Integrated heat exchange assembly and an associated method thereof
A heat exchange assembly for dissipating heat from a hot component of a circuit card is disclosed. The heat exchange assembly includes a support structure having a first support end, a second support end, and a support portion extending between the first support end and the second support end. The support structure further includes a plurality of first projections protruding from a portion of a surface of the support structure, corresponding to the support portion. Further, the heat exchange assembly includes a vapor chamber having a casing and a wick disposed within the casing. The vapor chamber is coupled to a surface of the support structure.
Latest General Electric Patents:
- Air cooled generator collector terminal dust migration bushing
- System and method for detecting a stator distortion filter in an electrical power system
- System to track hot-section flowpath components in assembled condition using high temperature material markers
- System and method for analyzing breast support environment
- Aircraft conflict detection and resolution
The present patent application relates generally to a heat exchange assembly, and more particularly, to an integrated heat exchange assembly having a support structure and a vapor chamber disposed over a hot component of a circuit card, for dissipation of generated heat.
Electrical devices often produce heat during operation that needs to be dissipated. A heat dissipation device includes a heat exchange assembly having a heat spreader coupled to a hot component of an electrical device, so as to dissipate the heat generated from the hot component to a heat sink via the heat spreader. The heat spreader typically includes a solid plate made of copper or aluminum material. The heat spreader generally dissipates heat by transferring heat along a tortuous heat path from the hot component to the heat sink via the heat spreader. Such devices have a limited heat transfer capacity because of a longer heat travel path from the hot component to the heat sink and limitations on the maximum temperature logic devices can experience without sacrificing reliability.
During assembling of such a heat exchange assembly within a housing of an electrical device, non-planarity and height mismatches between the housing and the components may also occur. Due to the limited flexibility of the heat spreader, the heat sink, and the planar architecture of the housing, a thermal interface material may be disposed between the hot component and the heat spreader. Such a thermal interface material has to be thick and compliant, resulting in substantial thermal resistance, which reduces the efficiency of heat transfer from the hot component to the heat sink.
Accordingly, there is a need for an improved heat exchange assembly.
BRIEF DESCRIPTIONIn accordance with one exemplary embodiment, a heat exchange assembly is disclosed. The heat exchange assembly includes a support structure having a first support end, a second support end, a support portion extending between the first support end and the second support end, and a plurality of first projections protruding from a portion of a surface of the support structure, corresponding to the support portion. In such embodiments, the support structure is a primary heat sink. The heat exchange assembly further includes a vapor chamber having a casing and a wick disposed within the casing. The vapor chamber is coupled to a surface of the support structure.
In accordance with another exemplary embodiment, a method of dissipating heat from a hot component of a circuit card is disclosed. The method includes absorbing heat from a hot component by conduction through an evaporator portion of a vapor chamber. Further, the method includes evaporating a working fluid disposed within the casing, using the absorbed heat, so as to generate a vaporized working fluid. The method further includes transporting the vaporized working fluid from the evaporator portion to a condenser portion of the vapor chamber. Further, the method includes condensing the vaporized working fluid via the condenser portion by dissipating the absorbed heat along a plurality of directions in the casing, to a support structure.
In accordance with yet another exemplary embodiment, an electrical device having a heat exchange assembly is disclosed. The electrical device includes a hot component coupled to a circuit card having a plurality of holes. The hot component and the circuit card are disposed within a housing. Further, the electrical device includes a support structure having a first support end, a second support end, a support portion extending between the first support end and the second support end, and a plurality of first projections protruding from a portion of a surface of the support structure, corresponding to the support portion. The electrical device further includes a vapor chamber having a casing and a wick disposed within the casing. The vapor chamber is coupled to a surface of the support structure. The electrical device further includes a plurality of spring loaded clamping devices. Each spring loaded clamping device is coupled to a corresponding hole in the corresponding first projection so as to clamp the circuit card to the support structure. Further, the vapor chamber is coupled to the hot component via a thermal interface material. In such embodiments, the casing further includes a first projected end portion extending along a first direction, a second projected end portion extending along a second direction opposite to the first direction, and a mid projected portion disposed between the first projected end portion and the second projected end portion.
These and other features and aspects of embodiments of the present disclosure will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
While only certain features of embodiments have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as falling within the spirit of the invention.
