Encodes A Fusion Protein Patents (Class 536/23.4)
  • Patent number: 9657282
    Abstract: The present invention relates in part to nucleic acids encoding proteins, therapeutics comprising nucleic acids encoding proteins, methods for inducing cells to express proteins using nucleic acids, methods, kits and devices for transfecting, gene editing, and reprogramming cells, and cells, organisms, and therapeutics produced using these methods, kits, and devices. Methods and products for altering the DNA sequence of a cell are described, as are methods and products for inducing cells to express proteins using synthetic RNA molecules. Therapeutics comprising nucleic acids encoding gene-editing proteins are also described.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: May 23, 2017
    Assignee: FACTOR BIOSCIENCE, INC.
    Inventors: Matthew Angel, Christopher Rohde
  • Patent number: 9492563
    Abstract: The invention relates to conjugates that bind to targets, methods of using conjugates that bind to targets and methods of treating undesirable or aberrant cell proliferation or hyperproliferative disorders, such as tumors, cancers, neoplasia and malignancies that express a target.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: November 15, 2016
    Assignee: ESPERANCE PHARMACEUTICALS, INC.
    Inventors: Carola Leuschner, Hector Alila
  • Patent number: 9458205
    Abstract: Disclosed herein are enhanced polypeptides, polynucleotides encoding these polypeptides, cells and organisms comprising novel DNA-binding domains, including TALE DNA-binding domains. Also disclosed are methods of using these novel DNA-binding domains for modulation of gene expression and/or genomic editing of endogenous cellular sequences.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: October 4, 2016
    Assignee: Sangamo BioSciences, Inc.
    Inventors: Philip D. Gregory, Jeffrey C Miller, David Paschon, Edward J. Rebar, Siyuan Tan, Fyodor Urnov, Lei Zhang
  • Patent number: 9441234
    Abstract: A sugar cane plant cell comprising a recombinant nucleic acid molecule is provided, the recombinant nucleic acid molecule comprising a nucleotide sequence of interest, a promoter and the nucleotide sequence of SEQ ID NO:1, wherein the promoter is downstream of and in operative association with the nucleotide sequence of SEQ ID NO:1 and upstream of and in operative association with the nucleotide sequence of interest, and the nucleotide sequence of interest is expressed at a level at least about 6 times greater than the level of expression of said nucleotide sequence of interest in a control. Additionally, a method of increasing the expression of a nucleotide sequence of interest in a sugar cane plant cell using the recombinant nucleic acid molecule of the invention is provided.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: September 13, 2016
    Assignees: SYNGENTA PARTICIPATIONS AG, QUEENSLAND UNIVERSITY OF TECHNOLOGY
    Inventors: Mark D. Kinkema, Stacy Miles
  • Patent number: 9308277
    Abstract: The present invention features mutant stromal cell derived factor-1 (SDF-1) peptides that have been mutated to make them resistant to digestion by, for example, the proteases dipeptidyl peptidase IV (DPPIV), matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), leukocyte elastase, cathepsin G, carboxypeptidase M, and carboxypeptidase N, but which retain chemoattractant activity.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: April 12, 2016
    Assignee: Mesoblast International Sàrl
    Inventors: Vincent Frans Maria Segers, Anthony Sandrasagra, Yan Qiu
  • Patent number: 9290748
    Abstract: The present invention concerns the endonucleases capable of cleaving a target sequence located in a “safe harbor loci”, i.e. a loci allowing safe expression of a transgene. The present invention further concerns the use of such endonucleases for inserting transgenes into a cell, tissue or individual.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: March 22, 2016
    Assignee: Cellectis
    Inventors: Olivier Danos, Aymeric Duclert
  • Patent number: 9249234
    Abstract: The invention provides polynucleotides and methods for expressing light-activated proteins in animal cells and altering an action potential of the cells by optical stimulation. The invention also provides animal cells and non-human animals comprising cells expressing the light-activated proteins.
