RESISTIVE-SWITCHING MEMORY ELEMENTS HAVING IMPROVED SWITCHING CHARACTERISTICS

Resistive-switching memory elements having improved switching characteristics are described, including a memory element having a first electrode and a second electrode, a switching layer between the first electrode and the second electrode, the switching layer comprising a first metal oxide having a first bandgap greater than 4 electron volts (eV), the switching layer having a first thickness, and a coupling layer between the switching layer and the second electrode, the coupling layer comprising a second metal oxide having a second bandgap greater the first bandgap, the coupling layer having a second thickness that is less than 25 percent of the first thickness.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This is a Continuation application of U.S. patent application Ser. No. 12/610,236, filed on Oct. 30, 2009, which is a Continuation-in-Part application of U.S. patent application Ser. No. 12/608,934 filed Oct. 29, 2009 (issued as U.S. Pat. No. 8,183,553), which claims priority to U.S. Provisional Patent Application No. 61/168,534 filed on Apr. 10, 2009, each of which is incorporated herein by reference for all purposes.

TECHNICAL FIELD

The present invention relates generally to semiconductor memories. More specifically, resistive-switching memory elements having improved switching characteristics are described.

BACKGROUND OF THE INVENTION

Non-volatile memories are semiconductor memories that retain their contents when unpowered. Non-volatile memories are used for storage in electronic devices such as digital cameras, cellular telephones, and music players, as well as in general computer systems, embedded systems and other electronic devices that require persistent storage. Non-volatile semiconductor memories can take the form of removable and portable memory cards or other memory modules, can be integrated into other types of circuits or devices, or can take any other desired form. Non-volatile semiconductor memories are becoming more prevalent because of their advantages of having small size and persistence, having no moving parts, and requiring little power to operate.

Flash memory is a common type of non-volatile memory used in a variety of devices. Flash memory uses an architecture that can result in long access, erase, and write times. The operational speeds of electronic devices and storage demands of users are rapidly increasing. Flash memory is proving, in many instances, to be inadequate for non-volatile memory needs. Additionally, volatile memories (such as random access memory (RAM)) can potentially be replaced by non-volatile memories if the speeds of non-volatile memories are increased to meet the requirements for RAM and other applications currently using volatile memories.

Resistive-switching memories are memories that include a resistive-switching material (e.g. a metal oxide) that changes from a first resistivity to a second resistivity upon the application of a set voltage, and from the second resistivity back to the first resistivity upon the application of a reset voltage. Existing resistive-switching memories have switching characteristics (e.g. set, reset, and forming voltages, retention) that are unsuitable for some applications.

Thus, what is needed is a resistive-switching memory element with improved switching characteristics.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the invention are disclosed in the following detailed description and the accompanying drawings:

FIG. 1 illustrates a memory array of resistive switching memory elements;

FIG. 2 illustrates a memory element including a resistive-switching material and a select element;

FIGS. 3 and 4 are band diagrams and that illustrate energy levels in a memory element with (FIG. 3) and without (FIG. 4) an interface layer;

FIG. 5 is a graph illustrating the dependency of forming voltage on the presence of an interface layer;

FIG. 6 illustrates a memory element that shares an electrode with a diode that is used as a select element;

FIG. 7 illustrates a portion of a three-dimensional memory array using memory elements described herein;

FIGS. 8A and 8B illustrate the memory element and the creation and manipulation of oxygen vacancies (defects) within the memory element using an interface layer;

FIG. 9 is a logarithm of current (I) versus voltage (V) plot for a memory element;

FIG. 10 is a current (I) versus voltage (V) plot for a memory element that demonstrates a resistance state change;

FIGS. 11 and 12 are graphs showing the relationship between thicknesses of a metal oxide layer and resulting set voltages, reset voltages, and on/off current ratios for several materials (metal oxides) used in memory elements described herein; and

FIGS. 13 and 14 are flowcharts describing processes and for controlling interface layers.

DETAILED DESCRIPTION

A detailed description of one or more embodiments is provided below along with accompanying figures. The detailed description is provided in connection with such embodiments, but is not limited to any particular example. The scope is limited only by the claims and numerous alternatives, modifications, and equivalents are encompassed. Numerous specific details are set forth in the following description in order to provide a thorough understanding. These details are provided for the purpose of example and the described techniques may be practiced according to the claims without some or all of these specific details. For the purpose of clarity, technical material that is known in the technical fields related to the embodiments has not been described in detail to avoid unnecessarily obscuring the description.

According to various embodiments, resistive-switching memory elements are described herein. The memory elements generally have a metal-insulator-metal (MIM) structure in which at least one insulating layer is surrounded by two conductive electrodes. Some embodiments described herein are memory elements that include electrodes of different materials (e.g. one electrode is doped silicon and one is titanium nitride) surrounding a switching layer of a higher-bandgap material (e.g. hafnium oxide (HfO2), bandgap=5.7 eV, thickness ˜20-100 Å) and a coupling layer of a material having a bandgap that is greater than or approximately equal to that of the switching layer (e.g. zirconium oxide (ZrO2), bandgap=5.8 eV; or aluminum oxide (Al2O3), bandgap=8.4 eV). The coupling layer has a thickness that is less than 25 percent the thickness of the switching layer, and memory elements including the coupling layer have exhibited improved switching characteristics (e.g. lower set, reset, and forming voltages, and better retention).

In other embodiments, a metal-rich metal oxide switching layer and techniques for forming the metal-rich switching layer are described. The metal-rich switching layer includes increased numbers of defects (e.g. oxygen vacancies), which can be manipulated to improve switching characteristics. The metal-rich switching layer can be deposited, for example, by reducing the amount of oxidant that is introduced during an atomic layer deposition (ALD) process. In further embodiments, techniques for removing or controlling the size of an interface layer between an electrode and a switching layer deposited thereon are described.

I. Switching Operation

It is believed that the resistive switching of the memory elements described herein is caused by defects in a metal oxide switching layer of the memory element. Generally, defects are formed in or already exist in the deposited metal oxide, and existing defects can be enhanced by additional processes. For example, physical vapor deposition (PVD) processes and atomic layer deposition (ALD) processes deposit layers that can have some imperfections or flaws. Defects may take the form of variances in charge in the structure of the metal oxide: some charge carriers may be absent from the structure (i.e. vacancies), additional charge carriers may be present (i.e. interstitials), or one element can substitute for another (i.e. substitutional).

The defects are thought to be electrically active defects (also known as traps) in the bulk of the metal oxide and/or at the interface of the metal oxide and adjoining layers. It is believed that the traps can be filled by the application of a set voltage (to switch from a high to a low resistance state), and emptied by applying a reset voltage (to switch from the low to the high resistance state). Traps can be inherent in the as-deposited metal oxide (i.e., existing from formation of the metal oxide) or created and/or enhanced by doping and other processes. Doping can be performed using adjacent “doping” layers that interdiffuse with the switching layer, using implantation, or using other techniques.

It is believed that the defects in the switching layer form conductive percolation paths upon the application of the set voltage. It is further believed that the percolation paths are removed upon the application of a reset voltage. For example, a hafnium oxide layer may include oxygen or hafnium vacancies or oxygen or hafnium interstitials that may form traps which can be used to create percolation paths and alter the conductivity of the hafnium oxide layer.

The switching characteristics of the resistive-switching memory elements can be tailored by controlling the defects within the metal oxides. Switching characteristics include operating voltages (e.g. set, reset, and forming voltages), operating currents (e.g. on and off currents), and data retention. Defect control is achieved by type, density, energy level, and spatial distribution within the switching layer. These defects then modulate the current flow based on whether they are filled (passivated/compensated) or unfilled (uncompensated). Adding different layers, controlling the formation of the switching layer, implanting, controlling stress, certain thermal treatments are all used to control the defect characteristics. In addition, the defects need not be mobile. For example, a coupling layer 212 (see FIG. 2) and an interface layer 214 (see FIGS. 2 and 8A-8B) can be used to control locations, depths, densities, and/or type of defects, and techniques can be used to form a switching layer having an increased number of defects.

Additionally, the metal oxide switching layer can have any phase (e.g., crystalline and amorphous) or mixtures of multiple phases. Amorphous-phase metal oxides may have increased resistivity, which in some embodiments can lower the operational currents of the device to reduce potential damage to the memory element.

