: 1194 51921.6g LSWLLRLLN-Q418 SEQ ID anti-hHER2-HC-Q418- SEQ ID 9 2.0 50525.0 51790.5 51794.4 NO: 239 GDS-ppan-MC-MMAF- NO: 1195 LSWLLRLLN-Q419 SEQ ID anti-hHER2-HC-H433- SEQ ID 5 2.0 50525.0 51790.5 51793.6 NO: 243 GDS-ppan-MC-MMAF- NO: 1196 51922.4g LSWLLRLLN-N434 51735.6 SEQ ID anti-hHER2-HC-N434- SEQ ID 20 2.0 50525.0 51790.5 51797.6 NO: 244 GDS-ppan-MC-MMAF- NO: 1197 51923.6g LSWLLRLLN-H435 SEQ ID anti-hHER2-HC-L443- SEQ ID 24 0.0 50525.0 51790.5 50527.2 NO: 246 GDS-ppan-MC-MMAF- NO: 1198 50547.1 LSWLLRLLN-S444 SEQ ID anti-hHER2-HC-P445- SEQ ID 10 2.0 50525.0 51790.5 51786.8 NO: 248 GDS-ppan-MC-MMAF- NO: 1199 51915.6g LSWLLRLLN-G446 51729.6 SEQ ID anti-hHER2-HC-A118- SEQ ID 18 1.5 50331.8 51597.3 51598.4 NO: 249 DS-ppan-MC-MMAF- NO: 1200 51618.3 LEFIASKLA-S119 SEQ ID anti-hHER2-HC-S119- SEQ ID 15 1.6 50331.8 51597.3 51602.4 NO: 250 DS-ppan-MC-MMAF- NO: 1201 LEFIASKLA-T120 SEQ ID anti-hHER2-HC-T120- SEQ ID 27 2.0 50331.8 51597.3 51600.8 NO: 251 DS-ppan-MC-MMAF- NO: 1202 LEFIASKLA-K121 SEQ ID anti-hHER2-HC-S136- SEQ ID 19 2.0 50331.8 51597.3 51603.2 NO: 257 DS-ppan-MC-MMAF- NO: 1203 LEFIASKLA-137 SEQ ID anti-hHER2-HC-G138- SEQ ID 21 2.0 50331.8 51597.3 51601.6 NO: 259 DS-ppan-MC-MMAF- NO: 1204 LEFIASKLA-T139 SEQ ID anti-hHER2-HC-P153- SEQ ID 15 0.1 50331.8 51597.3 50339.6 NO: 261 DS-ppan-MC-MMAF- NO: 1205 LEFIASKLA-V154 SEQ ID anti-hHER2-HC-N159- SEQ ID 13 n.d. 50331.8 51597.3 50334.4 NO: 262 DS-ppan-MC-MMAF- NO: 1206 51600.4 LEFIASKLA-S160 SEQ ID anti-hHER2-HC-A162- SEQ ID 16 1.7 50331.8 51597.3 51598.3 NO: 265 DS-ppan-MC-MMAF- NO: 1207 51618.5 LEFIASKLA-L163 SEQ ID anti-hHER2-HC-T164- SEQ ID 18 1.2 50331.8 51597.3 51597.7 NO: 267 DS-ppan-MC-MMAF- NO: 1208 51616.8 LEFIASKLA-S165 SEQ ID anti-hHER2-HC-S165- SEQ ID 23 1.9 50331.8 51597.3 51595.2 NO: 268 DS-ppan-MC-MMAF- NO: 1209 LEFIASKLA-G166 SEQ ID anti-hHER2-HC-P171- SEQ ID 15 1.0 50331.8 51597.3 50332.9 NO: 269 DS-ppan-MC-MMAF- NO: 1210 50353.8 LEFIASKLA-A172 SEQ ID anti-hHER2-HC-S176- SEQ ID 13 0.1 50331.8 51597.3 50333.0 NO: 270 DS-ppan-MC-MMAF- NO: 1211 50354.0 LEFIASKLA-S177 SEQ ID anti-hHER2-HC-S190- SEQ ID 23 0.2 50331.8 51597.3 50333.6 NO: 273 DS-ppan-MC-MMAF- NO: 1212 51600.8 LEFIASKLA-S191 SEQ ID anti-hHER2-HC-S191- SEQ ID 24 1.6 50331.8 51597.3 51598.9 NO: 274 DS-ppan-MC-MMAF- NO: 1213 51620.3 LEFIASKLA-S192 SEQ ID anti-hHER2-HC-S192- SEQ ID 21 2.0 50331.8 51597.3 51598.4 NO: 275 DS-ppan-MC-MMAF- NO: 1214 51618.8 LEFIASKLA-L193 SEQ ID anti-hHER2-HC-G194- SEQ ID 14 1.6 50331.8 51597.3 51599.2 NO: 277 DS-ppan-MC-MMAF- NO: 1215 LEFIASKLA-T195 SEQ ID anti-hHER2-HC-T195- SEQ ID 14 1.9 50331.8 51597.3 51599.0 NO: 278 DS-ppan-MC-MMAF- NO: 1216 51617.2 LEFIASKLA-Q196 SEQ ID anti-hHER2-HC-Q196- SEQ ID 21 2.0 50331.8 51597.3 51598.1 NO: 279 DS-ppan-MC-MMAF- NO: 1217 51618.7 LEFIASKLA-T197 SEQ ID anti-hHER2-HC-K205- SEQ ID 24 0.0 50331.8 51597.3 50327.6 NO: 280 DS-ppan-MC-MMAF- NO: 1218 LEFIASKLA-P206 SEQ ID anti-hHER2-HC-P206- SEQ ID 23 0.0 50331.8 51597.3 50333.3 NO: 281 DS-ppan-MC-MMAF- NO: 1219 50354.7 LEFIASKLA-S207 SEQ ID anti-hHER2-HC-E233- SEQ ID 28 0.6 50331.8 51597.3 50330.8 NO: 286 DS-ppan-MC-MMAF- NO: 1220 51596.6 LEFIASKLA-L234 51615.6 SEQ ID anti-hHER2-HC-L235- SEQ ID 24 2.0 50331.8 51597.3 51596.7 NO: 288 DS-ppan-MC-MMAF- NO: 1221 51617.5 LEFIASKLA-G236 SEQ ID anti-hHER2-HC-G236- SEQ ID 22 1.3 50331.8 51597.3 51598.8 NO: 289 DS-ppan-MC-MMAF- NO: 1222 51620.7 LEFIASKLA-G237 SEQ ID anti-hHER2-HC-P244- SEQ ID 8 1.4 50331.8 51597.3 51596.8 NO: 290 DS-ppan-MC-MMAF- NO: 1223 51614.6 LEFIASKLA-P245 SEQ ID anti-hHER2-HC-P245- SEQ ID 22 1.0 50331.8 51597.3 50330.6 NO: 291 DS-ppan-MC-MMAF- NO: 1224 51595.9 LEFIASKLA-K246 50351.5 SEQ ID anti-hHER2-HC-I253-DS- SEQ ID 0 N/A 50331.8 51597.3 N/A NO: 292 ppan-MC-MMAF- NO: 1225 LEFIASKLA-S254 SEQ ID anti-hHER2-HC-S254- SEQ ID 24 1.9 50331.8 51597.3 51596.6 NO: 293 DS-ppan-MC-MMAF- NO: 1226 51616.8 LEFIASKLA-R255 SEQ ID anti-hHER2-HC-R255- SEQ ID 21 2.0 50331.8 51597.3 51596.3 NO: 294 DS-ppan-MC-MMAF- NO: 1227 51616.5 LEFIASKLA-T256 SEQ ID anti-hHER2-HC-P257- SEQ ID 22 1.9 50331.8 51597.3 51596.3 NO: 296 DS-ppan-MC-MMAF- NO: 1228 51616.1 LEFIASKLA-E258 SEQ ID anti-hHER2-HC-S267- SEQ ID 23 0.2 50331.8 51597.3 51596.0 NO: 297 DS-ppan-MC-MMAF- NO: 1229 50330.9 LEFIASKLA-H268 51615.6 SEQ ID anti-hHER2-HC-H268- SEQ ID 22 0.7 50331.8 51597.3 51596.2 NO: 298 DS-ppan-MC-MMAF- NO: 1230 50331.0 LEFIASKLA-E269 51616.8 SEQ ID anti-hHER2-HC-E269- SEQ ID 17 1.8 50331.8 51597.3 51598.7 NO: 299 DS-ppan-MC-MMAF- NO: 1231 51620.0 LEFIASKLA-D270 SEQ ID anti-hHER2-HC-D270- SEQ ID 26 1.3 50331.8 51597.3 51596.4 NO: 300 DS-ppan-MC-MMAF- NO: 1232 51616.5 LEFIASKLA-P271 SEQ ID anti-hHER2-HC-P271- SEQ ID 22 1.7 50331.8 51597.3 51595.9 NO: 301 DS-ppan-MC-MMAF- NO: 1233 51615.4 LEFIASKLA-E272 SEQ ID anti-hHER2-HC-D280- SEQ ID 4 0.7 50331.8 51597.3 50330.8 NO: 302 DS-ppan-MC-MMAF- NO: 1234 51596.3 LEFIASKLA-G281 50351.7 SEQ ID anti-hHER2-HC-H285- SEQ ID 25 0.0 50331.8 51597.3 50331.0 NO: 303 DS-ppan-MC-MMAF- NO: 1235 50352.7 LEFIASKLA-N286 SEQ ID anti-hHER2-HC-N286- SEQ ID 20 0.0 50331.8 51597.3 50332.0 NO: 304 DS-ppan-MC-MMAF- NO: 1236 50354.1 LEFIASKLA-A287 SEQ ID anti-hHER2-HC-P291- SEQ ID 21 0.5 50331.8 51597.3 50333.5 NO: 305 DS-ppan-MC-MMAF- NO: 1237 51598.8 LEFIASKLA-R292 51620.0 SEQ ID anti-hHER2-HC-N315- SEQ ID 15 n.d. 50331.8 51597.3 50331.5 NO: 310 DS-ppan-MC-MMAF- NO: 1238 51596.8 LEFIASKLA-G316 50353.1 SEQ ID anti-hHER2-HC-G316- SEQ ID 9 1.1 50331.8 51597.3 51596.6 NO: 311 DS-ppan-MC-MMAF- NO: 1239 50331.0 LEFIASKLA-K317 51614.0 SEQ ID anti-hHER2-HC-K317- SEQ ID 10 0.8 50331.8 51597.3 50330.9 NO: 312 DS-ppan-MC-MMAF- NO: 1240 51596.3 LEFIASKLA-E318 50352.1 SEQ ID anti-hHER2-HC-K326- SEQ ID 15 0.0 50331.8 51597.3 50330.8 NO: 313 DS-ppan-MC-MMAF- NO: 1241 51597.2 LEFIASKLA-A327 SEQ ID anti-hHER2-HC-A327- SEQ ID 25 0.1 50331.8 51597.3 50333.6 NO: 314 DS-ppan-MC-MMAF- NO: 1242 50355.1 LEFIASKLA-L328 SEQ ID anti-hHER2-HC-L328- SEQ ID 13 1.9 50331.8 51597.3 51598.8 NO: 315 DS-ppan-MC-MMAF- NO: 1243 LEFIASKLA-P329 SEQ ID anti-hHER2-HC-P329- SEQ ID 7 0.9 50331.8 51597.3 51601.6 NO: 316 DS-ppan-MC-MMAF- NO: 1244 50334.8 LEFIASKLA-A330 SEQ ID anti-hHER2-HC-A330- SEQ ID 25 1.8 50331.8 51597.3 51602.4 NO: 317 DS-ppan-MC-MMAF- NO: 1245 LEFIASKLA-P331 SEQ ID anti-hHER2-HC-A339- SEQ ID 25 0.0 50331.8 51597.3 50333.6 NO: 318 DS-ppan-MC-MMAF- NO: 1246 LEFIASKLA-K340 SEQ ID anti-hHER2-HC-K340- SEQ ID 27 0.4 50331.8 51597.3 51600.4 NO: 319 DS-ppan-MC-MMAF- NO: 1247 50333.2 LEFIASKLA-G341 SEQ ID anti-hHER2-HC-G341- SEQ ID 25 0.2 50331.8 51597.3 51599.9 NO: 320 DS-ppan-MC-MMAF- NO: 1248 50334.7 LEFIASKLA-Q342 SEQ ID anti-hHER2-HC-Q342- SEQ ID 28 0.8 50331.8 51597.3 51599.8 NO: 321 DS-ppan-MC-MMAF- NO: 1249 50334.5 LEFIASKLA-P343 SEQ ID anti-hHER2-HC-P343- SEQ ID 24 1.9 50331.8 51597.3 51599.1 NO: 322 DS-ppan-MC-MMAF- NO: 1250 51615.8 LEFIASKLA-R344 SEQ ID anti-hHER2-HC-R344- SEQ ID 29 1.9 50331.8 51597.3 51600.1 NO: 323 DS-ppan-MC-MMAF- NO: 1251 51616.6 LEFIASKLA-E345 SEQ ID anti-hHER2-HC-E356- SEQ ID 20 0.8 50331.8 51597.3 51600.8 NO: 325 DS-ppan-MC-MMAF- NO: 1252 50335.1 LEFIASKLA-E357 51616.8 SEQ ID anti-hHER2-HC-M358- SEQ ID 26 0.2 50331.8 51597.3 50333.9 NO: 327 DS-ppan-MC-MMAF- NO: 1253 51599.4 LEFIASKLA-T359 SEQ ID anti-hHER2-HC-K360- SEQ ID 24 0.6 50331.8 51597.3 51599.9 NO: 328 DS-ppan-MC-MMAF- NO: 1254 51615.1 LEFIASKLA-N361 SEQ ID anti-hHER2-HC-N384- SEQ ID 24 0.0 50331.8 51597.3 50334.3 NO: 329 DS-ppan-MC-MMAF- NO: 1255 50354.2 LEFIASKLA-G385 SEQ ID anti-hHER2-HC-E388- SEQ ID 21 1.9 50331.8 51597.3 51601.2 NO: 129 DS-ppan-MC-MMAF- NO: 1122 LEFIASKLA-N389 SEQ ID anti-hHER2-HC-N389- SEQ ID 25 1.6 50331.8 51597.3 51600.1 NO: 330 DS-ppan-MC-MMAF- NO: 1256 51620.9 LEFIASKLA-N390 SEQ ID anti-hHER2-HC-P395- SEQ ID 25 0.0 50331.8 51597.3 50334.4 NO: 332 DS-ppan-MC-MMAF- NO: 1257 50352.8 LEFIASKLA-P396 SEQ ID anti-hHER2-HC-D399- SEQ ID 11 0.0 50331.8 51597.3 50335.1 NO: 333 DS-ppan-MC-MMAF- NO: 1258 50353.6 LEFIASKLA-S400 SEQ ID anti-hHER2-HC-D401- SEQ ID 23 0.0 50331.8 51597.3 50334.9 NO: 335 DS-ppan-MC-MMAF- NO: 1259 50353.0 LEFIASKLA-G402 SEQ ID anti-hHER2-HC-S415- SEQ ID 21 0.2 50331.8 51597.3 50335.0 NO: 336 DS-ppan-MC-MMAF- NO: 1260 51600.5 LEFIASKLA-R416 SEQ ID anti-hHER2-HC-R416- SEQ ID 15 1.9 50331.8 51597.3 51599.9 NO: 337 DS-ppan-MC-MMAF- NO: 1261 51615.8 LEFIASKLA-W417 SEQ ID anti-hHER2-HC-W417- SEQ ID 9 0.2 50331.8 51597.3 50334.8 NO: 338 DS-ppan-MC-MMAF- NO: 1262 51599.9 LEFIASKLA-Q418 50353.4 SEQ ID anti-hHER2-HC-Q418- SEQ ID 22 0.5 50331.8 51597.3 51600.5 NO: 339 DS-ppan-MC-MMAF- NO: 1263 50335.2 LEFIASKLA-Q419 51616.7 SEQ ID anti-hHER2-HC-Q419- SEQ ID 21 0.8 50331.8 51597.3 51600.0 NO: 340 DS-ppan-MC-MMAF- NO: 1264 51616.5 LEFIASKLA-G420 SEQ ID anti-hHER2-HC-G420- SEQ ID 22 1.1 50331.8 51597.3 51599.5 NO: 341 DS-ppan-MC-MMAF- NO: 1265 51616.0 LEFIASKLA-N421 SEQ ID anti-hHER2-HC-N421- SEQ ID 24 1.4 50331.8 51597.3 51600.6 NO: 342 DS-ppan-MC-MMAF- NO: 1266 51614.9 LEFIASKLA-V422 SEQ ID anti-hHER2-HC-H433- SEQ ID 26 0.0 50331.8 51597.3 50334.7 NO: 343 DS-ppan-MC-MMAF- NO: 1267 50276.2 LEFIASKLA-N434 SEQ ID anti-hHER2-HC-N434- SEQ ID 25 0.6 50331.8 51597.3 51592.4 NO: 344 DS-ppan-MC-MMAF- NO: 1268 50326.8 LEFIASKLA-H435 50268.8 SEQ ID anti-hHER2-HC-L443- SEQ ID 26 0.0 50331.8 51597.3 50334.5 NO: 346 DS-ppan-MC-MMAF- NO: 1269 50275.8 LEFIASKLA-S444 50353.4 SEQ ID anti-hHER2-HC-G446- SEQ ID 29 1.8 50331.8 51597.3 51595.2 NO: 349 DS-ppan-MC-MMAF- NO: 1270 LEFIASKLA-K447 SEQ ID anti-hHER2-LC-T109- SEQ ID 34 1.4 24811.6 26077.1 26077.8 NO: 31 GDS-ppan-MC-MMAF- NO: 1271 26058.3 LSWLLRLLN-V110 26096.4 SEQ ID anti-hHER2-LC-V110- SEQ ID 5 1.9 24811.6 26077.1 26076.4 NO: 32 GDS-ppan-MC-MMAF- NO: 1272 LSWLLRLLN-A111 SEQ ID anti-hHER2-LC-A111- SEQ ID 13 2.0 24811.6 26077.1 26075.6 NO: 33 GDS-ppan-MC-MMAF- NO: 1273 LSWLLRLLN-A112 SEQ ID anti-hHER2-LC-P119- SEQ ID 1 N/A 24811.6 26077.1 N/A NO: 34 GDS-ppan-MC-MMAF- NO: 1274 LSWLLRLLN-P120 SEQ ID anti-hHER2-LC-D122- SEQ ID 1 N/A 24811.6 26077.1 N/A NO: 37 GDS-ppan-MC-MMAF- NO: 1275 LSWLLRLLN-E123 SEQ ID anti-hHER2-LC-Y140- SEQ ID 3 0.8 24811.6 26077.1 26077.2 NO: 38 GDS-ppan-MC-MMAF- NO: 1276 LSWLLRLLN-P141 SEQ ID anti-hHER2-LC-P141- SEQ ID 3 0.3 24811.6 26077.1 26076.8 NO: 39 GDS-ppan-MC-MMAF- NO: 1277 LSWLLRLLN-R142 SEQ ID anti-hHER2-LC-R142- SEQ ID 5 0.3 24811.6 26077.1 26077.7 NO: 40 GDS-ppan-MC-MMAF- NO: 1278 24811.8 LSWLLRLLN-E143 26097.2 SEQ ID anti-hHER2-LC-E143- SEQ ID 6 0.4 24811.6 26077.1 26075.6 NO: 41 GDS-ppan-MC-MMAF- NO: 1279 26097.6 LSWLLRLLN-A144 SEQ ID anti-hHER2-LC-D151- SEQ ID 16 0.3 24811.6 26077.1 24811.7 NO: 42 GDS-ppan-MC-MMAF- NO: 1280 26077.3 LSWLLRLLN-N152 24829.7 SEQ ID anti-hHER2-LC-N152- SEQ ID 5 1.0 24811.6 26077.1 26077.2 NO: 43 GDS-ppan-MC-MMAF- NO: 1281 LSWLLRLLN-A153 SEQ ID anti-hHER2-LC-A153- SEQ ID 13 1.9 24811.6 26077.1 26077.7 NO: 44 GDS-ppan-MC-MMAF- NO: 1282 26096.6 LSWLLRLLN-L154 SEQ ID anti-hHER2-LC-L154- SEQ ID 21 1.2 24811.6 26077.1 26078.2 NO: 45 GDS-ppan-MC-MMAF- NO: 1283 26096.9 LSWLLRLLN-Q155 SEQ ID anti-hHER2-LC-Q155- SEQ ID 14 2.0 24811.6 26077.1 26075.2 NO: 46 GDS-ppan-MC-MMAF- NO: 1284 LSWLLRLLN-S156 SEQ ID anti-hHER2-LC-E161- SEQ ID 19 1.9 24811.6 26077.1 26077.6 NO: 47 GDS-ppan-MC-MMAF- NO: 1285 26097.6 LSWLLRLLN-S162 SEQ ID anti-hHER2-LC-S162- SEQ ID 17 0.7 24811.6 26077.1 26077.2 NO: 48 GDS-ppan-MC-MMAF- NO: 1286 LSWLLRLLN-V163 SEQ ID anti-hHER2-LC-T164- SEQ ID 14 0.0 24811.6 26077.1 24810.0 NO: 50 GDS-ppan-MC-MMAF- NO: 1287 LSWLLRLLN-E165 SEQ ID anti-hHER2-LC-E165- SEQ ID 0 N/A 24811.6 26077.1 N/A NO: 51 GDS-ppan-MC-MMAF- NO: 1288 LSWLLRLLN-Q166 SEQ ID anti-hHER2-LC-Q166- SEQ ID 17 0.0 24811.6 26077.1 24810.4 NO: 52 GDS-ppan-MC-MMAF- NO: 1289 24832.4 LSWLLRLLN-D167 SEQ ID anti-hHER2-LC-D167- SEQ ID 24 0.7 24811.6 26077.1 26077.4 NO: 53 GDS-ppan-MC-MMAF- NO: 1290 24812.3 LSWLLRLLN-S168 26096.5 SEQ ID anti-hHER2-LC-T197- SEQ ID 8 1.2 24811.6 26077.1 24812.0 NO: 54 GDS-ppan-MC-MMAF- NO: 1291 26077.9 LSWLLRLLN-H198 24831.4 SEQ ID anti-hHER2-LC-Q199- SEQ ID 5 1.9 24811.6 26077.1 26076.0 NO: 56 GDS-ppan-MC-MMAF- NO: 1292 LSWLLRLLN-G200 SEQ ID anti-hHER2-LC-S202- SEQ ID 8 2.0 24811.6 26077.1 26077.4 NO: 59 GDS-ppan-MC-MMAF- NO: 1293 26095.9 LSWLLRLLN-S203 SEQ ID anti-hHER2-LC-V110- SEQ ID 15 2.0 24618.4 25883.9 25883.2 NO: 63 DS-ppan-MC-MMAF- NO: 1294 LEFIASKLA-A111 SEQ ID anti-hHER2-LC-A111- SEQ ID 17 1.6 24618.4 25883.9 25881.2 NO: 64 DS-ppan-MC-MMAF- NO: 1295 LEFIASKLA-A112 SEQ ID anti-hHER2-LC-P119- SEQ ID 13 0.0 24618.4 25883.9 24618.1 NO: 65 DS-ppan-MC-MMAF- NO: 1296 24637.6 LEFIASKLA-P120 SEQ ID anti-hHER2-LC-P120- SEQ ID 9 0.0 24618.4 25883.9 24617.2 NO: 66 DS-ppan-MC-MMAF- NO: 1297 LEFIASKLA-S121 SEQ ID anti-hHER2-LC-S121- SEQ ID 4 0.0 24618.4 25883.9 24616.8 NO: 67 DS-ppan-MC-MMAF- NO: 1298 LEFIASKLA-D122 SEQ ID anti-hHER2-LC-D122- SEQ ID 2 0.0 24618.4 25883.9 24616.8 NO: 68 DS-ppan-MC-MMAF- NO: 1299 LEFIASKLA-E123 SEQ ID anti-hHER2-LC-Y140- SEQ ID 5 0.1 24618.4 25883.9 24616.4 NO: 69 DS-ppan-MC-MMAF- NO: 1300 LEFIASKLA-P141 SEQ ID anti-hHER2-LC-R142- SEQ ID 13 0.1 24618.4 25883.9 24618.8 NO: 71 DS-ppan-MC-MMAF- NO: 1301 25884.0 LEFIASKLA-E143 24639.3 SEQ ID anti-hHER2-LC-E143- SEQ ID 10 0.0 24618.4 25883.9 24616.8 NO: 72 DS-ppan-MC-MMAF- NO: 1302 LEFIASKLA-A144 SEQ ID anti-hHER2-LC-D151- SEQ ID 17 0.0 24618.4 25883.9 24617.2 NO: 73 DS-ppan-MC-MMAF- NO: 1303 LEFIASKLA-N152 SEQ ID anti-hHER2-LC-N152- SEQ ID 17 0.0 24618.4 25883.9 24616.8 NO: 74 DS-ppan-MC-MMAF- NO: 1304 LEFIASKLA-A153 SEQ ID anti-hHER2-LC-A153- SEQ ID 20 1.8 24618.4 25883.9 25882.8 NO: 75 DS-ppan-MC-MMAF- NO: 1305 LEFIASKLA-L154 SEQ ID anti-hHER2-LC-L154-DS- SEQ ID 25 0.6 24618.4 25883.9 25884.6 NO: 76 ppan-MC-MMAF- NO: 1306 24618.9 LEFIASKLA-Q155 25904.2 SEQ ID anti-hHER2-LC-Q155- SEQ ID 27 1.1 24618.4 25883.9 25883.9 NO: 77 DS-ppan-MC-MMAF- NO: 1307 24619.0 LEFIASKLA-S156 25903.2 SEQ ID anti-hHER2-LC-S162- SEQ ID 7 0.0 24618.4 25883.9 24616.4 NO: 79 DS-ppan-MC-MMAF- NO: 1308 LEFIASKLA-V163 SEQ ID anti-hHER2-LC-T164-DS- SEQ ID 10 0.0 24618.4 25883.9 24616.4 NO: 81 ppan-MC-MMAF- NO: 1309 LEFIASKLA-E165 SEQ ID anti-hHER2-LC-E165- SEQ ID 29 0.0 24618.4 25883.9 24618.9 NO: 82 DS-ppan-MC-MMAF- NO: 1310 24639.4 LEFIASKLA-Q166 SEQ ID anti-hHER2-LC-Q166- SEQ ID 20 0.0 24618.4 25883.9 24617.2 NO: 83 DS-ppan-MC-MMAF- NO: 1311 LEFIASKLA-D167 SEQ ID anti-hHER2-LC-D167- SEQ ID 28 0.0 24618.4 25883.9 24618.8 NO: 84 DS-ppan-MC-MMAF- NO: 1312 24639.0 LEFIASKLA-S168 SEQ ID anti-hHER2-LC-T197-DS- SEQ ID 5 0.0 24618.4 25883.9 24615.2 NO: 85 ppan-MC-MMAF- NO: 1313 LEFIASKLA-H198 SEQ ID anti-hHER2-LC-Q199- SEQ ID 7 0.0 24618.4 25883.9 24617.2 NO: 87 DS-ppan-MC-MMAF- NO: 1314 LEFIASKLA-G200 SEQ ID anti-hHER2-LC-G200- SEQ ID 18 0.2 24618.4 25883.9 24618.8 NO: 88 DS-ppan-MC-MMAF- NO: 1315 25884.4 LEFIASKLA-L201 24638.9 SEQ ID anti-hHER2-LC-L201-DS- SEQ ID 15 0.8 24618.4 25883.9 25884.0 NO: 89 ppan-MC-MMAF- NO: 1316 LEFIASKLA-S202 aName represents part of the HC or LC that contains the peptide tag with the attached compound, the paired wildtype chain is not listed. bYield of antibody per liter culture (based on 35 mL cultures) measured after protein A purification. cDrug-to-antibody ratio according to HPLC. dMass in Dalton as predicted for the antibody. eMass in Dalton as predicted for the ADC. fMass in Dalton as detected on an Agilent 6520 Q-TOF instrument (Agilent Technologies). Most prominent observation is listed first. gObserved mass corresponds to non-clipped C-terminal lysine residue of heavy chain. n.d., not determined. The drug-to-antibody ratio could not be determined accurately be HPLC because of peak overlap. N/A, not applicable. Conjugation was not attempted or data could not be obtained because of low yield.