    Type: Grant
    Filed: September 19, 2012
    Date of Patent: February 2, 2016
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Karl Deisseroth, Feng Zhang, Viviana Gradinaru
  • Patent number: 9241979
    Abstract: The present invention relates to blood products, and more particularly to compositions comprising a modified oxygenated hemoglobin having a high affinity for oxygen and methods for making such compositions. Such compositions according to the present invention have better stability to auto oxidation and superior oxygen carrying characteristics.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: January 26, 2016
    Inventors: Robert M. Winslow, Kim D. Vandegriff
  • Patent number: 9206431
    Abstract: This invention features a kit containing multiple expression vectors for producing tag-cleavable fusion proteins in various expression systems, or for producing fusion proteins in E. coli inclusion bodies.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: December 8, 2015
    Assignee: Academia Sinica
    Inventors: Po-Huang Liang, Hui-Min Wang, Yan-Ping Shih
  • Patent number: 9079952
    Abstract: The invention provides compositions and methods for delivering a bioactive moiety comprising at least one non-natural component into a cell cytosol of an eukaryotic cell. The bioactive moiety is linked to an A component of a bacterial toxin, a functional wild-type or modified fragment thereof, or an A component surrogate or mimetic. For delivery, the cell is contacted with the linked bioactive moiety and a corresponding B component of the bacterial toxin or a functional fragment thereof.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: July 14, 2015
    Assignee: President and Fellows of Harvard College
    Inventors: Robert J. Collier, Brad L. Pentelute
  • Publication number: 20150150152
    Abstract: This invention relates to the field of biotechnology or genetic engineering. Specifically, this invention relates to the field of gene expression. More specifically, this invention relates to a novel ecdysone receptor/chimeric retinoid X receptor-based inducible gene expression system and methods of modulating gene expression in a host cell for applications such as gene therapy, large-scale production of proteins and antibodies, cell-based high throughput screening assays, functional genomics and regulation of traits in transgenic organisms.
    Type: Application
    Filed: November 24, 2014
    Publication date: May 28, 2015
    Inventors: Marianna Zinovievna KAPITSKAYA, Subba Reddy Palli
  • Publication number: 20150148246
    Abstract: The present invention provides, in part, an antibody display system that simultaneously uses a secretion and a display mode. Embodiments of the invention provide a system in which a bait complexed with a monovalent antibody fragment can be captured prior to secretion in a host cell by virtue of surface displaying an antibody light chain and utilizing the covalent interaction of this light chain with the heavy chain of an antibody molecule that is co-expressed in the same host. Polypeptides, polynucleotides and host cells useful for making the antibody display system are also provided along with methods of using the system for identifying antibodies that bind specifically to an antigen of interest.
    Type: Application
    Filed: May 6, 2013
    Publication date: May 28, 2015
    Inventors: Hussam Hisham Shaheen, Donxing Zha
  • Publication number: 20150147334
    Abstract: The present invention is directed to pharmaceutical agents and compositions useful for the treatment and prevention of amyloid disease in a subject. The invention further relates to isolated antibodies that recognize a common conformational epitope of amyloidogenic proteins or peptides that are useful for the diagnosis, treatment, and prevention of amyloid disease.
    Type: Application
    Filed: February 6, 2015
    Publication date: May 28, 2015
    Applicant: NEW YORK UNIVERSITY
    Inventors: Thomas M. Wisniewski, Fernando Goni
  • Publication number: 20150147349
    Abstract: This invention relates to compositions and methods for eliciting an immune response against a parasite of the genus Plasmodium in a mammal.
    Type: Application
    Filed: February 15, 2013
    Publication date: May 28, 2015
    Inventors: Timothy A. Springer, Chafen Lu, Gaojie Song, Adem Koksal
  • Publication number: 20150148291
    Abstract: A polypeptide and polynucleotides comprising at least two carboxy-terminal peptides (CTP) of chorionic gonadotrophin attached to a non-human peptide-of-interest are disclosed. Pharmaceutical compositions comprising the non-human polypeptides and polynucleotides of the invention and methods of using both human and non-human polypeptides and polynucleotides are also disclosed.