Embodiments discussed herein disclose a heat exchange assembly. More particularly, certain embodiments disclose a heat exchange assembly having a support structure and a vapor chamber. The support structure, for example, is a primary heat sink having a first support end, a second support end, a support portion extending between the first support end and the second support end, and a plurality of first projections protruding from a portion of a surface of the support structure, corresponding to the support portion. The vapor chamber includes a casing and a wick disposed within the casing. The vapor chamber is coupled to the surface of the support structure. The heat exchange assembly is coupled to a hot component of a circuit card, for dissipating heat from the hot component.
More particularly, certain embodiments disclose a method for dissipating heat from a hot component of a circuit card. Specifically, the method involves absorbing heat from the hot component by conducting the heat through an evaporator portion of a vapor chamber. The method further involves vaporizing a working fluid disposed within a casing of the vapor chamber so as to generate a vaporized working fluid. Further, the vaporized working fluid is transported from the evaporator portion to a condenser portion of the vapor chamber via a transport portion. In some embodiments, the vaporized working fluid may be transported from the evaporator portion to one or more condenser portions of the vapor chamber. The method further involves condensing the vaporized working fluid via the condenser portion by dissipating the absorbed heat along a plurality of directions in the casing to a support structure.
In the illustrated embodiment, the support portion 106 extends between the first and second support ends 102, 104. The plurality of first projections 118 protrude outwards from the support portion 106. More specifically, the plurality of first projections 118 protrude from a portion 107 of a surface 109 of the support structure 100. The first support end 102 has a first wedge lock recess 114 and the second support end 104 has a second wedge lock recess 116. More specifically, the first and second wedge lock recesses 114, 116 are disposed on a surface 111 of the support structure 100. Each first projection 118 has a length “L1”, and the support portion 106, the first and second support ends 102, 104 have a thickness “T1”. In the illustrated embodiment, specifically, the plurality of first projections 118 protrude orthogonally from the support portion 106. The number of first projections 118 may vary depending upon the application and design criteria.
The first and second wedge lock recesses 114, 116 are used for locking the support structure 100 to a housing of an electrical device (not shown in
In one embodiment, the first and second support ends 102, 104 are formed separately from the support portion 106. In such embodiments, a first peripheral end 110 of the support portion 106 is coupled to the first support end 102 and a second peripheral end 112 of the support portion 106 is coupled to the second support end 104 by welding, brazing, bolting, or the like. In one embodiment, the first and second support ends 102, 104 are made of a first material and the support portion 106 is made of a second material different from the first material. The first material and the second material may include aluminum nitride, copper, and the like. In another embodiment, the first and second support ends 102, 104 and the support portion 106 are formed together as an integral component. In such embodiments, the first and second support ends 102, 104 and the support portion 106 are formed of the same material. In some other embodiment, the support structure 100 may include a third support end and a fourth support end extending from remaining peripheral ends of the support portion 106 and projecting perpendicular to the first and second support ends 102, 104. The number of such support ends of the support structure 100 may vary depending on the application and design criteria.
The vapor chamber 120 includes an evaporator portion 126, a condenser portion 128, and a transport portion 130 extending between the evaporator portion 126 and the condenser portion 128. Further, the vapor chamber 120 includes a working fluid 132 filled within a cavity 134 of the vapor chamber 120. The working fluid 132 may include water or alcohol depending on the application and design criteria.
The casing 122 includes a first projected end portion 142 extending along a first direction 144 and a second projected end portion 146 extending along a second direction 148 opposite to the first direction 144. Further, the casing 122 includes a mid projected portion 150 disposed between the first projected end portion 142 and the second projected end portion 146. The mid projected portion 150 substantially spans the evaporator portion 126 of the vapor chamber 120.
The first projected end portion 142 and the second projected end portion 146 have a first thickness “T1” and the mid projected portion 150 has a second thickness “T2” different from the first thickness “T1”. The different thicknesses “T1” and “T2” facilitate the vapor chamber 120 to accommodate a hot component (not shown in
The wick 124 includes a plurality of sintered layers 152, 154 disposed one above the other for vaporizing the working fluid 132 in the evaporator portion 126 and condensing the vaporized working fluid 132 in the condenser portion 128. Each sintered layer 152, 154 may have a varying pore size and porosity (not shown in
In some other embodiments, the vapor chamber 120 may include a third projected end portion and a fourth projected end portion extending from remaining peripheral ends of the casing 122 and projecting perpendicular to the first and second projected end portions 142, 146. The number of such projected end portions of the vapor chamber 120 may vary depending on the application and design criteria.