Example 26 Scale Up of Selected Peptide-Tagged ADCs for Pharmacokinetic (PK) Studies and Further Characterization

The PEPP system does not provide enough quantities of peptide-tagged ADCs for PK studies. Subsequently, expression of 97 constructs (Table 22) selected from among the 183 antibodies tested in Example 25 (Table 21) was scaled up to 200-1000 mL culture volume. Selection criteria for scale-up were high conjugation efficiency, reasonable expression yield, confirmed in vitro potency, and low aggregation level as observed for the ADCs prepared in Example 25.

After expression of the selected S6/ybbR-tagged antibodies in Freestyle™ expression media (Invitrogen) for five days at 37° C. under 5% CO2, the cultures were harvested by centrifugation, and the resulting medium supernatants were passed through 0.22 μm filters (EMD Millipore). Antibody expression was verified by SDS-PAGE analysis. Next, the filtrates were loaded at a flowrate of 0.5-1 mL/min onto PBS-equilibrated columns containing 0.5 mL of Protein A resin by using a MINIPULS Evolution peristaltic pump (Gilson Inc.). After washing the columns with 100-200 column volumes of PBS, the antibody constructs were eluted with 0.1 M sodium acetate (pH 3.0) in two 2.5 mL fractions. Both fractions were immediately neutralized with 25-38% (v/v) of Tris-HCl buffer (1 M, pH 8.0). In order to determine the yield of the Protein A-purified antibodies (Table 22), protein concentrations of the eluates were measured in duplicate on a ND-1000 UV-Vis Spectrophotometer (NanoDrop Technologies) at 280 nm according to the preset molar extinction coefficient for IgG molecules. Using Slide-A-Lyzer Dialysis Cassettes (3.5-7.0 kDa cut-off, Pierce), the second elution fraction of each construct was dialyzed into PBS for subsequent thermostability measurements of non-conjugated antibodies by DSF (Table 23). The first elution fraction of each peptide-tagged antibody was dialyzed into conjugation buffer (75 mM Tris-HCl buffer at pH 8.0 supplemented with 20 mM NaCl and 12.5 mM MgCl2). After adjusting the antibody concentration to 2.5 μM, conjugation reactions were initiated by addition of CoA-MC-MMAF and Sfp enzyme to final concentrations of 30-60 μM and 1-4 μM, respectively. The enzymatic reaction was allowed to proceed for about 16-20 hours at room temperature, before verifying the degree of labeling by analytical reverse-phase HPLC using the respective uncoupled antibody as control (Table 22). All conjugation reactions were analyzed by mass spectrometry on an Agilent 6520 Q-TOF instrument (Table 22). After confirming near quantitative conjugation, reaction mixtures were concentrated to a final volume of 1 mL using 30 kDa cut-off Amicon Ultra centrifugal filter devices (EMD Millipore). Following removal of precipitate by centrifugation, Sfp enzyme and excess CoA-MC-MMAF substrate were removed by SEC (size-exclusion chromatography) on a HiLoad 26/60 Superdex 200 prep grade column (GE Healthcare) in PBS at a flowrate of 1 mL/min. The purity of the peptide-tagged ADCs after SEC was assessed by reverse-phase HPLC. After 0.22 μm filtration, the final yields of the ADCs were determined using triplicate measurements on a ND-1000 UV-Vis Spectrophotometer (NanoDrop Technologies) as above (Table 22).

TABLE 22 ADC production and characterization from 200-400 mL scale-up culture. Anti- Anti- ADC body ADC Mono- Expt. Obs. body SEQ ID yieldb yieldc mere massf massg SEQ ID ADC namea NO (mg/L) (mg/L) DARd (%) (Da) (Da) SEQ ID anti-hHER2-HC-S119- SEQ ID 57 31 2.0 97 51790.5 51786.4 NO: 151 GDS-ppan-MC-MMAF- NO: 1137 LSWLLRLLN-T120 SEQ ID anti-hHER2-HC-T120- SEQ ID 40 23 2.0 100 51790.5 51796.4 NO: 152 GDS-ppan-MC-MMAF- NO: 1138 LSWLLRLLN-K121 SEQ ID anti-hHER2-HC-T135- SEQ ID 41 20 2.0 100 51790.5 51785.2 NO: 157 GDS-ppan-MC-MMAF- NO: 1139 LSWLLRLLN-S136 SEQ ID anti-hHER2-HC-S136- SEQ ID 40 20 2.0 100 51790.5 51785.6 NO: 158 GDS-ppan-MC-MMAF- NO: 1140 LSWLLRLLN-G137 SEQ ID anti-hHER2-HC-A162- SEQ ID 25 16 2.0 100 51790.5 51791.6 NO: 166 GDS-ppan-MC-MMAF- NO: 1147 LSWLLRLLN-L163 SEQ ID anti-hHER2-HC-T164- SEQ ID 32 15 2.0 100 51790.5 51787.6 NO: 168 GDS-ppan-MC-MMAF- NO: 1148 LSWLLRLLN-S165 SEQ ID anti-hHER2-HC-S165- SEQ ID 39 21 2.0 100 51790.5 51786.4 NO: 169 GDS-ppan-MC-MMAF- NO: 1149 LSWLLRLLN-G166 SEQ ID anti-hHER2-HC-P189- SEQ ID 36 25 2.0 100 51790.5 51792.0 NO: 173 GDS-ppan-MC-MMAF- NO: 1152 LSWLLRLLN-S190 SEQ ID anti-hHER2-HC-G194- SEQ ID 35 21 2.0 100 51790.5 51794.8 NO: 178 GDS-ppan-MC-MMAF- NO: 1156 LSWLLRLLN-T195 SEQ ID anti-hHER2-HC-T195- SEQ ID 39 21 1.9 100 51790.5 51790.4 NO: 179 GDS-ppan-MC-MMAF- NO: 1157 LSWLLRLLN-Q196 SEQ ID anti-hHER2-HC-P271- SEQ ID 9 4 1.9 100 51790.5 51782.0 NO: 202 GDS-ppan-MC-MMAF- NO: 1172 LSWLLRLLN-E272 SEQ ID anti-hHER2-HC-A330- SEQ ID 30 14 1.8 100 51790.5 51796.4 NO: 218 GDS-ppan-MC-MMAF- NO: 1181 50526.8h LSWLLRLLN-P331 SEQ ID anti-hHER2-HC-K340- SEQ ID 20 9 2.0 100 51790.5 51794.4 NO: 220 GDS-ppan-MC-MMAF- NO: 1182 51918.4i LSWLLRLLN-G341 SEQ ID anti-hHER2-HC-G341- SEQ ID 47 26 1.9 100 51790.5 51794.8 NO: 221 GDS-ppan-MC-MMAF- NO: 1183 LSWLLRLLN-Q342 SEQ ID anti-hHER2-HC-R344- SEQ ID 37 21 2.0 100 51790.5 51795.6 NO: 224 GDS-ppan-MC-MMAF- NO: 1186 LSWLLRLLN-E345 SEQ ID anti-hHER2-HC-K360- SEQ ID 46 21 1.9 100 51790.5 51785.2 NO: 229 GDS-ppan-MC-MMAF- NO: 1187 LSWLLRLLN-N361 SEQ ID anti-hHER2-HC-E388- SEQ ID 40 25 2.0 100 51790.5 51792.4 NO: 127 GDS-ppan-MC-MMAF- NO: 1118 LSWLLRLLN-N389 SEQ ID anti-hHER2-HC-Q418- SEQ ID 55 26 2.0 100 51790.5 51786.8 NO: 239 GDS-ppan-MC-MMAF- NO: 1195 51914.4i LSWLLRLLN-Q419 SEQ ID anti-hHER2-HC-N434- SEQ ID 41 10 1.9 n.d. 51790.5 51785.2 NO: 244 GDS-ppan-MC-MMAF- NO: 1197 51912.8i LSWLLRLLN-H435 SEQ ID anti-hHER2-HC-P445- SEQ ID 9 3 1.9 100 51790.5 51783.2 NO: 248 GDS-ppan-MC-MMAF- NO: 1199 51910.8i LSWLLRLLN-G446 SEQ ID anti-hHER2-HC-S119- SEQ ID 35 25 1.9 100 51597.3 51591.2 NO: 250 DS-ppan-MC-MMAF- NO: 1201 LEFIASKLA-T120 SEQ ID anti-hHER2-HC-T120- SEQ ID 42 24 1.9 100 51597.3 51592.4 NO: 251 DS-ppan-MC-MMAF- NO: 1202 LEFIASKLA-K121 SEQ ID anti-hHER2-HC-S136- SEQ ID 33 20 1.9 100 51597.3 51602.0 NO: 257 DS-ppan-MC-MMAF- NO: 1203 LEFIASKLA-137 SEQ ID anti-hHER2-HC-G138- SEQ ID 26 14 1.9 100 51597.3 51592.0 NO: 259 DS-ppan-MC-MMAF- NO: 1204 LEFIASKLA-T139 SEQ ID anti-hHER2-HC-S165- SEQ ID 33 21 1.9 100 51597.3 51595.2 NO: 268 DS-ppan-MC-MMAF- NO: 1209 LEFIASKLA-G166 SEQ ID anti-hHER2-HC-G194- SEQ ID 24 14 1.9 100 51597.3 51592.4 NO: 277 DS-ppan-MC-MMAF- NO: 1215 LEFIASKLA-T195 SEQ ID anti-hHER2-HC-L328- SEQ ID 35 22 1.9 100 51597.3 51600.4 NO: 315 DS-ppan-MC-MMAF- NO: 1243 LEFIASKLA-P329 SEQ ID anti-hHER2-HC-A330- SEQ ID 20 12 1.8 100 51597.3 51589.2 NO: 317 DS-ppan-MC-MMAF- NO: 1245 50323.6h LEFIASKLA-P331 SEQ ID anti-hHER2-HC-E388- SEQ ID 51 28 1.9 100 51597.3 51592.0 NO: 129 DS-ppan-MC-MMAF- NO: 1122 LEFIASKLA-N389 SEQ ID anti-hHER2-HC-G446- SEQ ID 37 23 1.9 100 51597.3 51590.4 NO: 349 DS-ppan-MC-MMAF- NO: 1270 LEFIASKLA-K447 SEQ ID anti-hHER2-LC-V110- SEQ ID 8 3 2.0 93 26077.1 26074.8 NO: 32 GDS-ppan-MC-MMAF- NO: 1272 LSWLLRLLN-A111 SEQ ID anti-hHER2-LC-A111- SEQ ID 20 13 2.0 100 26077.1 26073.6 NO: 33 GDS-ppan-MC-MMAF- NO: 1273 LSWLLRLLN-A112 SEQ ID anti-hHER2-LC-Q155- SEQ ID 29 19 1.9 100 26077.1 26070.8 NO: 46 GDS-ppan-MC-MMAF- NO: 1284 LSWLLRLLN-S156 SEQ ID anti-hHER2-LC-S162- SEQ ID 9 5 1.9 100 26077.1 26076.0 NO: 48 GDS-ppan-MC-MMAF- NO: 1251 LSWLLRLLN-V163 SEQ ID anti-hHER2-LC-Q199- SEQ ID 10 3 1.9 100 26077.1 26074.4 NO: 56 GDS-ppan-MC-MMAF- NO: 1292 LSWLLRLLN-G200 SEQ ID anti-hHER2-LC-V110- SEQ ID 53 30 1.9 100 25883.9 25880.8 NO: 63 DS-ppan-MC-MMAF- NO: 1294 LEFIASKLA-A111 SEQ ID anti-hHER2-LC-A111- SEQ ID 12 8 1.9 100 25883.9 25880.4 NO: 64 DS-ppan-MC-MMAF- NO: 1295 25901.2j LEFIASKLA-A112 SEQ ID anti-hHER2-LC-A153- SEQ ID 14 7 1.9 100 25883.9 25878.0 NO: 75 DS-ppan-MC-MMAF- NO: 1305 LEFIASKLA-L154 SEQ ID anti-hHER2-LC-L201-DS- SEQ ID 26 15 1.8 100 25883.9 25881.2 NO: 89 ppan-MC-MMAF- NO: 1316 LEFIASKLA-S202 SEQ ID anti-hHER2-HC-N389- SEQ ID 23 14 1.9 100 51597.3 51592.7 NO: 330 DS-ppan-MC-MMAF- NO: 1256 LEFIASKLA-N390 SEQ ID anti-hHER2-HC-R255- SEQ ID 20 7 2.0 100 51790.5 51786.1 NO: 195 GDS-ppan-MC-MMAF- NO: 1167 51727.9k LSWLLRLLN-T256 SEQ ID anti-hHER2-HC-P291- SEQ ID 28 16 1.9 100 51790.5 51786.8 NO: 206 GDS-ppan-MC-MMAF- NO: 1173 LSWLLRLLN-R292 SEQ ID anti-hHER2-HC-L235- SEQ ID 28 18 2.0 100 51597.3 51593.9 NO: 288 DS-ppan-MC-MMAF- NO: 1221 50407.9l LEFIASKLA-G236 SEQ ID anti-hHER2-HC-A118- SEQ ID 24 15 1.9 100 51597.3 51595.9 NO: 249 DS-ppan-MC-MMAF- NO: 1200 LEFIASKLA-S119 SEQ ID anti-hHER2-HC-R344- SEQ ID 23 13 1.9 100 51597.3 51594.6 NO: 323 DS-ppan-MC-MMAF- NO: 1251 LEFIASKLA-E345 SEQ ID anti-hHER2-HC-P343- SEQ ID 24 15 1.9 100 51597.3 51594.6 NO: 322 DS-ppan-MC-MMAF- NO: 1250 LEFIASKLA-R344 SEQ ID anti-hHER2-HC-P271- SEQ ID 21 13 1.9 100 51597.3 51594.1 NO: 301 DS-ppan-MC-MMAF- NO: 1233 LEFIASKLA-E272 SEQ ID anti-hHER2-HC-Q196- SEQ ID 12 7 1.9 100 51597.3 51595.9 NO: 279 DS-ppan-MC-MMAF- NO: 1217 LEFIASKLA-T197 SEQ ID anti-hHER2-HC-S254- SEQ ID 19 11 2.0 100 51597.3 51595.3 NO: 293 DS-ppan-MC-MMAF- NO: 1226 LEFIASKLA-R255 SEQ ID anti-hHER2-HC-S254- SEQ ID 23 3 2.0 n.d. 51790.5 51788.3 NO: 194 GDS-ppan-MC-MMAF- NO: 1166 51597.3j LSWLLRLLN-R255 51729.3k SEQ ID anti-hHER2-HC-R416- SEQ ID 22 10 2.0 100 51597.3 51595.0 NO: 337 DS-ppan-MC-MMAF- NO: 1261 51537.0k LEFIASKLA-W417 SEQ ID anti-hHER2-HC-D270- SEQ ID 17 9 2.0 100 51790.5 51788.7 NO: 201 GDS-ppan-MC-MMAF- NO: 1171 LSWLLRLLN-P271 SEQ ID anti-hHER2-HC-A162- SEQ ID 20 14 1.9 100 51597.3 51596.6 NO: 265 DS-ppan-MC-MMAF- NO: 1207 LEFIASKLA-L163 SEQ ID anti-hHER2-HC-S191- SEQ ID 22 12 2.0 100 51597.3 51596.9 NO: 274 DS-ppan-MC-MMAF- NO: 1213 LEFIASKLA-S192 SEQ ID anti-hHER2-HC-S192- SEQ ID 22 14 2.0 100 51597.3 51597.0 NO: 275 DS-ppan-MC-MMAF- NO: 1214 LEFIASKLA-L193 SEQ ID anti-hHER2-HC-L193- SEQ ID 18 10 2.0 100 51790.5 51790.8 NO: 177 GDS-ppan-MC-MMAF- NO: 1155 LSWLLRLLN-G194 SEQ ID anti-hHER2-HC-R255- SEQ ID 12 7 2.0 100 51597.3 51595.0 NO: 294 DS-ppan-MC-MMAF- NO: 1227 51536.9k LEFIASKLA-T256 SEQ ID anti-hHER2-HC-H268- SEQ ID 13 6 2.0 100 51790.5 51789.1 NO: 199 GDS-ppan-MC-MMAF- NO: 1169 LSWLLRLLN-E269 SEQ ID anti-hHER2-HC-S267- SEQ ID 9 5 2.0 100 51790.5 51788.7 NO: 198 GDS-ppan-MC-MMAF- NO: 1168 LSWLLRLLN-H268 SEQ ID anti-hHER2-HC-L235- SEQ ID 9 4 2.0 100 51790.5 51789.6 NO: 189 GDS-ppan-MC-MMAF- NO: 1163 LSWLLRLLN-G236 SEQ ID anti-hHER2-HC-P343- SEQ ID 15 6 2.0 100 51790.5 51789.2 NO: 223 GDS-ppan-MC-MMAF- NO: 1185 LSWLLRLLN-R344 SEQ ID anti-hHER2-HC-1253- SEQ ID 7 3 1.9 100 51790.5 51788.9 NO: 193 GDS-ppan-MC-MMAF- NO: 1165 51729.9k LSWLLRLLN-S254 SEQ ID anti-hHER2-HC-P206- SEQ ID 30 15 1.9 100 51790.5 51790.1 NO: 182 GDS-ppan-MC-MMAF- NO: 1160 LSWLLRLLN-S207 SEQ ID anti-hHER2-HC-P257- SEQ ID 10 5 2.0 100 51597.3 51595.2 NO: 296 DS-ppan-MC-MMAF- NO: 1228 LEFIASKLA-E258 SEQ ID anti-hHER2-HC-T195- SEQ ID 12 6 2.0 100 51597.3 51597.3 NO: 278 DS-ppan-MC-MMAF- NO: 1216 LEFIASKLA-Q196 SEQ ID anti-hHER2-HC-E269- SEQ ID 9 5 1.9 100 51597.3 51595.7 NO: 299 DS-ppan-MC-MMAF- NO: 1231 LEFIASKLA-D270 SEQ ID anti-hHER2-HC-A118- SEQ ID 10 4 2.0 100 51790.5 51792.2 NO: 150 GDS-ppan-MC-MMAF- NO: 1136 LSWLLRLLN-S119 SEQ ID anti-hHER2-HC-A231- SEQ ID 27 12 2.0 100 51790.5 51789.6 NO: 185 GDS-ppan-MC-MMAF- NO: 1161 LSWLLRLLN-P232 SEQ ID anti-hHER2-LC-E161- SEQ ID 23 15 2.0 100 26077.1 26076.5 NO: 47 GDS-ppan-MC-MMAF- NO: 1285 25457.3l LSWLLRLLN-S162 SEQ ID anti-hHER2-LC-S203- SEQ ID 15 8 1.9 100 25883.9 25883.5 NO: 91 DS-ppan-MC-MMAF- NO: 1317 28925.4l LEFIASKLA-P204 SEQ ID anti-hHER2-LC-S203- SEQ ID 15 6 2.0 100 26077.1 26076.7 NO: 60 GDS-ppan-MC-MMAF- NO: 1318 LSWLLRLLN-P204 SEQ ID anti-hHER2-LC-K207- SEQ ID 9 4 1.9 100 26077.1 26076.7 NO: 61 GDS-ppan-MC-MMAF- NO: 1319 LSWLLRLLN-S208 SEQ ID anti-hHER2-LC-S202- SEQ ID 22 13 1.9 100 25883.9 25883.6 NO: 90 DS-ppan-MC-MMAF- NO: 1320 LEFIASKLA-S203 SEQ ID anti-hHER2-LC-A153- SEQ ID 30 22 2.0 100 26077.1 26075.7 NO: 44 GDS-ppan-MC-MMAF- NO: 1282 25456.0l LSWLLRLLN-L154 SEQ ID anti-hHER2-HC-T164- SEQ ID 25 19 2.0 100 51597.3 51597.0 NO: 267 DS-ppan-MC-MMAF- NO: 1208 LEFIASKLA-S165 SEQ ID anti-hHER2-HC-S192- SEQ ID 15 8 2.0 100 51790.5 51791.2 NO: 176 GDS-ppan-MC-MMAF- NO: 1154 LSWLLRLLN-L193 SEQ ID anti-hHER2-HC-D270- SEQ ID 33 26 1.9 100 51597.3 51595.2 NO: 300 DS-ppan-MC-MMAF- NO: 1232 LEFIASKLA-P271 SEQ ID anti-hHER2-HC-Q196- SEQ ID 27 17 2.0 100 51790.5 51787.2 NO: 180 GDS-ppan-MC-MMAF- NO: 1158 LSWLLRLLN-T197 SEQ ID anti-hHER2-HC-S191- SEQ ID 43 23 2.0 100 51790.5 51791.5 NO: 175 GDS-ppan-MC-MMAF- NO: 1153 LSWLLRLLN-S192 SEQ ID anti-hHER2-HC-G420- SEQ ID 42 33 2.0 100 51597.3 51595.0 NO: 341 DS-ppan-MC-MMAF- NO: 1265 LEFIASKLA-N421 SEQ ID anti-hHER2-HC-G236- SEQ ID 49 38 1.9 100 51597.3 51595.2 NO: 289 DS-ppan-MC-MMAF- NO: 1222 50408.8l LEFIASKLA-G237 SEQ ID anti-hHER2-HC-N421- SEQ ID 39 31 2.0 100 51597.3 51596.7 NO: 342 DS-ppan-MC-MMAF- NO: 1266 51725.6i LEFIASKLA-V422 SEQ ID anti-hHER2-LC-Q155- SEQ ID 45 35 1.9 100 25883.9 25883.0 NO: 77 DS-ppan-MC-MMAF- NO: 1307 28925.2l LEFIASKLA-S156 SEQ ID anti-hHER2-LC-L154- SEQ ID 35 27 2.0 100 26077.1 26076.8 NO: 45 GDS-ppan-MC-MMAF- NO: 1283 28925.2l LSWLLRLLN-Q155 SEQ ID anti-hHER2-HC-R416- SEQ ID 8 4 2.0 81 51790.5 51790.9 NO: 237 GDS-ppan-MC-MMAF- NO: 1193 51917.9i LSWLLRLLN-W417 SEQ ID anti-hHER2-HC-E233- SEQ ID 4 1 2.0 100 51790.5 51790.0 NO: 187 GDS-ppan-MC-MMAF- NO: 1162 LSWLLRLLN-L234 SEQ ID anti-hHER2-HC-G138- SEQ ID 17 12 2.0 100 51790.5 51790.1 NO: 160 GDS-ppan-MC-MMAF- NO: 1141 LSWLLRLLN-T139 SEQ ID anti-hHER2-HC-G161- SEQ ID 18 9 1.9 100 51800.5 51798.3 NO: 370 GDS-ppan-MC-MMAF- NO: 1321 50533.6h LDMLEWSLM-A162 SEQ ID anti-hHER2-HC-L163- SEQ ID 22 10 1.5 100 51800.5 51799.0 NO: 372 GDS-ppan-MC-MMAF- NO: 1322 50533.8h LDMLEWSLM-T164 SEQ ID anti-hHER2-HC-S165- SEQ ID 23 10 1.9 100 51800.5 51799.2 NO: 374 GDS-ppan-MC-MMAF- NO: 1323 LDMLEWSLM-G166 SEQ ID anti-hHER2-HC-S190- SEQ ID 8 4 1.8 100 51800.5 51799.3 NO: 376 GDS-ppan-MC-MMAF- NO: 1324 50534.1h LDMLEWSLM-S191 SEQ ID anti-hHER2-HC-S191- SEQ ID 14 7 1.9 100 51800.5 51799.2 NO: 377 GDS-ppan-MC-MMAF- NO: 1325 LDMLEWSLM-S192 SEQ ID anti-hHER2-HC-S192- SEQ ID 11 5 1.9 100 51800.5 51799.2 NO: 378 GDS-ppan-MC-MMAF- NO: 1326 LDMLEWSLM-L193 SEQ ID anti-hHER2-HC-G194- SEQ ID 16 9 1.9 100 51800.5 51799.0 NO: 380 GDS-ppan-MC-MMAF- NO: 1327 LDMLEWSLM-T195 SEQ ID anti-hHER2-HC-T195- SEQ ID 25 10 1.9 100 51800.5 51799.2 NO: 381 GDS-ppan-MC-MMAF- NO: 1328 LDMLEWSLM-Q196 SEQ ID anti-hHER2-LC-T109- SEQ ID 27 10 1.9 100 26087.1 26085.8 NO: 383 GDS-ppan-MC-MMAF- NO: 1329 28924.5l LDMLEWSLM-V110 SEQ ID anti-hHER2-LC-V110- SEQ ID 27 10 1.9 100 26087.1 26086.0 NO: 384 GDS-ppan-MC-MMAF- NO: 1330 28924.7l LDMLEWSLM-A111 aName represents part of the HC or LC that contains the peptide tag with the attached compound, the paired wildtype chain is not listed. bYield of antibody per liter culture (based on 200-1000 mL cultures) measured after protein A purification. cYield of ADC per liter of culture measured after size-exclusion chromatography. dDrug-to-antibody ratio according to HPLC. eAnalytical size exclusion chromatography results for ADC (percent of monomer). fMass in Dalton as predicted for the ADC. gMass in Dalton as detected on an Agilent 6520 Q-TOF instrument (Agilent Technologies). Most prominent observation is listed first. hObserved mass corresponds to non-conjugated antibody. iObserved mass corresponds to non-clipped C-terminal lysine residue of heavy chain. jObserved mass presumably corresponds to sodium adduct. kObserved mass corresponds to clipped Gly446 residue of heavy chain. lObserved mass corresponds to an unknown species of low abundance. jCarryover peak n.d., not determined.