    Type: Application
    Filed: November 26, 2014
    Publication date: May 28, 2015
    Inventors: UDI EYAL FIMA, GILI HART
  • Patent number: 9040676
    Abstract: The invention concerns a system for modulating tissue physiology, for example, to prevent or reverse tissue damage caused by disease. The system utilizes vigilant cells that include stable vectors containing a gene switch/biosensor and a gene amplification system. The vectors allow expression of a transgene (such as a cardioprotective gene) in the vigilant cells to be regulated in response to a physiological signal, to be switched on or off, and to provide sufficient levels of the transgene product to achieve a desired result, e.g., prevention or reversal of myocardial cell damage. In addition to myocardial infarction, the vectors can be used to treat cells in a number of other disease states, including diabetes, cancer, stroke, and atherosclerosis. These approaches to stem cell-based gene therapy provide a novel strategy not only for treatment but for prevention of cell destruction.
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: May 26, 2015
    Assignee: UNIVERSITY OF SOUTH FLORIDA
    Inventors: M. Ian Phillips, Yao Liang Tang
  • Publication number: 20150139999
    Abstract: Described are compositions and methods useful for modulating the immune system of a subject. Also included are diagnostic methods for monitoring an immunologic condition. In particular the invention relates to antagonists of interferon proteins and associated methods of use as well as methods to develop neutralizing antibodies against IFN antagonists to treat viral infections.
    Type: Application
    Filed: June 5, 2014
    Publication date: May 21, 2015
    Inventors: Sergei V. Kotenko, Geoffrey L. Smith
  • Publication number: 20150141622
    Abstract: The present invention provide purified Flt4 receptor tyrosine kinase polypeptides and fragments thereof, polynucleotides encoding such polypeptides, antibodies that specifically bind such polypeptides, and uses therefor.
    Type: Application
    Filed: November 17, 2014
    Publication date: May 21, 2015
    Inventors: KARI ALITALO, TAIJA MAKINEN
  • Publication number: 20150139945
    Abstract: The present invention relates to a therapeutic polypeptide and methods for its creation and use for modulating an immune response in a host organism in need thereof. In particular, the invention relates to the administration to an organism in need thereof, of an effective amount of a pre-coupled polypeptide complex comprising a lymphokine polypeptide portion, for example IL-15 (SEQ ID NO: 5, 6), IL-2 (SEQ ID NO: 10, 12) or combinations of both, and an interleukin receptor polypeptide portion, for example IL-15Ra (SEQ ID NO: 7, 8), IL-2Ra (SEQ ID NO: 9, 11) or combinations of both, for augmenting the immune system in, for example, cancer, SCID, AIDS, or vaccination; or inhibiting the immune system in, for example, rheumatoid arthritis, or Lupus. The therapeutic complex of the invention surprisingly demonstrates increased half-life, and efficacy in vivo.
    Type: Application
    Filed: December 11, 2014
    Publication date: May 21, 2015
    Applicant: UNIVERSITY OF CONNECTICUT
    Inventors: Leo Lefrancois, Thomas A. Stoklasek
  • Publication number: 20150140022
    Abstract: A compound comprising a photosensitizer covalently coupled to a protein selected from the group consisting of antibodies or their derivatives or fragments thereof, synthetic peptides such as scFv, mimotopes which bind CD antigens, cytokine receptors, interleukin receptors, hormone receptors, growth factor receptors, more particularly tyrosine kinase growth factor receptor of the ErbB family, wherein the photosensitizer is coupled to the binding protein via O6-alkylguanine-DNA alkyltransferase (hAGTm), a modified human DNA repair protein.