II. Memory Structure A. Memory Array

FIG. 1 illustrates a memory array 100 of resistive switching memory elements 102. Memory array 100 may be part of a memory device or other integrated circuit. Memory array 100 is an example of potential memory configurations; it is understood that several other configurations are possible.

Read and write circuitry may be connected to memory elements 102 using signal lines 104 and orthogonal signal lines 106. Signal lines such as signal lines 104 and signal lines 106 are sometimes referred to as word lines and bit lines and are used to read and write data into the elements 102 of array 100. Individual memory elements 102 or groups of memory elements 102 can be addressed using appropriate sets of signal lines 104 and 106. Memory element 102 may be formed from one or more layers 108 of materials, as is described in further detail below. In addition, the memory elements 102 shown can be stacked in a vertical fashion to make multi-layer 3-D memory arrays (see FIG. 7).

Any suitable read and write circuitry and array layout scheme may be used to construct a non-volatile memory device from resistive switching memory elements such as element 102. For example, horizontal and vertical lines 104 and 106 may be connected directly to the terminals of resistive switching memory elements 102. This is merely illustrative.

If desired, other electrical devices may be associated (i.e., be one or more of the layers 108) with each memory element 102 (see, e.g., FIG. 2). These devices, which are sometimes referred to as select elements, may include, for example, diodes, p-i-n diodes, silicon diodes, silicon p-i-n diodes, transistors, Schottky diodes, etc. Select elements may be connected in series in any suitable locations in memory element 102.

B. Memory Element 1. MIM Structure

FIG. 2 illustrates a memory element 102 including a resistive-switching material and a select element (a diode 202). The memory element 102 includes a metal-insulator-metal (MIM)-style stack 204 (in some embodiments, one or more of the metal layers can be a conductive semiconductor material such as doped silicon). The stack 204 includes two electrodes 206 and 208 and a resistive-switching layer 210 (e.g. an insulator or metal oxide). The electrodes 206 and 208 can be metals, metal oxides, or metal nitrides (e.g. Pt, Ru, RuO2, Ir, IrO2, TiN, W, TaN, MoN, MoOx), or can be doped silicon, for example p- or n-type doped polysilicon. The resistive-switching layer 210 can be a metal oxide or other switching material. In some embodiments, the resistive-switching layer 210 is a high bandgap (i.e. bandgap greater than four electron volts (eVs)) material such as HfO2, Ta2O5, Al2O3, Y2O3, and ZrO2 (see FIGS. 11 and 12).

a. Switching Layer

The switching layer 210 can have any desired thickness, but in some embodiments can be between 10 and 100 Å, between 20 and 60 Å, or approximately 50 Å. The switching layer 210 can be deposited using any desired technique, but in some embodiments described herein is deposited using ALD, or a combination of ALD and PVD. In other embodiments, the switching layer 210 can be deposited using low pressure CVD (LPCVD), plasma enhanced CVD (PECVD), plasma enhanced ALD (PEALD), liquid deposition processes, and epitaxy processes.

The switching layer 210 additionally can be metal-rich (e.g. HfO1.7 vs. HfO2) such that the elemental composition of the switching layer 210 is less than stoichiometric (e.g. less than HfO2). The switching layer 210 can have a deficit of oxygen, which manifests as oxygen vacancy defects. The additional defects can lead to reduced and more predictable switching and forming voltages of the memory element 102. Techniques for depositing a metal-rich switching layer 210 are described in FIG. 13.

b. Coupling Layer

The stack 204 can also include a coupling layer 212, which may be another metal oxide such as ZrO2 or Al2O3. In other embodiments, the coupling layer 212 can be deposited as a metal layer that will oxidize upon the deposition of the adjacent electrode 208 or upon annealing. The coupling layer 212 can, for example, facilitate switching at the electrode 208 by creating defects near the electrode 208. The coupling layer 212 can be thinner than the resistive-switching layer 210, for example the coupling layer 212 can have a thickness that is less than 25% of the thickness of the resistive-switching layer 210, or a thickness that is less than 10% of the thickness of the resistive-switching layer 210. For example, the resistive-switching layer 210 can be a 20-60 Å layer, and the interface layer 212 can be a 5-10 Å layer.

The coupling layer 212 in some embodiments has a bandgap that is approximately equal to or greater than a bandgap of the switching layer 210. The higher bandgap of the coupling layer 212 can help improve retention of the memory element 102 by reducing leakage from the switching layer 210. Additionally, the coupling layer 212 can create defects near the electrode 208 (including in near or at the interface between the coupling layer and the switching layer 210 and/or near or at the interface between the electrode 208 and the coupling layer 212), which can assist in switching. The coupling layer 212 is thin enough to provide access to defects in the switching layer 210.

c. Interface Layer

The stack 204 further may include an interface layer 214 between the electrode 206 and the switching layer 210. The interface layer 214 can be an oxide of the material of the electrode 206 that is formed as a result of and during the deposition of the switching layer 210, for example as a result of thermal oxidation during processing. The interface layer 214 can, in some embodiments, alter defects in the switching layer 210 (see, e.g. FIGS. 8A-8B). In other embodiments, it may be desirable to eliminate the interface layer 214 to reduce forming voltage or to enable switching. It is believed that in some embodiments, the interface layer 214 can hinder effective electron injection into the switching layer 210 that enables traps to be filled, which thereby increases forming voltage or causes excessive potential drop across it, producing high electric fields in the switching layer 210 and preventing switching. Techniques for controlling the size of or eliminating the interface layer 214 are described in FIGS. 13 and 14.

FIGS. 3 and 4 are band diagrams 300 and 400 that illustrate energy levels in a memory element with (FIG. 3) and without (FIG. 4) an interface layer 214. For each of the band diagrams 300 and 400, there are corresponding electric field diagrams 320 and 340 that illustrate the strength of the electric field within a certain region of the memory element 102.

In the band diagram 300, a memory element has a titanium nitride electrode 302, a zirconium oxide coupling layer 304, a hafnium oxide switching layer 306, a silicon oxide interface layer 308, and an n-type polysilicon electrode 310. In the band diagram 400, a memory element has a titanium nitride electrode 402, a zirconium oxide coupling layer 404, a hafnium oxide switching layer 406, and an n-type polysilicon electrode 408. As is shown in the electric field diagram 320, the electric field is reduced by a large amount 322 in the interface layer 314. Increased switching voltages may be necessary to overcome the electric field reduction in the interface layer 214. If the interface layer 214 is thick enough, the entire electric field may be lost to the interface layer 214, which may prevent switching altogether. Alternatively, as is shown in the electric field diagram 420, in the memory element without the interface layer 214 the electric field is reduced evenly 422 throughout the memory element 102, including in the switching layer 210, which can reduce switching voltages and lead to more predictable switching. However, as is described regarding FIGS. 8A and 8B, it may be desirable to retain a controlled-thickness interface layer 214 to increase the number of defects in the switching layer 210.

FIG. 5 is a graph 500 illustrating the dependency of forming voltage on the presence of an interface layer 214. Three sets of memory elements were prepared:

A first set of memory elements represented by diamonds 502 includes a titanium nitride electrode 206, a PVD-deposited hafnium oxide switching layer 210, and a platinum electrode 208 without a coupling layer 212.

A second set of memory elements represented by squares 504 includes an n-type polysilicon electrode 206, an ALD-deposited hafnium oxide switching layer 210, and a titanium nitride electrode 208 without a coupling layer 212.

A third set of memory elements represented by a circle 506 includes an n-type polysilicon electrode 206, a PVD-deposited hafnium oxide switching layer 210, and a platinum electrode 208 without a coupling layer 212.

The graph 500 shows the median forming voltage of the memory elements as a function of the thickness of the switching layer in the memory elements. As can be seen, for a switching layer having the same thickness, the elements 502 including PVD hafnium oxide on titanium nitride have the lowest forming voltage, elements 506 including PVD hafnium oxide on polysilicon have the next lowest forming voltage, and elements 504 having ALD hafnium oxide on polysilicon have the highest forming voltage. It is believed that ALD processes are more likely to form a thicker interface layer 214 at least partly because of potentially higher processing temperatures (200° C. or greater versus room temperature for some instances of PVD), which leads to increased forming voltages. Additionally, the silicon oxide interface layer 214 created on polysilicon electrodes (e.g. the elements 502 and 506) is less conductive than an oxide created on a metal-containing electrode such as titanium nitride. Therefore, techniques for reducing and/or controlling the interface layer 214, especially for silicon-based electrodes, can be used to improve forming voltages.