Expression levels of the selected peptide-tagged antibodies averaged 25 mg per liter of cell culture (ranging from 4 to 57 mg/L) (Table 22) and the final yield of purified ADC averaged 14 mg per liter of cell culture (ranging from 1 to 38 mg/L) (Table 22). All ADCs were site-specifically conjugated with two CoA-MC-MMAF molecules at an average DAR of 1.9 (DARs ranging from 1.5 to 2.0) as verified by HPLC and MS (Table 22). No aggregation or oligomeric species were detected for 92 of 97 ADCs prepared (Table 22). All other ADCs were at least 81% monomeric as determined by analytical size exclusion chromatography (no data for two ADCs). The thermal stability of nonconjugated antibodies and ADCs was characterized by DSF (Table 23). For wild-type trastuzumab, two DSF thermal melting transitions (Tm1 and Tm2) were observed at 69.7 and 81.2° C. For 28 of 97 peptide-tagged antibodies, both transitions were within less than 3° C. of what was observed for wild-type trastuzumab. Conjugation of CoA-MC-MMAF lowered Tm1 of the ADC by on average 1.2° C. and Tm2 of the ADC by on average 0.6° C. relative to the nonconjugated antibody (Table 23). For 37 antibodies (and ADCs), the thermal stability was significantly (>3 degree C.) reduced relative to wild-type trastuzumab as illustrated by the difference in Tm1. This transition is attributed to the unfolding of the CH2 domain (amino acid residues 228-340) of an IgG and indeed most of the antibodies that are destabilized have the peptide-tag inserted at positions in the CH2 domain. Specifically, the plot of FIG. 18 illustrates that peptide tag insertions into the CH2 domain generally lead to lower Tm1 values than those of respective peptide tag insertions into the adjacent CH1 and CH3 domains of the heavy chain. As stated above, the location of the peptide tag can significantly affect the properties of the resulting antibody and ADC.

TABLE 23 Thermal stability of modified antibodies and ADCs as determined by differential scanning fluorometry (DSF). Anti- Anti- Ab − Anti- ADC body body ADC ADC WT body SEQ ID Tm1 Tm2 Tm1 Tm2 ΔTm1b ΔTm2b ΔTm1c SEQ ID: ADC namea NO (° C.) (° C.) (° C.) (° C.) (° C.) (° C.) (° C.) SEQ ID anti-hHER2-HC-S119- SEQ ID 69.8 t.b. 69.2 t.b. −0.6 t.b. 0.1 NO: 151 GDS-ppan-MC-MMAF- NO: 1137 LSWLLRLLN-T120 SEQ ID anti-hHER2-HC-T120- SEQ ID 69.1 t.b. 68.8 t.b. −0.3 t.b. −0.6 NO: 152 GDS-ppan-MC-MMAF- NO: 1138 LSWLLRLLN-K121 SEQ ID anti-hHER2-HC-T135- SEQ ID 67.6 81.3 67.1 81.2 −0.5 −0.1 −2.1 NO: 157 GDS-ppan-MC-MMAF- NO: 1139 LSWLLRLLN-S136 SEQ ID anti-hHER2-HC-S136- SEQ ID 67.9 81.3 67.3 81.3 −0.6 0  −1.8 NO: 158 GDS-ppan-MC-MMAF- NO: 1140 LSWLLRLLN-G137 SEQ ID anti-hHER2-HC-A162- SEQ ID 69.3 80.0 68.9 79.8 −0.3 −0.2 −0.4 NO: 166 GDS-ppan-MC-MMAF- NO: 1147 LSWLLRLLN-L163 SEQ ID anti-hHER2-HC-T164- SEQ ID 68.9 80.4 68.8 80.5 −0.2  0.1 −0.8 NO: 168 GDS-ppan-MC-MMAF- NO: 1148 LSWLLRLLN-S165 SEQ ID anti-hHER2-HC-S165- SEQ ID 69.2 80.4 68.8 80.2 −0.4 −0.2 −0.5 NO: 169 GDS-ppan-MC-MMAF- NO: 1149 LSWLLRLLN-G166 SEQ ID anti-hHER2-HC-P189- SEQ ID 69.0 80.5 68.3 80.4 −0.7 −0.2 −0.7 NO: 173 GDS-ppan-MC-MMAF- NO: 1152 LSWLLRLLN-S190 SEQ ID anti-hHER2-HC-G194- SEQ ID 68.7 80.8 67.6 80.9 −1.1  0.1 −1.0 NO: 178 GDS-ppan-MC-MMAF- NO: 1156 LSWLLRLLN-T195 SEQ ID anti-hHER2-HC-T195- SEQ ID 69.3 81.1 68.8 80.9 −0.5 −0.1 −0.4 NO: 179 GDS-ppan-MC-MMAF- NO: 1157 LSWLLRLLN-Q196 SEQ ID anti-hHER2-HC-P271- SEQ ID 53.4 81.6 51.2 81.2 −2.2 −0.4 −16.3 NO: 202 GDS-ppan-MC-MMAF- NO: 1172 LSWLLRLLN-E272 SEQ ID anti-hHER2-HC-A330- SEQ ID 52.5 81.5 49.0 81.1 −3.5 −0.3 −17.2 NO: 218 GDS-ppan-MC-MMAF- NO: 1181 LSWLLRLLN-P331 SEQ ID anti-hHER2-HC-K340- SEQ ID 65.2 77.3 58.7 81.0 −6.5  3.7 −4.5 NO: 220 GDS-ppan-MC-MMAF- NO: 1182 LSWLLRLLN-G341 SEQ ID anti-hHER2-HC-G341- SEQ ID 65.0 76.9 56.0 81.0 −9  4.2 −4.7 NO: 221 GDS-ppan-MC-MMAF- NO: 1183 LSWLLRLLN-Q342 SEQ ID anti-hHER2-HC-R344- SEQ ID 58.6 81.4 57.7 81.2 −0.9 −0.2 −11.1 NO: 224 GDS-ppan-MC-MMAF- NO: 1186 LSWLLRLLN-E345 SEQ ID anti-hHER2-HC-K360- SEQ ID 70.1 81.7 68.8 81.4 −1.3 −0.3 0.4 NO: 229 GDS-ppan-MC-MMAF- NO: 1187 LSWLLRLLN-N361 SEQ ID anti-hHER2-HC-E388- SEQ ID 66.4 81.3 66.2 80.9 −0.2 −0.4 −3.3 NO: 127 GDS-ppan-MC-MMAF- NO: 1118 LSWLLRLLN-N389 SEQ ID anti-hHER2-HC-Q418- SEQ ID 69.0 81.0 68.3 81.1 −0.7  0.1 −0.7 NO: 239 GDS-ppan-MC-MMAF- NO: 1195 LSWLLRLLN-Q419 SEQ ID anti-hHER2-HC-N434- SEQ ID 60.5 81.5 n.d. n.d. n.d. n.d. −9.2 NO: 244 GDS-ppan-MC-MMAF- NO: 1197 LSWLLRLLN-H435 SEQ ID anti-hHER2-HC-P445- SEQ ID 71.8 81.0 69.9 80.5 −1.8 −0.5 2.1 NO: 248 GDS-ppan-MC-MMAF- NO: 1199 LSWLLRLLN-G446 SEQ ID anti-hHER2-HC-S119- SEQ ID 70.1 t.b. 71.2 t.b. 1  t.b. 0.4 NO: 250 DS-ppan-MC-MMAF- NO: 1201 LEFIASKLA-T120 SEQ ID anti-hHER2-HC-T120- SEQ ID 70.4 t.b. 70.4 t.b. 0  t.b. 0.7 NO: 251 DS-ppan-MC-MMAF- NO: 1202 LEFIASKLA-K121 SEQ ID anti-hHER2-HC-S136- SEQ ID 69.3 80.8 68.3 81.0 −1.1  0.2 −0.4 NO: 257 DS-ppan-MC-MMAF- NO: 1203 LEFIASKLA-137 SEQ ID anti-hHER2-HC-G138- SEQ ID 69.3 80.9 68.5 81.2 −0.7  0.2 −0.4 NO: 259 DS-ppan-MC-MMAF- NO: 1204 LEFIASKLA-T139 SEQ ID anti-hHER2-HC-S165- SEQ ID 69.6 80.3 69.2 80.5 −0.4  0.1 −0.1 NO: 268 DS-ppan-MC-MMAF- NO: 1209 LEFIASKLA-G166 SEQ ID anti-hHER2-HC-G194- SEQ ID 69.3 81.1 68.5 80.9 −0.9 −0.1 −0.4 NO: 277 DS-ppan-MC-MMAF- NO: 1215 LEFIASKLA-T195 SEQ ID anti-hHER2-HC-L328- SEQ ID 56.9 78.8 50.4 81.0 −6.5  2.1 −12.8 NO: 315 DS-ppan-MC-MMAF- NO: 1243 LEFIASKLA-P329 SEQ ID anti-hHER2-HC-A330- SEQ ID 54.2 81.1 51.3 81.2 −2.9  0.1 −15.5 NO: 317 DS-ppan-MC-MMAF- NO: 1245 LEFIASKLA-P331 SEQ ID anti-hHER2-HC-E388- SEQ ID 69.3 81.5 68.8 81.0 −0.6 −0.5 −0.4 NO: 129 DS-ppan-MC-MMAF- NO: 1122 LEFIASKLA-N389 SEQ ID anti-hHER2-HC-G446- SEQ ID 69.9 81.2 69.9 80.9 0  −0.4 0.2 NO: 349 DS-ppan-MC-MMAF- NO: 1270 LEFIASKLA-K447 SEQ ID anti-hHER2-LC-V110- SEQ ID 66.9 t.b. 66.3 t.b. −0.6 t.b. −2.8 NO: 32 GDS-ppan-MC-MMAF- NO: 1272 LSWLLRLLN-A111 SEQ ID anti-hHER2-LC-A111- SEQ ID 67.3 t.b. 66.0 t.b. −1.3 t.b. −2.4 NO: 33 GDS-ppan-MC-MMAF- NO: 1273 LSWLLRLLN-A112 SEQ ID anti-hHER2-LC-Q155- SEQ ID 69.4 80.0 68.7 79.4 −0.7 −0.6 −0.3 NO: 46 GDS-ppan-MC-MMAF- NO: 1284 LSWLLRLLN-S156 SEQ ID anti-hHER2-LC-S162- SEQ ID 68.5 t.b. 67.3 t.b. −1.2 t.b. −1.2 NO: 48 GDS-ppan-MC-MMAF- NO: 1251 LSWLLRLLN-V163 SEQ ID anti-hHER2-LC-Q199- SEQ ID 67.5 t.b. 67.4 t.b. −0.1 t.b. −2.2 NO: 56 GDS-ppan-MC-MMAF- NO: 1292 LSWLLRLLN-G200 SEQ ID anti-hHER2-LC-V110- SEQ ID 69.0 t.b. 67.6 t.b. −1.4 t.b. −0.7 NO: 63 DS-ppan-MC-MMAF- NO: 1294 LEFIASKLA-A111 SEQ ID anti-hHER2-LC-A111- SEQ ID 69.6 t.b. 68.5 t.b. −1.1 t.b. −0.1 NO: 64 DS-ppan-MC-MMAF- NO: 1295 LEFIASKLA-A112 SEQ ID anti-hHER2-LC-A153- SEQ ID 69.6 79.7 69.0 79.2 −0.5 −0.5 −0.1 NO: 75 DS-ppan-MC-MMAF- NO: 1305 LEFIASKLA-L154 SEQ ID anti-hHER2-LC-L201- SEQ ID 69.5 75.1 68.7 74.8 −0.8 −0.4 −0.2 NO: 89 DS-ppan-MC-MMAF- NO: 1316 LEFIASKLA-S202 SEQ ID anti-hHER2-HC-N389- SEQ ID 67.8 79.1 67.3 78.7 −0.5 −0.5 −1.9 NO: 330 DS-ppan-MC-MMAF- NO: 1256 LEFIASKLA-N390 SEQ ID anti-hHER2-HC-R255- SEQ ID 52.0 76.9 49.7 78.6 −2.3  1.7 −17.7 NO: 195 GDS-ppan-MC-MMAF- NO: 1167 LSWLLRLLN-T256 SEQ ID anti-hHER2-HC-P291- SEQ ID 56.0 77.3 65.4 77.9  9.4  0.6 −13.7 NO: 206 GDS-ppan-MC-MMAF- NO: 1173 LSWLLRLLN-R292 SEQ ID anti-hHER2-HC-L235- SEQ ID 64.1 79.4 63.5 78.9 −0.6 −0.5 −5.6 NO: 288 DS-ppan-MC-MMAF- NO: 1221 LEFIASKLA-G236 SEQ ID anti-hHER2-HC-A118- SEQ ID 68.1 t.b. 67.8 t.b. −0.3 t.b. −1.6 NO: 249 DS-ppan-MC-MMAF- NO: 1200 LEFIASKLA-S119 SEQ ID anti-hHER2-HC-R344- SEQ ID 60.5 79.2 58.4 78.6 −2.1 −0.5 −9.2 NO: 323 DS-ppan-MC-MMAF- NO: 1251 LEFIASKLA-E345 SEQ ID anti-hHER2-HC-P343- SEQ ID 59.5 79.2 57.6 78.7 −1.8 −0.5 −10.2 NO: 322 DS-ppan-MC-MMAF- NO: 1250 LEFIASKLA-R344 SEQ ID anti-hHER2-HC-P271- SEQ ID 53.0 79.8 49.8 78.0 −3.1 −1.8 −16.7 NO: 301 DS-ppan-MC-MMAF- NO: 1233 LEFIASKLA-E272 SEQ ID anti-hHER2-HC-Q196- SEQ ID 68.2 77.3 68.2 77.3  0.0  0.0 −1.5 NO: 279 DS-ppan-MC-MMAF- NO: 1217 LEFIASKLA-T197 SEQ ID anti-hHER2-HC-S254- SEQ ID 57.9 79.2 53.3 78.5 −4.5 −0.7 −11.8 NO: 293 DS-ppan-MC-MMAF- NO: 1226 LEFIASKLA-R255 SEQ ID anti-hHER2-HC-S254- SEQ ID n.d. n.d. n.d. n.d. n.d. n.d. n.d. NO: 194 GDS-ppan-MC-MMAF- NO: 1166 LSWLLRLLN-R255 SEQ ID anti-hHER2-HC-R416- SEQ ID 67.5 78.8 66.8 78.5 −0.8 −0.3 −2.2 NO: 337 DS-ppan-MC-MMAF- NO: 1261 LEFIASKLA-W417 SEQ ID anti-hHER2-HC-D270- SEQ ID 67.7 75.9 43.9 77.7 −23.8  1.8 −2.0 NO: 201 GDS-ppan-MC-MMAF- NO: 1171 LSWLLRLLN-P271 SEQ ID anti-hHER2-HC-A162- SEQ ID 69.0 78.2 68.1 76.4 −0.9 −1.7 −0.7 NO: 265 DS-ppan-MC-MMAF- NO: 1207 LEFIASKLA-L163 SEQ ID anti-hHER2-HC-S191- SEQ ID 68.3 77.8 66.8 74.9 −1.5 −2.9 −1.4 NO: 274 DS-ppan-MC-MMAF- NO: 1213 LEFIASKLA-S192 SEQ ID anti-hHER2-HC-S192- SEQ ID 68.4 78.1 66.9 76.1 −1.4 −1.9 −1.3 NO: 275 DS-ppan-MC-MMAF- NO: 1214 LEFIASKLA-L193 SEQ ID anti-hHER2-HC-L193- SEQ ID 68.0 77.1 66.7 75.9 −1.3 −1.2 −1.7 NO: 177 GDS-ppan-MC-MMAF- NO: 1155 LSWLLRLLN-G194 SEQ ID anti-hHER2-HC-R255- SEQ ID 58.4 79.3 54.4 78.7 −4.1 −0.5 −11.3 NO: 294 DS-ppan-MC-MMAF- NO: 1227 LEFIASKLA-T256 SEQ ID anti-hHER2-HC-H268- SEQ ID 49.8 78.9 48.1 77.6 −1.6 −1.3 −19.9 NO: 199 GDS-ppan-MC-MMAF- NO: 1169 LSWLLRLLN-E269 SEQ ID anti-hHER2-HC-S267- SEQ ID 49.1 78.9 47.4 78.0 −1.7 −0.9 −20.6 NO: 198 GDS-ppan-MC-MMAF- NO: 1168 LSWLLRLLN-H268 SEQ ID anti-hHER2-HC-L235- SEQ ID 61.1 79.3 62.3 79.1  1.2 −0.2 −8.6 NO: 189 GDS-ppan-MC-MMAF- NO: 1163 LSWLLRLLN-G236 SEQ ID anti-hHER2-HC-P343- SEQ ID 56.9 79.0 55.3 78.4 −1.5 −0.6 −12.9 NO: 223 GDS-ppan-MC-MMAF- NO: 1185 LSWLLRLLN-R344 SEQ ID anti-hHER2-HC-!253- SEQ ID 50.3 79.0 46.2 78.7 −4.1 −0.3 −19.4 NO: 193 GDS-ppan-MC-MMAF- NO: 1165 LSWLLRLLN-S254 SEQ ID anti-hHER2-HC-P206- SEQ ID 58.8 63.4 56.1 61.9 −2.7 −1.6 −10.9 NO: 182 GDS-ppan-MC-MMAF- NO: 1160 LSWLLRLLN-S207 SEQ ID anti-hHER2-HC-P257- SEQ ID 59.9 75.9 66.8 74.8  6.9 −1.2 −9.8 NO: 296 DS-ppan-MC-MMAF- NO: 1228 LEFIASKLA-E258 SEQ ID anti-hHER2-HC-T195- SEQ ID 68.4 77.7 66.8 75.5 −1.6 −2.2 −1.3 NO: 278 DS-ppan-MC-MMAF- NO: 1216 LEFIASKLA-Q196 SEQ ID anti-hHER2-HC-E269- SEQ ID 53.9 79.4 69.4 t.b. 15.5 t.b. −15.8 NO: 299 DS-ppan-MC-MMAF- NO: 1231 LEFIASKLA-D270 SEQ ID anti-hHER2-HC-A118- SEQ ID 70.0 t.b. 64.6 79.0 −5.3 t.b. 0.3 NO: 150 GDS-ppan-MC-MMAF- NO: 1136 LSWLLRLLN-S119 SEQ ID anti-hHER2-HC-A231- SEQ ID 60.4 79.2 69.0 75.1  8.6 −4.1 −9.3 NO: 185 GDS-ppan-MC-MMAF- NO: 1161 LSWLLRLLN-P232 SEQ ID anti-hHER2-LC-E161- SEQ ID 70.1 75.8 67.4 t.b. −2.7 t.b. 0.4 NO: 47 GDS-ppan-MC-MMAF- NO: 1285 LSWLLRLLN-S162 SEQ ID anti-hHER2-LC-S203- SEQ ID 68.9 74.0 66.4 t.b. −2.5 t.b. −0.8 NO: 91 DS-ppan-MC-MMAF- NO: 1317 LEFIASKLA-P204 SEQ ID anti-hHER2-LC-S203- SEQ ID 66.6 t.b. 65.4 t.b. −1.3 t.b. −3.1 NO: 60 GDS-ppan-MC-MMAF- NO: 1318 LSWLLRLLN-P204 SEQ ID anti-hHER2-LC-K207- SEQ ID 65.4 t.b. 62.8 t.b. −2.6 t.b. −4.3 NO: 61 GDS-ppan-MC-MMAF- NO: 1319 LSWLLRLLN-S208 SEQ ID anti-hHER2-LC-S202- SEQ ID 68.6 t.b. 66.9 t.b. −1.8 t.b. −1.1 NO: 90 DS-ppan-MC-MMAF- NO: 1320 LEFIASKLA-S203 SEQ ID anti-hHER2-LC-A153- SEQ ID 77.8 66.7 76.1 −1.6 NO: 44 GDS-ppan-MC-MMAF- NO: 1282 LSWLLRLLN-L154 SEQ ID anti-hHER2-HC-T164- SEQ ID 69.0 78.3 68.1 77.4 −0.9 −1.0 −0.7 NO: 267 DS-ppan-MC-MMAF- NO: 1208 LEFIASKLA-S165 SEQ ID anti-hHER2-HC-S192- SEQ ID 66.4 77.9 65.5 74.6 −0.9 −3.3 −3.3 NO: 176 GDS-ppan-MC-MMAF- NO: 1154 LSWLLRLLN-L193 SEQ ID anti-hHER2-HC-D270- SEQ ID 53.7 79.6 51.3 77.9 −2.4 −1.7 −16.0 NO: 300 DS-ppan-MC-MMAF- NO: 1232 LEFIASKLA-P271 SEQ ID anti-hHER2-HC-Q196- SEQ ID 66.5 75.9 65.5 73.9 −0.9 −2.0 −3.3 NO: 180 GDS-ppan-MC-MMAF- NO: 1158 LSWLLRLLN-T197 SEQ ID anti-hHER2-HC-S191- SEQ ID 66.3 77.2 65.7 77.1 −0.6 −0.1 −3.4 NO: 175 GDS-ppan-MC-MMAF- NO: 1153 LSWLLRLLN-S192 SEQ ID anti-hHER2-HC-G420- SEQ ID 67.9 78.9 67.3 78.4 −0.6 −0.6 −1.8 NO: 341 DS-ppan-MC-MMAF- NO: 1265 LEFIASKLA-N421 SEQ ID anti-hHER2-HC-G236- SEQ ID 66.2 79.3 63.1 78.8 −3.1 −0.5 −3.5 NO: 289 DS-ppan-MC-MMAF- NO: 1222 LEFIASKLA-G237 SEQ ID anti-hHER2-HC-N421- SEQ ID 68.9 t.b. 68.1 77.4 −0.7 t.b. −0.9 NO: 342 DS-ppan-MC-MMAF- NO: 1266 LEFIASKLA-V422 SEQ ID anti-hHER2-LC-Q155- SEQ ID 69.3 77.1 68.3 76.0 −1.0 −1.2 −0.4 NO: 77 DS-ppan-MC-MMAF- NO: 1307 LEFIASKLA-S156 SEQ ID anti-hHER2-LC-L154- SEQ ID 68.9 77.2 67.6 75.9 −1.2 −1.3 −0.9 NO: 45 GDS-ppan-MC-MMAF- NO: 1283 LSWLLRLLN-Q155 SEQ ID anti-hHER2-HC-R416- SEQ ID 63.4 78.9 66.7 78.4  3.3 −0.6 −6.3 NO: 237 GDS-ppan-MC-MMAF- NO: 1193 LSWLLRLLN-W417 SEQ ID anti-hHER2-HC-E233- SEQ ID 44.9 78.5 44.0 77.7 −0.9 −0.8 −24.8 NO: 187 GDS-ppan-MC-MMAF- NO: 1162 LSWLLRLLN-L234 SEQ ID anti-hHER2-HC-G138- SEQ ID 67.1 78.8 66.6 78.1 −0.5 −0.7 −2.6 NO: 160 GDS-ppan-MC-MMAF- NO: 1141 LSWLLRLLN-T139 SEQ ID anti-hHER2-HC-G161- SEQ ID 68.9 78.2 67.7 75.9 −1.1 −2.3 −0.8 NO: 370 GDS-ppan-MC-MMAF- NO: 1321 LDMLEWSLM-A162 SEQ ID anti-hHER2-HC-L163- SEQ ID 69.0 78.4 68.3 77.5 −0.8 −0.9 −0.7 NO: 372 GDS-ppan-MC-MMAF- NO: 1322 LDMLEWSLM-T164 SEQ ID anti-hHER2-HC-S165- SEQ ID 69.1 78.7 68.1 77.5 −1.0 −1.3 −0.6 NO: 374 GDS-ppan-MC-MMAF- NO: 1323 LDMLEWSLM-G166 SEQ ID anti-hHER2-HC-S190- SEQ ID 68.0 78.0 66.6 76.6 −1.4 −1.5 −1.7 NO: 376 GDS-ppan-MC-MMAF- NO: 1324 LDMLEWSLM-S191 SEQ ID anti-hHER2-HC-S191- SEQ ID 68.0 78.1 66.5 76.2 −1.5 −2.0 −1.7 NO: 377 GDS-ppan-MC-MMAF- NO: 1325 LDMLEWSLM-S192 SEQ ID anti-hHER2-HC-S192- SEQ ID 68.1 78.4 66.7 76.4 −1.4 −1.9 −1.6 NO: 378 GDS-ppan-MC-MMAF- NO: 1326 LDMLEWSLM-L193 SEQ ID anti-hHER2-HC-G194- SEQ ID 68.3 78.4 66.9 76.7 −1.4 −1.7 −1.4 NO: 380 GDS-ppan-MC-MMAF- NO: 1327 LDMLEWSLM-T195 SEQ ID anti-hHER2-HC-T195- SEQ ID 68.3 77.9 66.9 75.8 −1.4 −2.1 −1.4 NO: 381 GDS-ppan-MC-MMAF- NO: 1328 LDMLEWSLM-Q196 SEQ ID anti-hHER2-LC-T109- SEQ ID 66.5 t.b. 64.3 t.b. −2.2 t.b. −3.2 NO: 383 GDS-ppan-MC-MMAF- NO: 1329 LDMLEWSLM-V110 SEQ ID anti-hHER2-LC-V110- SEQ ID 66.1 t.b. 63.8 t.b. −2.3 t.b. −3.6 NO: 384 GDS-ppan-MC-MMAF- NO: 1330 LDMLEWSLM-A111 aName represents part of the HC or LC that contains the peptide tag with the attached compound, the paired wildtype chain is not listed. bTm of ADC minus Tm of antibody. cTm1 of antibody minus Tm1 of wild-type trastuzumab (69.7° C.). n.d., Not determined. Measurement was not performed due to insufficient sample amounts. t.b., Transition too broad for accurate determination of Tm2.