    Type: Application
    Filed: March 21, 2012
    Publication date: May 21, 2015
    Inventors: Stefan Barth, Mehmet K. Tur, Ahmad Hussain
  • Publication number: 20150141616
    Abstract: Intermolecular disulfide stabilized foldon polypeptides are provided.
    Type: Application
    Filed: May 22, 2013
    Publication date: May 21, 2015
    Inventors: Yuan Lu, James R. Swartz
  • Publication number: 20150139943
    Abstract: Disclosed herein are chimeric receptors comprising an extracellular domain with affinity and specific for the Fc portion of an immunoglobulin molecule (Ig) (e.g., an extracellular ligand-binding domain of F158 FCGR3A or V158 FCGR3A variant); a transmembrane domain (e.g., a transmembrane domain of CD8?); at least one co-stimulatory signaling domain (e.g., a co-stimulatory signaling domain of 4-1BB); and a cytoplasmic signaling domain comprising an immunoreceptor tyrosine-based activation motif (ITAM) (e.g., a cytoplasmic signaling domain of CD3?). Also provided herein are nucleic acids encoding such chimeric receptors and immune cells expressing the chimeric receptors. Such immune cells can be used to enhance antibody-dependent cell-mediated cytotoxicity and/or to enhance antibody-based immunotherapy, such as cancer immunotherapy.
    Type: Application
    Filed: October 17, 2014
    Publication date: May 21, 2015
    Applicants: National University of Singapore, St. Jude Children's Research Hospital
    Inventors: Dario Campana, Ko Kudo
  • Publication number: 20150141331
    Abstract: A polypeptide and polynucleotides comprising at least two carboxy-terminal peptides (CTP) of chorionic gonadotrophin attached to a non-human peptide-of-interest are disclosed. Pharmaceutical compositions comprising the non-human polypeptides and polynucleotides of the invention and methods of using both human and non-human polypeptides and polynucleotides are also disclosed.
    Type: Application
    Filed: November 26, 2014
    Publication date: May 21, 2015
    Applicant: OPKO Biologics Ltd.
    Inventors: Fuad FARES, Udi Eyal Fima
  • Publication number: 20150140021
    Abstract: The invention provides, inter alia, conjugates comprising a coagulating agent conjugated to an antibody, where the antibody specifically binds an extracellular domain epitope of a mammalian PLVAP protein. These agents specifically target HCC tumors and treat the HCC. The invention also provides methods of using these conjugates, such as methods of treating HCC by administering the conjugates provided by the invention or compositions provided by the invention, such as pharmaceutical compositions.
    Type: Application
    Filed: November 12, 2014
    Publication date: May 21, 2015
    Inventors: Kuo-Jang Kao, Yun-Hsin Wang
  • Publication number: 20150139991
    Abstract: The invention relates to the design of trimeric polypeptide complexes using polypeptide structural elements derived from the collagen XVIII protein, and their use in diagnostic and therapeutic systems in vivo and in vitro. The invention also relates to nucleic acids and vectors useful for producing said trimeric complexes.
    Type: Application
    Filed: October 17, 2011
    Publication date: May 21, 2015
    Applicant: LEADARTIS, S.L.
    Inventors: Luis Álvarez Vallina, Ángel Cuesta Martinez, Noelia Sainz Pastor, Laura Sanz Alcober
  • Publication number: 20150132302
    Abstract: The present disclosure provides immunogenic compositions, such as vaccines, including DNA vaccines, and uses thereof, e.g., to suppress or prevent an immune response and/or to treat or prevent an autoimmune disease.
    Type: Application
    Filed: May 1, 2013
    Publication date: May 14, 2015
    Inventors: Stephen Alexander, Yuan Min Wang, Guoping Zheng, Huiling Wu, David Charles Hamlyn Harris, Yiping Wang
  • Publication number: 20150132774
    Abstract: Fluorescent protein voltage sensors for measuring membrane potential and imaging high-frequency neuronal electrical activity are disclosed. In particular, the invention relates to engineered protein voltage sensors that comprise a voltage-sensing domain comprising four transmembrane domains linked to a circularly permuted fluorescent protein, which is inserted into the extracellular loop between the third (S3) and fourth (S4) transmembrane segments of the voltage-sensing domain. Such fluorescent protein voltage sensors can be used for measuring the electrical activity of neurons, including single action potentials, trains of action potentials, and subthreshold potential changes and, in particular, for imaging high-frequency neuronal electrical activity.