In the illustrated embodiment, the vapor chamber 120 is coupled to the surface 109 of the support structure 100 such that a first end projection 142a of the first projected end portion 142 of the casing 122 overlaps the first support end 102 of the support structure 100 and a second projection 146a of the second projected end portion 146 of the casing 122 overlaps the second support end 104 of the support structure 100. In the illustrated embodiment, the thickness “T1” of the casing is different than the length “L1” of the plurality of first projections 118 of the support structure 100. The length “L1” of the support structure 100 is greater than the thickness “T1” of the casing 122.
In the illustrated embodiment, the vapor chamber 220 includes a casing 222 and a wick 224 disposed within the casing 222. The casing 222 has a rectangular shape. The casing 222 includes a first half casing portion 238 and a second half casing portion 240 coupled to each other by welding, brazing, bolting, or the like. Each half casing portion 238, 240 has a U-shape. The vapor chamber 220 is disposed within the recess 208 such that the plurality of first projections 218 are disposed surrounding the vapor chamber 220. The first support end 202 has a first wedge lock recess 214 and the second support end 204 has a second wedge lock recess 216. The casing 222 of the vapor chamber 220 further includes a mid projected portion 250 disposed at an evaporator portion 226 of the vapor chamber 220. The first and second support ends 202, 204 of the support structure 200 have a thickness “T1” and the vapor chamber 220 has a thickness “T2” different from the thickness “T1”. The different thicknesses “T1” and “T2” facilitate coupling of the vapor chamber 220 to the support structure 200.
The first and second projected end portions 342, 346 have a first thickness “T1” and a mid projected portion 350 has a second thickness “T2” different from the first thickness “T1”. The different thicknesses “T1” and “T2” facilitate the vapor chamber 320 to accommodate the hot component (not shown in
The first projected end portion 442 further includes a third end projection 442b extending perpendicular from the first end projection 442a. The second projected end portion 446 further includes a fourth projected end portion 446b extending perpendicular from the second end projection 446a and parallel to the third end projection 442b. The third end projection 442b and the fourth end projection 446b are configured to support a hot component of a circuit card (not shown in
The heat exchange assembly 660 includes the support structure 600 and the vapor chamber 620. The support structure 600 is disposed on the vapor chamber 620 such that the first support end 602 and the second support end 604 of the support structure 600 overlaps the first projected end portion 642 and the second projected end portion 646 respectively of the vapor chamber 620. Further, each first projection 618 is coupled to the respective through-hole 696 in the corresponding second projection 690.
The electrical device 672 includes a circuit card 674 (PCB) coupled to an electrical component or a hot component 676 coupled via a ball grid array (BGA) 678. In one embodiment, the electrical device 672 is a computer or a common line replaceable unit (“LRU) and the like. The hot component 676 may be a passive device such as a memory unit, or an active unit such as a graphical processing unit (GPU) or a central processing unit (CPU).
In the illustrated embodiment, the heat exchange assembly 660 further includes a plurality of spring loaded clamping devices 682. As discussed previously, each first projection 618 is coupled to the through-hole 696 of the corresponding second projection 690 of the casing 622. Further, each spring loaded clamping device 682 is coupled to a corresponding hole 691 in a corresponding first projection 618 so as to clamp the circuit card 674 to the support structure 600. The heat exchange assembly 660 further includes an additional spring loaded clamping device 682a. Each spring loaded clamping device 682 and the additional spring loaded clamping device 682a are mounted on a beam 684 having a plurality of hinges 686 for flexibly supporting the circuit card 674. Each spring loaded clamping device 682, 682a along with the corresponding hinge 686 can move up and down so as to accommodate the height variation of the respective hot component 676 during assembling of the heat exchange device 660.
In the illustrated embodiment, the heat exchange assembly 660 also includes a thermal interface material (herein after referred as “TIM”) 688 disposed on the hot component 676 to enable thermal conductivity between the hot component 676 and at least one of the first projected end portion 642, the second projected end portion 646, and the mid projected portion 650 of the vapor chamber 620. In another embodiment, at least one of the first projected end portion 642, the second projected end portion 646, and the mid projected portion 650 may be mounted directly on the hot component 676.