Purified ADCs were further characterized for in vitro potency against selected cell lines (Table 24) including two engineered cell lines, MDA-MB231 clone 16 and clone 40, and two cell lines (JimT1 and HCC1954) that endogenously express the targeted antigen, human HER2, on the cell surface. MDA-MB231 clone 16 cells stably express 500,000 copies of HER2 per cell while clone 40 expresses only 5000 copies/cell. HCC1954 cells endogenously express high level (500,000 copies/cell) of human HER2 on the surface (Clinchy B, Gazdar A, Rabinovsky R, Yefenof E, Gordon B, Vitetta E S. Breast Cancer Res Treat. (2000) 61:217-228). The JimT1 cell line expresses approximately 80,000 copies of HER2 per cell (Mocanu M-M, Fazekas Z, Petras M, Nagy P, Sebestyen Z, Isola J, Timar J, Park J W, Vereb G, Szollosi J. Cancer Letters (2005) 227: 201-212). The cell proliferation assays were conducted with Cell-Titer-Glo™ (Promega) five days after cells were incubated with various concentrations of ADCs (Riss et al., (2004) Assay Drug Dev Technol. 2:51-62) with an automated system (Melnick et al., (2006) Proc Natl Acad Sci USA. 103:3153-3158). Trastuzumab peptide-tagged-MMAF ADCs specifically killed MDA-MB231 clone 16, HCC1954 and JimT1 cells (Table 24): IC50 values of the trastuzumab peptide-tagged-MMAF ADCs averaged around 0.45 nM, 0.24 nM and 2.0 nM for MDA-MB231 clone 16, HCC1954 and JimT1 cells, respectively (Table 24), consistent with the different HER2 expression levels. No killing of the antigen negative (Her2 low) control cell line MDA-MB231 clone 40 was observed at the highest test concentration (33 nM) for 92 of 97 ADCs.