Although ALD process may be more likely to form thicker interface layers 214 and result in memory elements having increased forming voltages, it may be desirable to use ALD processing over PVD processing for other reasons (e.g. to form more conformal layers), and FIG. 13 describes a process for reducing or eliminating the interface layer 214 using ALD processing. Additionally, as is described regarding FIGS. 8A and 8B, it may be desirable to retain a controlled-thickness interface layer 214 (e.g. less than or equal to 10 Å) to increase the number of defects in the switching layer 210, which can also be formed using the process of FIG. 13.

If it is desirable to have an interface layer 214, the order of deposition of the layers of the MIM stack 204 may be important. Since the interface layer 214 is formed during the deposition of the switching layer 210, the switching layer 210 can be formed on the electrode that the interface layer 214 is to be formed from (e.g. formed on the polysilicon layer if a silicon oxide interface layer 214 is desired). As an example, and as is discussed further in FIG. 7, when forming a three-dimensional memory array, it may be necessary to always form the memory element in the same orientation (e.g. one electrode always on the bottom), even when the orientation of other elements is to be reversed. In other embodiments however, the interface layer 214 can be created when the memory element 102 is deposited in reverse order by using a post deposition anneal of the memory element 102.

d. Electrodes

The electrodes 206 and 208 can be different materials. In some embodiments, the electrodes have a work function that differs by between 0.1 and 1 electron volt (eV), or by between 0.4 and 0.6 eV, etc. For example, the electrode 208 can be TiN, which has a work function of 4.5-4.6 eV, while the electrode 206 can be n-type polysilicon, which has a work function of approximately 4.1-4.15 eV. Other electrode materials include p-type polysilicon (4.9-5.3 eV), tungsten (4.5-4.6 eV), tantalum nitride (4.7-4.8 eV), molybdenum oxide (approximately 5.1 eV), molybdenum nitride (4.0-5.0 eV), iridium (approximately 5.3 eV), iridium oxide (approximately 4.2 eV), ruthenium (approximately 4.7 eV), and ruthenium oxide (approximately 5.0 eV). For some embodiments described herein, the higher work function electrode receives a positive pulse (as measured compared to a common reference potential) during a reset operation, although other configurations are possible. In other embodiments, the higher work function electrode receives a negative pulse during a reset operation. In some embodiments, the memory elements 102 use bipolar switching where the set and reset voltages have opposite polarities relative to a common electrical reference, and in some embodiments the memory elements 102 use unipolar switching where the set and reset voltages have the same polarity.

2. Select Elements

The diode 202 is a select element that can be used to select a memory element for access from amongst several memory elements such as the several memory elements 102 of the memory array 100 (see FIG. 1). The diode 202 controls the flow of current so that current only flows one way through the memory elements 102.

The diode 202 may include two or more layers of semiconductor material. A diode is generally a p-n junction, and doped silicon layers 216 and 218 can form the p-n junction. For example, doped silicon layer 216 can be a p-type layer and doped silicon layer 218 can be an n-type layer, so that a node 220 of the diode 202 is an anode and is connected to the first electrode 206. In this example, a node 222 of the diode 202 is a cathode and is connected to the signal line 106, which may be, for example, a bit line or word line, or connected to a bit line or word line. The nodes 220 and 222 are not necessarily physical features in the memory element 102, for example the electrode 206 may be in direct contact with the doped silicon layer 216. In other embodiments, one or more additional layers such as a low resistivity film are added between the electrode 206 and the doped silicon layer 216.

In some embodiments, doped silicon layer 216 is an n-type layer and doped silicon layer 218 is a p-type layer, and the node 220 is a cathode of the diode 202 and the node 222 is an anode of the diode 202. An optional insulating layer 224 can be between the doped silicon layers 216 and 218 to create a p-i-n or n-i-p diode 202. In some embodiments the insulating layer 224 and one of the doped silicon layers 216 and 218 are formed from the same layer. For example, a silicon layer can be deposited, and a portion of the layer can be doped to form the doped silicon layer 216 or 218. The remaining portion of the layer is then the insulating layer 224.

In other embodiments, one electrode of the memory element 102 can be doped silicon (e.g. p-type or n-type polysilicon), which can also act as a portion of the diode 202. FIG. 6 illustrates a memory element 102 that shares an electrode with a diode 202 that is used as a select element. Since the diode 202 is made up of two layers of doped silicon, and since a layer of doped silicon can be used as an electrode of the memory element 202, a single layer of doped silicon (e.g. a layer of n-type polysilicon) can serve as an electrode of the memory element 102 and as a layer of the diode 202. By sharing a doped silicon layer between the diode 202 and the memory element 102, two layers, one doped silicon layer and a coupling layer between the diode 202 and the memory element 102, and their associated processing steps, can be eliminated.

3. Switching Polarity

A signal line (e.g. the signal line 104) is connected to the “second” electrode 208, and the signal line is configured to provide switching voltages to the second electrode 208. In some embodiments, the second electrode 208 has a higher work function than the first electrode 206, and the signal line 104 is configured to provide a negative set voltage relative to a common electrical reference, and a positive reset voltage relative to the common electrical reference. The embodiments may include those using a lower work function first electrode 206 (e.g. titanium nitride) and a higher work function second electrode such as platinum or ruthenium. For example, the common electrical reference may be ground (i.e. 0V), the set voltage would then be a negative voltage (e.g. −2V), and the reset voltage would be a positive voltage (e.g. 2V). The common electrical reference can be any voltage, however, such as +2V or −2V.

In other embodiments, the second electrode 208 also has a higher work function than the first electrode 206, and the signal line 104 is configured to provide a positive set voltage and a negative reset voltage relative to a common electrical reference. For example, in a memory element having a doped silicon first electrode 206 (e.g. n-type polysilicon) and a higher work function second electrode 208 (e.g. titanium nitride), the reset voltage can be negative at the second electrode 208.

Generally, in some embodiments, one switching voltage (e.g. the reset voltage) of the memory element can have a first polarity (e.g. a positive polarity) relative to the common electrical reference, and the other switching voltage (e.g. the set voltage) can have a negative polarity relative to the common electrical reference so that the memory element uses bipolar switching. In other embodiments, the switching voltages have the same polarity relative to a common reference and are referred to as unipolar switching. Additionally, the switching voltages can be voltage pulses (e.g. square wave pulses) having a limited duration, for example less than 1 ms, less than 50 μs, less than 1 μs, less than 50 ns, etc.

4. Polarity of Forming Voltage

Lower operating voltages are desirable for resistive switching memory elements to protect associated devices (e.g. diodes) in the memory array. Forming voltage is often the highest magnitude operating voltage, and reduction of the forming voltage is therefore an important goal to improve device operation and reliability. Forming voltage polarity has been shown to affect forming voltage magnitude in some embodiments.

In one example, memory elements were prepared with a higher work function electrode connected to ground and a lower work function electrode receiving the forming voltage pulse. A first example included an n-type polysilicon electrode, a hafnium oxide switching layer and a titanium nitride electrode. In this example, the titanium nitride electrode (i.e. the higher work function electrode) was grounded and positive and negative forming voltage pulses were applied to the n-type polysilicon electrode. The negative pulses had a median forming voltage of approximately −8V, while the positive pulses had a median forming voltage of approximately +13V. In a second example, a memory element was prepared having a titanium nitride electrode, a hafnium oxide switching layer, and a platinum electrode. The higher work function electrode (here, the platinum electrode) was grounded, and the lower work function electrode (the titanium nitride electrode) received forming voltage pulses. In this example, the median forming voltage of negative pulses was −4.4V, while the median forming voltage using positive pulses was 6.4V.

The examples above demonstrate that a negative forming voltage applied at the lower-work function electrode can reduce the magnitude of forming voltage in some embodiments. It is believed that electron injection from the lower-work function electrode can reduce the magnitude of a negative polarity forming voltage compared to a positive polarity forming voltage.