    Type: Application
    Filed: November 10, 2014
    Publication date: May 14, 2015
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Michael Z. Lin, Francois St-Pierre
  • Publication number: 20150133379
    Abstract: The present invention relates to a fusion protein comprising a skin-penetrating peptide, a polynucleotide encoding the fusion protein, an expression vector comprising the polynucleotide, a transformant comprising the expression vector, a method for preparing the fusion protein, a cosmetic composition for improving skin conditions, which comprises the fusion protein, and a pharmaceutical composition for external skin use, which comprises the fusion protein. The fusion protein of the invention comprises a skin-penetrating peptide bound to a physiologically active protein. The fusion protein significantly enhances the skin penetration and skin retention of the physiologically active protein while maintaining or enhancing the ability of the physiologically active protein to synthesize a material showing physiologically active effects. Thus, it can be widely used as an active ingredient in functional cosmetic compositions and pharmaceutical compositions for external skin use.
    Type: Application
    Filed: April 30, 2014
    Publication date: May 14, 2015
    Inventors: Seol Hoon Lee, Sang Hwa Lee, Nae Gyu Kang, Eu Gene Hur
  • Patent number: 9029522
    Abstract: A recombinant fusion interferon for animals. The recombinant fusion interferon comprises an animal interferon and a Fc region of an animal immunoglobulin G (IgG). The animal interferon and the Fc region of the animal immunoglobulin G can be further joined by a linker. A polynucleotide that encodes the recombinant fusion interferon for animals, a method for producing the recombinant fusion interferon, and the use of the recombinant fusion interferon.
    Type: Grant
    Filed: June 17, 2014
    Date of Patent: May 12, 2015
    Assignee: SBC Virbac Biotech Co., Ltd.
    Inventors: Tsun-Yung Kuo, Chung-Chin Wu, Han-Ting Chen
  • Patent number: 9029315
    Abstract: The subject invention provides novel soluble PD-1 (sPD-1) proteins, nucleic acids, and fusion constructs thereof, for enhancing humoral and cell-mediated immunity of a subject. Also provided are therapeutic compositions comprising the sPD-1 proteins, nucleic acids, and fusion constructs of the subject invention. In a preferred embodiment, the therapeutic composition is formulated as a vaccine composition. Advantageously, the sPD-1 proteins, nucleic acids, and therapeutic compositions provide protective immunity against pathogenic infection including HIV infection. In addition, the subject invention can be used in the prevention and/or treatment of tumor or cancer.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: May 12, 2015
    Assignee: The University of Hong Kong
    Inventors: Zhiwei Chen, Jingying Zhou
  • Patent number: 9029521
    Abstract: The present inventors found that a fusion gene present in some cancer patients is an oncogene. The present invention relates to a polypeptide as a novel fusion protein, a polynucleotide encoding the polypeptide, a vector comprising the polynucleotide, a transformed cell comprising the vector, a method for detecting the fusion protein or polynucleotide, a method for screening a therapeutic agent for cancer, and a method for treating cancer that is shown to be positive for the fusion gene. Further, the present invention relates kit, primer set, and probe useful in the detection of cancer that is shown to be positive for the fusion gene.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: May 12, 2015
    Assignees: Astellas Pharma Inc., Curegene K.K.
    Inventors: Hiroyuki Mano, Sadao Kuromitsu, Nobuaki Shindo, Takatoshi Soga, Takashi Furutani
  • Publication number: 20150125421
    Abstract: The present invention provides fusion proteins including an autoimmune antigen, an allergen antigen or an alloantigen, and an anti-inflammatory cytokine. Compositions and methods including the fusion proteins are also provided.