TABLE 24 In vitro potency of anti-HER2 ADCs. IC50 cell killing concentrations are reported for HER2 positive and negative cell lines. MDA-MB- MDA-MB- Anti- ADC HCC1954 JimT1 231 clone 16 231 clone 40 body SEQ ID IC50 IC50 IC50 IC50 SEQ ID ADC namea NO (μM)b (μM)b (μM)b (μM)b SEQ ID anti-hHER2-HC-S119- SEQ ID 1.94E−04 5.10E−04 6.82E−04 >3.33E−02 NO: 151 GDS-ppan-MC-MMAF- NO: 1137 LSWLLRLLN-T120 SEQ ID anti-hHER2-HC-T120- SEQ ID 1.69E−04 7.53E−04 7.02E−04 >3.33E−02 NO: 152 GDS-ppan-MC-MMAF- NO: 1138 LSWLLRLLN-K121 SEQ ID anti-hHER2-HC-T135- SEQ ID 1.36E−04 2.57E−04 3.10E−04 >3.33E−02 NO: 157 GDS-ppan-MC-MMAF- NO: 1139 LSWLLRLLN-S136 SEQ ID anti-hHER2-HC-S136- SEQ ID 1.64E−04 2.43E−04 3.05E−04 >3.33E−02 NO: 158 GDS-ppan-MC-MMAF- NO: 1140 LSWLLRLLN-G137 SEQ ID anti-hHER2-HC-A162- SEQ ID 1.55E−04 8.66E−04 3.31E−04 >3.33E−02 NO: 166 GDS-ppan-MC-MMAF- NO: 1147 LSWLLRLLN-L163 SEQ ID anti-hHER2-HC-T164- SEQ ID 1.89E−04 5.36E−04 4.69E−04 >3.33E−02 NO: 168 GDS-ppan-MC-MMAF- NO: 1148 LSWLLRLLN-S165 SEQ ID anti-hHER2-HC-S165- SEQ ID 1.69E−04 6.19E−04 4.00E−04 >3.33E−02 NO: 169 GDS-ppan-MC-MMAF- NO: 1149 LSWLLRLLN-G166 SEQ ID anti-hHER2-HC-P189- SEQ ID 1.47E−04 2.69E−04 2.86E−04 >3.33E−02 NO: 173 GDS-ppan-MC-MMAF- NO: 1152 LSWLLRLLN-S190 SEQ ID anti-hHER2-HC-G194- SEQ ID 1.03E−04 1.33E−03 3.56E−04 >3.33E−02 NO: 178 GDS-ppan-MC-MMAF- NO: 1156 LSWLLRLLN-T195 SEQ ID anti-hHER2-HC-T195- SEQ ID 1.42E−04 3.00E−04 2.79E−04 >3.33E−02 NO: 179 GDS-ppan-MC-MMAF- NO: 1157 LSWLLRLLN-Q196 SEQ ID anti-hHER2-HC-P271- SEQ ID 1.33E−04 4.50E−04 6.75E−04 >3.33E−02 NO: 202 GDS-ppan-MC-MMAF- NO: 1172 LSWLLRLLN-E272 SEQ ID anti-hHER2-HC-A330- SEQ ID 9.68E−05 3.18E−04 4.66E−04 >3.33E−02 NO: 218 GDS-ppan-MC-MMAF- NO: 1181 LSWLLRLLN-P331 SEQ ID anti-hHER2-HC-K340- SEQ ID 3.76E−04 5.55E−04 3.08E−04 >3.33E−02 NO: 220 GDS-ppan-MC-MMAF- NO: 1182 LSWLLRLLN-G341 SEQ ID anti-hHER2-HC-G341- SEQ ID 7.21E−05 3.58E−04 7.82E−04 >3.33E−02 NO: 221 GDS-ppan-MC-MMAF- NO: 1183 LSWLLRLLN-Q342 SEQ ID anti-hHER2-HC-R344- SEQ ID 2.13E−03 4.47E−04 3.21E−04 >3.33E−02 NO: 224 GDS-ppan-MC-MMAF- NO: 1186 LSWLLRLLN-E345 SEQ ID anti-hHER2-HC-K360- SEQ ID 1.80E−04 1.31E−03 7.57E−04 >3.33E−02 NO: 229 GDS-ppan-MC-MMAF- NO: 1187 LSWLLRLLN-N361 SEQ ID anti-hHER2-HC-E388- SEQ ID 1.57E−04 4.21E−04 5.42E−04 >3.33E−02 NO: 127 GDS-ppan-MC-MMAF- NO: 1118 LSWLLRLLN-N389 SEQ ID anti-hHER2-HC-Q418- SEQ ID 2.48E−04 1.24E−03 7.31E−04 >3.33E−02 NO: 239 GDS-ppan-MC-MMAF- NO: 1195 LSWLLRLLN-Q419 SEQ ID anti-hHER2-HC-N434- SEQ ID n.d. n.d. n.d. n.d. NO: 244 GDS-ppan-MC-MMAF- NO: 1197 LSWLLRLLN-H435 SEQ ID anti-hHER2-HC-P445- SEQ ID 7.42E−05 3.84E−03 7.44E−04 >3.33E−02 NO: 248 GDS-ppan-MC-MMAF- NO: 1199 LSWLLRLLN-G446 SEQ ID anti-hHER2-HC-S119- SEQ ID 1.80E−04 3.46E−04 3.21E−04 >3.33E−02 NO: 250 DS-ppan-MC-MMAF- NO: 1201 LEFIASKLA-T120 SEQ ID anti-hHER2-HC-T120- SEQ ID 1.98E−04 4.59E−04 3.94E−04 >3.33E−02 NO: 251 DS-ppan-MC-MMAF- NO: 1202 LEFIASKLA-K121 SEQ ID anti-hHER2-HC-S136- SEQ ID 6.48E−05 3.95E−04 2.62E−04 >3.33E−02 NO: 257 DS-ppan-MC-MMAF- NO: 1203 LEFIASKLA-137 SEQ ID anti-hHER2-HC-G138- SEQ ID 1.58E−04 >3.33E−02  3.21E−04 >3.33E−02 NO: 259 DS-ppan-MC-MMAF- NO: 1204 LEFIASKLA-T139 SEQ ID anti-hHER2-HC-S165- SEQ ID 1.65E−04 4.07E−04 3.79E−04 >3.33E−02 NO: 268 DS-ppan-MC-MMAF- NO: 1209 LEFIASKLA-G166 SEQ ID anti-hHER2-HC-G194- SEQ ID 1.22E−04 6.48E−04 1.83E−04 >3.33E−02 NO: 277 DS-ppan-MC-MMAF- NO: 1215 LEFIASKLA-T195 SEQ ID anti-hHER2-HC-L328- SEQ ID 1.37E−04 2.79E−04 1.15E−03 >3.33E−02 NO: 315 DS-ppan-MC-MMAF- NO: 1243 LEFIASKLA-P329 SEQ ID anti-hHER2-HC-A330- SEQ ID 4.09E−04 2.24E−02 2.85E−04 >3.33E−02 NO: 317 DS-ppan-MC-MMAF- NO: 1245 LEFIASKLA-P331 SEQ ID anti-hHER2-HC-E388- SEQ ID 2.26E−04 1.83E−03 3.12E−04 >3.33E−02 NO: 129 DS-ppan-MC-MMAF- NO: 1122 LEFIASKLA-N389 SEQ ID anti-hHER2-HC-G446- SEQ ID 2.12E−04 6.82E−04 7.77E−04 >3.33E−02 NO: 349 DS-ppan-MC-MMAF- NO: 1270 LEFIASKLA-K447 SEQ ID anti-hHER2-LC-V110- SEQ ID 2.31E−04 4.14E−04 5.18E−04 >3.33E−02 NO: 32 GDS-ppan-MC-MMAF- NO: 1272 LSWLLRLLN-A111 SEQ ID anti-hHER2-LC-A111- SEQ ID 1.95E−04 1.15E−02 5.05E−04 >3.33E−02 NO: 33 GDS-ppan-MC-MMAF- NO: 1273 LSWLLRLLN-A112 SEQ ID anti-hHER2-LC-Q155- SEQ ID 1.43E−04 5.47E−04 3.70E−04 >3.33E−02 NO: 46 GDS-ppan-MC-MMAF- NO: 1284 LSWLLRLLN-S156 SEQ ID anti-hHER2-LC-S162- SEQ ID 2.67E−04 8.13E−04 7.14E−04 >3.33E−02 NO: 48 GDS-ppan-MC-MMAF- NO: 1251 LSWLLRLLN-V163 SEQ ID anti-hHER2-LC-Q199- SEQ ID 1.92E−04 9.21E−04 4.77E−04 >3.33E−02 NO: 56 GDS-ppan-MC-MMAF- NO: 1292 LSWLLRLLN-G200 SEQ ID anti-hHER2-LC-V110- SEQ ID 3.97E−04 4.62E−04 2.77E−04 >3.33E−02 NO: 63 DS-ppan-MC-MMAF- NO: 1294 LEFIASKLA-A111 SEQ ID anti-hHER2-LC-A111- SEQ ID 1.59E−04 6.32E−04 1.68E−02 >3.33E−02 NO: 64 DS-ppan-MC-MMAF- NO: 1295 LEFIASKLA-A112 SEQ ID anti-hHER2-LC-A153- SEQ ID 1.80E−04 2.03E−02 2.60E−04 >3.33E−02 NO: 75 DS-ppan-MC-MMAF- NO: 1305 LEFIASKLA-L154 SEQ ID anti-hHER2-LC-L201- SEQ ID 4.25E−04 3.86E−04 4.74E−04 >3.33E−02 NO: 89 DS-ppan-MC-MMAF- NO: 1316 LEFIASKLA-S202 SEQ ID anti-hHER2-HC-N389- SEQ ID 2.32E−04 4.93E−04 2.26E−04 >3.33E−02 NO: 330 DS-ppan-MC-MMAF- NO: 1256 LEFIASKLA-N390 SEQ ID anti-hHER2-HC-R255- SEQ ID 2.06E−04 3.67E−04 1.16E−04 >3.33E−02 NO: 195 GDS-ppan-MC-MMAF- NO: 1167 LSWLLRLLN-T256 SEQ ID anti-hHER2-HC-P291- SEQ ID 1.99E−04 3.04E−04 9.74E−05 >3.33E−02 NO: 206 GDS-ppan-MC-MMAF- NO: 1173 LSWLLRLLN-R292 SEQ ID anti-hHER2-HC-L235- SEQ ID 1.90E−04 2.97E−04 6.48E−05 >3.33E−02 NO: 288 DS-ppan-MC-MMAF- NO: 1221 LEFIASKLA-G236 SEQ ID anti-hHER2-HC-A118- SEQ ID 2.41E−04 3.39E−04 1.97E−04 >3.33E−02 NO: 249 DS-ppan-MC-MMAF- NO: 1200 LEFIASKLA-S119 SEQ ID anti-hHER2-HC-R344- SEQ ID 2.31E−04 3.39E−04 6.45E−05 >3.33E−02 NO: 323 DS-ppan-MC-MMAF- NO: 1251 LEFIASKLA-E345 SEQ ID anti-hHER2-HC-P343- SEQ ID 2.40E−04 3.75E−04 7.55E−05 >3.33E−02 NO: 322 DS-ppan-MC-MMAF- NO: 1250 LEFIASKLA-R344 SEQ ID anti-hHER2-HC-P271- SEQ ID 2.21E−04 3.78E−04 7.46E−05 >3.33E−02 NO: 301 DS-ppan-MC-MMAF- NO: 1233 LEFIASKLA-E272 SEQ ID anti-hHER2-HC-Q196- SEQ ID 2.44E−04 4.28E−04 1.13E−04 >3.33E−02 NO: 279 DS-ppan-MC-MMAF- NO: 1217 LEFIASKLA-T197 SEQ ID anti-hHER2-HC-S254- SEQ ID 1.92E−04 5.49E−04 6.43E−05 >3.33E−02 NO: 293 DS-ppan-MC-MMAF- NO: 1226 LEFIASKLA-R255 SEQ ID anti-hHER2-HC-S254- SEQ ID n.d. n.d. n.d. n.d. NO: 194 GDS-ppan-MC-MMAF- NO: 1166 LSWLLRLLN-R255 SEQ ID anti-hHER2-HC-R416- SEQ ID 2.69E−04 7.57E−04 8.06E−05 >3.33E−02 NO: 337 DS-ppan-MC-MMAF- NO: 1261 LEFIASKLA-W417 SEQ ID anti-hHER2-HC-D270- SEQ ID 2.28E−04 3.41E−04 8.89E−05 >3.33E−02 NO: 201 GDS-ppan-MC-MMAF- NO: 1171 LSWLLRLLN-P271 SEQ ID anti-hHER2-HC-A162- SEQ ID 2.27E−04 3.42E−04 1.24E−04 >3.33E−02 NO: 265 DS-ppan-MC-MMAF- NO: 1207 LEFIASKLA-L163 SEQ ID anti-hHER2-HC-S191- SEQ ID 2.39E−04 3.21E−04 1.49E−04 >3.33E−02 NO: 274 DS-ppan-MC-MMAF- NO: 1213 LEFIASKLA-S192 SEQ ID anti-hHER2-HC-S192- SEQ ID 2.30E−04 3.37E−04 1.47E−04 >3.33E−02 NO: 275 DS-ppan-MC-MMAF- NO: 1214 LEFIASKLA-L193 SEQ ID anti-hHER2-HC-L193- SEQ ID 2.10E−04 3.03E−04 7.99E−05 >3.33E−02 NO: 177 GDS-ppan-MC-MMAF- NO: 1155 LSWLLRLLN-G194 SEQ ID anti-hHER2-HC-R255- SEQ ID 2.06E−04 4.33E−04 4.40E−05 >3.33E−02 NO: 294 DS-ppan-MC-MMAF- NO: 1227 LEFIASKLA-T256 SEQ ID anti-hHER2-HC-H268- SEQ ID 2.26E−04 3.79E−04 8.97E−05 >3.33E−02 NO: 199 GDS-ppan-MC-MMAF- NO: 1169 LSWLLRLLN-E269 SEQ ID anti-hHER2-HC-S267- SEQ ID 2.30E−04 3.68E−04 8.13E−05 >3.33E−02 NO: 198 GDS-ppan-MC-MMAF- NO: 1168 LSWLLRLLN-H268 SEQ ID anti-hHER2-HC-L235- SEQ ID 2.43E−04 3.09E−04 1.44E−04 >3.33E−02 NO: 189 GDS-ppan-MC-MMAF- NO: 1163 LSWLLRLLN-G236 SEQ ID anti-hHER2-HC-P343- SEQ ID 2.27E−04 3.88E−04 6.27E−05 >3.33E−02 NO: 223 GDS-ppan-MC-MMAF- NO: 1185 LSWLLRLLN-R344 SEQ ID anti-hHER2-HC-I253- SEQ ID n.d. n.d. n.d. n.d. NO: 193 GDS-ppan-MC-MMAF- NO: 1165 LSWLLRLLN-S254 SEQ ID anti-hHER2-HC-P206- SEQ ID 2.68E−04 9.11E−04 1.79E−04 >3.33E−02 NO: 182 GDS-ppan-MC-MMAF- NO: 1160 LSWLLRLLN-S207 SEQ ID anti-hHER2-HC-P257- SEQ ID 2.20E−04 5.53E−04 7.67E−05 >3.33E−02 NO: 296 DS-ppan-MC-MMAF- NO: 1228 LEFIASKLA-E258 SEQ ID anti-hHER2-HC-T195- SEQ ID 1.91E−04 3.14E−04 1.31E−04  2.90E−02 NO: 278 DS-ppan-MC-MMAF- NO: 1216 LEFIASKLA-Q196 SEQ ID anti-hHER2-HC-E269- SEQ ID 2.33E−04 3.97E−04 1.13E−04 >3.33E−02 NO: 299 DS-ppan-MC-MMAF- NO: 1231 LEFIASKLA-D270 SEQ ID anti-hHER2-HC-A118- SEQ ID 2.57E−04 6.74E−04 1.95E−04 >3.33E−02 NO: 150 GDS-ppan-MC-MMAF- NO: 1136 LSWLLRLLN-S119 SEQ ID anti-hHER2-HC-A231- SEQ ID 2.32E−04 2.70E−04 1.72E−04 >3.33E−02 NO: 185 GDS-ppan-MC-MMAF- NO: 1161 LSWLLRLLN-P232 SEQ ID anti-hHER2-LC-E161- SEQ ID 1.63E−04 2.74E−04 1.39E−04 >3.33E−02 NO: 47 GDS-ppan-MC-MMAF- NO: 1285 LSWLLRLLN-S162 SEQ ID anti-hHER2-LC-S203- SEQ ID 2.20E−04 3.33E−04 1.84E−04 >3.33E−02 NO: 91 DS-ppan-MC-MMAF- NO: 1317 LEFIASKLA-P204 SEQ ID anti-hHER2-LC-S203- SEQ ID 2.32E−04 4.29E−04 1.28E−04 >3.33E−02 NO: 60 GDS-ppan-MC-MMAF- NO: 1318 LSWLLRLLN-P204 SEQ ID anti-hHER2-LC-K207- SEQ ID 2.23E−04 4.54E−04 1.78E−04  1.49E−02 NO: 61 GDS-ppan-MC-MMAF- NO: 1319 LSWLLRLLN-S208 SEQ ID anti-hHER2-LC-S202- SEQ ID 2.41E−04 4.33E−04 1.82E−04 >3.33E−02 NO: 90 DS-ppan-MC-MMAF- NO: 1320 LEFIASKLA-S203 SEQ ID anti-hHER2-LC-A153- SEQ ID 2.44E−04 3.95E−04 1.42E−04 >3.33E−02 NO: 44 GDS-ppan-MC-MMAF- NO: 1282 LSWLLRLLN-L154 SEQ ID anti-hHER2-HC-T164- SEQ ID 1.64E−04 3.00E−04 1.22E−04 >3.33E−02 NO: 267 DS-ppan-MC-MMAF- NO: 1208 LEFIASKLA-S165 SEQ ID anti-hHER2-HC-S192- SEQ ID 2.53E−04 3.41E−04 1.81E−04  3.25E−02 NO: 176 GDS-ppan-MC-MMAF- NO: 1154 LSWLLRLLN-L193 SEQ ID anti-hHER2-HC-D270- SEQ ID 2.47E−04 4.49E−04 1.87E−04 >3.33E−02 NO: 300 DS-ppan-MC-MMAF- NO: 1232 LEFIASKLA-P271 SEQ ID anti-hHER2-HC-Q196- SEQ ID 2.49E−04 2.69E−04 1.81E−04  2.26E−02 NO: 180 GDS-ppan-MC-MMAF- NO: 1158 LSWLLRLLN-T197 SEQ ID anti-hHER2-HC-S191- SEQ ID 2.35E−04 3.10E−04 1.81E−04 >3.33E−02 NO: 175 GDS-ppan-MC-MMAF- NO: 1153 LSWLLRLLN-S192 SEQ ID anti-hHER2-HC-G420- SEQ ID 2.47E−04 7.03E−04 1.56E−04 >3.33E−02 NO: 341 DS-ppan-MC-MMAF- NO: 1265 LEFIASKLA-N421 SEQ ID anti-hHER2-HC-G236- SEQ ID 2.37E−04 1.75E−03 1.30E−04 >3.33E−02 NO: 289 DS-ppan-MC-MMAF- NO: 1222 LEFIASKLA-G237 SEQ ID anti-hHER2-HC-N421- SEQ ID 2.47E−04 2.27E−02 1.59E−04 >3.33E−02 NO: 342 DS-ppan-MC-MMAF- NO: 1266 LEFIASKLA-V422 SEQ ID anti-hHER2-LC-Q155- SEQ ID 2.21E−04 4.48E−04 1.70E−04 >3.33E−02 NO: 77 DS-ppan-MC-MMAF- NO: 1307 LEFIASKLA-S156 SEQ ID anti-hHER2-LC-L154- SEQ ID 2.48E−04 4.57E−04 1.26E−04 >3.33E−02 NO: 45 GDS-ppan-MC-MMAF- NO: 1283 LSWLLRLLN-Q155 SEQ ID anti-hHER2-HC-R416- SEQ ID 6.68E−04 8.65E−04 2.69E−04  3.03E−02 NO: 237 GDS-ppan-MC-MMAF- NO: 1193 LSWLLRLLN-W417 SEQ ID anti-hHER2-HC-E233- SEQ ID 2.43E−04 4.47E−04 1.01E−04 >3.33E−02 NO: 187 GDS-ppan-MC-MMAF- NO: 1162 LSWLLRLLN-L234 SEQ ID anti-hHER2-HC-G138- SEQ ID 2.44E−04 3.16E−04 1.78E−04 >3.33E−02 NO: 160 GDS-ppan-MC-MMAF- NO: 1141 LSWLLRLLN-T139 SEQ ID anti-hHER2-HC-G161- SEQ ID 2.28E−04 3.48E−04 1.63E−04 >3.33E−02 NO: 370 GDS-ppan-MC-MMAF- NO: 1321 LDMLEWSLM-A162 SEQ ID anti-hHER2-HC-L163- SEQ ID 2.72E−04 >3.33E−02  2.21E−04 >3.33E−02 NO: 372 GDS-ppan-MC-MMAF- NO: 1322 LDMLEWSLM-T164 SEQ ID anti-hHER2-HC-S165- SEQ ID 2.54E−04 4.88E−04 1.95E−04 >3.33E−02 NO: 374 GDS-ppan-MC-MMAF- NO: 1323 LDMLEWSLM-G166 SEQ ID anti-hHER2-HC-S190- SEQ ID 2.58E−04 7.20E−04 1.69E−04 >3.33E−02 NO: 376 GDS-ppan-MC-MMAF- NO: 1324 LDMLEWSLM-S191 SEQ ID anti-hHER2-HC-S191- SEQ ID 2.45E−04 3.68E−04 1.84E−04 >3.33E−02 NO: 377 GDS-ppan-MC-MMAF- NO: 1325 LDMLEWSLM-S192 SEQ ID anti-hHER2-HC-S192- SEQ ID 2.58E−04 4.76E−04 1.57E−04 >3.33E−02 NO: 378 GDS-ppan-MC-MMAF- NO: 1326 LDMLEWSLM-L193 SEQ ID anti-hHER2-HC-G194- SEQ ID 2.51E−04 4.93E−04 1.67E−04 >3.33E−02 NO: 380 GDS-ppan-MC-MMAF- NO: 1327 LDMLEWSLM-T195 SEQ ID anti-hHER2-HC-T195- SEQ ID 2.44E−04 4.39E−04 1.36E−04 >3.33E−02 NO: 381 GDS-ppan-MC-MMAF- NO: 1328 LDMLEWSLM-Q196 SEQ ID anti-hHER2-LC-T109- SEQ ID 2.12E−04 3.19E−04 1.26E−04 >3.33E−02 NO: 383 GDS-ppan-MC-MMAF- NO: 1329 LDMLEWSLM-V110 SEQ ID anti-hHER2-LC-V110- SEQ ID 2.24E−04 3.54E−04 1.60E−04 >3.33E−02 NO: 384 GDS-ppan-MC-MMAF- NO: 1330 LDMLEWSLM-A111 aName represents part of the HC or LC that contains the peptide tag with the attached compound, the paired wildtype chain is not listed. b33 nM was the highest concentration used in the IC50 cell killing assay. n.d., not determined.

Good pharmacokinetic properties are essential for in vivo efficacy of ADCs (Hamblett, et al., Clin Cancer Res., 10:7063-7070 (2004); Alley et al., Bioconjug. Chem. 19:759-765 (2008)). The conjugation of a CoA-MC-MMAF molecule to an antibody can negatively affect its biophysical properties resulting in rapid clearance and dramatically reduced in vivo efficacy of the corresponding ADC (Hamblett et al., 2004). To evaluate the effects of conjugation site on in vivo clearance and ADC in vivo stability, pharmacokinetic (PK) studies were performed in non-tumor bearing mice with 86 peptide-tagged trastuzumab ADCs (Table 25).

Each peptide-tagged MMAF ADC was injected intravenously into three mice at a single dose of 1 mg/kg. Nine plasma samples were then collected over a time course of 340 hours before plasma titers of the ADCs were determined by ELISA. The ELISA assay uses the immobilized extracellular domain of human HER2 for capturing trastuzumab ADC molecules from plasma samples. Following the capture step of this assay, an anti-MMAF antibody is used to exclusively measure the plasma concentration of the “intact” trastuzumab MMAF conjugate. In a second ELISA experiment, an anti-hIgG antibody generates a signal indicating the plasma concentration of both conjugated and unconjugated trastuzumab molecules. If no payload deconjugation of the ADC occurs in vivo, both anti-MMAF and anti-hIgG ELISAs are expected to provide identical readouts on ADC plasma concentration. However, in the case of payload loss in vivo, the anti-MMAF ELISA is expected to produce a lower signal than the anti-hIgG ELISA. The comparison of both ELISA signals therefore allows the quantification of payload deconjugation during the in vivo exposure of the respective ADC. The interpretation of the PK data is based on standard curves that were generated with the same ADCs as used for intravenous injection into mice.

The area-under-the-plasma-concentration-versus-time-curve (AUC) is an important pharmacokinetic parameter that can be used to determine the total clearance and bioavailability of the administered biotherapeutic agent. For each peptide-tagged MMAF ADC, two characteristic AUC values, AUC hIgG and AUC MMAF, were obtained by the anti-hIgG and anti-MMAF ELISA experiments, respectively. Table 25 summarizes the AUC hIgG and AUC MMAF values as well as their respective ratios of the 86 tested peptide-tagged ADCs. The obtained AUC hIgG values span over a wide range with the highest value of 32553 nM*hr being about 30-fold higher than the lowest value of 1362 nM*hr, with the average being 16935 nM*hr. FIG. 20 A-C exemplifies PK curves of three peptide-tagged MMAF ADCs displaying high AUC hIgG values (ADC of SEQ ID NO:248, 28334 nM*hr; ADC of SEQ ID NO:33, 21011 nM*hr; ADC of SEQ ID NO:251, 21689 nM*hr). On the contrary, PK curves of three constructs showing low AUC hIgG values (ADC of SEQ ID NO:218, 1362 nM*hr; ADC of SEQ ID NO:202, 1757 nM*hr; ADC of SEQ ID NO:244, 2378 nM*hr) are illustrated in FIG. 20 D-F. Despite the great variation of AUC hIgG values, both anti-hIgG and anti-MMAF titers track each other, suggesting that little if any payload deconjugation occurred in vivo. Moreover, the ratios between AUC MMAF and AUC hIgG values of all 86 tested peptide-tagged ADCs average at 1.0±0.1 (AUC(MMAF)/AUC(hIgG)±Standard Deviation, see Table 25 and FIG. 21) suggesting that the maleimide-based linkage between the MC-MMAF and the terminal thiol of the 4′-phosphopantetheine (ppan) moiety remained stable in circulation over the time course of the PK experiment. Likewise, these results also indicate a high in vivo stability of the phosphodiester-based linkage between the ppan prosthetic group and the serine residue of the inserted S6/ybbR/A1 peptide tag.

The rapid clearance observed for some of the peptide-tagged ADCs is likely the result of inserting an S6, A1 or ybbR peptide sequence into specific regions of the IgG1 molecule rather than drug attachment. The putative relationship between tag insertion site and pharmacokinetic profile is exemplified by the two peptide-tagged MMAF ADCs of SEQ ID NO:218 and SEQ ID NO:202, which display the lowest and third lowest measured AUC hIgG values of 1362 nM*hr and 1757 nM*hr, respectively. Both ADCs contain S6 tag insertions in the CH2 domain of the heavy chain. In addition to the instability in murine circulation, these ADCs also exhibit the fifth lowest and ninth lowest thermostabilities of the 86 tested samples of the PK study. According to DSF measurements, the corresponding ADCs display Tm1s of 49.0° C. (ADC of SEQ ID NO:218) and 51.2° C. (ADC of SEQ ID NO:202), resulting in a decrease of 20.7° C. and 18.5° C., respectively, in comparison to wild-type trastuzumab having a Tm1 of 69.7° C. In contrast, the forty ADCs with the highest AUC hIgG values (19695-32553 nM*hr) display an average Tm1 value of 67.4° C., which is only 2.3° C. below the Tm1 of wild-type trastuzumab, suggesting a possible correlation between pharmacokinetics and thermostability of ADCs. Moreover, 26 of these forty ADCs contain S6, ybbR or A1 tags in loop regions of the CH1 domain of the heavy chain. As mentioned above, peptide tag insertions at these favorable sites also display the best overall conjugation efficiencies, making them preferred candidates for ADC production. These include antibodies with heavy chain insertions between S119-T120, T120-K121, T135-S136, S136-G137, G138-T139, A162-L163, T164-S165, S165-G166, G194-T195, T195-Q196, and E388-N389 (CH3 domain) corresponding to SEQ ID numbers 126, 127, 129, 130, 131, 132, 149, 151, 152, 157, 158, 160, 166, 168, 169, 178, 179, 250, 251, 256, 257, 259, 265, 267, 268, 277, 278, 356, 358, 359, 364, 365, 367, 371, 373, 374, 380, and 381.

