Laminar Phased Array Antenna

A phased array has a laminar substrate, a plurality of elements on the front side of the substrate, and a plurality of integrated circuits also on the front side of the substrate. This structure is arranged to form a patch phased array. The plurality of integrated circuits, which are configured to control receipt and/or transmission of signals by the plurality of elements in the phased array, preferably are wafer level chip scale packaging integrated circuits. Moreover, the plurality of integrated circuits are configured to operate at one or more satellite frequencies to have the capability of transmitting signals and/or receiving signals from a satellite.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
PRIORITY

This patent application claims priority from provisional U.S. Patent Application No. 62/220,522, filed Sep. 18, 2015, attorney docket number 4181/1002, entitled, “LAMINAR PHASED ARRAY ANTENNA,” and naming David Corman, Vipul Jain, Timothy Carey, and Nitin Jain as inventors, the disclosure of which is incorporated herein, in its entirety, by reference.

RELATED APPLICATIONS

This patent application is related to U.S. patent application Ser. No. ______, filed on even date herewith, attorney docket number 4181/1008, entitled, “LAMINAR PHASED ARRAY WITH POLARIZATION-ISOLATED TRANSMIT/RECEIVE INTERFACES,” and naming David Corman, Vipul Jain, Timothy Carey, and Nitin Jain as inventors, the disclosure of which is incorporated herein, in its entirety, by reference.

FIELD OF THE INVENTION

The invention generally relates to phased array systems and, more particularly, the invention relates to laminar phased arrays/patch arrays.

BACKGROUND OF THE INVENTION

Antennas that emit electronically steered beams are known in the art as “phased array antennas.” Such antennas are used worldwide in a wide variety of commercial and radar applications. They typically are produced from many small radiating elements that are individually phase controlled to form a beam in the far field of the antenna.

Among other things, phased array antennas are popular due to their ability to rapidly steer beams without requiring moving parts. One problem, however, is their cost. They can cost on the order of $1000 per element. Thus, for a 1000 element array, the cost can reach or exceed $1,000,000.

SUMMARY OF VARIOUS EMBODIMENTS

In accordance with one embodiment of the invention, a phased array has a laminar substrate, a plurality of elements on the front side of the substrate, and a plurality of integrated circuits also on the front side of the substrate. This structure is arranged to form a patch phased array. The plurality of integrated circuits, which are configured to control receipt and/or transmission of signals by the plurality of elements in the phased array, preferably are wafer level chip scale packaging integrated circuits. Moreover, the plurality of integrated circuits are configured to operate the phased array at one or more satellite frequencies to have the capability of transmitting signals and/or receiving signals from a satellite.

The plurality of elements may take on any of a variety of forms, such as those of a triangular, rectangular, or hexagonal lattice. To improve efficiency, each integrated circuit is configured to control at least two elements (e.g., four elements or more). For example, each integrated circuit may include a phase shifter to control the phase of signals transmitted by at least one of the elements. The phase shifter preferably is a four bit or smaller phase shifter.

As another example, each integrated circuit may include a splitter between a common arm and two side arms. In this case, each of the integrated circuits may have a side arm beam gain control of no more than about 5 db. Each integrated circuit may further include an active phase shifter (e.g., using no passive elements), and/or may be configured to use time division duplex waveforms to enable the phased array to be used for both transmission and receipt of signals.

Some of the integrated circuits, which may be flip-chip bonded to the substrate, preferably are positioned on the substrate between at least two elements. The flip-chip bonding also may produce an open space between the bottom side of the integrated circuit and the substrate (e.g., if no fill is included in that space). To provide more structural protection and filter certain frequencies, the phased array also may position a polarizer between the substrate and a radome.

In accordance with another embodiment, an apparatus for communicating with a satellite has a printed circuit board with a front side supporting a plurality of elements and a plurality of integrated circuits. These elements and integrated circuits form a patch phased array. As such, the plurality of integrated circuits have circuitry for controlling receipt and/or transmission of signals by the plurality of elements in the patch phased array. Moreover, the plurality of integrated circuits are wafer level chip scale packaging integrated circuits. To communicate effectively with at least one satellite, the plurality of integrated circuits have circuitry for operating the phased array at one or more frequencies of the Ka-band, Ku-band, and/or X-band.

In accordance with other embodiments, a method of producing a phased array forms a plurality of elements on a front side of a laminar substrate to form a patch array. The method also flip chip mounts a plurality of wafer level chip scale packaged integrated circuits to the front side of the laminar substrate. At least two of the plurality of elements have at least one integrated circuit therebetween. The plurality of integrated circuits are configured to control receipt and/or transmission of signals by the plurality of elements in the patch phased array. In addition, the plurality of integrated circuits also are configured operate the phased array at one or more frequencies of the Ka-band, Ku-band, and/or X-band to communicate with at least one satellite. The method electrically connects each of the plurality of integrated circuits to at least two elements.