Additionally, it has been demonstrated for some embodiments that the greater the difference between the work function of the electrodes in a memory element, the smaller the magnitude of the forming voltage. For example, in a memory element with an n-type polysilicon electrode, a hafnium oxide switching layer and a titanium nitride electrode, the difference in work function is approximately 0.5 eV and a median forming voltage is −7V. Another memory element having an n-type polysilicon electrode, a hafnium oxide switching layer, and a platinum electrode has a work function difference of 1.6 eV and a median forming voltage of −5.5V. Therefore, in some embodiments it may be desirable to increase the work function difference between the electrodes to reduce the forming voltage, although it may not be necessary to increase the work function difference to 1.6 eV as in the example.

5. Other Characteristics

It may be desirable to have a low-leakage material as the resistive-switching layer 210 in order to aid memory retention. For example, the layer 210 may be a material that has a leakage current density less than 40 amps per square centimeter (A/cm2) measured at 0.5 volts (V) per twenty angstroms of the thickness of the metal oxide in an off state (e.g. a high resistance state) of the memory element.

6. 3-D Memory Structure

FIG. 7 illustrates a portion of a three-dimensional memory 700 array using memory elements 102 described herein. The array 700 includes two word lines 702a and 702b, and a shared bit line 704. Two MIM stacks 204a and 204b and diodes 202a and 204b are shown in the array 700; a memory cell 706a includes an MIM stack 204a and a diode 202a, and a memory cell 706b includes an MIM stack 204b and a diode 202b.

The memory array 700 is configured so that the two memory cells 706a and 706b can use the same shared bit line 704. As shown here, the MIM stacks 204a and 204b both have their individual layers (i.e. electrodes 206 and 208 and switching layer 210) built in the same order. In other words, for both MIM stacks 204a and 204b, the electrode 206 is formed first, the switching layer 210 is formed on top of the electrode 206, and the electrode 208 is formed on top of the switching layer 210. As mentioned above, the order of deposition of the layers of the MIM stacks 204 may need to be the same in order to create an interface layer 214. However, in some embodiments the order of deposition can be reversed and the interface layer 214 created as a result of subsequent processes such as electrode deposition or annealing.

The diodes 202a and 202b, on the other hand, are mirrors of each other. In other words the diode 202a has the layer 216 on the bottom, and the diode 202b has the layer 218 on the bottom. For example, the layer 216 may be the n-type layer and the layer 218 may be the p-type layer. Using this configuration, the diodes 202a and 202b are biased in opposite directions, which allows the memory cells 706 to both use the same shared bit line 704. As is shown in circuit diagrams 708a and 708b, the diodes can have any desired orientation, and the orientation may differ based on the configuration of the three-dimensional memory array.

7. Interface Layer and Oxygen Vacancies

FIGS. 8A and 8B illustrate the memory element 102 and the creation and manipulation of oxygen vacancies (defects) within the memory element 102 using an interface layer 214. The interface layer 214 is an oxide layer that can be created during the processing of other layers in the memory element 102. For example, the deposition of the switching layer 210 may include processing at a temperature (e.g. 200° C. or greater) to create the interface layer 214. If, for example, the electrode 206 is doped silicon (e.g. polysilicon), the deposition of the switching layer 210 (using, for example, PVD or ALD) may include temperatures that can create a silicon oxide interface layer 214. The interface layer 214 can be eliminated in some embodiments, but in other embodiments, the interface layer 214 can be retained to improve retention of the switching layer 210 by improving leakage characteristics and to modulate defects (e.g. oxygen vacancies) in the switching layer 210. In some embodiments where the interface layer 214 is retained, the interface layer 214 may be relatively thin (e.g. less than or equal to 10 Å) to make the defects in the switching layer 210 visible to the electrode 206 (i.e. the interface layer 214 provides access to the defects of the switching layer 210) and to reduce the effect of the interface layer 214 on switching voltages.

In one example, the bottom electrode 206 is polysilicon. Silicon, particularly, is known for attracting oxygen when heated and can draw oxygen from the metal oxide switching layer 210, leaving oxygen vacancies 802 in the switching layer 210 nearby creating a metal-rich metal oxide switching layer. Without being bound by theory, these oxygen vacancies 802 can serve as traps which modulate the current flow with the application of programming voltages to fill and empty such traps. The oxygen vacancies 802 need not be mobile.

A thin or zero interlayer thickness interface layer 214 can be used to modulate the density of oxygen vacancies 802 in the switching layer 210. For example, a thinner interface layer 214 (e.g. 5 Å vs. 10 Å) can increase the oxygen vacancy 802 density. Additionally, the thickness of the switching layer 210 can be optimized such that traps (e.g. oxygen vacancies 802) are more spatially equalized throughout the switching layer 210. For example, FIG. 8A shows a thicker switching layer 210, which has oxygen vacancies 802 concentrated near the interface layer 214, while FIG. 8B shows a thinner switching layer 210 that has a more even distribution of oxygen vacancies 802. For example, in two memory elements using the same materials, the switching layer 210 of FIG. 8A may be 50 Å while the thickness of the switching layer 210 in FIG. 8B is 25 Å. The distribution of oxygen vacancies 802 within the switching layer 210 can depend on several factors, including the materials used, the thickness of the interface layer 214, the processes used (e.g. temperatures of anneals used), etc. FIGS. 8A and 8B are only two examples of oxygen vacancy distribution, and it is understood that various other configurations are possible.

III. Memory Operation

During a read operation, the state of a memory element 102 can be sensed by applying a sensing voltage (i.e., a “read” voltage VREAD) to an appropriate set of signal lines 104 and 106. Depending on its history, a memory element that is addressed in this way may be in either a high resistance state or a low resistance state. The resistance of the memory element therefore determines what digital data is being stored by the memory element. If the memory element has a low resistance, for example, the memory element may be said to contain a logic one (i.e., a “1” bit). If, on the other hand, the memory element has a high resistance, the memory element may be said to contain a logic zero (i.e., a “0” bit). During a write operation, the state of a memory element can be changed by application of suitable write signals to an appropriate set of signal lines 104 and 106.

FIG. 9 is a logarithm of current (I) versus voltage (V) plot 900 for a memory element 102. FIG. 9 illustrates the set and reset operations to change the contents of the memory element 102. Initially, memory element 102 may be in a high resistance state (“HRS”, e.g., storing a logic zero). In this state, the current versus voltage characteristic of memory element 102 is represented by solid line HRS 902. The high resistance state of memory element 102 can be sensed by read and write circuitry using signal lines 104 and 106. For example, read and write circuitry may apply a read voltage VREAD to memory element 102 and can sense the resulting “off” current IOFF that flows through memory element 102. When it is desired to store a logic one in memory element 102, memory element 102 can be placed into its low-resistance state. This may be accomplished by using read and write circuitry to apply a set voltage VSET across signal lines 104 and 106. Applying VSET to memory element 102 causes memory element 102 to switch to its low resistance state, as indicated by dashed line 906. In this region, the memory element 102 is changed so that, following removal of the set voltage VSET, memory element 102 is characterized by low resistance curve LRS 904. As is described further below, the change in the resistive state of memory element 102 may be because of the filling of traps (i.e., a may be “trap-mediated”) in a metal oxide material. VSET and VRESET can be generally referred to as “switching voltages.”

The low resistance state of memory element 102 can be sensed using read and write circuitry. When a read voltage VREAD is applied to resistive switching memory element 102, read and write circuitry will sense the relatively high “on” current value ION, indicating that memory element 102 is in its low resistance state. When it is desired to store a logic zero in memory element 102, the memory element can once again be placed in its high resistance state by applying a reset voltage VRESET to memory element 102. When read and write circuitry applies VRESET to memory element 102, memory element 102 enters its high resistance state HRS, as indicated by dashed line 908. When the reset voltage VRESET is removed from memory element 102, memory element 102 will once again be characterized by high resistance line HRS 904. Voltage pulses can be used in the programming of the memory element 102. For example, a 1 ms, 10 μs, 5 μs, 500 ns, etc. square pulse can be used to switch the memory element 102; in some embodiments, it may be desirable to adjust the length of the pulse depending on the amount of time needed to switch the memory element 102.

A forming voltage VFORM is a voltage applied to the memory element 102 to ready the memory element 102 for use. Some memory elements described herein may need a forming event that includes the application of a voltage greater than or equal to the set voltage or reset voltage. Once the memory element 102 initially switches the set and reset voltages can be used to change the resistance state of the memory element 102.