TABLE 25 Pharmacokinetics data. Anti- ADC body SEQ ID AUCb hIgG AUCc MMAF AUC(MMAF)/ SEQ ID ADC namea NO (nM * hr) (nM * hr) AUC(hIgG) SEQ ID anti-hHER2-HC-S119- SEQ ID 22485 21693 1.0 NO: 151 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-T120 1137 SEQ ID anti-hHER2-HC-T120- SEQ ID 13880 12542 0.9 NO: 152 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-K121 1138 SEQ ID anti-hHER2-HC-T135- SEQ ID 21494 16931 0.8 NO: 157 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-S136 1139 SEQ ID anti-hHER2-HC-S136- SEQ ID 22833 23533 1.0 NO: 158 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-G137 1140 SEQ ID anti-hHER2-HC-A162- SEQ ID 11178 10981 1.0 NO: 166 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-L163 1147 SEQ ID anti-hHER2-HC-T164- SEQ ID 20916 22125 1.1 NO: 168 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-S165 1148 SEQ ID anti-hHER2-HC-S165- SEQ ID 23242 21304 0.9 NO: 169 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-G166 1149 SEQ ID anti-hHER2-HC-P189- SEQ ID 8922 8840 1.0 NO: 173 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-S190 1152 SEQ ID anti-hHER2-HC-G194- SEQ ID 20702 18593 0.9 NO: 178 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-T195 1156 SEQ ID anti-hHER2-HC-T195- SEQ ID 16083 17465 1.1 NO: 179 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-Q196 1157 SEQ ID anti-hHER2-HC-P271- SEQ ID 1757 1550 0.9 NO: 202 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-E272 1172 SEQ ID anti-hHER2-HC-A330- SEQ ID 1362 1768 1.3 NO: 218 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-P331 1181 SEQ ID anti-hHER2-HC-K340- SEQ ID 17396 16060 0.9 NO: 220 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-G341 1182 SEQ ID anti-hHER2-HC-G341- SEQ ID 9214 10336 1.1 NO: 221 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-Q342 1183 SEQ ID anti-hHER2-HC-R344- SEQ ID 15196 16061 1.1 NO: 224 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-E345 1186 SEQ ID anti-hHER2-HC-K360- SEQ ID 7867 8209 1.0 NO: 229 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-N361 1187 SEQ ID anti-hHER2-HC-E388- SEQ ID 14224 14887 1.0 NO: 127 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-N389 1118 SEQ ID anti-hHER2-HC-Q418- SEQ ID 8561 6136 0.7 NO: 239 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-Q419 1195 SEQ ID anti-hHER2-HC-N434- SEQ ID 2378 2249 0.9 NO: 244 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-H435 1197 SEQ ID anti-hHER2-HC-P445- SEQ ID 28334 24130 0.9 NO: 248 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-G446 1199 SEQ ID anti-hHER2-HC-S119- SEQ ID 22854 24551 1.1 NO: 250 DS-ppan-MC-MMAF- NO: LEFIASKLA-T120 1201 SEQ ID anti-hHER2-HC-T120- SEQ ID 21689 19734 0.9 NO: 251 DS-ppan-MC-MMAF- NO: LEFIASKLA-K121 1202 SEQ ID anti-hHER2-HC-S136- SEQ ID 27232 24064 0.9 NO: 257 DS-ppan-MC-MMAF- NO: LEFIASKLA-137 1203 SEQ ID anti-hHER2-HC-G138- SEQ ID 17184 15404 0.9 NO: 259 DS-ppan-MC-MMAF- NO: LEFIASKLA-T139 1204 SEQ ID anti-hHER2-HC-S165- SEQ ID 12794 13854 1.1 NO: 268 DS-ppan-MC-MMAF- NO: LEFIASKLA-G166 1209 SEQ ID anti-hHER2-HC-G194- SEQ ID 20659 21603 1.0 NO: 277 DS-ppan-MC-MMAF- NO: LEFIASKLA-T195 1215 SEQ ID anti-hHER2-HC-L328- SEQ ID 7590 8039 1.1 NO: 315 DS-ppan-MC-MMAF- NO: LEFIASKLA-P329 1243 SEQ ID anti-hHER2-HC-A330- SEQ ID 12960 14302 1.1 NO: 317 DS-ppan-MC-MMAF- NO: LEFIASKLA-P331 1245 SEQ ID anti-hHER2-HC-E388- SEQ ID 21023 21257 1.0 NO: 129 DS-ppan-MC-MMAF- NO: LEFIASKLA-N389 1122 SEQ ID anti-hHER2-HC-G446- SEQ ID 20329 16452 0.8 NO: 349 DS-ppan-MC-MMAF- NO: LEFIASKLA-K447 1270 SEQ ID anti-hHER2-LC-V110- SEQ ID 17358 18734 1.1 NO: 32 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-A111 1272 SEQ ID anti-hHER2-LC-A111- SEQ ID 21011 20711 1.0 NO: 33 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-A112 1273 SEQ ID anti-hHER2-LC-Q155- SEQ ID 15444 17657 1.1 NO: 46 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-S156 1284 SEQ ID anti-hHER2-LC-S162- SEQ ID 11348 11645 1.0 NO: 48 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-V163 1251 SEQ ID anti-hHER2-LC-Q199- SEQ ID 16832 17973 1.1 NO: 56 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-G200 1292 SEQ ID anti-hHER2-LC-V110- SEQ ID 20373 24757 1.2 NO: 63 DS-ppan-MC-MMAF- NO: LEFIASKLA-A111 1294 SEQ ID anti-hHER2-LC-A111- SEQ ID 16092 16196 1.0 NO: 64 DS-ppan-MC-MMAF- NO: LEFIASKLA-A112 1295 SEQ ID anti-hHER2-LC-A153- SEQ ID 18406 19496 1.1 NO: 75 DS-ppan-MC-MMAF- NO: LEFIASKLA-L154 1305 SEQ ID anti-hHER2-LC-L201- SEQ ID 17223 15036 0.9 NO: 89 DS-ppan-MC-MMAF- NO: LEFIASKLA-S202 1316 SEQ ID anti-hHER2-HC-N389- SEQ ID n.d. n.d. n.d. NO: 330 DS-ppan-MC-MMAF- NO: LEFIASKLA-N390 1256 SEQ ID anti-hHER2-HC-R255- SEQ ID 5657 6480 1.1 NO: 195 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-T256 1167 SEQ ID anti-hHER2-HC-P291- SEQ ID 23692 29456 1.2 NO: 206 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-R292 1173 SEQ ID anti-hHER2-HC-L235- SEQ ID 24430 27937 1.1 NO: 288 DS-ppan-MC-MMAF- NO: LEFIASKLA-G236 1221 SEQ ID anti-hHER2-HC-A118- SEQ ID 22713 19408 0.9 NO: 249 DS-ppan-MC-MMAF- NO: LEFIASKLA-S119 1200 SEQ ID anti-hHER2-HC-R344- SEQ ID 16731 19050 1.1 NO: 323 DS-ppan-MC-MMAF- NO: LEFIASKLA-E345 1251 SEQ ID anti-hHER2-HC-P343- SEQ ID 18942 22948 1.2 NO: 322 DS-ppan-MC-MMAF- NO: LEFIASKLA-R344 1250 SEQ ID anti-hHER2-HC-P271- SEQ ID 6651 7233 1.1 NO: 301 DS-ppan-MC-MMAF- NO: LEFIASKLA-E272 1233 SEQ ID anti-hHER2-HC-Q196- SEQ ID 20702 24082 1.2 NO: 279 DS-ppan-MC-MMAF- NO: LEFIASKLA-T197 1217 SEQ ID anti-hHER2-HC-S254- SEQ ID 2447 2783 1.1 NO: 293 DS-ppan-MC-MMAF- NO: LEFIASKLA-R255 1226 SEQ ID anti-hHER2-HC-S254- SEQ ID 1609 1872 1.2 NO: 194 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-R255 1166 SEQ ID anti-hHER2-HC-R416- SEQ ID 20158 21424 1.1 NO: 337 DS-ppan-MC-MMAF- NO: LEFIASKLA-W417 1261 SEQ ID anti-hHER2-HC-D270- SEQ ID 2566 2414 0.9 NO: 201 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-P271 1171 SEQ ID anti-hHER2-HC-A162- SEQ ID 26501 27992 1.1 NO: 265 DS-ppan-MC-MMAF- NO: LEFIASKLA-L163 1207 SEQ ID anti-hHER2-HC-S191- SEQ ID 21971 25264 1.1 NO: 274 DS-ppan-MC-MMAF- NO: LEFIASKLA-S192 1213 SEQ ID anti-hHER2-HC-S192- SEQ ID 25220 27786 1.1 NO: 275 DS-ppan-MC-MMAF- NO: LEFIASKLA-L193 1214 SEQ ID anti-hHER2-HC-L193- SEQ ID n.d. n.d. n.d. NO: 177 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-G194 1155 SEQ ID anti-hHER2-HC-R255- SEQ ID 2435 2514 1.0 NO: 294 DS-ppan-MC-MMAF- NO: LEFIASKLA-T256 1227 SEQ ID anti-hHER2-HC-H268- SEQ ID 1916 1927 1.0 NO: 199 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-E269 1169 SEQ ID anti-hHER2-HC-S267- SEQ ID 2481 2631 1.1 NO: 198 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-H268 1168 SEQ ID anti-hHER2-HC-L235- SEQ ID 15932 15515 1.0 NO: 189 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-G236 1163 SEQ ID anti-hHER2-HC-P343- SEQ ID 16217 17009 1.0 NO: 223 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-R344 1185 SEQ ID anti-hHER2-HC-I253- SEQ ID 3203 2996 0.9 NO: 193 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-S254 1165 SEQ ID anti-hHER2-HC-P206- SEQ ID n.d. n.d. n.d. NO: 182 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-S207 1160 SEQ ID anti-hHER2-HC-P257- SEQ ID 3036 2834 0.9 NO: 296 DS-ppan-MC-MMAF- NO: LEFIASKLA-E258 1228 SEQ ID anti-hHER2-HC-T195- SEQ ID 23422 25475 1.1 NO: 278 DS-ppan-MC-MMAF- NO: LEFIASKLA-Q196 1216 SEQ ID anti-hHER2-HC-A118- SEQ ID 14235 12465 0.9 NO: 150 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-S119 1136 SEQ ID anti-hHER2-HC-A231- SEQ ID 18890 18982 1.0 NO: 185 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-P232 1161 SEQ ID anti-hHER2-LC-E161- SEQ ID n.d. n.d. n.d. NO: 47 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-S162 1285 SEQ ID anti-hHER2-LC-S203- SEQ ID 18663 19769 1.1 NO: 91 DS-ppan-MC-MMAF- NO: LEFIASKLA-P204 1317 SEQ ID anti-hHER2-LC-S203- SEQ ID 26363 31434 1.2 NO: 60 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-P204 1318 SEQ ID anti-hHER2-LC-K207- SEQ ID n.d. n.d. n.d. NO: 61 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-S208 1319 SEQ ID anti-hHER2-LC-S202- SEQ ID n.d. n.d. n.d. NO: 90 DS-ppan-MC-MMAF- NO: LEFIASKLA-S203 1320 SEQ ID anti-hHER2-LC-A153- SEQ ID 22890 25331 1.1 NO: 44 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-L154 1282 SEQ ID anti-hHER2-HC-T164- SEQ ID 23675 24973 1.1 NO: 267 DS-ppan-MC-MMAF- NO: LEFIASKLA-S165 1208 SEQ ID anti-hHER2-HC-S192- SEQ ID 21492 20712 1.0 NO: 176 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-L193 1154 SEQ ID anti-hHER2-HC-Q196- SEQ ID 19695 19974 1.0 NO: 180 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-T197 1158 SEQ ID anti-hHER2-HC-S191- SEQ ID 18430 16233 0.9 NO: 175 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-S192 1153 SEQ ID anti-hHER2-HC-G420- SEQ ID 32553 34202 1.1 NO: 341 DS-ppan-MC-MMAF- NO: LEFIASKLA-N421 1265 SEQ ID anti-hHER2-HC-G236- SEQ ID 14771 16398 1.1 NO: 289 DS-ppan-MC-MMAF- NO: LEFIASKLA-G237 1222 SEQ ID anti-hHER2-HC-N421- SEQ ID n.d. n.d. n.d. NO: 342 DS-ppan-MC-MMAF- NO: LEFIASKLA-V422 1266 SEQ ID anti-hHER2-LC-L154- SEQ ID n.d. n.d. n.d. NO: 45 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-Q155 1283 SEQ ID anti-hHER2-HC-R416- SEQ ID 15181 18255 1.2 NO: 237 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-W417 1193 SEQ ID anti-hHER2-HC-E233- SEQ ID n.d. n.d. n.d. NO: 187 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-L234 1162 SEQ ID anti-hHER2-HC-G138- SEQ ID 21276 24046 1.1 NO: 160 GDS-ppan-MC-MMAF- NO: LSWLLRLLN-T139 1141 SEQ ID anti-hHER2-HC-L163- SEQ ID n.d. n.d. n.d. NO: 372 GDS-ppan-MC-MMAF- NO: LDMLEWSLM-T164 1322 SEQ ID anti-hHER2-HC-S165- SEQ ID 21008 23328 1.1 NO: 374 GDS-ppan-MC-MMAF- NO: LDMLEWSLM-G166 1323 SEQ ID anti-hHER2-HC-S190- SEQ ID n.d. n.d. n.d. NO: 376 GDS-ppan-MC-MMAF- NO: LDMLEWSLM-S191 1324 SEQ ID anti-hHER2-HC-S191- SEQ ID 27588 28786 1.0 NO: 377 GDS-ppan-MC-MMAF- NO: LDMLEWSLM-S192 1325 SEQ ID anti-hHER2-HC-S192- SEQ ID 27124 24221 0.9 NO: 378 GDS-ppan-MC-MMAF- NO: LDMLEWSLM-L193 1326 SEQ ID anti-hHER2-HC-G194- SEQ ID 23858 27185 1.1 NO: 380 GDS-ppan-MC-MAF- NO: LDMLEWSLM-T195 1327 SEQ ID anti-hHER2-LC-T109- SEQ ID 21940 19449 0.9 NO: 383 GDS-ppan-MC-MMAF- NO: LDMLEWSLM-V110 1329 SEQ ID anti-hHER2-HC-E269- SEQ ID 12525 14829 1.2 NO: 299 DS-ppan-MC-MMAF- NO: LEFIASKLA-D270 1231 SEQ ID anti-hHER2-HC-D270- SEQ ID 12981 14803 1.1 NO: 300 DS-ppan-MC-MMAF- NO: LEFIASKLA-P271 1232 SEQ ID anti-hHER2-LC-Q155- SEQ ID 30628 33193 1.1 NO: 77 DS-ppan-MC-MMAF- NO: LEFIASKLA-S156 1307 SEQ ID anti-hHER2-HC-G161- SEQ ID 23116 25913 1.1 NO: 370 GDS-ppan-MC-MMAF- NO: LDMLEWSLM-A162 1321 SEQ ID anti-hHER2-HC-T195- SEQ ID 25023 26308 1.1 NO: 381 GDS-ppan-MC-MMAF- NO: LDMLEWSLM-Q196 1328 SEQ ID anti-hHER2-LC-V110- SEQ ID 27475 31910 1.2 NO: 384 GDS-ppan-MC-MMAF- NO: LDMLEWSLM-A111 1330 aName represents part of the HC or LC that contains the peptide tag with the attached compound, the paired wildtype chain is not listed. bArea-under-the-curve measured by anti-human IgG ELISA. cArea-under-the-curve measured by anti-MMAF ELISA. n.d., not determined.

Example 27 Labeling of Peptide-Tagged IgGs with a Co-Expressed 4′-Phosphopantetheinyl Transferase in Cell-Culture Medium

In order to streamline the process of preparing ADCs, enzymatic labeling of peptide-tagged antibodies with co-expressed 4′-phosphopantetheinyl transferase (PPTase) was carried out in Freestyle™ expression media (Invitrogen). In addition to reducing the number of purification steps, co-expression of the PPTase during antibody production could circumvent problems associated with the addition and the removal of a recombinantly produced version of such an enzyme. As a proof-of-concept, AcpS PPTase from E. coli was used to site-specifically conjugate an A1-tagged antibody with acetyl coenzyme A (acetyl CoA) in cell-culture medium.

To facilitate co-expression, the gene encoding the AcpS PPTase was cloned into the mammalian expression vector pRS, which appends the N-terminal signal sequence MKTFILLLWVLLLWVIFLLPGATA (SEQ ID NO:355). The construct, pRS-AcpS, also adds a C-terminal His6 tag to the recombinant enzyme (SEQ ID NO: 1106). To co-express the A1-tagged antibody mAb2-HC-E388-GDSLDMLEWSLM-N389 (SEQ ID NO:356), an oligonucleotide fragment encoding the 12-amino-acid A1 peptide sequence was inserted into the heavy chain gene of the antibody mAb2-HC (SEQ ID NO:147) in the mammalian expression vector pM4, resulting in the construct pM4-A1. This plasmid also co-expresses the corresponding light chain under the CMV promoter. Using the PEI method (Meissner et al., 2001), 293 Freestyle™ cells were transiently transfected with a 1:1 mixture of the recombinant expression plasmids pM4-A1 and pRS-AcpS, and cultured in five aliquots of 200 mL of Freestyle™ expression media (Invitrogen) for five days at 37° C. under 5% CO2. Next, the cell cultures were harvested by centrifugation at 2,000 rpm for 10 min, passed through 0.22 μm filters, and pooled. To determine the minimum antibody and enzyme concentrations required for efficient conjugate formation in cell-culture medium, aliquots of filtrate were either left unconcentrated or concentrated 2-fold, 5-fold, 10-fold, and 20-fold using 30 kDa cut-off Amicon Ultra centrifugal filter units (EMD Millipore). The concentrated samples were centrifuged at 3,724×g for 2 min to remove precipitate. In order to optimize the cell-culture medium conditions for AcpS catalysis, all samples were supplemented with 10-fold reaction buffer (pH 8.8) to a final concentration of 75 mM of Tris-HCl and 10 mM of MgCl2. The labeling reactions were then initiated by addition of acetyl CoA substrate (Sigma-Aldrich) to a final concentration of 1 mM. The resulting reaction mixtures with volumes of 1.5 mL to 15 mL were incubated for approximately 16 h at 37° C.

To determine the degree of labeling of the A1-tagged antibody as well as to quantify expression levels of both enzyme and antibody, all reaction mixtures were purified by Ni-NTA and Protein A affinity chromatography, respectively. With the exception of the unconcentrated sample, all reaction mixtures were diluted two-fold with PBS prior to loading onto PBS-equilibrated Protein A-Sepharose columns (0.5 mL bed volume, GE Healthcare) at an approximate flowrate of 1 mL/min. The column flowthrough was directly applied to PBS-equilibrated IMAC columns filled with 0.5 mL of Ni-NTA Agarose (Qiagen). All Protein A and Ni-NTA affinity columns were washed with 40 column volumes of 50 mM of Tris-HCl buffer (pH 8) supplemented with 300 mM of NaCl and 20 mM of imidazole. His6-tagged (SEQ ID NO: 1106) AcpS enzyme was eluted from the Ni-NTA affinity columns with 6 column volumes of 50 mM of Tris-HCl buffer (pH 8) containing 300 mM of NaCl and 250 mM of imidazole. Likewise, the A1-tagged antibody was eluted from the Protein A affinity columns with 6 column volumes of 0.1 M sodium acetate buffer (pH 3.0) followed by immediate neutralization with 12% (v/v) of 1 M of Tris-HCl buffer (pH 10).

SDS-PAGE and ESI-MS confirmed elution of AcpS enzyme and A1-tagged antibody, respectively. UV-Vis and Bradford measurements indicated that between 0.17 mg to 0.34 mg of A1-tagged antibody and between 0.12 mg to 0.15 mg of AcpS enzyme were recovered (Table 26). This suggests an antibody concentration ranging from 0.08 μM (13 mg/L) in unconcentrated cell-culture medium to 1.5 μM (230 mg/L) in 20-fold concentrated cell-culture medium during the labeling reactions with acetyl CoA. Hence, the concentration of the A1-tagged antibody is approximately proportional to the concentration factor of the cell-culture medium. Similarly, the concentration of the AcpS PPTase increases from 0.6 μM (9 mg/L) in unconcentrated cell-culture medium to 6.8 μM (100 mg/L) in 20-fold concentrated cell-culture medium.

TABLE 26 Expression yields of mAb2-HC-E388-GDSLDMLEWSLM-N389 (SEQ ID NO: 356) and AcpS PPTase as well as mass spectrometric evaluation of enzymatic labeling in cell-culture medium. Yield of mAb2- AcpS conc. HC-E388- Ab conc. Yield of during in- GDSLDMLEW during in- Concentration AcpS medium SLM-N389 medium factor of cell- PPTase labeling (SEQ ID NO: labeling Observed Expected culture medium (mg)a (μM) 356) (mg)b (μM) mass (Da) mass (Da)c 1 x 0.14 0.6 0.19 0.08 51927.89 Uncoupled, 51587.6 51589.2 2 x 0.12 1.1 0.17 0.16 51927.56 Coupled, 5 x 0.14 1.9 0.31 0.41 51927.94 51971.6 10 x  0.14 3.8 0.32 0.85 51927.94 Coupled and 20 x  0.15 6.8 0.34 1.5 51928.1 deacetylated, 51929.6 aYield from 13 mL (conc. factor 1x), 12 mL (conc. factor 2x), 22 mL (conc. factor 5-10x), and 26 mL (conc. factor 20x) of culture according to Bradford analysis (average of two measurements). bYield according to UV-Vis measurements on a NanoDrop ND-1000 Spectrophotometer (average of two measurements). cExpected masses are shown for pyroglutamic acid formation of the N-terminal glutamine residue of the heavy chain after signal peptide cleavage.

The purified antibody constructs were concentrated using 30 kDa cut-off Amicon Ultra centrifugal filter units, reduced, and deglycosylated followed by mass spectrometric analysis on an Agilent 6520 Q-TOF instrument (Agilent Technologies). As shown in Table 26, a two-fold concentration factor of the conditioned cell-culture medium is sufficient for near quantitative conjugation in the presence of 1 mM of acetyl CoA substrate, 0.16 μM (24 mg/L) of A1-tagged antibody, and 1.1 μM (17 mg/L) of AcpS enzyme. Notably, the acetyl group of the acetyl CoA substrate is completely cleaved off during in-medium labeling, thereby indicating hydrolysis of the thioester bond in conditioned cell-culture medium. In an independent experiment with 30-fold concentrated cell-culture medium, it was found that in the absence of exogenously added acetyl CoA, no conjugate formation was detectable by mass spectrometry. This negative control therefore excludes the presence of significant amounts of CoA or one of its analogues in the cell-culture medium.

In summary, the experiment demonstrates that a peptide-tagged antibody can be quantitatively labeled with a supplemented CoA analogue in 2-fold concentrated cell-culture medium via PPTase catalysis. Because antibody concentrations during fermentation of production cell lines is significantly higher than in the current proof-of-concept experiments, it can be anticipated that enzymatic conjugation of supplemented CoA analogues to a peptide-tagged antibody will be scalable to production levels. The supplemented CoA analogues will feature a thiol group, a protected thiol group or a bioorthogonal reactive group such as an aldehyde, a keto group, an azido or an alkyne group. Following Protein A purification, the antibody enzymatically activated with a reactive group could be reacted with a complementary toxin analogue to afford the corresponding ADC in the second step.

Example 28 Site-Specific Modification of a Peptide-Tagged Antibody with Ketone CoA in Cell-Culture Medium

The goal of this experiment is to demonstrate the feasibility to site-specifically attach a bioorthogonal group to a peptide-tagged antibody in conditioned cell-culture medium. The first step of the two-step method was carried out with the ketone CoA analogue whose synthesis has been described in Example 23. Successful in-medium labeling of a peptide-tagged antibody with this carbonyl-functionalized CoA analogue will allow subsequent attachment of an aminooxy-functionalized payload via oxime ligation in the second step of the two-step method (see also FIG. 22).

Using the PEI method (Meissner et al., 2001), 293 Freestyle™ cells were transiently transfected with a 1:1 mixture of the recombinant expression plasmids pM4-A1 and pRS-AcpS, which have been described in Example 27. After culturing the co-transfected mammalian cells in 400 mL of Freestyle™ expression media (Invitrogen) for five days at 37° C. under 5% CO2, the cell culture was harvested by centrifugation at 2,000 rpm for 10 min and passed through 0.22 μm filters. Next, an aliquot of 60 mL of cleared cell-culture medium was concentrated 20-fold using 30 kDa cut-off Amicon Ultra centrifugal filter units (EMD Millipore). After removing precipitate by centrifugation at 3,724×g for 5 min, the labeling reaction was initiated by supplementing 1.31 mL of concentrate with ketone CoA at a final concentration of 1 mM and 10-fold reaction buffer (pH 8.8) at a final concentration of 75 mM of Tris-HCl and 10 mM of MgCl2. The enzymatic reaction in a total volume of 1.5 mL was incubated for approximately 16 h at 37° C.

Prior to analyzing the degree of labeling with carbonyl-functionalized CoA analogue by mass spectrometry, the reaction mixture was purified by protein A affinity chromatography. After two-fold dilution with PBS, the diluted reaction mixture was loaded onto a PBS-equilibrated Protein A-Sepharose column (0.6 mL bed volume, GE Healthcare) at an approximate flowrate of 1 mL/min. The column matrix was washed with approximately 40 bed volumes of PBS before the retained material was eluted with 6 column volumes of 0.1 M sodium acetate buffer (pH 3). Finally, the eluate was neutralized by addition of 12% (v/v) of 1 M of Tris-HCl buffer (pH 10).

The purity of the antibody was assessed by reducing SDS-PAGE. According to UV-Vis measurements on a NanoDrop ND-1000 Spectrophotometer, 0.34 mg of antibody was recovered, corresponding to an antibody concentration of 1.5 μM (230 mg/L) in the 20-fold concentrated cell-culture medium. This exactly reproduces the measured antibody concentration during the labeling reaction with acetyl CoA in 20-fold concentrated cell-culture medium (Example 27). To assess the degree of antibody labeling with ketone CoA by mass spectrometry, the neutralized eluate was concentrated using 30 kDa cut-off Amicon Ultra centrifugal filter units, deglycosylated, and reduced. Mass spectrometric analysis on an Agilent 6520 Q-TOF instrument indicated formation of the desired carbonyl-functionalized antibody conjugate (observed, 51995.32; expected, 51999.6), with formation of about 24% of 4′-phospho-pantetheine-modified antibody as a side product (observed, 51925.42; expected, 51929.6). No unconjugated antibody was detectable in the deconvoluted mass spectrum (expected, 51589.2). The presence of 4′-phosphopantetheine-modified antibody as a side product might be explained by the incomplete formation of ketone CoA during the reaction between CoA-SH and methyl vinyl ketone (Example 23).

The experimental results indicate the feasibility of site-specific conjugation of carbonyl groups to antibodies in conditioned cell-culture medium. This approach can be extended to other bioorthogonal groups such as azido and alkyne moieties. Such bioorthogonal groups are completely inert in cell culture medium and exclusively react with the payload containing the complementary functional group, thereby ensuring the formation of homogeneous ADCs in the second step of the two-step method.

Example 29 In Vivo Efficacy Assessment of a ybbR-Tagged Trastuzumab MMAF ADC

The in vivo efficacy of the ybbR-tagged trastuzumab ADC anti-hHER2-HC-E388-DS-ppan-MC-MMAF-LEFIASKLA-N389 (SEQ ID NO: 1122) was assessed by using a xenograft tumor model, which is based on the implantation of a human tumor cell line into immune-deficient nude mice. As described previously (Sausville and Burger, 2006), studies with such tumor xenograft mice have provided valuable insights into the in vivo efficacy of anti-cancer reagents. Specifically, the in vivo efficacy study was carried out with nu/nu mice that were subcutaneously injected with MDA-MB231 clone 16 cells (Morton and Houghton, 2007). This cell line was chosen based on previous in vitro potency assays revealing its high sensitivity to the aforementioned ybbR-tagged MMAF ADC in an antigen dependent manner (see Table 24). After the tumor reached a size of about 200 mm3, the ybbR-tagged MMAF ADC was intravenously injected in a single dose at either 5 mg/kg or 3 mg/kg, with each treatment group comprising nine mice. After administering the antibody-drug conjugate, the tumor growth was monitored weekly. As shown in FIG. 23, i.v. administration of the ybbR-tagged MMAF ADC caused tumor regression at both dose levels. Furthermore, the treatment of the mice with the ADC was well tolerated with no weight loss observed in any of the treatment groups. The effective regression of MDA-MB231 clone 16 tumors at single doses as low as 3 mg/kg demonstrates that the ybbR-tagged ADC is efficacious in a HER2-dependent tumor mouse model. All animal studies were conducted in accordance with the Guide for the Care and Use of Laboratory Animals (NIH publication; National Academy Press, 8th edition, 2001).