The third projection 642b and the fourth projection 646b are configured to hold the circuit card 674 which support the hot component 676.
The vapor chamber 420 is disposed within the recess 408 of the support structure 400 such that the first projected end portion 442 of the vapor chamber 420 overlaps the first support end 402 and the second projected end portion 446 overlaps the second support end 404. A first clamping device 466 is coupled to the first through-hole 462 formed extending through the first support end 402 of the support structure 400, the first projection 442a and the third projection 442b of the vapor chamber 420. A second clamping device 468 is coupled to the second through-hole 464 formed extending through the second support end 404 of the support structure 400, and the second projection 446a, the fourth projection 446b of the vapor chamber 420. The heat exchange assembly 460 further includes a plurality of spring loaded clamping devices 482. Each spring loaded clamping device 482 is coupled to a corresponding hole 491 in a corresponding first projection 418 of the support structure 400, so as to clamp the circuit card 474 to the support structure 400. The third projection 442b and the fourth projection 446b are configured to hold the circuit card 474 which support the hot component 476 of the electrical device 472.
The heat exchange assembly 660 has the primary heat sink 600 and the vapor chamber 620 coupled to each other. The primary heat sink 600 has the first wedge lock recess 614 and the second wedge lock recess 616 formed in the first support end 602 and the second support end 604 respectively. The vapor chamber 620 is disposed within the recess 608 of the support portion 606 of the primary heat sink 600. The secondary heat sink 670 is disposed over the support portion 606 of the primary heat sink 600. The vapor chamber 620 is disposed on the hot component 676 of the circuit card 674. The electrical device 672 is supported by the third and fourth projections 642b, 646b of the casing 622 of the vapor chamber 620. Wedges 714 are coupled to the first wedge lock recess 614 and the second wedge lock recess 616 so as to hold the heat exchange assembly 660, the secondary heat sink 670, and the electrical device 672 together.
During operation, the hot component 676 generates heat 716. The generated heat 716 is absorbed by the mid projected portion 650 and then conducted through the evaporator portion 626 of the vapor chamber 620. A working fluid 632a of the vapor chamber 620 absorbs the heat 716 resulting in vaporization of the working fluid 632a and generation of a vaporized working fluid 632b. The vaporized working fluid 632b is transported from the evaporator portion 626 to a condenser portion 628 via a transport portion 630 of the vapor chamber 620. Further, the vaporized working fluid 632b is condensed to regenerate the working fluid 632a in the condenser portion 628 by dissipating the absorbed heat 716 along a plurality of directions 718 in the casing 622.
In the illustrated embodiment, the condensation of the vaporized working fluid 632b includes dissipating the absorbed heat 716 to the support structure 600, along one or more directions 718a, 718b, 718c, 718d, 718e, 718g, 718h. The absorbed heat 716 is further dissipated from the support structure 600 to the secondary heat sink 670, along one or more directions 718a, 718c, 718e. The absorbed heat 716 is later dissipated to the housing 710, along one or more directions 718g, 718d, 718h, 718b.
In another embodiment, the condensation of the vaporized working fluid 632b includes dissipating the absorbed heat 716 to a first projected end portion 642, along one or more directions 718g, 718d and to a second projected end portion, 646, along one or more directions 718h, 718b. Further, the absorbed heat 716 is dissipated from a third projection 642b and a fourth projection 646b to the housing 710, along one or more directions 718d, 718h, 718b. It should be specifically noted herein the various directions indicated herein are only for illustrative and descriptive purposes and should not be construed as a limitation of the invention.
In one embodiment, the first and second threaded inserts 856a, 856b are made of a first material and the first support end 802 is made of a second material different from the first material. The vapor chamber is made of a third material different from the first material. The first, second, and third materials may include aluminum nitride, copper, or the like.
In accordance with embodiments discussed herein, the exemplary heat exchange assembly facilitates an efficient way of dissipating heat from a hot component to a housing of an electrical device. Further, a spring loaded clamping device and a wedge lock clamping device allows accommodating dimensional tolerances of the hot component during assembling of the heat exchange assembly. Further, a first support end and a second support end of a support structure allows easy clamping of the heat exchange assembly to the housing of the electrical device. The plurality of second projections provide structural support to a vapor chamber and further enable to couple the support structure to the electrical device.