The bistable resistance of resistive switching memory element 102 makes memory element 102 suitable for storing digital data. Because no changes take place in the stored data in the absence of application of the voltages VSET and VRESET, memory formed from elements such as element 102 is non-volatile.

FIG. 10 is a current (I) versus voltage (V) plot 1000 for a memory element 102 that demonstrates a resistance state change. The plot 1000 shows a voltage ramp applied to the memory element 102 along the x-axis and the resulting current along a y-axis. The line 1002 represents the response of an Ohmic material when the ramped voltage is applied. An Ohmic response is undesirable, since there is no discrete voltage at which the set or reset occurs.

Generally, a more abrupt response like graph 1004 is desired. The graph 1004 begins with an Ohmic response 1004a, and then curves sharply upward 1004b. The graph 1004 may represent a set operation, where the memory element 102 switches from the HRS 902 to the LRS 904.

Without being bound by theory, non-metallic percolation paths are formed during a set operation and broken during a reset operation. For example, during a set operation, the memory element 102 switches to a low resistance state. The percolation paths that are formed by filling traps increase the conductivity of the metal oxide, thereby reducing (i.e., changing) the resistivity. The voltage represented by 404b is the set voltage. At the set voltage, the traps are filled and there is a large jump in current as the resistivity of the metal oxide decreases.

IV. Materials

A variety of metal oxides can be used for the switching layer 210 of the memory elements 102 described herein. In some embodiments, the memory elements 102 exhibit bulk-switching properties and are scalable. In other words, it is believed that defects are distributed throughout the bulk of the switching layer 210, and that the switching voltages (i.e. VSET and VRESET) increase or decrease with increases or decreases in thickness of the metal oxide. In other embodiments, the memory elements 102 exhibit interface-mediated switching activity. Other embodiments may exhibit a combination of bulk- and interface-mediated switching properties, which may be scalable while still exhibiting defect activity at layer interfaces.

A. Higher-Bandgap Materials for Switching Layer

FIGS. 11 and 12 are graphs showing the relationship between thicknesses of a metal oxide layer and resulting set voltages, reset voltages, and on/off current ratios for several materials (metal oxides) used in memory elements described herein. These graphs illustrate the characteristics of a memory element that includes two electrodes and a single layer of metal oxide disposed in between (i.e. without a coupling layer 212) and indicate that certain materials exhibit bulk-switching properties. As can be seen in FIG. 11, for memory elements including hafnium oxide 1102, aluminum oxide 1104, or tantalum oxide 1106, set voltage increases with (i.e. is dependent on) thickness, and in some embodiments and for these materials the set voltage is at least one volt (V) per one hundred angstroms (A) of the thickness of a metal oxide layer in the memory element. In some embodiments, an increase in the thickness of the metal oxide layer of 100 Å increases the set voltage by at least 1V. Similarly, as shown in FIG. 12, reset voltage for hafnium oxide 1202, aluminum oxide 1204, or tantalum oxide 1206 also depends on thickness. These data therefore support a bulk-controlled set/reset mechanism for these materials, since a linear relationship indicates the formation of percolation paths throughout the bulk of the metal oxide. In other words, for a thicker material, more voltage is needed to fill the traps.

Hafnium oxide (HfO2, 5.7 electron volts (eV)), aluminum oxide (Al2O3, 8.4 eV) and tantalum oxide (Ta2O5, 4.6 eV) all have a bandgap greater than 4 eV, while titanium oxide (TiO2, 3.0 eV) and niobium oxide (Nb2O5, 3.4 eV) have bandgaps less than 4 eV. Other higher bandgap metal oxides that can be used with various embodiments described herein include yttrium oxide (Y2O3, 6.0 eV) and zirconium oxide (ZrO2, 5.8 eV) (also see Table 1). As shown in FIGS. 11 and 12, set voltages for titanium oxide 1108 and niobium oxide 1110 and reset voltages for titanium oxide 1208 and niobium oxide 1210 do not increase with thickness. Therefore, a higher bandgap (i.e., bandgap greater than 4 eV) metal oxide exhibits bulk mediated switching and scalable set and reset voltages. Table 1 summarizes the higher-bandgap materials that can be used for switching layers 210.

TABLE 1 Material Bandgap HfO2 5.7 eV Al2O3 8.4 eV Ta2O5 4.6 eV Y2O3 6.0 eV ZrO2 5.8 eV

B. Coupling Layer Materials

The coupling layer 212 can be a metal oxide material that is chosen to complement the material of the switching layer 210. For example, the coupling layer 212 may be chosen to complement a bandgap of the switching layer 210. In some embodiments, the coupling layer 212 has a bandgap that is approximately equal to or greater than the bandgap of the switching layer 210. Without being bound by theory, this can improve retention of the memory element 102 by improving leakage characteristics. As is shown in the band diagrams 300 and 400 in FIGS. 3 and 4, a zirconium oxide coupling layer 212 has a bandgap that is greater than the bandgap of the switching layer 210. The higher bandgap coupling layer 212 can promote retention by reducing leakage from the switching layer 210 into the electrode 208.

In other examples, the coupling layer 212 can have a lower bandgap that the switching layer 210 (for example, the coupling layer 212 can be titanium oxide (bandgap=3.5 eV)), but with some systems this may result in higher operational voltages and lower yields.

In some examples, a switching layer 210 is hafnium oxide (bandgap=5.7 eV) and has a first thickness (e.g. 20-100 Å). The coupling layer can then be either zirconium oxide (ZrO2, bandgap=5.8 eV) or aluminum oxide (Al2O3, bandgap=8.7 eV) having a second thickness that is less than 25 percent of the first thickness. For example, the coupling layer can be between 1 and 10 Å thick, or 5 Å or 8 Å.

It has been shown (see Table 3) for some materials systems that switching performance is better when the coupling material is in a discrete coupling layer 212 rather than dispersed throughout the switching layer 210 (e.g. using a hafnium oxide switching layer 210 and an aluminum oxide coupling layer 212 rather than a HfAlOx layer). It is believed that the defects created at the interface between the coupling layer 212 and the switching layer 210 can improve switching characteristics.

In some embodiments, the coupling layer 212 can be used to dope into the switching layer 210. The doping can be either aliovalent or isovalent. In aliovalent doping, the doping species has a different valency than that of the layer being doped. For example, the switching layer 210 can be hafnium oxide and the coupling layer 212 can be aluminum oxide. A typical defect species of hafnium oxide is Hf+4, and a typical defect species of aluminum oxide is Al+3. Al+3 ions displace Hf+4 ions in the hafnium oxide layer, thereby creating defects and traps. In some embodiments, the doping is isovalent, and a coupling layer 212 (e.g., zirconium oxide) may have a metal having the same most common oxidation state (e.g., +4) as a metal of the switching layer 210. In these cases, aliovalent doping may still occur when other species having different oxidation states (e.g., Zr+3) diffuse into the switching layer 210.

C. Electrodes

Various electrodes can be used for the memory elements 102. Some embodiments describe memory elements 102 that use electrodes 206 and 208 that are made of different materials. For example, the electrodes 206 and 208 can have materials that are chosen to have different work functions (e.g. between 0.4 eV and 0.6 eV different, or between 0.1 eV and 1.0 eV different), which it is believed may facilitate bipolar switching in some systems.

Materials that can be used for electrodes 206 and 208 include doped silicon (e.g. p-type or n-type silicon), titanium nitride, tantalum nitride, tungsten, tungsten nitride, molybdenum nitride, molybdenum oxide, platinum, ruthenium, ruthenium oxide, iridium, and iridium oxide. Electrode “pairs” may include n-type polysilicon and titanium nitride; titanium nitride, tungsten nitride, or tantalum nitride and platinum, ruthenium, ruthenium oxide, iridium, iridium oxide, molybdenum nitride, or molybdenum oxide, although other pairings are possible. Other electrodes include metal silicides (see FIG. 14) and electrolessly deposited electrodes (e.g. electroless nickel). These electrodes can be used to eliminate the silicon oxide interface layer 214 and therefore reduce forming voltages.