BRIEF DESCRIPTION OF THE DRAWINGS

Those skilled in the art should more fully appreciate advantages of various embodiments of the invention from the following “Description of Illustrative Embodiments,” discussed with reference to the drawings summarized immediately below.

FIG. 1 schematically shows an active electronically steered antenna system (“AESA system”) configured in accordance with illustrative embodiments of the invention and communicating with a satellite.

FIGS. 2A and 2B schematically show generalized diagrams of an AESA system that may be configured in accordance with illustrative embodiments of the invention.

FIG. 3A schematically shows a plan view of a laminar printed circuit board portion of an AESA configured in accordance with illustrative embodiments of the invention.

FIG. 3B schematically shows a close-up of a portion of the laminated printed circuit board of FIG. 3A.

FIG. 4 schematically shows a cross-sectional view of the laminated printed circuit board of 3A to highlight the mounting of its integrated circuits.

FIG. 5 schematically shows a circuit diagram of a portion of an integrated circuit mounted on the laminated printed circuit board of FIG. 3A.

FIG. 6 shows a process of forming an AESA system in accordance with illustrative embodiments of the invention.

DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

Illustrative embodiments form a low cost phased array with a high sensitivity to received signals. In addition, the phased array also efficiently transmits outgoing signals/beams to other communication devices at the required power levels. To that end, the phased array preferably has a laminar substrate with a front face supporting both 1) an array of antennas (also referred to as “elements” or “patches”), and 2) a corresponding array of wafer level chip scale packaged (“WLCSP”) integrated circuits. In addition to controlling the antennas, the WLCSP integrated circuits are configured to operate the phased array at one or more satellite frequencies, thus enabling communication with orbiting satellites. Details of illustrative embodiments are discussed below.

FIG. 1 schematically shows an active electronically steered antenna system (“AESA system 10”) configured in accordance with illustrative embodiments of the invention and communicating with an orbiting satellite 12. A phased array (discussed below and identified by reference number “10A”) implements the primary functionality of the AESA system 10. Specifically, as known by those skilled in the art, the phased array 10A forms one or more of a plurality of electronically steerable beams that can be used for a wide variety of applications. As a satellite communication system, for example, the AESA system 10 preferably is configured operate at one or more satellite frequencies. Among others, those frequencies may include the Ka-band, Ku-band, and/or X-band.

The satellite communication system may be part of a cellular network operating under a known cellular protocol, such as the 3G, 4G, or 5G protocols. Accordingly, in addition to communicating with satellites, the system may communicate with earth-bound devices, such as smartphones or other mobile devices, using any of the 3G, 4G, or 5G protocols. As another example, the satellite communication system may transmit/receive information between aircraft and air traffic control systems. Of course, those skilled in the art may use the AESA system 10 (implementing the noted phased array 10A) in a wide variety of other applications, such as broadcasting, optics, radar, etc. Some embodiments may be configured for non-satellite communications and instead communicate with other devices, such as smartphones (e.g., using 4G or 5G protocols). Accordingly, discussion of communication with orbiting satellites 12 is not intended to limit all embodiments of the invention.

FIGS. 2A and 2B schematically show generalized diagrams of the AESA system 10 configured in accordance with illustrative embodiments of the invention. Specifically, FIG. 2A schematically shows a block diagram of the AESA system 10, while FIG. 2B schematically shows a cross-sectional view of a small portion of the same AESA system 10 across line B-B. This latter view shows a single silicon integrated circuit 14 (controlling elements 18, discussed below) mounted onto a substrate 16 between two transmit and/or receive elements 18, i.e., on the same side of a supporting substrate 16 and juxtaposed with the two elements 18. In alternative embodiments, however, the integrated circuit 14 could be on the other side of the substrate 16. The phased array 10A also has a polarizer 20 to selectively filter signals to and from the phased array 10A, and a radome 22 to environmentally protect the phased array 10A. A separate antenna controller 24 (FIG. 2B) electrically connects with the phased array 10A to calculate beam steering vectors for the overall phased array 10A, and to provide other control functions.

FIG. 3A schematically shows a plan view of a primary portion of an AESA system 10 that may be configured in accordance with illustrative embodiments of the invention. In a similar manner, FIG. 3B schematically shows a close-up of a portion of the phased array 10A of FIG. 3A.