Claims

1. A modified antibody or fragment thereof, which comprises at least one peptide tag that is a substrate of 4′-phosphopantetheinyl transferase, and is located within the structural loop of said antibody or fragment thereof.

2. The modified antibody or fragment thereof of claim 1, wherein said 4′-phosphopantetheinyl transferase is Sfp, AcpS, T. maritima PPTase, human PPTase or a mutant or homolog form thereof that retains the 4′-phosphopantetheinyl transferase activity.

3. The modified antibody or fragment thereof of claim 1 or claim 2, wherein the peptide tag is selected from the group consisting of: (SEQ ID NO: 1) GDSLSWLLRLLN, (SEQ ID NO: 2) GDSLSWL, (SEQ ID NO: 3) GDSLSWLVRCLN, (SEQ ID NO: 4) GDSLSWLLRCLN, (SEQ ID NO: 5) GDSLSWLVRLLN, (SEQ ID NO: 6) GDSLSWLLRSLN, (SEQ ID NO: 7) GSQDVLDSLEFIASKLA, (SEQ ID NO: 8) VLDSLEFIASKLA, (SEQ ID NO: 9) DSLEFIASKLA, (SEQ ID NO: 10) GDSLDMLEWSLM, (SEQ ID NO: 11) GDSLDMLEWSL, (SEQ ID NO: 12) GDSLDMLEWS, (SEQ ID NO: 13) GDSLDMLEW, (SEQ ID NO: 14) DSLDMLEW, (SEQ ID NO: 15) GDSLDM, (SEQ ID NO: 16) LDSVRMMALAAR, (SEQ ID NO: 17) LDSLDMLEWSLR, (SEQ ID NO: 18) DSLEFIASKL, (SEQ ID NO: 19) DSLEFIASK, (SEQ ID NO: 20) DVLDSLEFI, (SEQ ID NO: 21) VLDSLEFIAS, and (SEQ ID NO: 1132) DSLDMLEWSL.

4. The modified antibody or fragment thereof of any one of claims 1-3, wherein the peptide tag is located within the structural loop of VH, VL, CH1, CH2, CH3, or CL region of the antibody or fragment thereof.

5. The modified antibody or fragment thereof of any one of claims 1-4, wherein said the peptide tag is located within the structural loop of the CH1 region of the antibody or fragment thereof.

6. The modified antibody or fragment thereof of any one of claims 1-4, wherein said peptide tag is inserted between any two amino acids that are listed in Table 1.

7. The modified antibody or fragment thereof of any one of claims 1-4, wherein the peptide tag is inserted between amino acid residues 2 and 3 of the VH or VL domain, or between amino acid residue 110 and 111 of the light chain, or between 119 and 120, or between 120 and 121, or between 135 and 136, or between 136 and 137, or between 138 and 139, or between 162 and 163, or between 164 and 165, or between 165 and 166, or between 194 and 195, or between 195 and 196 of the CH1 domain, or between 388 and 389, or between 445 and 446, or between 446 and 447 of the CH3 domain of a parental antibody or fragment thereof.

8. The modified antibody or fragment thereof of any one of claims 1-4, wherein the peptide tag is inserted between amino acid residue 110 and 111 of the light chain, or between 119 and 120, or between 120 and 121, or between 135 and 136, or between 136 and 137, or between 138 and 139, or between 162 and 163, or between 164 and 165, or between 165 and 166, or between 194 and 195, or between 195 and 196 of the CH1 domain, or between 388 and 389 of the CH3 domain of a parental antibody or fragment thereof.

9. The modified antibody or fragment thereof of any one of claims 1-4, wherein the peptide tag is grafted between amino acid residues 62 to 64 or 62 to 65 of the VH domain, or between amino acid residues 133 and 138 of the CH1 domain, or between 189 and 195 of the CH1 domain, or between 190 and 197 of the CH1 domain.

10. The modified antibody or fragment thereof of any one of claims 1-4, wherein said antibody comprises SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:32, SEQ ID NO:63, SEQ ID NO:94, SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO:126, SEQ ID NO:127, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:131, SEQ ID NO:132, SEQ ID NO:139, SEQ ID NO:149, SEQ ID NO:151, SEQ ID NO:152, SEQ ID NO:157, SEQ ID NO:158, SEQ ID NO:160, SEQ ID NO:166, SEQ ID NO:168, SEQ ID NO:169, SEQ ID NO:178, SEQ ID NO:179, SEQ ID NO:248, SEQ ID NO:250, SEQ ID NO:251, SEQ ID NO:256, SEQ ID NO:257, SEQ ID NO:259, SEQ ID NO:265, SEQ ID NO:267, SEQ ID NO:268, SEQ ID NO:277, SEQ ID NO:278, SEQ ID NO:348, SEQ ID NO:349, SEQ ID NO:356, SEQ ID NO:358, SEQ ID NO:359, SEQ ID NO:364, SEQ ID NO:365, SEQ ID NO:367, SEQ ID NO:371, SEQ ID NO:373, SEQ ID NO:374, SEQ ID NO:380, SEQ ID NO:381, SEQ ID NO:384, SEQ ID NO:386, SEQ ID NO:387, or SEQ ID NO:388.

11. The modified antibody or fragment thereof of any one of claims 1-4, wherein said antibody comprises SEQ ID NO:32, SEQ ID NO:63, SEQ ID NO:127, SEQ ID NO:129, SEQ ID NO:132, SEQ ID NO:151, SEQ ID NO:152, SEQ ID NO:157, SEQ ID NO:158, SEQ ID NO:160, SEQ ID NO:166, SEQ ID NO:168, SEQ ID NO:169, SEQ ID NO:178, SEQ ID NO:179, SEQ ID NO:250, SEQ ID NO:251, SEQ ID NO:256, SEQ ID NO:257, SEQ ID NO:259, SEQ ID NO:265, SEQ ID NO:267, SEQ ID NO:268, SEQ ID NO:277, SEQ ID NO:278, SEQ ID NO:358, SEQ ID NO:359, SEQ ID NO:364, SEQ ID NO:365, SEQ ID NO:367, SEQ ID NO:371, SEQ ID NO:373, SEQ ID NO:374, SEQ ID NO:380, SEQ ID NO:381, or SEQ ID NO:384.

12. The modified antibody or fragment thereof of any one of claims 1-11, wherein the enzyme having 4′-phosphopantetheinyl transferase activity is Sfp and the peptide tag is GDSLSWLLRLLN (SEQ ID NO:1), GDSLSWLVRCLN (SEQ ID NO:3), GDSLSWLLRCLN (SEQ ID NO:4), GDSLSWLVRLLN (SEQ ID NO:5), GDSLSWLLRSLN (SEQ ID NO:6), GSQDVLDSLEFIASKLA (SEQ ID NO:7), VLDSLEFIASKLA (SEQ ID NO:8), DSLEFIASKLA (SEQ ID NO:9), GDSLDMLEWSLM (SEQ ID NO:10), GDSLDMLEWSL (SEQ ID NO:11), GDSLDMLEWS (SEQ ID NO:12), GDSLDMLEW (SEQ ID NO:13), DSLDMLEW (SEQ ID NO:14), LDSLDMLEWSLR (SEQ ID NO:17), DSLEFIASKL (SEQ ID NO:18), DSLEFIASK (SEQ ID NO:19), DSLEFIAS (SEQ ID NO:1116), or DSLDMLEWSL (SEQ ID NO: 1132).

13. The modified antibody or fragment thereof of any one of claims 1-12, wherein the enzyme having 4′-phosphopantetheinyl transferase activity is Sfp and the peptide tag is GDSLSWLLRLLN (SEQ ID NO:1), GDSLSWL (SEQ ID NO:2), DSLEFIASKLA (SEQ ID NO:9), GDSLDMLEWSLM (SEQ ID NO:10), DSLEFIASKL (SEQ ID NO:18), or DSLEFIASK (SEQ ID NO:19).

14. The modified antibody or fragment thereof of any one of claims 1-11, wherein the enzyme having 4′-phosphopantetheinyl transferase activity is AcpS and the peptide tag is GDSLDMLEWSLM (SEQ ID NO:10), GDSLDMLEWSL (SEQ ID NO:11), GDSLDMLEWS (SEQ ID NO:12), GDSLDMLEW (SEQ ID NO:13), DSLDMLEW (SEQ ID NO:14), GDSLDM (SEQ ID NO:15), LDSLDMLEWSLR (SEQ ID NO:17), or DSLDMLEWSL (SEQ ID NO: 1132).

15. The modified antibody or fragment thereof of any one of claims 1-14, wherein the antibody or fragment thereof is an isotype selected from IgG, IgM, IgE and IgA.

16. The modified antibody or fragment thereof of any one of claims 1-15, wherein the antibody or fragment thereof is a subtype of IgG selected from IgG1, IgG2, IgG3 and IgG4.

17. The modified antibody or fragment thereof of any one of claims 1-16, wherein the antibody or fragment thereof is a human or humanized antibody or fragment thereof.

18. The modified antibody or fragment thereof of claim 17, wherein the antibody or fragment thereof is an anti-HER2 antibody or anti-HER2 antibody fragment.

19. An immunoconjugate comprising the modified antibody or fragment of any one of claims 1-18, and a terminal group.

20. The immunoconjugate of claim 19, wherein said terminal group is attached to the modified antibody or antibody fragment by a linker having the structure according to Formula (I-b):

wherein: L1 is a bond, a non-enzymatically cleavable linker, a non-cleavable linker; an enzymatically cleavable linker, a photo stable linker or a photo-cleavable linker; L2 is a bond, a non-enzymatically cleavable linker, a non-cleavable linker; an enzymatically cleavable linker, a photo stable linker or a photo-cleavable linker; L3 is a bond, a non-enzymatically cleavable linker, a non-cleavable linker; an enzymatically cleavable linker, a photo stable linker or a photo-cleavable linker; L4 is a bond, a non-enzymatically cleavable linker, a non-cleavable linker; an enzymatically cleavable linker, a photo stable linker, a photo-cleavable linker or a self-immolative spacer, the * denotes where the 4′-phosphopantetheinyl moiety is attached to the peptide tag, and wherein the terminal group is a drug moiety, an affinity probe, a chelator, a spectroscopic probe, a radioactive probe, an imaging reagent, a lipid molecule, a polyethylene glycol, a polymer, a nanoparticle, a quantum dot, a liposome, a PLGA particle, a polysaccharide, an acetyl group, or a surface.

21. The immunoconjugate of claim 20, wherein

L1 is -A1X2— or —X2—;
L2 is a bond, -A2-, or -A2X2—;
L3 is a bond, -A3-, or -A3X2—;
L4 is a bond, -A4-, -A4X2—,
A1 is —C(═O)NH—, —NHC(═O)—, —C(═O)NH(CH2)n—, —C(═O)NH(C(R4)2)n—, —(O(CH2)n)m—, —(O(C(R4)2)n)m—, —((CH2)nO)m—, —(((C(R4)2)nO)m—, —((CH2)nO)m(CH2)n—, —(((C(R4)2)nO)mC(R4)2)n—, —(CH2)nC(═O)NH—, —(C(R4)2)nC(═O)NH—, —(CH2)nNHC(═O)—, —(C(R4)2)nNHC(═O)—, —NHC(═O)(CH2)n—, —NHC(═O)(C(R4)2)n—, —C(═O)NH(CH2)nS—, —C(═O)NH(C(R4)2)nS—, —S(CH2)nC(═O)NH—, —S(C(R4)2)nC(═O)NH—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —C(═O)NH(C(R4)2)nNHC(═O)(C(R4)2)n—, —C(═O)(CH2)n—, —C(═O)(C(R4)2)n—, —(CH2)nC(═O)—, —(C(R4)2)nC(═O)—, —(CH2)n(O(CH2)n)mNHC(═O)(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—, —(CH2)nNHC(═O)(CH2)n—, —(C(R4)2)nNHC(═O)(C(R4)2)n—, —(CH2)nNH((CH2)nO)m(CH2)n—, —(C(R4)2)nNH((C(R4)2)nO)m(C(R4)2)n—, —(O(CH2)n)mNHC(═O)(CH2)n—, or —(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—;
A2 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(C(R4)2)n—, —(O(CH2)n)m—, —(O(C(R4)2)n)m—, —((CH2)nO)m—, —(((C(R4)2)nO)m—, —((CH2)nO)m(CH2)n—, —(((C(R4)2)nO)mC(R4)2)n—, —(CH2)nC(═O)NH—, —(C(R4)2)nC(═O)NR4—, —(CH2)nNHC(═O)—, —(C(R4)2)nNHC(═O)—, —NHC(═O)(CH2)n—, —NHC(═O)(C(R4)2)n—, —C(═O)NH(CH2)nS—, —C(═O)NH(C(R4)2)nS—, —S(CH2)nC(═O)NH—, —S(C(R4)2)nC(═O)NH—, —(CH2)nS—, —(C(R4)2)nS—, —S(CH2)n—, —S(C(R4)2)n—, —(CH2)nNH—, —(C(R4)2)nNH—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —C(═O)NH(C(R4)2)nNHC(═O)(C(R4)2)n—, —C(═O)(CH2)n—, —C(═O)(C(R4)2)n—, —(CH2)nC(═O)—, —(C(R4)2)nC(═O)—, —(CH2)n(O(CH2)n)mNHC(═O)(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—, —(CH2)n(O(CH2)n)mOC(═O)NH(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mOC(═O)NH(C(R4)2)n—, —(CH2)nNHC(═O)(CH2)n—, —(C(R4)2)nNHC(═O)(C(R4)2)n—, —(CH2)nNH((CH2)nO)m(CH2)n—, —(C(R4)2)nNH((C(R4)2)nO)m(C(R4)2)n—, —(O(CH2)n)mNHC(═O)(CH2)n—, —(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—,
A3 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(C(R4)2)n—, —(O(CH2)n)m—, —(O(C(R4)2)n)m—, —((CH2)nO)m—, —(((C(R4)2)nO)m—, —((CH2)nO)m(CH2)n—, —(((C(R4)2)nO)mC(R4)2)n—, —(CH2)nC(═O)NH—, —(C(R4)2)nC(═O)NH—, —(CH2)nNHC(═O)—, —(C(R4)2)nNHC(═O)—, —NHC(═O)(CH2)n—, —NHC(═O)(C(R4)2)n—, —C(═O)NH(CH2)nS—, —C(═O)NH(C(R4)2)nS—, —S(CH2)nC(═O)NH—, —S(C(R4)2)nC(═O)NH—, —(CH2)nS—, —(C(R4)2)nS—, —S(CH2)n—, —S(C(R4)2)n—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —C(═O)NH(C(R4)2)nNHC(═O)(C(R4)2)n—, —C(═O)(CH2)n—, —C(═O)(C(R4)2)n—, —(CH2)nC(═O)—, —(C(R4)2)nC(═O)—, —(CH2)n(O(CH2)n)mNHC(═O)(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—, —(CH2)n(O(CH2)n)mOC(═O)NH(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mOC(═O)NH(C(R4)2)n—, —(CH2)n(O(CH2)n)mOC(═O)—, —(C(R4)2)n(O(C(R4)2)n)mOC(═O)—, —(CH2)n(O(CH2)n)mOC(═O)—, —(C(R4)2)n(O(C(R4)2)n)mC(═O)—, —(CH2)nNHC(═O)(CH2)n—, —(C(R4)2)nNHC(═O)(C(R4)2)n—, —(O(CH2)n)mNHC(═O)(CH2)n—, —(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—,
A4 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(C(R4)2)n—, —(O(CH2)n)m—, —(O(C(R4)2)n)m—, —((CH2)nO)m—, —(((C(R4)2)nO)m, —((CH2)nO)m(CH2)n—, —(((C(R4)2)nO)mC(R4)2)n—, —(CH2)nC(═O)NH—, —(C(R4)2)nC(═O)NH—, —(CH2)nNHC(═O)—, —(C(R4)2)nNHC(═O)—, —NHC(═O)(CH2)n—, —NHC(═O)(C(R4)2)n—, —C(═O)NH(CH2)nS—, —C(═O)NH(C(R4)2)nS—, —S(CH2)nC(═O)NH—, —S(C(R4)2)nC(═O)NH—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —C(═O)NH(C(R4)2)nNHC(═O)(C(R4)2)n—, —C(═O)(CH2)n—, —C(═O)(C(R4)2)n—, —(CH2)nC(═O)—, —(C(R4)2)nC(═O)—, —(CH2)n(O(CH2)n)mNHC(═O)(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—, —(CH2)nNHC(═O)(CH2)n—, —(C(R4)2)nNHC(═O)(C(R4)2)n—, —(CH2)nNH((CH2)nO)m(CH2)n—, —(C(R4)2)nNH((C(R4)2)nO)m(C(R4)2)n—, —(O(CH2)n)mNHC(═O)(CH2)n—, or —(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—;
each X2 is independently selected from a bond,
 —S—, —Si(OH)2O—,
 —CHR4(CH2)nC(═O)NH—, —CHR4(CH2)nNHC(═O)—, —C(═O)NH— and —NHC(═O)—;
each R4 is independently selected from H, C1-4alkyl, —C(═O)OH and —OH,
each R5 is independently selected from H, C1-4alkyl, phenyl or C1-4alkyl substituted with 1 to 3 —OH groups;
each R6 is independently selected from H, fluoro, benzyloxy substituted with —C(═O)OH, benzyl substituted with —C(═O)OH, C1-4alkoxy substituted with —C(═O)OH and C1-4alkyl substituted with —C(═O)OH;
R7 is independently selected from H, phenyl and pyridine;
R8 is independently selected from
R9 is independently selected from H and C1-6haloalkyl;
each n is independently selected from 1, 2, 3, 4, 5, 6, 7, 8 and 9, and
each m is independently selected from 1, 2, 3, 4, 5, 6, 7, 8 and 9.

22. The immunoconjugate of claims 20-21, wherein

L1 is -A1X2— or —X2—;
L2 is a bond, -A2-, or -A2X2—;
L3 is a bond, -A3-, or -A3X2—;
L4 is a bond, -A4-, -A4X2—,
A1 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(CH2)nS—, —(O(CH2)n)m—, —((CH2)nO)m(CH2)n—, —NHC(═O)(CH2)n—, —(CH2)nNHC(═O)—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —(CH2)nNH((CH2)nO)m(CH2)n— or —(O(CH2)n)mNHC(═O)(CH2)n—;
A2 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(CH2)nS—, —(O(CH2)n)m—, —((CH2)nO)m(CH2)n—, —NHC(═O)(CH2)n—, —(CH2)nNHC(═O)—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —(CH2)nNH((CH2)nO)m(CH2)n—, —(O(CH2)n)mNHC(═O)(CH2)n— or
A3 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(CH2)nS—, —(O(CH2)n)m—, —((CH2)nO)m(CH2)n—, —NHC(═O)(CH2)n—, —(CH2)nNHC(═O)—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —(CH2)nNH((CH2)nO)m(CH2)n—, —(O(CH2)n)mNHC(═O)(CH2)n— or
A4 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(CH2)nS—, —(O(CH2)n)m—, —((CH2)nO)m(CH2)n—, —NHC(═O)(CH2)n—, —(CH2)nNHC(═O)—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —(CH2)nNH((CH2)nO)m(CH2)n— or —(O(CH2)n)mNHC(═O)(CH2)n—;
each X2 is independently selected from a bond,
 —S—, —Si(OH)2O—,
 —CHR4(CH2)nC(═O)NH—, —CHR4(CH2)nNHC(═O)—, —C(═O)NH— and —NHC(═O)—;
each R4 is independently selected from H, C1-4alkyl, —C(═O)OH and —OH,
each R5 is independently selected from H, C1-4alkyl, phenyl or C1-4alkyl substituted with 1 to 3 —OH groups;
each R6 is independently selected from H, fluoro, benzyloxy substituted with —C(═O)OH, benzyl substituted with —C(═O)OH, C1-4alkoxy substituted with —C(═O)OH and C1-4alkyl substituted with —C(═O)OH;
R7 is independently selected from H, phenyl and pyridine;
R8 is independently selected from
R9 is independently selected from H and C1-6haloalkyl;
each n is independently selected from 1, 2, 3, 4, 5, 6, 7, 8 and 9, and
each m is independently selected from 1, 2, 3, 4, 5, 6, 7, 8 and 9.

23. The immunoconjugate of claims 20-22, wherein the linker of Formula (I-b) is a linker having the structure according to Formula (I-c):

24. The immunoconjugate of claims 21-22, wherein

L1 is -A1X2—, where A1 is —C(═O)NH(CH2)nS— and X2 is
L2 is a bond; L3 is a bond, and L4 is -A4- wherein A4 is —(CH2)nNHC(═O)—.

25. The immunoconjugate of claims 21-22, wherein

L1 is -A1X2—, wherein A1 is —C(═O)NH(CH2)nS— and X2 is
L2 is a bond; L3 is a bond; L4 is -A4-, wherein A4 is —(CH2)nC(═O)—.

26. The immunoconjugate of claims 21-22, wherein

L1 is -A1X2—, wherein A1 is —C(═O)NH(CH2)nS— and X2 is
L2 is -A2-, wherein A2 is —(CH2)nC(═O;
L3 is -A3-, wherein A3 is
 and
L4 is

27. The immunoconjugate of claims 21-22, wherein

L1 is a -A1X2—, wherein A1 is —C(═O)NH(CH2)nS— and X2 is —(CH2)nC(═O)NH—;
L2 is a bond-; L3 is -A3-, wherein A3 is —(CH2)nC(═O)—, and L4 is a bond.

28. The immunoconjugate of claims 21-22, wherein

L1 is a -A1X2—, wherein A1 is —C(═O)NH(CH2)nS—, X2 is —CHR4(CH2)nC(═O)NH— and R4 is —C(═O)OH;
L2 is a bond; L3 is -A3-, wherein A3 is —(CH2)nC(═O)— and. L4 is a bond.

29. The immunoconjugate of claims 21-22, wherein

L1 is -A1X2—, where A1 is —C(═O)NH(CH2)nS— and X2 is —(CH2)C(═O)NH—;
L2 is a bond; L3 is a bond, and L4 is -A4- wherein A4 is —(CH2)nNHC(═O)—.

30. The immunoconjugate of claims 21-22, wherein

L1 is -A1X2—, wherein A1 is —C(═O)NH(CH2)nS— and X2 is —(CH2)C(═O)NH—;
L2 is a bond; L3 is a bond; L4 is -A4-, wherein A4 is —(CH2)nC(═O)—.