In some embodiments, the electrodes 206 and 208 can be chosen to dope isovalently into the switching layer 210. In other words, at least one of the electrodes 206 and 208 has a most common oxidation state or valency that is the same as the most common oxidation state or valency of the switching layer 210. In some memory elements 102, it is believed that isovalent doping can create deep traps in the switching layer 210. For example, the electrode 206 can be doped silicon (+4 valency) and the switching layer 210 can be hafnium (+4 valency) oxide. In other embodiments, the electrodes 206 or 208 can contain titanium nitride (titanium has +4 valency), platinum (+4 valency), etc. The silicon isovalently dopes into the hafnium oxide, creating deep traps that can be used to create a greater resistance change and a higher on/off current ratio. Aliovalent doping may in some instances create donors and acceptors, which are shallow traps and may result in a resistive-changing memory that does not exhibit as great a difference in resistance states.

D. Material Systems

Table 2 includes a list of possible materials systems for memory elements 102 described herein. Although certain combinations are described in Table 2, various other configurations are possible within the bounds of the memory elements 102 described herein. For example, other electrode materials (e.g. molybdenum nitride or molybdenum nitride) or switching materials can be used.

TABLE 2 Interface Switching Coupling Electrode 206 Layer 214 Layer 210 Layer 212 Electrode 208 1 n-type 0-10 Å SiOx HfOx 30-100 Å AlOx 1-10 Å, TiN polysilicon or ~50 Å or ~5 Å or ~8 Å 2 n-type 0-10 Å SiOx HfOx 30-100 Å ZrOx 1-10 Å, TiN polysilicon or ~50 Å or ~5 Å or ~8 Å 3 Ni, Co, Ti, Pd, Minimal HfOx 30-100 Å Optional TiN Pt silicide or ~50 Å (AlOx, ZrOx, TiOx) 4 n-type 0-10 Å SiOx AlOx, TaOx, Optional TiN polysilicon YOx, ZrOx 30-100 Å, (AlOx, ZrOx, or ~50 Å TiOx) 5 TiN 0-10 Å HfOx, AlOx, Optional Pt, Ru, RuOx, TaOx, YOx, (AlOx, ZrOx, Ir, IrOx ZrOx 30-100 Å, TiOx) or ~50 Å 6 ELD Ni Minimal HfOx, AlOx, Optional Pt, Ru, RuOx, TaOx, YOx, (AlOx, ZrOx, Ir, IrOx, TiN ZrOx 30-100 Å, TiOx) or ~50 Å

V. Processing

FIGS. 13 and 14 are flowcharts describing processes 1300 and 1400 for controlled deposition of interface layers 214. The process 1300 describes the deposition of a switching layer 210 using an ALD process that reduces the amount of oxygen introduced to create a metal-rich switching layer 210 and increase the amount of defects in the switching layer 210. Additionally, the process 1300 can be used to tailor the size of the interface layer 214 by selecting processing parameters to obtain a desired thickness of the interface layer 214. The process 1400 describes the deposition of a silicide electrode 206 that significantly reduces or eliminates the interface layer 214.

Atomic layer deposition (ALD) is a process used to deposit conformal layers with atomic scale thickness control during various semiconductor processing operations. For depositing a metal oxide, ALD is a multi-step self-limiting process that includes the use of two reagents: a metal precursor and an oxygen source (e.g. an oxidant). Generally, a first reagent is introduced into a processing chamber containing a substrate and adsorbs on the surface of the substrate. Excess first reagent is purged and/or pumped away. A second reagent is then introduced into the chamber and reacts with the adsorbed layer to form a deposited layer via a deposition reaction. The deposition reaction is self-limiting in that the reaction terminates once the initially adsorbed layer is consumed by reaction with the second reagent. Excess second reagent is purged and/or pumped away. The aforementioned steps constitute one deposition or ALD “cycle.” The process is repeated to form the next layer, with the number of cycles determining the total deposited film thickness.

Returning to FIG. 13, the process 1300 begins with depositing a bottom electrode on a substrate in operation 1302. The bottom electrode (e.g. the electrode 206) may be one of the electrode materials described above; however, in one embodiment, the bottom electrode is a polysilicon electrode that may form a silicon dioxide interface layer 214 during the deposition of the switching layer 210. In other embodiments, the bottom electrode is a metal electrode that can also oxidize during the deposition of the switching layer 210.

In operation 1304, a thin PVD metal oxide layer is optionally deposited on the substrate. The thin PVD metal oxide layer can be used to eliminate the interface layer 214 since the PVD deposition process has been shown to not promote the growth of the interface layer 214 (see e.g. FIG. 5). Once the thin (e.g. <10 Å) PVD metal oxide layer is deposited, the ALD process in operation 1306 can be performed.

In operation 1306, a switching layer 210 is deposited using ALD. The operation 1304 includes several component operations 1308-1320 that describe several cycles of the ALD process. Some of these operations are optional, or may be completed in a different order.

In operation 1308, the deposition temperature of the ALD process is optionally lowered. The deposition temperature may be lowered by lowering the temperature of a heated substrate pedestal (i.e. the pedestal temperature), for example. In some examples, the deposition temperature or pedestal temperature may be 250° C. or less, 200° C. or less, 175° C. or less, etc. The reduced temperature leads to incomplete ALD reactions, leaving unreacted precursor ligands in the switching layer 210, increasing the amount of defects in the switching layer 210. Additionally, the reduced deposition temperature can reduce or eliminate the interface layer 214 by reducing the rate of thermal oxidation. For example, when using a silicon electrode 206, reducing the ALD deposition temperature to below 200° C. may substantially reduce any interface layer 214.

In operation 1310, the precursor source is maintained at a desired pressure. The desired pressure can be achieved by controlling the temperature of the precursor source. The precursor source may be external to the ALD deposition chamber, and may therefore be maintained at a temperature different than the temperature of the deposition chamber. The desired temperature and pressure depends on the precursor used. For example, when using tetrakis(dimethlyamino)hafnium (TDMAH) to deposit hafnium oxide, the precursor source can be maintained at 30-100° C., or 40-50° C. In some embodiments, the temperature of the precursor source can be increased to increase the partial pressure of the precursor, which can also create a more metal-rich switching layer by increasing the amount of pressure in the chamber. In operation 1212, the precursor is introduced to the substrate including the bottom electrode to begin the ALD process.

Operations 1314 and 1316 describe the treatment of the oxygen source used to form the metal oxide. Depending on the characteristics of the memory element 102, either or both of operations 1314 and 1316 can be used to control the thickness of the interface layer 214. The oxygen source can be ozone, oxygen, water vapor, isopropyl alcohol (IPA), ethanol or another alcohol, or other ALD oxygen sources.

In operation 1314, the oxygen source is maintained at a lower vapor pressure than is typical to create a switching layer 210 having less oxygen. The vapor pressure can be reduced by reducing the temperature of the oxygen source. The temperature at which the oxygen source is maintained will differ depending on the oxygen source and the metal oxide to be deposited. For example, ozone and oxygen tend to be more oxidizing (i.e. more quickly create a layer having more oxygen), while water vapor is less oxidizing, and IPA and ethanol are less oxidizing still. The lowered temperature reduces the vapor pressure of the oxygen source, which controls the amount of the oxygen source that is introduced into the deposition chamber. Restricting the amount of the oxygen source in the chamber still allows the film to be self-limiting, while reducing the amount of oxygen in the film, as some of the precursor ligands will be unbound. The oxygen-deficient film will then have oxygen vacancies, which are defects that can be used to control the switching of the memory element 102.

To deposit a metal-rich hafnium oxide switching layer 210, for example, water vapor can be used as the oxygen source, and the water vapor source can be held at a reduced temperature such as 0 to 10° C. The reduced temperature reduces the vapor pressure of the oxygen source, effectively reducing the amount of oxygen introduced into the chamber and in the resulting film. Hafnium oxide films formed using this technique can result in elemental compositions of HfO1.2 to HfO1.9, or HfO1.7. Generally, oxygen concentrations can be reduced to 60-95% of stoichiometric compositions (i.e. the amount of oxygen is between 60 and 95% of a stoichiometric metal oxide, e.g. HfO1.2 to HfO1.9). IPA or ethanol can be used to provide oxygen, but at the same temperature will provide less oxygen than water vapor or the other oxygen sources described above. IPA or ethanol may therefore be able to deposit metal-rich films using a room temperature source, although a similar temperature reduction can also be used with IPA and ethanol to reduce the amount of oxygen in the switching layer 210.