Specifically, the AESA system 10 of FIG. 3A is implemented as a laminar phased array 10A having a laminated printed circuit board 16 (i.e., acting as the substrate and also identified by reference number “16”) supporting the above noted plurality of elements 18 and integrated circuits 14. The elements 18 preferably are formed as a plurality of square or rectangular patch antennas oriented in a triangular patch array configuration. In other words, each element 18 forms a triangle with two other adjacent elements 18. When compared to a rectangular lattice configuration, this triangular lattice configuration requires fewer elements 18 (e.g., about 15 percent fewer in some implementations) for a given grating lobe free scan volume. Other embodiments, however, may use other lattice configurations, such as a pentagonal configuration or a hexagonal configuration. Moreover, despite requiring more elements 18, some embodiments may use a rectangular lattice configuration. Like other similar phased arrays, the printed circuit board 16 also may have a ground plane (not shown) that electrically and magnetically cooperates with the elements 18 to facilitate operation.

Indeed, the array shown in FIGS. 3A and 3B is a small phased array 10A. Those skilled in the art can apply principles of illustrative embodiments to laminar phased arrays 10A with hundreds, or even thousands of elements 18 and integrated circuits 14. In a similar manner, those skilled in the art can apply various embodiments to smaller phased arrays 10A.

As a patch array, the elements 18 have a low profile. Specifically, as known by those skilled in the art, a patch antenna (i.e., the element 18) typically is mounted on a flat surface and includes a flat rectangular sheet of metal (known as the patch and noted above) mounted over a larger sheet of metal known as a “ground plane.” A dielectric layer between the two metal regions electrically isolates the two sheets to prevent direct conduction. When energized, the patch and ground plane together produce a radiating electric field. As discussed below with regard to FIG. 6, illustrative embodiments may form the patch antennas using conventional semiconductor fabrication processes, such as by depositing one or more successive metal layers on the printed circuit board 16. Accordingly, using such fabrication processes, each radiating element 18 in the phased array 10A should have a very low profile.

The AESA system 10 can have one or more of any of a variety of different functional types of elements 18. For example, the AESA system 10 can have transmit-only elements 18, receive-only elements 18, and/or dual mode receive and transmit elements 18 (referred to as “dual-mode elements 18”). The transmit-only elements 18 are configured to transmit outgoing signals (e.g., burst signals) only, while the receive-only elements 18 are configured to receive incoming signals only. In contrast, the dual-mode elements 18 are configured to either transmit outgoing burst signals, or receive incoming signals, depending on the mode of the phased array 10A at the time of the operation. Specifically, when using dual-mode elements 18, the phased array 10A can be in either a transmit mode, or a receive mode. The noted controller 24 at least in part controls the mode and operation of the phased array 10A, as well as other array functions.

The AESA system 10 has a plurality of the above noted integrated circuits 14 (noted with regard to FIG. 2B) for controlling operation of the elements 18. Those skilled in the art often refer to these integrated circuits 14 as “beam steering integrated circuits.” Prior art beam steering integrated circuits known to the inventors took up a lot of real estate on the printed circuit board 16. This is contrary to one general goal of maximizing the surface area of the elements 18 on the front face of the substrate 16. To solve this problem, those in the art relegated prior art integrated circuits known to the inventors to the opposite side of the circuit board 16—i.e., the side opposite the elements 18. While it may have helped maximize/optimize element area, it caused certain noise issues due to the relatively long transmission line to the elements 18. The inventors recognized both of these problems and, consequently, modified the phased array 10A, including the integrated circuits 14, to enable them to be mounted on the same side as the elements 18; namely, on the front side of the printed circuit board 16.

To that end, each integrated circuit 14 preferably is configured with at least the minimum number of functions to accomplish the desired effect. Indeed, integrated circuits 14 for dual mode elements 18 are expected to have some different functionality than that of the integrated circuits 14 for the transmit-only elements 18 or receive-only elements 18. Accordingly, integrated circuits 14 for such non-dual-mode elements 18 typically have a smaller footprint than the integrated circuits 14 that control the dual-mode elements 18. Despite that, some or all types of integrated circuits 14 fabricated for the phased array 10A can be modified to have a smaller footprint.

As an example, depending on its role in the phased array 10A, each integrated circuit 14 may include some or all of the following functions:

    • phase shifting,
    • amplitude controlling/beam weighting,
    • switching between transmit mode and receive mode,
    • output amplification to amplify output signals to the elements 18,
    • input amplification for received RF signals (e.g., signals received from the satellite 12), and
    • power combining/summing and splitting between elements 18.

Indeed, some embodiments of the integrated circuits 14 may have additional or different functionality, although illustrative embodiments are expected to operate satisfactorily with the above noted functions. Those skilled in the art can configure the integrated circuits 14 in any of a wide variety of manners to perform those functions. For example, the input amplification may be performed by a low noise amplifier, the phase shifting may use conventional active phase shifters, and the switching functionality may be implemented using conventional transistor-based switches. Additional details of the structure and functionality of integrated circuits 14 are discussed below with reference to FIG. 5.