    Type: Application
    Filed: October 31, 2014
    Publication date: May 7, 2015
    Inventor: Mark D. Mannie
  • Publication number: 20150125419
    Abstract: The present invention refers to single-chain fusion proteins comprising three soluble TNF superfamily (TNFSF) cytokine domains and nucleic acid molecules encoding these fusion proteins. The fusion proteins are substantially non-aggregating and suitable for therapeutic, diagnostic and/or research applications.
    Type: Application
    Filed: June 30, 2014
    Publication date: May 7, 2015
    Inventors: Oliver HILL, Christian Gieffers, Meinolf Thiemann
  • Publication number: 20150126445
    Abstract: A polypeptide and polynucleotides comprising at least two carboxy-terminal peptides (CTP) of chorionic gonadotrophin attached to a non-human peptide-of-interest are disclosed. Pharmaceutical compositions comprising the non-human polypeptides and polynucleotides of the invention and methods of using both human and non-human polypeptides and polynucleotides are also disclosed.
    Type: Application
    Filed: December 10, 2014
    Publication date: May 7, 2015
    Inventors: FUAD FARES, UDI EYAL FIMA
  • Publication number: 20150125893
    Abstract: The invention provides fusion proteins comprising at least one fluorescent protein that is linked to at least one transporter protein that changes three-dimensional conformation upon specifically transporting its substrate. The transporter protein may be a nitrate transporter, a peptide transporter, or a hormone transporter. The invention provides fusion proteins comprising at least one fluorescent protein that is linked to at least one mechanosensitive ion channel protein. The invention also provides for methods of using the fusion proteins of the present invention and nucleic acids encoding the fusion proteins.
    Type: Application
    Filed: November 6, 2014
    Publication date: May 7, 2015
    Inventors: Wolf B. Frommer, Cheng-Hsun Ho
  • Publication number: 20150125481
    Abstract: The present invention discloses a polypeptide comprising: a protein A part including at least one IgG binding domain and an Sbi part including at least one IgG binding domain. In a further embodiment, the invention discloses an immunogenic composition comprising at least two different staphylococcal polypeptides, each comprising an IgG binding domain.
    Type: Application
    Filed: January 15, 2015
    Publication date: May 7, 2015
    Inventors: Cindy CASTADO, Cecile Anne NEYT, Jan POOLMAN
  • Publication number: 20150126709
    Abstract: The present invention refers to a fusion protein comprising a TNF-superfamily (TNFSF) cytokine or a receptor binding domain thereof fused to a collectin trimerization domain, to a nucleic acid molecule encoding the fusion protein, and to a cell comprising the nucleic acid molecule. The fusion protein is present as a trimeric complex or as an oligomer thereof. The fusion protein, the nucleic acid, and the cell is suitable as pharmaceutical composition or for therapeutic, diagnostic and/or research applications.
    Type: Application
    Filed: July 2, 2014
    Publication date: May 7, 2015
    Inventors: Oliver HILL, Christian Gieffers, Meinolf Thiemann, Marcus Branschädel
  • Publication number: 20150118262
    Abstract: The invention described herein relates to a Haemophilus influenzae (H. influenzae) regulon encoding type IV pili. In particular, the invention relates to type IV pili from nontypeable H. influenzae (NTHi) and from H. influenzae strains a, b, c, e and f. The invention provides isolated H. influenzae pilus polynucleotides and polypeptides encoded by the polynucleotides as well as polynucleotides and polypeptides encoded by the polynucleotides involved in the assembly/disassembly of the structure. The invention also relates to uses of these polynucleotides and/or polypeptides including methods for eliciting an immune response to H. influenzae and methods of treating and preventing H. influenzae related pathological conditions.
    Type: Application
    Filed: January 9, 2015
    Publication date: April 30, 2015
    Inventors: LAUREN O. BAKALETZ, ROBERT S. MUNSON, JR.