In operation 1318, the oxygen source is introduced to the substrate to create an ALD layer of metal oxide. A single ALD cycle may deposit a film having a thickness of 0.5 Å, for example, and multiple cycles are typically needed to build a switching layer 210 of the desired thickness. In operation 1320, if more cycles are needed, the process 1300 returns to operation 1308. If no more cycles are needed, the process 1300 continues to operation 1322.

In operation 1322, a coupling layer is deposited. The coupling layer 212 can be a thin layer, for example less than 25 percent the thickness of the switching layer. The coupling layer 212 can be deposited using any deposition method, such as ALD, PVD, etc. In operation 1324, the top electrode (e.g. the electrode 208) is deposited.

In operation 1326, the memory element is annealed. The annealing can remove unreacted precursor ligands that may exist in the film because of the low deposition temperature of the ALD process. In one example, the element is annealed using a hydrogen/argon mixture (e.g. 2-10% hydrogen, 90-98% argon), although other anneals such as vacuum anneals, oxidizing anneals, etc. can be used.

Returning to FIG. 14, the process 1400 describes the formation of a bottom electrode 206 for use in the memory elements 102. The process 1400 describes the deposition of a silicide electrode that can be used to remove the interface layer 214 if so desired. In some embodiments, a silicide electrode does not form an interface layer 214 during the deposition of the switching layer 210. The process 1400 can in some embodiments, be used in conjunction with the process 1300. For example, the operations 1402-1412 of the process 1400 can be substituted into the operation 1302 of the process 1300.

In operation 1402, a bottom electrode (e.g. the electrode 206) is deposited on a substrate. The bottom electrode is a metal silicide, for example a titanium, cobalt, nickel, palladium, or platinum silicide, that is deposited according to the operations 1404-1412.

In operation 1404, silicon is deposited on the substrate. In operation 1406, a metal such as titanium, cobalt, nickel, molybdenum, palladium, or platinum is deposited on the silicon. In operation 1408 a thermal treatment is performed to form the silicide layer by interdiffusing the silicon into the metal. In operation 1410, any unreacted metal is stripped from the electrode, and in operation 1412, the electrode can be optionally annealed to lower the resistivity of the electrode.

After the silicide electrode is deposited, in operation 1414, a switching layer is deposited on the electrode (for example using techniques described in the process 1300), and in operation 1416 a top electrode (e.g. the electrode 208) is deposited over the switching layer. The silicide electrode resists the formation of oxide layers, and therefore does not form the interface layer 214. Although in some embodiments it may be desirable to retain an interface layer 214, in others it is more desirable to eliminate the interface layer 214, and the process 1400 is an alternative technique for doing so.

VI. Representative Data A. Switching Characteristics

Table 3 contains various switching metrics for memory elements formed using embodiments described herein, and other memory elements as a comparison:

HfOx/TiO2 refers to a memory element including an n-type polysilicon electrode 206, a 50 Å thick hafnium oxide switching layer 210 deposited at 250° C., an 8 Å titanium oxide coupling layer 212 deposited at 250° C., and a titanium nitride electrode 208.

HfOx/Al2O3 refers to a memory element including an n-type polysilicon electrode 206, a 50 Å thick hafnium oxide switching layer 210 deposited at 250° C., an 8 Å aluminum oxide coupling layer 212 deposited at 250° C., and a titanium nitride electrode 208.

HfOx/ZrO2 refers to a memory element including an n-type polysilicon electrode 206, a 50 Å thick hafnium oxide switching layer 210 deposited at 250° C., an 8 Å zirconium oxide coupling layer 212 deposited at 250° C., and a titanium nitride electrode 208.

HfAlxOy refers to a memory element including an n-type polysilicon electrode 206, a 58 Å aluminum-doped hafnium oxide switching layer 210 deposited at 250° C., and a titanium nitride electrode 208.

TABLE 3 VFORM VRESET VSET Yield HfOx/TiO2 −6 V to −9 V 6-7 V −3 V to −4 V 40-60% HfOx/Al2O3 −6 V to −8 V 4-6 V −3 V to −4 V 50-70% HfOx/ZrO2 −5 V to −8 V 6-7 V −3 V to −4 V 60-80% HfAlxOy >|−8|V 6-7 V −4 V to −5 V 20-40%

All data are for bipolar switching, and yield refers to the percentage in a given sample of memory elements that reliably switch. As can be seen, the higher bandgap coupling layers in the HfOx/Al2O3 and HfOx/ZrO2 memory elements show improved forming or reset voltages and improved cycling yields.

The HfAlxOy and the HfOx/Al2O3 memory elements have the same thickness and the same material components. However, the HfAlxOy memory element is aluminum-doped, and has the aluminum dispersed throughout the hafnium oxide layer, while the HfOx/Al2O3 memory element has a bulk hafnium oxide layer and a small aluminum oxide coupling layer. The switching characteristics for the HfOx/Al2O3 are better, suggesting that the improved switching may be due to defects formed at the interface between the coupling layer 212 and the switching layer 210.

B. Interface Layer

Techniques described in the process 1300 were used to deposit a memory element 102 that substantially eliminated the interface layer 214. Aluminum oxide was deposited using trimethylaluminum and water vapor. The amount of water vapor in the gas phase was restricted by lowering the temperature of the water vapor source to 1-5°. Using this technique, the thickness of the interface layer 214 was reduced from 1.1 nm (when the water source was held at room temperature) to approximately zero. In some embodiments, elimination of the interface layer 214 may reduce forming voltage.

VII. Representative Embodiments

In accordance with an embodiment, a resistive-switching memory element is provided that includes a first electrode and a second electrode, a switching layer between the first electrode and the second electrode comprising hafnium oxide and having a first thickness, and a coupling layer between the switching layer and the second electrode, the coupling layer comprising a material selected from the group consisting of aluminum oxide and zirconium oxide, the coupling layer having a second thickness that is less than 25 percent of the first thickness.

In accordance with a further embodiment, the first electrode of the memory element is doped silicon and the memory element is configured to receive a negative reset voltage relative to a common electrical reference and a positive set voltage relative to the common electrical reference at the second electrode.

In accordance with a further embodiment, the first electrode of the memory element comprises a first material and the second electrode comprises a second material, and the first material is different from the second material.

In accordance with a further embodiment, the first material of the first electrode is doped silicon and the second material of the second electrode is titanium nitride.

In accordance with a further embodiment, the first thickness of the memory element is between 20 and 100 angstroms.

In accordance with a further embodiment, the switching layer of the memory element comprises a hafnium oxide material having an elemental composition of between HfO1.2 and HfO1.7.

In accordance with a further embodiment, the first material of the first electrode is n-type polysilicon.

In accordance with a further embodiment, at least one of the first electrode and the second electrode of the memory element has a same most common oxidation state as the switching layer.

In accordance with a further embodiment, the memory element further includes an interface layer between the first electrode and the switching layer, the interface layer having a thickness less than 10 Å.

In accordance with a further embodiment, the interface layer of the memory element comprises silicon oxide.

In accordance with a further embodiment, a work function of the second electrode of the memory element is greater than a work function of the first electrode, and wherein the first electrode is configured to receive a forming voltage pulse having a negative voltage relative to a common electrical reference.

In accordance with another embodiment, a resistive-switching memory element is provided, including a first electrode and a second electrode, a switching layer between the first electrode and the second electrode, the switching layer comprising a first metal oxide having a first bandgap greater than 4 electron volts (eV), the switching layer having a first thickness, and a coupling layer between the switching layer and the second electrode, the coupling layer comprising a second metal oxide having a second bandgap greater than or equal to the first bandgap, the coupling layer having a second thickness that is less than 25 percent of the first thickness.

In accordance with a further embodiment, the first metal oxide of the memory element has an oxygen concentration that is between 60 and 95% of stoichiometric.

In accordance with a further embodiment, the first electrode of the memory element is selected from the group consisting of doped silicon and titanium nitride, and the second electrode is selected from the group consisting of molybdenum nitride, molybdenum oxide, titanium nitride, tungsten, tantalum nitride, molybdenum nitride, molybdenum oxide, platinum, ruthenium, nickel, iridium, iridium oxide, and ruthenium oxide.

In accordance with a further embodiment, the first thickness of the switching layer is between 20 and 100 Å.

In accordance with a further embodiment, a first metal of the first metal oxide has a first most common oxidation state that is different from a second most common oxidation state of the second metal of the second metal oxide.