As noted above, the AESA system 10 preferably communicates with one or more orbiting satellites 12 and thus, uses satellite frequencies for that communication. Accordingly, the plurality of integrated circuits 14 preferably are configured operate the phased array 10A at one or more frequencies of the Ka-band, Ku-band, and/or X-band to communicate with at least one satellite 12. Of course, as satellite communication technology progresses, future implementations may modify the frequency bands of the integrated circuits 14 to communicate using new satellite frequencies.

The inventors recognized that the cost of the phased array 10A is directly related to the number of elements 18 and integrated circuits 14. Moreover, the number of integrated circuits 14 also has a direct relation to the size of the printed circuit board 16. In fact, the total number of integrated circuits 14 used and the size of the printed circuit board 16 accounts for a substantial majority of the total array costs. The inventors thus designed the array so that multiple elements 18 share the integrated circuits 14, thus reducing the required total number of integrated circuits 14. This reduced number of integrated circuits 14 correspondingly reduces the required size of the printed circuit board 16, which reduces the cost of the AESA system 10. In addition, more surface area on the top face of the printed circuit board 16 may be dedicated to the elements 18.

To that end, each integrated circuit 14 preferably operates on at least one element 18 in the array. For example, one integrated circuit 14 can operate on two or four different elements 18. Of course, those skilled in the art can adjust the number of elements 18 sharing an integrated circuit 14 based upon the application. For example, a single integrated circuit 14 can control two elements 18, three elements 18, five elements 18, six elements 18, seven elements 18, eight elements 18, etc., or some range of elements 18. Sharing the integrated circuits 14 between multiple elements 18 in this manner reduces the required total number of integrated circuits 14, correspondingly reducing the required size of the printed circuit board 16.

As noted above, the dual-mode elements 18 may operate in a transmit mode, or a receive mode. To that end, the integrated circuits 14 may generate time division diplex or duplex waveforms so that a single aperture or phased array 10A can be used for both transmitting and receiving. In a similar manner, some embodiments may eliminate a commonly included transmit/receive switch in the side arms (discussed below with regard to FIG. 5) of the integrated circuit 14. Instead, such embodiments may duplex at the element 18. This process can be performed by isolating one of the elements 18 between transmit and receive by an orthogonal feed connection. The inventors discovered that such a feed connection may eliminate about a 0.8 dB switch loss and improve G/T (i.e., the ratio of the gain or directivity to the noise temperature) by about 1.3 dB for some implementations. Additional details of the orthogonal feed connection are discussed below with regard to FIG. 5.

RF interconnect and/or beam forming lines 26 electrically connect the integrated circuits 14 to their respective elements 18. To further minimize the feed loss, illustrative embodiments mount the integrated circuits 14 as close to their respective elements 18 as possible. Specifically, this close proximity preferably reduces RF interconnect line lengths, reducing the feed loss. To that end, each integrated circuit 14 preferably is packaged either in a flip-chipped configuration using wafer level chip scale packaging (WLCSP), or a traditional package, such as quad flat no-leads package (QFN package). While other types of packaging may suffice, WLCSP techniques are preferred to minimize real estate on the substrate 16.

In addition to reducing feed loss, using WLCSP techniques reduces the overall footprint of the integrated circuits 14, enabling them to be mounted on the top face of the printed circuit board 16 with the elements 18—providing more surface area for the elements 18. The inventors thus discovered that using WLCSP techniques, coupled with other innovations discussed herein, and able the system to operate within acceptable operation specifications.

It should be reiterated that although FIGS. 3A and 3B show the AESA system 10 with some specificity (e.g., the layout of the elements 18 and integrated circuits 14), those skilled in the art may apply illustrative embodiments to other implementations. For example, as noted above, each integrated circuit 14 can connect to more or fewer elements 18, or the lattice configuration can be different. Accordingly, discussion of the specific configuration of the AESA system 10 of FIG. 3A (and other figures) is for convenience only and not intended to limit all embodiments.

FIG. 4 schematically shows a cross-sectional view of the layout of components on the laminated printed circuit board 16 of 3A to highlight the flip-chip mounting of its integrated circuits 14. The integrated circuit 14 in this drawing intentionally is enlarged to show details of a flip-chip mounting technique. Unlike techniques that permit input/output (“I/O”) only on the edge of the integrated circuit 14, flip-chip mounting permits I/O on interior portions of the integrated circuit 14.

As shown, the integrated circuit 14 has a plurality of pads 28 aligned with a plurality of corresponding pads 28 on the printed circuit board 16. These opposing pads 28 on the integrated circuit 14 and the printed circuit board 16 may be considered to form pairs of pads 28. Solder 30 (e.g., solder balls) electrically connects each the pads in corresponding pairs of pads 28. Interconnect lines, traces, and other electrical interconnects on/in the printed circuit board 16 (e.g., lines 26) thus permit the integrated circuit 14 to communicate with other elements 18 through this electrical interface.