31. The immunoconjugate of claims 21-22, wherein

L1 is -A1X2—, wherein A1 is —C(═O)NH(CH2)nS— and X2 is —(CH2)C(═O)NH—;
L2 is -A2-, wherein A2 is —(CH2)nC(═O;
L3 is -A3-, wherein A3 is
 and
L4 is

32. The immunoconjugate of claims 21-22, wherein

L1 is a -A1X2—, wherein A1 is —C(═O)NH(CH2)nS— and X2 is —(CH2)C(═O)NH—;
L2 is a bond-; L3 is -A3-, wherein A3 is —(CH2)nC(═O)—, and L4 is a bond.

33. The immunoconjugate of claims 21-22, wherein

L1 is a -A1X2—, wherein A1 is —C(═O)NH(CH2)nS—, X2 is —CHR4(CH2)nC(═O)NH— and
R4 is —C(═O)OH;
L2 is a bond; L3 is -A3-, wherein A3 is —(CH2)nC(═O)— and. L4 is a bond.

34. The immunoconjugate of any one of claims 19 to 33, wherein the terminal group is a moiety selected from an anti-inflammatory agent, an anticancer agent, an antifungal agent, an antibacterial agent, an anti-parasitic agent, an anti-viral agent and an anesthetic agent.

35. The immunoconjugate of claim 34, wherein the terminal group is selected from a V-ATPase inhibitor, a HSP90 inhibitor, an IAP inhibitor, an mTor inhibitor, a microtubule stabilizer, a microtubule destabilizers, an auristatin, a dolastatin, a maytansinoid, a MetAP (methionine aminopeptidase), an inhibitor of nuclear export of proteins CRM1, a DPPIV inhibitor, an inhibitors of phosphoryl transfer reactions in mitochondria, a protein synthesis inhibitor, a CDK2 inhibitor, a CDK9 inhibitor, an Eg5 inhibitor, an HDAC inhibitor, a DNA damaging agent, a DNA alkylating agent, a DNA intercalator, a DNA minor groove binder, a proteasome inhibitor, an RNA polymerase inhibitor, and a DHFR inhibitor.

36. The immunoconjugate of any one of claims 19 to 33, wherein the terminal group is selected from a fluorophore, a chromophore, a quantum dot, a magnetic probe, a radioactive probe, an imaging reagent, or a contrast reagent.

37. The immunoconjugate of any of claims 19-33, wherein the affinity probe is biotin.

38. The immunoconjugate of any one of claims 19-37, wherein said modified antibody or fragment thereof further comprises one or more orthogonal conjugation sites.

39. The immunoconjugate of claim 38, wherein each orthogonal conjugation site is independently selected from a substrate of Sfp 4′-phosphopantetheinyl transferase, a substrate of AcpS 4′-phosphopantetheinyl transferase, a lysine, a cysteine, a tyrosine, a histidine, a formyl glycine, an unnatural amino acid, pyrrolysine and pyrroline-carboxylysine.

40. A pharmaceutical composition comprising an effective amount of the immunoconjugate of any one of claims 19-39, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable diluent, carrier or excipient.

41. The modified antibody or fragment thereof according to any of the claims 1-18, or the immunoconjugate according to any of the claims 19-39 for use as a medicament.

42. The modified antibody or fragment thereof according to any of the claims 1-18, or the immunoconjugate according to any of the claims 19-39 for use in the treatment of cancer, an inflammatory disease, or an infectious disease.

43. The modified antibody or fragment thereof according to any of the claims 1-18, or the immunoconjugate according to any of the claims 19-39 for use in the treatment of cancer.

44. A method of treating cancer comprising administering to a mammal in need thereof an effective amount of an immunoconjugate according to any one of claims 19-39, or the pharmaceutical composition of claim 40.

45. The method of claim 44, wherein said mammal is human.

46. A nucleic acid encoding the modified antibody or fragment thereof of any one of claims 1-18.

47. A host cell comprising the nucleic acid of claim 46.

48. The modified antibody of any of claims 1-18 or an antibody fragment thereof that is further conjugated to an anti-cancer agent.

49. A method of producing the immunoconjugate of claims 19-39 comprising incubating under suitable conditions the modified antibody or antibody fragment of any one of claims 1-18, a 4′-phosphopantetheinyl transferase, and a terminal group linked to CoA or a terminal group linked to a CoA analogue, thereby promoting formation of the immunoconjugate which comprises the antibody or antibody fragment and the terminal group linked together by a linker comprising a 4′-phosphopantetheine or a 4′-phosphopantetheine analogue.

50. A method of producing the immunoconjugate of claims 19-39 comprising

i) incubating under suitable conditions an antibody or antibody fragment of any one of claims 1-18 with a 4′-phosphopantetheinyl transferase and a CoA or CoA analogue, thereby attaching a 4′-phosphopantetheine or a 4′-phosphopantetheine analogue to the antibody or antibody fragment, wherein the 4′-phosphopantetheine and the 4′-phosphopantetheine analogue comprises a functional group,
and
ii) reacting the 4′-phosphopantetheine or the 4′-phosphopantetheine analogue with a reactive group optionally linked to a terminal group, thereby forming the immunoconjugate comprising the antibody or antibody fragment and the terminal group linked together by a linker comprising a 4′-phosphopantetheine or a 4′-phosphopantetheine analogue.

51. A method of producing the immunoconjugate of claims 19-39 comprising

i) incubating an under suitable conditions antibody or antibody fragment of any one of claims 1-18 with a 4′-phosphopantetheinyl transferase and a CoA or CoA analogue, thereby attaching a 4′-phosphopantetheine or a 4′-phosphopantetheine analogue to the antibody or antibody fragment, wherein the 4′-phosphopantetheine and the 4′-phosphopantetheine analogue comprises a protected functional group;
ii) deprotecting the protected functional group of the 4′-phosphopantetheine or the 4′-phosphopantetheine analogue,
and
iii) reacting the deprotected functional group of the 4′-phosphopantetheine or the 4′-phosphopantetheine analogue with a reactive group optionally linked to a terminal group, thereby forming the immunoconjugate comprising the antibody or antibody fragment and the terminal group linked together by a linker comprising a 4′-phosphopantetheine or a 4′-phosphopantetheine analogue.

52. The method of any one of claims 49-51, wherein said the suitable condition comprise a temperature between 4° C. to 37° C. and pH 6.5 to pH 9.0.

53. An immunoconjugate comprising the modified antibody or antibody fragment of any of claims 1-18, wherein a serine residue of the peptide tag in said modified antibody or antibody fragment is conjugated to a 4′-phosphopantetheine group having the structure of Formula (D-a), Formula (E-a), Formula (F-a) or Formula (G-a): wherein:

L1 is -A1X2— or —X2—;
L2 is a bond, -A2-, or -A2X2—;
L3 is a bond, -A3-, or -A3X2—;
L4 is a bond, -A4-, -A4X2—,
A1 is —C(═O)NH—, —NHC(═O)—, —C(═O)NH(CH2)n—, —C(═O)NH(C(R4)2)n—, —(O(CH2)n)m—, —(O(C(R4)2)n)m—, —((CH2)nO)m—, —(((C(R4)2)nO)m—, —((CH2)nO)m(CH2)n—, —(((C(R4)2)nO)mC(R4)2)n—, —(CH2)nC(═O)NH—, —(C(R4)2)nC(═O)NH—, —(CH2)nNHC(═O)—, —(C(R4)2)nNHC(═O)—, —NHC(═O)(CH2)n—, —NHC(═O)(C(R4)2)n—, —C(═O)NH(CH2)nS—, —C(═O)NH(C(R4)2)nS—, —S(CH2)nC(═O)NH—, —S(C(R4)2)nC(═O)NH—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —C(═O)NH(C(R4)2)nNHC(═O)(C(R4)2)n—, —C(═O)(CH2)n—, —C(═O)(C(R4)2)n—, —(CH2)nC(═O)—, —(C(R4)2)nC(═O)—, —(CH2)n(O(CH2)n)mNHC(═O)(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—, —(CH2)nNHC(═O)(CH2)n—, —(C(R4)2)nNHC(═O)(C(R4)2)n—, —(CH2)nNH((CH2)nO)m(CH2)n—, —(C(R4)2)nNH((C(R4)2)nO)m(C(R4)2)n—, —(O(CH2)n)mNHC(═O)(CH2)n—, or —(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—;
A2 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(C(R4)2)n—, —(O(CH2)n)m—, —(O(C(R4)2)n)m—, —((CH2)nO)m—, —(((C(R4)2)nO)m—, —((CH2)nO)m(CH2)n—, —(((C(R4)2)nO)mC(R4)2)n—, —(CH2)nC(═O)NH—, —(C(R4)2)nC(═O)NR4—, —(CH2)nNHC(═O)—, —(C(R4)2)nNHC(═O)—, —NHC(═O)(CH2)n—, —NHC(═O)(C(R4)2)n—, —C(═O)NH(CH2)nS—, —C(═O)NH(C(R4)2)nS—, —S(CH2)nC(═O)NH—, —S(C(R4)2)nC(═O)NH—, —(CH2)nS—, —(C(R4)2)nS—, —S(CH2)n—, —S(C(R4)2)n—, —(CH2)nNH—, —(C(R4)2)nNH—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —C(═O)NH(C(R4)2)nNHC(═O)(C(R4)2)n—, —C(═O)(CH2)n—, —C(═O)(C(R4)2)n—, —(CH2)nC(═O)—, —(C(R4)2)nC(═O)—, —(CH2)n(O(CH2)n)mNHC(═O)(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—, —(CH2)n(O(CH2)n)mOC(═O)NH(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mOC(═O)NH(C(R4)2)n—, —(CH2)nNHC(═O)(CH2)n—, —(C(R4)2)nNHC(═O)(C(R4)2)n—, —(CH2)nNH((CH2)nO)m(CH2)n—, —(C(R4)2)nNH((C(R4)2)nO)m(C(R4)2)n—, —(O(CH2)n)mNHC(═O)(CH2)n—, —
(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—,
A3 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(C(R4)2)n—, —(O(CH2)n)m—, —(O(C(R4)2)n)m—, —((CH2)nO)m—, —(((C(R4)2)nO)m—, —((CH2)nO)m(CH2)n—, —(((C(R4)2)nO)mC(R4)2)n—, —(CH2)nC(═O)NH—, —(C(R4)2)nC(═O)NH—, —(CH2)nNHC(═O)—, —(C(R4)2)nNHC(═O)—, —NHC(═O)(CH2)n—, —NHC(═O)(C(R4)2)n—, —C(═O)NH(CH2)nS—, —C(═O)NH(C(R4)2)nS—, —S(CH2)nC(═O)NH—, —S(C(R4)2)nC(═O)NH—, —(CH2)nS—, —(C(R4)2)nS—, —S(CH2)n—, —S(C(R4)2)n—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —C(═O)NH(C(R4)2)nNHC(═O)(C(R4)2)n—, —C(═O)(CH2)n—, —C(═O)(C(R4)2)n—, —(CH2)nC(═O)—, —(C(R4)2)nC(═O)—, —(CH2)n(O(CH2)n)mNHC(═O)(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—, —(CH2)n(O(CH2)n)mOC(═O)NH(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mOC(═O)NH(C(R4)2)n—, —(CH2)n(O(CH2)n)mOC(═O)—, —(C(R4)2)n(O(C(R4)2)n)mOC(═O)—, —(CH2)n(O(CH2)n)mOC(═O)—, —(C(R4)2)n(O(C(R4)2)n)mOC(═O)—, —(CH2)nNHC(═O)(CH2)n—, —(C(R4)2)nNHC(═O)(C(R4)2)n—, —(O(CH2)n)mNHC(═O)(CH2)n—, —(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—,
A4 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(C(R4)2)n—, —(O(CH2)n)m—, —(O(C(R4)2)n)m—, —((CH2)nO)m—, —(((C(R4)2)nO)m—, —((CH2)nO)m(CH2)n—, —(((C(R4)2)nO)mC(R4)2)n—, —(CH2)nC(═O)NH—, —(C(R4)2)nC(═O)NH—, —(CH2)nNHC(═O)—, —(C(R4)2)nNHC(═O)—, —NHC(═O)(CH2)n—, —NHC(═O)(C(R4)2)n—, —C(═O)NH(CH2)nS—, —C(═O)NH(C(R4)2)nS—, —S(CH2)nC(═O)NH—, —S(C(R4)2)nC(═O)NH—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —C(═O)NH(C(R4)2)nNHC(═O)(C(R4)2)n—, —C(═O)(CH2)n—, —C(═O)(C(R4)2)n—, —(CH2)nC(═O)—, —(C(R4)2)nC(═O)—, —(CH2)n(O(CH2)n)mNHC(═O)(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—, —(CH2)nNHC(═O)(CH2)n—, —(C(R4)2)nNHC(═O)(C(R4)2)n—, —(CH2)nNH((CH2)nO)m(CH2)n—, —(C(R4)2)nNH((C(R4)2)nO)m(C(R4)2)n—, —(O(CH2)n)mNHC(═O)(CH2)n—, or —(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—;
each X2 is independently selected from a bond,
 —S—, —Si(OH)2O—,
 —CHR4(CH2)nC(═O)NH—, —CHR4(CH2)nNHC(═O)—, —C(═O)NH— and —NHC(═O)—;
each R4 is independently selected from H, C1-4alkyl, —C(═O)OH and —OH,
each R5 is independently selected from H, C1-4alkyl, phenyl or C1-4alkyl substituted with 1 to 3 —OH groups;
each R6 is independently selected from H, fluoro, benzyloxy substituted with —C(═O)OH, benzyl substituted with —C(═O)OH, C1-4alkoxy substituted with —C(═O)OH and C1-4alkyl substituted with —C(═O)OH;
R7 is independently selected from H, phenyl and pyridine;
R8 is independently selected from
R9 is independently selected from H and C1-6haloalkyl;
each n is independently selected from 1, 2, 3, 4, 5, 6, 7, 8 and 9,
each m is independently selected from 1, 2, 3, 4, 5, 6, 7, 8 and 9, and
R1 is a thiol, a maleimide, a haloacetamide, an alkyne, a triaryl phosphine, a cyclooctene, an oxanobornadiene, an azide, a diaryl tetrazine, a norbornene, a monoaryl tetrazine, a hydroxylamine, a hydrazine, NH2—NH—C(═O)—, an aldehyde or a ketone.

54. The immunoconjugate of claim 53 wherein the 4′-phosphopantetheine group is

55. The immunoconjugate of claim 53 wherein the conjugated serine has a structure selected from:

56. The immunoconjugate of claim 55 wherein the conjugated serine is

57. An immunoconjugate comprising the modified antibody or antibody fragment of any of claims 1-18, wherein a serine residue of the peptide tag in said modified antibody or antibody fragment is conjugated to a modified 4′-phosphopantetheine group and has a structure selected from:

wherein
L1 is -A1X2— or —X2—;
L2 is a bond, -A2-, or -A2X2—;
L3 is a bond, -A3-, or -A3X2—;
L4 is a bond, -A4-, -A4X2—,
A1 is —C(═O)NH—, —NHC(═O)—, —C(═O)NH(CH2)n—, —C(═O)NH(C(R4)2)n—, —(O(CH2)n)m—, —(O(C(R4)2)n)m—, —((CH2)nO)m—, —(((C(R4)2)nO)m—, —((CH2)nO)m(CH2)n—, —(((C(R4)2)nO)mC(R4)2)n—, —(CH2)nC(═O)NH—, —(C(R4)2)nC(═O)NH—, —(CH2)nNHC(═O)—, —(C(R4)2)nNHC(═O)—, —NHC(═O)(CH2)n—, —NHC(═O)(C(R4)2)n—, —C(═O)NH(CH2)nS—, —C(═O)NH(C(R4)2)nS—, —S(CH2)nC(═O)NH—, —S(C(R4)2)nC(═O)NH—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —C(═O)NH(C(R4)2)nNHC(═O)(C(R4)2)n—, —C(═O)(CH2)n—, —C(═O)(C(R4)2)n—, —(CH2)nC(═O)—, —(C(R4)2)nC(═O)—, —(CH2)n(O(CH2)n)mNHC(═O)(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—, —(CH2)nNHC(═O)(CH2)n—, —(C(R4)2)nNHC(═O)(C(R4)2)n—, —(CH2)nNH((CH2)nO)m(CH2)n—, —(C(R4)2)nNH((C(R4)2)nO)m(C(R4)2)n—, —(O(CH2)n)mNHC(═O)(CH2)n—, or —(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—;
A2 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(C(R4)2)n—, —(O(CH2)n)m—, —(O(C(R4)2)n)m—, —((CH2)nO)m—, —(((C(R4)2)nO)m—, —((CH2)nO)m(CH2)n—, —(((C(R4)2)nO)mC(R4)2)n—, —(CH2)nC(═O)NH—, —(C(R4)2)nC(═O)NR4—, —(CH2)nNHC(═O)—, —(C(R4)2)nNHC(═O)—, —NHC(═O)(CH2)n—, —NHC(═O)(C(R4)2)n—, —C(═O)NH(CH2)nS—, —C(═O)NH(C(R4)2)nS—, —S(CH2)nC(═O)NH—, —S(C(R4)2)nC(═O)NH—, —(CH2)nS—, —(C(R4)2)nS—, —S(CH2)n—, —S(C(R4)2)n—, —(CH2)nNH—, —(C(R4)2)nNH—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —C(═O)NH(C(R4)2)nNHC(═O)(C(R4)2)n—, —C(═O)(CH2)n—, —C(═O)(C(R4)2)n—, —(CH2)nC(═O)—, —(C(R4)2)nC(═O)—, —(CH2)n(O(CH2)n)mNHC(═O)(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—, —(CH2)n(O(CH2)n)mOC(═O)NH(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mOC(═O)NH(C(R4)2)n—, —(CH2)nNHC(═O)(CH2)n—, —(C(R4)2)nNHC(═O)(C(R4)2)n—, —(CH2)nNH((CH2)nO)m(CH2)n—, —(C(R4)2)nNH((C(R4)2)nO)m(C(R4)2)n—, —(O(CH2)n)mNHC(═O)(CH2)n—, —(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—,
A3 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(C(R4)2)n—, —(O(CH2)n)m—, —(O(C(R4)2)n)m—, —((CH2)nO)m—, —(((C(R4)2)nO)m—, —((CH2)nO)m(CH2)n—, —(((C(R4)2)nO)mC(R4)2)n—, —(CH2)nC(═O)NH—, —(C(R4)2)nC(═O)NH—, —(CH2)nNHC(═O)—, —(C(R4)2)nNHC(═O)—, —NHC(═O)(CH2)n—, —NHC(═O)(C(R4)2)n—, —C(═O)NH(CH2)nS—, —C(═O)NH(C(R4)2)nS—, —S(CH2)nC(═O)NH—, —S(C(R4)2)nC(═O)NH—, —(CH2)nS—, —(C(R4)2)nS—, —S(CH2)n—, —S(C(R4)2)n—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —C(═O)NH(C(R4)2)nNHC(═O)(C(R4)2)n—, —C(═O)(CH2)n—, —C(═O)(C(R4)2)n—, —(CH2)nC(═O)—, —(C(R4)2)nC(═O)—, —(CH2)n(O(CH2)n)mNHC(═O)(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—, —(CH2)n(O(CH2)n)mOC(═O)NH(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mOC(═O)NH(C(R4)2)n—, —(CH2)n(O(CH2)n)mOC(═O)—, —(C(R4)2)n(O(C(R4)2)n)mOC(═O)—, —(CH2)n(O(CH2)n)mOC(═O)—, —(C(R4)2)n(O(C(R4)2)n)mC(═O)—, —(CH2)nNHC(═O)(CH2)n—, —(C(R4)2)nNHC(═O)(C(R4)2)n—, —(O(CH2)n)mNHC(═O)(CH2)n—, —(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—,
A4 is —C(═O)NH—, —C(═O)NH(CH2)n—, —C(═O)NH(C(R4)2)n—, —(O(CH2)n)m—, —(O(C(R4)2)n)m—, —((CH2)nO)m—, —(((C(R4)2)nO)m—, —((CH2)nO)m(CH2)n—, —(((C(R4)2)nO)mC(R4)2)n—, —(CH2)nC(═O)NH—, —(C(R4)2)nC(═O)NH—, —(CH2)nNHC(═O)—, —(C(R4)2)nNHC(═O)—, —NHC(═O)(CH2)n—, —NHC(═O)(C(R4)2)n—, —C(═O)NH(CH2)nS—, —C(═O)NH(C(R4)2)nS—, —S(CH2)nC(═O)NH—, —S(C(R4)2)nC(═O)NH—, —C(═O)NH(CH2)nNHC(═O)(CH2)n—, —C(═O)NH(C(R4)2)nNHC(═O)(C(R4)2)n—, —C(═O)(CH2)n—, —C(═O)(C(R4)2)n—, —(CH2)nC(═O)—, —(C(R4)2)nC(═O)—, —(CH2)n(O(CH2)n)mNHC(═O)(CH2)n—, —(C(R4)2)n(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—, —(CH2)nNHC(═O)(CH2)n—, —(C(R4)2)nNHC(═O)(C(R4)2)n—, —(CH2)nNH((CH2)nO)m(CH2)n—, —(C(R4)2)nNH((C(R4)2)nO)m(C(R4)2)n—, —(O(CH2)n)mNHC(═O)(CH2)n—, or —(O(C(R4)2)n)mNHC(═O)(C(R4)2)n—;
each X2 is independently selected from a bond,
 —S—, —Si(OH)2O—,
 —CHR4(CH2)nC(═O)NH—, —CHR4(CH2)nNHC(═O)—, —C(═O)NH— and —NHC(═O)—;
each R4 is independently selected from H, C1-4alkyl, —C(═O)OH and —OH,
each R5 is independently selected from H, C1-4alkyl, phenyl or C1-4alkyl substituted with 1 to 3 —OH groups;
each R6 is independently selected from H, fluoro, benzyloxy substituted with —C(═O)OH, benzyl substituted with —C(═O)OH, C1-4alkoxy substituted with —C(═O)OH and C1-4alkyl substituted with —C(═O)OH;
R7 is independently selected from H, phenyl and pyridine;
R8 is independently selected from
R9 is independently selected from H and C1-6haloalkyl;
each n is independently selected from 1, 2, 3, 4, 5, 6, 7, 8 and 9,
each m is independently selected from 1, 2, 3, 4, 5, 6, 7, 8 and 9, and
TG is a drug moiety, an affinity probe, a chelator, a spectroscopic probe, a radioactive probe, an imaging reagent, a lipid molecule, a polyethylene glycol, a polymer, a nanoparticle, a quantum dot, a liposome, a PLGA particle, a polysaccharide, an acetyl group, or a surface.

58. The immunoconjugate of claim 57 wherein the conjugated serine is

59. The immunoconjugate of claim 58 wherein X2 is or —(CH2)C(═O)NH—.

Patent History
Publication number: 20150104468
Type: Application
Filed: May 31, 2013
Publication Date: Apr 16, 2015
Applicant: IRM LLC (Hamilton)
Inventors: Bernhard Hubert Geierstanger (Solana Beach, CA), Jan Grunewald (San Diego, CA), Badry Bursulaya (Escondido, CA)
Application Number: 14/402,808