In accordance with a further embodiment, a first metal of the first metal oxide and a second metal of the second metal oxide have a same most common oxidation state.

In accordance with a further embodiment, a second metal of the second metal oxide has a second most common oxidation state that is than less than or equal to a first most common oxidation state of a first metal of the first metal oxide.

In accordance with a further embodiment, the first metal oxide is hafnium oxide and the second metal oxide is selected from the group consisting of zirconium oxide and aluminum oxide.

In accordance with a further embodiment, the first metal oxide is selected from the group consisting of hafnium oxide, tantalum oxide, aluminum oxide, zirconium oxide, and yttrium oxide, and the second metal oxide is selected from the group consisting of zirconium oxide and aluminum oxide.

In accordance with a further embodiment, the first electrode comprises doped silicon and further comprising an interface layer between the first electrode and the switching layer comprising silicon oxide and having a thickness of less than 10 Å.

In accordance with a further embodiment, the first electrode comprises a silicide chosen from the group consisting of titanium silicide, cobalt silicide, nickel silicide, palladium silicide, and platinum silicide.

In accordance with a further embodiment, the memory element is part of a three-dimensional memory array.

In accordance with another embodiment, a method for forming a resistive-switching memory element is provided, including depositing a first electrode on a substrate, depositing a switching layer comprising a metal oxide over the first electrode using atomic layer deposition (ALD), the depositing the switching layer further comprising maintaining a precursor at greater than 40 degrees Celsius, introducing the precursor to the substrate, maintaining an oxygen source at less than 10 degrees Celsius, introducing the oxygen source to substrate, and depositing a second electrode over the switching layer.

In accordance with a further embodiment, the oxygen source is at least one of water vapor, isopropyl alcohol (IPA), and ethanol.

In accordance with a further embodiment, the metal oxide is chosen from the group consisting of hafnium oxide, tantalum oxide, aluminum oxide, yttrium oxide, and zirconium oxide.

In accordance with a further embodiment, the metal oxide has an oxygen concentration that is between 60 and 95 percent of stoichiometric.

In accordance with a further embodiment, the metal oxide is hafnium oxide and has an elemental composition that is between HfO1.2 and HfO1.7.

In accordance with a further embodiment, a deposition temperature for the ALD is less than 250 degrees Celsius.

In accordance with a further embodiment, a deposition temperature for the ALD is approximately 200 degrees Celsius.

In accordance with a further embodiment, the method includes annealing the memory element after depositing the second electrode.

In accordance with a further embodiment, the method further includes depositing a physical vapor deposition (PVD) layer over the first electrode using physical vapor deposition, wherein the switching layer is deposited over the PVD layer, and wherein the PVD layer comprises a same material as the switching layer.

In accordance with a further embodiment, the method further includes depositing a coupling layer over the switching layer, the coupling layer having a thickness that is less than 25 percent of a thickness of the switching layer.

In accordance with a further embodiment, a bandgap of the coupling layer is greater than a bandgap of the switching layer.

In accordance with a further embodiment, the coupling layer is selected from the group consisting of aluminum oxide and zirconium oxide.

In accordance with another embodiment, a method for forming a resistive-switching memory element including depositing a first electrode on a substrate, depositing a switching layer over the first electrode, the switching layer having a first thickness and a first bandgap that is greater than 4 electron volts (eV), depositing a coupling layer over the switching layer, the coupling layer having a second thickness that is less than 25 percent of the first thickness and a second bandgap that is greater than or equal to the first bandgap, and depositing a second electrode over the coupling layer.

In accordance with a further embodiment, the first electrode is doped silicon and depositing a switching layer comprises forming an interface layer comprising silicon oxide between the first electrode and the switching layer, the interface layer having a thickness of less than 10 Å.

In accordance with a further embodiment, the switching layer is chosen from the group consisting of hafnium oxide, tantalum oxide, aluminum oxide, yttrium oxide, and zirconium oxide.

In accordance with a further embodiment, the coupling layer is chosen from the group consisting of zirconium oxide and aluminum oxide.

In accordance with a further embodiment, depositing the switching layer comprises using atomic layer deposition (ALD), including maintaining a precursor at greater than 40 degrees Celsius, introducing the precursor to the substrate, maintaining an oxygen source at less than 10 degrees Celsius, and introducing the oxygen source to the substrate.

In accordance with a further embodiment, depositing the switching layer comprises depositing a metal oxide having an oxygen concentration that is between 60 and 95 percent of stoichiometric.

In accordance with a further embodiment, the method includes annealing the memory element.

In accordance with a further embodiment, the oxygen source is at least one of water vapor, isopropyl alcohol, and ethanol.

Although the foregoing examples have been described in some detail for purposes of clarity of understanding, the invention is not limited to the details provided. There are many alternative ways of implementing the invention. The disclosed examples are illustrative and not restrictive.

Claims

1. A method for forming a semiconductor device, the method comprising:

depositing a first electrode on a substrate;
depositing a switching layer over the first electrode, wherein the switching layer comprises a first metal oxide wherein the switching layer is deposited using an atomic layer deposition (ALD) method, the method comprising: maintaining a precursor at greater than 40 degrees Celsius; introducing the precursor to the substrate; maintaining an oxygen source at less than 10 degrees Celsius; introducing the oxygen source to substrate; and
depositing a second electrode over the switching layer.

2. The method of claim 1, wherein the oxygen source comprises one of water vapor, isopropyl alcohol (IPA), or ethanol.

3. The method of claim 1, wherein the first metal oxide comprises one of hafnium oxide, tantalum oxide, aluminum oxide, yttrium oxide, or zirconium oxide.

4. The method of claim 1, wherein the first metal oxide is a sub-stoichiometric metal oxide and has an oxygen concentration of between 60 and 95 percent of a corresponding stoichiometric metal oxide.

5. The method of claim 1, wherein the first metal oxide is one of HfO1.2 to HfO1.9, or HfO1.7.

6. The method of claim 1, wherein a deposition temperature of the substrate during the ALD method is less than 250 degrees Celsius.

7. The method of claim 1, wherein a deposition temperature of the substrate during the ALD method is less than 200 degrees Celsius.

8. The method of claim 1, wherein a deposition temperature of the substrate during the ALD method is less than 175 degrees Celsius.

9. The method of claim 1, further comprising, prior to depositing the switching layer, depositing a layer comprising a second metal oxide, wherein the layer is formed using a physical vapor deposition (PVD) method, and wherein the layer is formed over the first electrode such that, after depositing the switching layer, the layer is disposed between the first electrode and the switching layer.

10. The method of claim 9, wherein the second metal oxide and the first metal oxide have a common metal.

11. The method of claim 9, wherein the layer, disposed between the first electrode and the switching layer, has a thickness of less than 10 Angstroms.

12. The method of claim 1, wherein the precursor is maintained at between 40 degrees Celsius and 50 degrees Celsius.

13. The method of claim 1, wherein the oxygen source comprises water vapor and is supplied at a temperature of between 0 degrees Celsius and 10 degrees Celsius.

14. The method of claim 1, further comprising, prior to depositing the second electrode, depositing a coupling layer over the switching layer, wherein the coupling layer has a thickness of less than 25 percent of a thickness of the switching layer.

15. The method of claim 14, wherein the coupling layer comprises one of aluminum oxide or zirconium oxide.

16. The method of claim 1, wherein the first electrode comprises doped silicon.

17. The method of claim 16, wherein the doped silicon of the first electrode is n-type polysilicon.

18. The method of claim 1, wherein materials of the first electrode and the second electrode have different work function values.

19. The method of claim 1, further comprising, after depositing the second electrode, annealing the semiconductor device in a mixture of hydrogen and argon.

20. The method of claim 19, wherein the mixture comprises between 2% and 10% of hydrogen and between 90% and 98% of argon.

Patent History
Publication number: 20150147865
Type: Application
Filed: Feb 3, 2015
Publication Date: May 28, 2015
Inventors: Ronald John Kuse (San Diego, CA), Tony Chiang (Campbell, CA), Michael Miller (San Jose, CA), Prashant Phatak (San Jose, CA), Jinhong Tong (Santa Clara, CA)
Application Number: 14/612,897
Classifications
Current U.S. Class: Resistor (438/382)
International Classification: H01L 45/00 (20060101);