  • Publication number: 20150118260
    Abstract: This invention relates to recombinant CTLA-4 proteins, e.g., soluble CTLA-4 or CTLA-4 fusion toxins, and methods for making and using them.
    Type: Application
    Filed: February 28, 2013
    Publication date: April 30, 2015
    Inventors: Zhirui Wang, David H. Sachs, Christene A. Huang
  • Publication number: 20150118693
    Abstract: The invention provides a method of high-throughput sorting of high expression protein-producing cell, which utilizes linking a protein and a transmembrane domain with a self-processing cleavage site and regulating the secretion of the protein or expression of protein on the cell membrane by adding self-processing cleavage enzyme inhibitor. Then, the high expression cell line can be high-throughput sorted by a detection technique. The invention also provides a recombinant nucleotide sequence and a vector used in the method and a cell sorted by the method.
    Type: Application
    Filed: April 28, 2014
    Publication date: April 30, 2015
    Applicant: Taipei Medical University
    Inventors: KUO-HSIANG CHUANG, TIAN-LU CHENG, I-SHIUAN CHIANG, YUAN-CHIN HSIEH
  • Publication number: 20150119334
    Abstract: An isolated peptide is disclosed. The peptide comprises a titanium oxide binding amino acid sequence connected to a heterologous biologically active amino acid sequence via a beta sheet breaker linker, wherein: (i) the titanium oxide binding amino acid sequence is selected to bind coordinatively with titanium oxide; (ii) the titanium oxide binding amino acid sequence is selected to induce a beta sheet structure; and (ii) the titanium oxide binding amino acid sequence binds to titanium oxide with a higher affinity than said biologically active amino acid sequence binds to the titanium oxide under physiological conditions. Use of the peptides and titanium devices comprising same are also disclosed.
    Type: Application
    Filed: June 3, 2013
    Publication date: April 30, 2015
    Applicant: Ben-Gurion niversity of the Negev Research and Development Authority
    Inventors: Hanna Rapaport, Anna Gittelman
  • Patent number: 9017659
    Abstract: Systems for pathotropic (disease-seeking) targeted gene delivery are provided, including viral particles with extremely high titers. In particular, the viral particles are engineered to specifically deliver therapeutic or diagnostic agents to a disease site, such as cancer metastic sites. Personalized dosing regimens are also provided to treat diseases such as cancer efficaciously with reduced adverse side effects.
    Type: Grant
    Filed: November 5, 2007
    Date of Patent: April 28, 2015
    Assignee: Epeius Biotechnologies Corporation
    Inventors: Frederick L. Hall, Erlinda M. Gordon
  • Patent number: 9018450
    Abstract: This invention is intended to be used to search for a transcription factor having novel functions of increasing the weight of an individual plant, increasing the weight of a given tissue per individual plant, or improving the productivity of a given substance per individual plant and to improve such properties in the plant. The weight of an individual plant is increased, the weight of a given tissue per individual plant is increased, the productivity of a given substance per individual plant is improved, or the content of a given substance per given tissue of a plant is increased via expression of a transcription factor that has been modified to suppress transcription accelerating activity.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: April 28, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroshi Chatani, Chikara Ohto, Yukio Okamura, Norihiro Mitsukawa, Nobuhiko Muramoto, Masaru Takagi, Nobutaka Mitsuda, Tomotsugu Koyama, Kyoko Matsui
  • Patent number: 9018446
    Abstract: This invention is intended to be used to search for a transcription factor having novel functions of increasing the weight of an individual plant, increasing the weight of a given tissue per individual plant, or improving the productivity of a given substance per individual plant and to improve such properties in the plant. The weight of an individual plant is increased, the weight of a given tissue per individual plant is increased, the productivity of a given substance per individual plant is improved, or the content of a given substance per given tissue of a plant is increased via expression of a transcription factor that has been modified to suppress transcription accelerating activity.