The embodiment shown in FIG. 4 forms a space or void (identified by reference number “32”) between the bottom of the integrated circuit 14 (from the perspective of this drawing) and the top surface of the printed circuit board 16. This space 32 may remain an open void—containing no material. Some embodiments may take advantage of this extra space 32 to add further components, such as additional circuit elements, without requiring more circuit board space. Alternatively, this space 32 may contain fill material (not shown) for further stability and thermal management of the integrated circuit 14.

Other embodiments, however, still may use similar integrated circuits 14, but not use flip-chip mounting techniques. Instead, other mounting techniques may couple the integrated circuits 14 with the substrate 16. Among other things, those techniques may incorporate surface mounting, or wirebond mounting with the integrated circuit 14 rotated 180 degrees from the orientation of FIG. 4. Accordingly, discussion of flip chip mounting techniques is but one of a variety of different techniques that may be used with various embodiments of the invention.

As noted above, each integrated circuit 14 preferably has a minimal amount of circuitry to perform its required function. To that end, FIG. 5 schematically shows relevant portions of one integrated circuit 14 that may be configured in accordance with illustrative embodiments of the invention to control two elements 18. This exemplary integrated circuit 14 is shown and described as connected to two different elements 18 identified as element E1 and element E2. Of course, principles described with regard to FIG. 5 can apply equally to integrated circuits 14 controlling more than two elements 18, such as four elements 18.

As shown, the integrated circuit 14 has a first vector modulator 34 for controlling receipt and transmission of signals of a first element E1, and a second vector modulator 34 for controlling receipt and transmission of signals of a second element E2. The two vector modulators 34 each have a receive arm 36, coupled to their respective elements 18, for receiving signals. In FIG. 5, because they transmit signals away from their elements E1 or E2, the receive arms 36 have arrows pointing away from their respective elements E1 and E2. To that end, each receive arm 36 has a phase shift modulator 38 (also referred to as a “phase shifter 38”) for changing the phase of the incoming signals, and an amplifier 40 for amplifying the incoming signal. Among other things, the amplifiers 40 in the receive arms 36 are implemented as low noise amplifiers.

In illustrative embodiments, the amplifier 40 is a fixed gain amplifier. Accordingly, to control the amplification with more precision, each receive arm 36 also has an active gain controller 42 that increases or decreases the amplification provided by the amplifier 40. Alternatively, the amplifier 40 may be a variable gain amplifier. Accordingly, in that case, the active gain controller 42 may be omitted. As known by those skilled in the art, the amplifier(s) 40 and the phase shifter 38 cooperate to control incoming received signals.

In a corresponding manner, the two vector modulators 34 also each have a transmit arm 44 coupled to their respective elements 18. In an opposite manner to the receive arms 36, the transmit arms 44 in FIG. 5 have arrows pointing toward their respective elements 18. Each transmit arm 44 thus has a phase shifter 38 for changing the phase of the incoming signals, and an amplifier 40 for amplifying the incoming signal. The transmit arms 44 also may have an active gain controllers 42 if the transmit amplifiers 40 have a fixed gain. Alternatively, the transmit arms 44 may omit the active gain controllers 42 if the amplifier 40 is a variable gain amplifier. As known by those skilled in the art, the amplifier(s) 40 and the phase shifter 38 cooperate to steerably beam outgoing signals to other devices, such as to the satellite 12 of FIG. 1.

As noted above, the inventors recognized that reducing the overall footprint of the integrated circuit 14 should improve overall performance. To that end, the inventors discovered that if they provided a sufficient number of elements 18 in the AESA system 10, they could reduce the sizes of the phase shifters 38. For example, after testing, the inventors discovered that use of a 4 bit phase shifter 38 would provide sufficient results with a sufficient number of elements 18. The 4 bit phase shifter 38 thus provides up to 16 different vectors for transmitting a beam from a given element. In illustrative embodiments, each of the 16 different vectors is substantially evenly partitioned between zero and 360 degrees (e.g., 0 degrees, 22.4 degrees, 45 degrees, etc.). Other embodiments, however, may use smaller phase shifters 38 (e.g., 3 bit phase shifters 38) or larger phase shifters 38 (e.g., 5 or 6 bit phase shifters 38). Again, this number should be coordinated with the number of elements 18, as well as the gain of the amplifiers 40.

The inventors further discovered that the receive and transmit arms 36 and 44 of the vector modulators 34 could use relatively low gain amplifiers 40 if they appropriately selected of other element parameters. For example, the amplifiers 40 may have active gain control from 1 dB up to 3 dB, 4 dB, 5 dB, or greater (e.g., 6 dB). Again, low gain amplifiers 40 used in this application should further reduce the size of the integrated circuit 14.

