SAME LAYER MICROELECTRONIC CIRCUIT PATTERNING USING HYBRID LASER PROJECTION PATTERNING (LPP) AND SEMI-ADDITIVE PATTERNING (SAP)
In some embodiments, same layer microelectronic circuit patterning using hybrid laser projection patterning (LPP) and semi-additive patterning (SAP) is presented. In this regard, a method is introduced including patterning a first density region of a laminated substrate surface using LPP, patterning a second density region of the laminated substrate surface using SAP, and plating the first and second density regions of the laminated substrate surface, wherein features spanning the first and second density regions are directly coupled. Other embodiments are also disclosed and claimed.
Embodiments of the present invention generally relate to the field of integrated circuit package substrates, and, more particularly to same layer microelectronic circuit patterning using hybrid laser projection patterning (LPP) and semi-additive patterning (SAP).
BACKGROUND OF THE INVENTIONReductions in the size and pitch of integrated circuit devices require advancements in the manufacture of IC package substrates. The use of lasers is becoming more common for patterning substrates. Disadvantageously, the use of laser projection patterning to pattern a substrate layer tends to cost much more than semi-additive patterning.
The present invention is illustrated by way of example and not limitation in the figures of the accompanying drawings in which like references indicate similar elements, and in which:
In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the invention. It will be apparent, however, to one skilled in the art that embodiments of the invention can be practiced without these specific details. In other instances, structures and devices are shown in block diagram form in order to avoid obscuring the invention.
Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
Necking region 102 represents a region on the surface of substrate 100 where signals, such as signal trace 108 routed to escape from an integrated circuit die, which would occupy die shadow 106. In one embodiment, signal traces 108 are input/output (I/O) signals that are routed from outer bumps of the integrated circuit die. Necking region 102 generally has a higher density than main routing region 104. In one embodiment, necking region 102 contains line widths of about 9 micrometers and spaces of about 12 micrometers. In one embodiment, main routing region 104 contains line widths of greater than about 14 micrometers and spaces of greater than about 14 micrometers. In one embodiment, signal traces 108 have a length within necking region 102 of a few millimeters. As shown, necking region 102 is slightly larger than die shadow 106.
As described in embodiments hereafter, same layer microelectronic circuit patterning may use laser projection patterning (LPP) in necking region 102 and semi-additive patterning (SAP) in main routing region 104. Signal traces 108 are seamlessly spanned (for example, continuous copper traces) across both regions.
In one embodiment, package substrate 200 is coupled on surface 220 with an integrated circuit die such as a flip chip silicon die. In another embodiment, surface 220 is laminated with another dielectric layer as part of a continued build-up process.
In one embodiment, package substrate 300 is coupled on surface 322 with an integrated circuit die such as a flip chip silicon die. In another embodiment, surface 322 is laminated with another dielectric layer as part of a continued build-up process.
In the description above, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the present invention may be practiced without some of these specific details. In other instances, well-known structures and devices are shown in block diagram form.
Many of the methods are described in their most basic form but operations can be added to or deleted from any of the methods and information can be added or subtracted from any of the described messages without departing from the basic scope of the present invention. Any number of variations of the inventive concept is anticipated within the scope and spirit of the present invention. In this regard, the particular illustrated example embodiments are not provided to limit the invention but merely to illustrate it. Thus, the scope of the present invention is not to be determined by the specific examples provided above but only by the plain language of the following claims.
Claims
1. (canceled)
2. A system comprising:
- a package substrate including a necking region and a main routing region, the main routing region contiguous with the necking region and extending outwardly from the necking region;
- a die situated on the substrate, wherein the necking region includes an area of the substrate within a footprint of the die;
- a plurality of first traces situated on the substrate in the necking region; and
- a plurality of second traces situated on the substrate in the main routing region, each coupled to a respective first trace of the plurality of first traces.
3. The system of claim 2, wherein a width of each of the first traces is less than a width of each of the second traces.
4. The system of claim 3, wherein the width of each of the second traces is greater than fourteen micrometers.
5. The system of claim 4, wherein the width of each of the first traces is about nine micrometers.
6. The system of claim 2, wherein a spacing between traces of the first plurality of traces is less than a spacing between traces of the second plurality of traces.
7. The system of claim 6, wherein the spacing between traces of the second plurality of traces is greater than about fourteen micrometers.
8. The system of claim 7, wherein the spacing between traces of the first plurality of traces is about nine micrometers.
9. The system of claim 2, wherein the first plurality of traces are situated within ablated regions of the substrate.
10. The system of claim 9, wherein each of the second plurality of traces overlap with and electrically contact a first trace of the first plurality of traces in an outer portion of the necking region.
11. The system of claim 9, wherein each of the second plurality of traces electrically contacts a first trace of the first plurality of traces and is co-planar with the first trace of the first plurality of traces.
12. The system of claim 11, wherein each of the first plurality of traces is situated in a dielectric protrusion of the substrate that extends beyond a top surface of the main routing region of the substrate.
13. The system of claim 2, wherein a routing density of the first plurality of traces is greater than a routing density of the second plurality of traces.
14. A method comprising:
- patterning a first density region of a laminated substrate surface using laser projection patterning (LPP);
- patterning a second density region of the laminated substrate surface using semi-additive patterning (SAP); and
- plating the first and second density regions of the laminated substrate surface, wherein features spanning the first and second density regions are directly coupled.
15. The method of claim 14, wherein the first density region comprises a necking region wherein I/O signals from an integrated circuit die escape.
16. The method of claim 14, wherein the second density region comprises a lower density main routing region.
17. The method of claim 14, wherein plating the first and second density regions comprises plating the first and second density regions in a same copper plating step.
18. The method of claim 14, wherein plating the first and second density regions comprises plating the first and second density regions in discrete copper plating steps.
19. The method of claim 14, wherein the first density region comprises features having a length of a few millimeters.
20. A method comprising:
- ablating a necking region into a laminated substrate surface with laser projection patterning (LPP);
- plating the necking region with copper;
- patterning a main routing region on the laminated substrate surface and necking region with dry film resist (DFR);
- plating the main routing region; and
- removing the DFR.
21. The method of claim 8, wherein the necking region is slightly larger than a die shadow, and wherein plating the necking region with copper comprises electrolytic copper plating to a thickness of between about 5 and about 20 micrometers.
Type: Application
Filed: Jul 30, 2015
Publication Date: Nov 26, 2015
Inventors: John S. Guzek (Chandler, AZ), Yonggang Li (Chandler, AZ)
Application Number: 14/813,575