    Type: Grant
    Filed: March 21, 2014
    Date of Patent: April 28, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroshi Chatani, Chikara Ohto, Yukio Okamura, Norihiro Mitsukawa, Nobuhiko Muramoto, Tomotsugu Koyama, Kyoko Matsui, Masaru Takagi
  • Publication number: 20150110825
    Abstract: The present invention provides nanoparticles and compositions of various constructs that combine meta-stable viral proteins (e.g., RSV F protein) and self-assembling molecules (e.g., ferritin, HSPs) such that the pre-fusion conformational state of these key viral proteins is preserved (and locked) along with the protein self-assembling into a polyhedral shape, thereby creating nanoparticles that are effective vaccine agents. The invention also provides nanoparticles comprising a viral fusion protein, or fragment or variant thereof, and a self-assembling molecule, and immunogenic and vaccine compositions including the same.
    Type: Application
    Filed: September 24, 2014
    Publication date: April 23, 2015
    Inventors: Ram SASISEKHARAN, Aditya RAGURAM, Vidya SUBRAMANIAN
  • Publication number: 20150111222
    Abstract: The present disclosure provides, inter alia, genetically encoded recombinant peptide biosensors comprising analyte-binding framework portions and signaling portions, wherein the signaling portions are present within the framework portions at sites or amino acid positions that undergo a conformational change upon interaction of the framework portion with an analyte.
    Type: Application
    Filed: August 8, 2012
    Publication date: April 23, 2015
    Applicant: HOWARD hUGHES MEDICAL INSTITUTE
    Inventors: Jonathan Marvin, Loren Looger, Richard T. Lee, Eric Schreiter
  • Publication number: 20150110720
    Abstract: Embodiments of the present invention provide for the facile generation of a stable recombinant fusion polypeptides with intrinsic fluorescent properties. The recombinant antibodies may be suitable for qualitative and/or quantitative immunofluorescence analysis. Generally, the fluorescent polypeptides include a fluorescent domain comprising a C-terminus and an N-terminus; a first antibody domain covalently linked to the C-terminus; and a second antibody domain covalently linked to the N-terminus.
    Type: Application
    Filed: September 25, 2014
    Publication date: April 23, 2015
    Applicant: STC.UNM
    Inventors: ANATOLIY MARKIV, RAVI VENKATA DURVASULA, ANGRAY SINGH KANG
  • Publication number: 20150110734
    Abstract: The present invention refers to single-chain fusion proteins comprising three soluble TNF superfamily (TNFSF) cytokine domains and nucleic acid molecules encoding these fusion proteins. The fusion proteins are substantially non-aggregating and suitable for therapeutic, diagnostic and/or research applications.
    Type: Application
    Filed: December 2, 2014
    Publication date: April 23, 2015
    Inventors: Oliver HILL, Christian Gieffers, Meinolf Thiemann
  • Patent number: 9012727
    Abstract: This invention is intended to be used to search for a transcription factor having novel functions of increasing the weight of an individual plant, increasing the weight of a given tissue per individual plant, or improving the productivity of a given substance per individual plant and to improve such properties in the plant. The weight of an individual plant is increased, the weight of a given tissue per individual plant is increased, the productivity of a given substance per individual plant is improved, or the content of a given substance per given tissue of a plant is increased via expression of a transcription factor that has been modified to suppress transcription accelerating activity.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: April 21, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroshi Chatani, Chikara Ohto, Yukio Okamura, Norihiro Mitsukawa, Nobuhiko Muramoto, Masaru Takagi, Nobutaka Mitsuda, Tomotsugu Koyama, Kyoko Matsui
  • Patent number: 9012617
    Abstract: Dual colored fluorescent indicators of specific tyrosine kinase activity and methods of use thereof are disclosed.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: April 21, 2015
    Assignee: The Trustees of The University of Pennsylvania
    Inventors: Matthew Dalva, Julia X. Zhu