The receive arms 36 and the transmit arms 44 may be considered to be “side arms” that combine and/or distribute signals at a summation point (also referred to as a “splitter” when splitting signals). Specifically, the two receive arms 36 meet at a receiving summing node 46A that combines the received signals from both the first and second elements 18. In a corresponding manner, the two transmit arms 44 also meet at a transmitting summing node 46B that, in an opposite manner to that of the receiving summing node 46A, distributes the transmit signals of the first and second elements 18 for transmission. Among other things, the summing nodes 46 may be implemented as a compact Wilkinson power divider/summer, which, as its name suggests, distributes/divides and/or sums signals. Indeed, the summing nodes 46 may be implemented by other active components and thus, a Wilkinson power divider/summer is but one example.

In addition to connecting with the side arms, each summing node 46A also connects with a main arm (aka “common arm”) that itself may have an amplifier and/or active gain controller (not shown). In illustrative embodiments, the gain of the amplifier in the main arm is greater than those in the side arms. The main arm also has a switch 48 that switches between the transmit mode to the receive mode.

Illustrative embodiments preferably do not have switches on the side arms. To that end, the transmit and receive sides of each vector modulator 34 preferably are physically coupled with adjacent sides of its element 18. Specifically, if the elements 18 are sized so that they are about half a wavelength from side-to-side, then opposite sides will be about 180 degree out of phase with each other. Adjacent sides, however, are about 90 degrees out of phase with each other. In this manner, the transmit arms 44 may be considered to be polarized a first way (e.g., “vertically polarized”), while the receive arms 36 may be considered to be polarized a second, orthogonal way (e.g., “horizontally polarized”).

Accordingly, the receive arms 36 in FIG. 5 connect with a top portion of their respective elements 18, while the transmit arms 44 of FIG. 5 connect with a side (orthogonal) portion of their respective elements 18. Indeed, other embodiments may polarize the transmit and receive arms 36 differently. As such, the specific polarization discussed above is but one example and not intended to limit various embodiments.

When coupled as shown, illustrative embodiments avoid the need for a switch on the side arms by using a duplexing/diplexing signal for transmit and receive (noted above). For example, illustrative embodiments may use time division diplex waveforms or frequency division diplex waveforms to both transmit and receive signals. In that case, to permit asymmetric transmit and receive data transmission, the transmit and receive signals may be allocated to different time slots in the same frequency band. For example, one or more of the elements 18 may couple with a frequency diplexer (not shown) that splits its relevant signal into a first frequency signal and a second frequency signal. Each of the generated frequency signals is then routed to its own independent circuit that either receives or transmits to or from the element 18.

The duplex/diplex waveforms may be generated in a number of different ways. In some embodiments, the integrated circuits 14 are configured to produce those waveforms. In other embodiments, one or more diplexers or duplexers on the substrate 16 at least in part produce those waveforms. FIG. 3B schematically shows one such diplexer or duplexer, identified by reference number 27. This diplexer/duplexer 27 communicates with other components, such as the integrated circuits 14, using the transmission lines (e.g., traces, vias, lines, etc.) on the substrate 16.

During operation, the switch 48 in the main arm may be in the transmit mode. Accordingly, the main arm receives a transmit signal through the switch. Next, that signal is distributed to the two transmit arms 44 through the transmitting summing node 46B. In this capacity, the transmitting summing node 46B acts like a distribution node as it distributes the signal to be transmitted to each side arm. Next, each side arm in the respective vector modulators 34 then shift and amplify its received signal as needed, and transmit that conditioned signal through its respective element 18 to the orbiting satellite 12.

After the transmission process is completed, the switch 48 on the main arm may be actuated to the receive mode. Accordingly, each receive arm 36 shifts and amplifies the signal received by its respective element E1 or E2. The receiving summing node 46A then sums or combines these two conditioned signals to produce a combined signal that is forwarded to other components through the switch 48 in the main arm.

Of course, it should be noted that the specific configuration of elements 18 in FIG. 5 is but one of a wide variety of different configuration to accomplish the desired effect. Accordingly, when implementing various embodiments, those skilled in the art can add other components, remove components, or rearrange the noted components. The specific configuration of FIG. 5 therefore is intended to be illustrative and not intended to limit various embodiments the invention.