Claims
1. A system comprising:
- a support structure having a first support end, a second support end, a support portion extending between the first support end and the second support end, and a plurality of first projections protruding from a portion of a surface of the support structure, corresponding to the support portion, wherein the support structure is a primary heat sink; and
- a vapor chamber having a casing and a wick disposed within the casing, coupled to the surface of the support structure.
2. The system of claim 1, wherein the support portion comprises a recess, wherein the vapor chamber is disposed within the recess.
3. The system of claim 2, wherein the casing comprises a first projected end portion extending along a first direction, a second projected end portion extending along a second direction opposite to the first direction, and a mid projected portion disposed between the first projected end portion and the second projected end portion.
4. The system of claim 3, wherein each portion from the first projected end portion and the second projected end portion has a first thickness, and the mid projected portion has a second thickness different from the first thickness.
5. The system of claim 3, wherein the first projected end portion comprises a first end projection disposed overlapping the first support end and the second projected end portion comprises a second end projection disposed overlapping the second support end.
6. The system of claim 5, wherein first projected end portion comprises a third end projection extending perpendicular from the first end projection and a fourth end projection extending perpendicular from the second end projection and parallel to the third end projection.
7. The system of claim 6, further comprising a first clamping device extending through a first through-hole formed in the first end projection, the third end projection, and the first support end and a second clamping device extending through a second through-hole formed in the second end projection, the fourth end projection, and the second support end.
8. The system of claim 7, wherein the third end projection and the fourth end projection are configured to support a hot component of a circuit card.
9. The system of claim 5, wherein the first projected end portion further comprises a first extension portion extending from the first end projection, beyond and perpendicular to the first support end and the second projected end portion further comprises a second extension portion extending from the second end projection, beyond and perpendicular to the second support end.
10. The system of claim 9, further comprising a first wedge lock component coupled to the first extension portion and a second wedge lock component coupled to the second extension portion.
11. The system of claim 10, further comprising a secondary heat sink coupled to the support portion of the support structure, the first wedge lock component, and the second wedge lock component via a plurality of wedges.
12. The system of claim 5, wherein each end from the first support end and the second support end comprises a wedge lock recess.
13. The system of claim 12, further comprising a secondary heat sink clamped to the support portion of the support structure and the wedge lock recess via a plurality of wedges.
14. The system of claim 1, wherein the casing comprises a plurality of second projections extending from one side to another side of the casing, wherein each second projection has a through-hole.
15. The system of claim 14, wherein each first projection is coupled to the through-hole of the corresponding second projection of the casing.
16. The system of claim 15, further comprising a plurality of spring loaded clamping devices, each spring loaded clamping device is configured to clamp a circuit card to the corresponding first projection among the plurality of first projections.
17. The system of claim 1, wherein the casing comprises a first projected end portion extending along a first direction, a second projected end portion extending along a second direction opposite to the first direction, and a mid projected portion disposed between the first projected end portion and the second projected end portion.
18. The system of claim 17, wherein each portion from the first projected end portion and the second projected end portion has a first thickness, and the mid projected portion has a second thickness different from the first thickness, wherein the first projected end portion comprises a first end projection disposed overlapping the first support end and the second projected end portion comprises a second end projection disposed overlapping the second support end.
19. The system of claim 1, further comprising a plurality of spring loaded clamping devices, each spring loaded clamping device is configured to clamp a circuit card to the corresponding first projection among the plurality of first projections.
20. The system of claim 1, further comprising a first threaded insert disposed within a blind-hole formed in each support end from the first support end and the second support end of the support structure, a second threaded insert disposed within a through-hole formed in each projected end portion from a first projected end portion and a second projected end portion of the casing, and a threaded stud coupled to the first threaded insert and the second threaded insert.
21. The system of claim 1, further comprising a first threaded insert disposed within a first blind-hole formed in each support end from the first support end and the second support end, a second threaded insert disposed within a second blind-hole formed in each projected end portion from a first projected end portion and a second projected end portion, a first threaded stud coupled to the first threaded insert and the second threaded insert, a third threaded insert disposed within a third blind-hole formed in each support end from the first support end and the second support end, a circuit card having a fourth blind-hole, and a second threaded stud coupled to the third threaded insert and the fourth blind-hole.