FIG. 6 shows a process of forming the phased array 10A/AESA system 10 in accordance with illustrative embodiments of the invention. It should be noted that this process is substantially simplified from a longer process that normally would be used to form the AESA system 10. Accordingly, the process of forming the AESA system 10 is expected to have many steps, such as testing steps, soldering steps, or passivation steps, which those skilled in the art may use. In addition, some of the steps may be performed in a different order than that shown, or at the same time. Those skilled in the art therefore can modify the process as appropriate. Moreover, as noted above and below, the discussed materials and structures are merely examples. Those skilled in the art can select the appropriate materials and structures depending upon the application and other constraints. Accordingly, discussion of specific materials and structures is not intended to limit all embodiments.

The process of FIG. 6 begins at step 600, which forms the array of elements 18 on the substrate 16/printed circuit board 16. As noted above, the elements 18 preferably are formed from metal deposited onto the substrate 16 in a triangular lattice. This step also may form pads 28 and lines 26 on the printed circuit board 16 to extend to the elements 18 (from the pads 28). As discussed below, these lines 26 electrically connect the integrated circuits 14 with the elements 18.

In preferred embodiments, the elements 18 are spaced apart from each other as a function of the wavelength of the signals expected to be transmitted and received by the AESA system 10. For example, the distances between the elements 18 may be spaced apart a distance equal to between 40-60 percent of the wavelength of the relevant signals. Some embodiments, however, may vary the spacing of the elements 18. See, for example, co-pending provisional U.S. Patent Application No. 62/376,442, filed on Aug. 18, 2016 and entitled, “Hybrid Laminated Phased Array,” for further spacing and other details of similar embodiments. The disclosure of that provisional patent application (U.S. Patent application Ser. No. 62/376,442) is incorporated herein, in its entirety, by reference.

Those skilled in the art can select the appropriate numbers of elements 18, based upon the application. Specifically, a given application may require a specified minimum equivalent isotropically radiated power (“EIRP”) for transmitting signals. In addition, that same application may have a specified minimum G/T for receiving signals. Thus, step 600 may form the array to have a minimum number of elements 18 to meet either or both the EIRP and the G/T requirements of the application. For example, after establishing the feed loss and the noise figure of the receive amplifier 40 of the vector receive arms 36, one in the art can set the array size to a desired G/T. Of course, the phased array 10A may have more elements 18 beyond that minimum number.

Other embodiments may use other requirements for selecting the appropriate number of elements 18. Accordingly, discussion of the specific means for selecting the appropriate number of elements 18, and their spacing, is for descriptive purposes only and not intended to limit various embodiments of the invention.

At step 602, the process mounts the integrated circuits 14 to the printed circuit board 16/substrate 16. To that end, as noted above, when using WLCSP integrated circuits 14, illustrative embodiments may use conventional flip-chip mounting processes. Such a process directly electrically connects the integrated circuits 14 to the elements 18 (step 604). To that end, such embodiments may deposit solder paste (e.g., powdered solder and flux) on the pads 28 of the printed circuit board 16, and position the integrated circuits 14 on their respective board pads 28. Then, the printed circuit board 16 may be heated (e.g., using a reflow oven or process) to physically and electrically couple the pads 28 with the solder 30.

Some embodiments that do not use flip-chip mounted WLCSP integrated circuits 14, however, may require the additional step of step 604 to electrically connect the integrated circuits 14 to the elements 18. For example, a wirebond operation may be required to solder wirebonds between the integrated circuits 14 and the elements 18.

The process concludes by adding the polarizer 20 (step 606) and securing the radome 22 (step 608) to the apparatus in a conventional manner.

Accordingly, contrary to the conventional wisdom, the inventors recognized that despite the possibility of reducing the element area, which is generally undesirable, they could mount WLCSP integrated circuits 14 to the front side of the printed circuit board 16 to produce more cost efficient satellite communication AESA system 10. Moreover, as noted, the AESA system 10 can have improved G/T and/or EIRP values despite the tradeoff incurred by the loss of element area.

Although the above discussion discloses various exemplary embodiments of the invention, it should be apparent that those skilled in the art can make various modifications that will achieve some of the advantages of the invention without departing from the true scope of the invention.

Claims

1. A phased array comprising:

a laminar substrate having a front side;
a plurality of elements on the front side of the laminar substrate forming a patch phased array;
a plurality of integrated circuits on the front side of the laminar substrate, the plurality of integrated circuits being wafer level chip scale packaging integrated circuits,
the plurality of integrated circuits configured to control receipt and/or transmission of signals by the plurality of elements in the patch phased array,
the plurality of integrated circuits configured to operate the phased array at one or more satellite frequencies to transmit signals to and/or receive signals from a satellite.

2. The phased array as defined by claim 1 wherein the plurality of elements forms a triangular lattice.

3. The phased array as defined by claim 1 wherein each integrated circuit is configured to control at least two elements.

4. The phased array as defined by claim 1 wherein each integrated circuit includes a phase shifter to control the phase of signals transmitted by at least one of the elements, the phase shifter being a four bit or smaller phase shifter.

5. The phased array as defined by claim 1 wherein each integrated circuit includes a splitter between a common arm and two side arms, each of the integrated circuits having a side arm beam gain control of no more than about 5 db.

6. The phased array as defined by claim 1 wherein each integrated circuit is positioned between at least two elements.

7. The phased array as defined by claim 1 wherein each integrated circuit is flip-chip bonded to the substrate, the integrated circuit having a bottom side forming an open space with the substrate.

8. The phased array as defined by claim 1 further comprising a polarizer and a radome, the polarizer being between the substrate and the radome.

9. The phased array as defined by claim 1 wherein each integrated circuit includes an active phase shifter.

10. The phased array as defined by claim 1 wherein each integrated circuit is configured to use time division duplex waveforms to enable the phased array to be used for both transmission and receipt of signals.

11. The phased array as defined by claim 1 wherein the plurality of integrated circuits are configured to operate the phased array using 5G protocols to transmit signals and/or receive signals.

12. A communication apparatus comprising:

a printed circuit board having a front side;
a plurality of elements on the front side of the printed circuit forming a patch phased array;
a plurality of integrated circuits on the front side of the printed circuit board, the plurality of integrated circuits being wafer level chip scale packaging integrated circuits,
the plurality of integrated circuits having means for controlling receipt and/or transmission of signals by the plurality of elements in the patch phased array.

13. The communication apparatus as defined by claim 12 wherein each integrated circuit is configured to control at least two elements.

14. The communication apparatus as defined by claim 12 wherein each integrated circuit includes a phase shifter to control the phase of signals transmitted by at least one of the elements, the phase shifter being a four bit or smaller phase shifter.

15. The communication apparatus as defined by claim 12 wherein each integrated includes a splitter between a common arm and two side arms, each of the integrated circuits having a side arm beam gain control of no more than about 5 db.

16. The communication apparatus as defined by claim 12 further comprising a polarizer and a radome, the polarizer being between the printed circuit board and the radome.

17. The communication apparatus as defined by claim 12 wherein each integrated is configured to use time division duplex waveforms to enable the phased array to be used for both transmission and receipt of signals.

18. The communication apparatus as defined by claim 12 wherein the plurality of integrated circuits have means for operating the phased array at one or more frequencies of the Ka-band, Ku-band, and/or X-band to communicate with at least one satellite.

19. The communication apparatus as defined by claim 12 wherein the plurality of integrated circuits are configured to operate the plurality of elements using 5G protocols to transmit signals and/or receive signals.

20. The communication apparatus as defined by claim 12 wherein the plurality of elements forms a triangular lattice.

21. A method of producing a phased array, the method comprising:

forming a plurality of elements on a front side of a laminar substrate to form a patch array;
flip chip mounting a plurality of integrated circuits to the front side of the laminar substrate, the plurality of integrated circuits being wafer level chip scale packaging integrated circuits, at least two of the plurality of elements having at least one integrated circuit therebetween,
the plurality of integrated circuits configured to control receipt and/or transmission of signals by the plurality of elements in the patch phased array,
the plurality of integrated circuits configured to operate the phased array at one or more frequencies of the Ka-band, Ku-band, and/or X-band to communicate with at least one satellite,
electrically connecting each of the plurality of integrated circuits to at least two elements.

22. The method as defined by claim 21 further comprising securing a polarizer and a radome to the patch array, the polarizer being between the laminar substrate and the radome.

23. The method as defined by claim 21 wherein each integrated circuit is configured to use time division duplex waveforms to enable the phased array to be used for both transmission and receipt of signals.

24. The method as defined by claim 21 wherein forming comprises forming the plurality of elements in a triangular lattice on the substrate.

25. The method as defined by claim 21 wherein each integrated circuit is configured to control at least two elements.

26. The method as defined by claim 21 wherein each integrated circuit includes a phase shifter to control the phase of signals transmitted by at least one of the elements, the phase shifter being a four bit or smaller phase shifter.

27. The method as defined by claim 21 wherein each integrated circuit includes a splitter between a common arm and two side arms, each of the integrated circuits having a side arm beam gain control of no more than about 5 db.

Patent History
Publication number: 20170237180
Type: Application
Filed: Sep 16, 2016
Publication Date: Aug 17, 2017
Inventors: David W. Corman (Gilbert, AZ), Vipul Jain (Irvine, CA), Timothy Carey (San Diego, CA), Nitin Jain (San Diego, CA)
Application Number: 15/267,689
Classifications
International Classification: H01Q 21/22 (20060101); H04L 5/14 (20060101); H01Q 1/38 (20060101); H01Q 1/24 (20060101); H01Q 1/22 (20060101); H01Q 3/38 (20060101);