22. The system of claim 1, further comprising:
- a threaded insert disposed within a first through-hole formed in each projected end portion from a first projected end portion and a second projected end portion of the casing, and
- a threaded stud coupled to each projected end portion via the threaded insert, a second through-hole formed in each support end from the first and second support ends, and a blind-hole formed in a circuit card.
23. The system of claim 1, further comprising:
- a threaded insert diposed within a first through-hole formed in each projected end portion from a first projected end portion and a second projected end portion of the casing, and
- a hollow threaded screw coupled to each projected end portion via the threaded insert, and a second through-hole formed in each support end from the first and second support ends, and
- another threaded screw coupled to a third through-hole formed in a circuit card, to a threaded hollow portion of the hollow threaded screw.
24. The system of claim 1, further comprising a plurality of cross-bars, wherein each cross-bar among the plurality of cross bars, comprises a hole for encompassing a corresponding projection among the plurality of first projections.
25. A method comprising:
- absorbing heat from a hot component by conduction through an evaporator portion of a vapor chamber, wherein the vapor chamber includes a casing and a wick disposed within the casing;
- vaporizing a working fluid disposed within the casing, using the absorbed heat, to generate a vaporized working fluid;
- transporting the vaporized working fluid from the evaporator portion to a condenser portion of the vapor chamber; and
- condensing the vaporized working fluid via the condenser portion by dissipating the absorbed heat along a plurality of directions in the casing, to a support structure; wherein the support structure is a primary heat sink and includes a first support end, a second support end, a support portion extending between the first support end and the second support end, and a plurality of first projections protruding from a portion of a surface of the support structure, corresponding to the support portion; wherein the vapor chamber is coupled to the surface of the support structure.
26. The method of claim 25, wherein condensing the vaporized working fluid comprises dissipating the absorbed heat along the plurality of directions in a first end projection of a first projected end portion disposed extending along a first direction and a second end projection of a second projected end portion disposed extending along a second direction opposite to the first direction of the casing.
27. The method of claim 26, wherein condensing the vaporized working fluid further comprises dissipating the absorbed heat along the plurality of directions in a third end projection disposed extending perpendicular from the first end projection and a fourth end projection disposed extending perpendicular from the second end projection and parallel to the third end projection.
28. The method of claim 26, wherein condensing the vaporized working fluid further comprises dissipating the absorbed heat from the support structure to a secondary heat sink.
29. The method of claim 25, wherein condensing the vaporized working fluid comprises dissipating the absorbed heat along the plurality of directions in the support portion of the vapor chamber.
30. A system comprising:
- a hot component coupled to a circuit card having a plurality of holes, wherein the hot component and the circuit card are disposed within a housing;
- a support structure having a first support end, a second support end, a support portion extending between the first support end and the second support end, and a plurality of first projections protruding from a portion of a surface of the support structure, corresponding to the support portion, wherein the support structure is a primary heat sink;
- a vapor chamber having a casing and a wick disposed within the casing, coupled to the surface of the support structure, wherein the vapor chamber is coupled to the hot component via a thermal interface material, wherein the casing comprises a first projected end portion extending along a first direction, a second projected end portion extending along a second direction opposite to the first direction, and a mid projected portion disposed between the first projected end portion and the second projected end portion; and
- a plurality of spring loaded clamping devices, each spring loaded clamping device is coupled via a corresponding hole from the plurality of holes to a corresponding first projection from the plurality of first projections so as to clamp the circuit card to the support structure.
31. The system of claim 30, wherein the casing comprises a plurality of second projections extending from one side to another side of the casing, wherein each second projection has a through-hole.
32. The system of claim 31, wherein each first projection is coupled to the through-hole of the corresponding second projection of the casing.
Type: Application
Filed: Dec 13, 2013
Publication Date: Jun 18, 2015
Applicant: General Electric Company (Schenectady, NY)
Inventors: Shakti Singh Chauhan (Guilderland, NY), Hendrik Pieter Jacobus de Bock (Clifton Park, NY), Graham Charles Kirk (Milton Keynes), Stanton Earl Weaver, JR. (Broadalbin, NY), David Shannon Slaton (Huntsville, AL), Tao Deng (Shanghai), Pramod Chamarthy (Revere, MA)
Application Number: 14/106,207