USER ACCESS VERIFICATION
Embodiments are directed to a method of providing access verification for a system that includes activating a security control device, which is in communications with a host device. The method also includes having the security control device receiving a verification signal coming from outside the system while being locally-based, and comparing the verification signal to a table of stored criteria values. The device then chooses a response based on that comparison and sends an access determination signal based on the response.
The present invention relates in general to security systems, and more specifically to methods and systems for verifying that a potential user is authorized to access a particular item or system.
The phrase “access control” refers generally to security techniques that are used to regulate who or what can view or use resources. In some configurations of an access control of a system, an integrated circuit security system controls access by comparing external signals received by the system to a known list of signals and determining whether to allow access based on the comparison. In many fields, access to technology, including semiconductor devices, integrated circuits, computer systems, and the like, are restricted from unauthorized use. As an example, the export of sensitive technologies to selected locations is severely limited by many governments. However, if such a technology makes its way into a restricted region, there is little that can be done once it arrives.
SUMMARYEmbodiments are directed to a method of providing access verification for a system. The method includes activating a security control device, which communicates with a host device. The security control device then receives a verification signal that comes from outside the system and is locally-based, where the device compares the verification signal to a table of stored criteria values. The security control device then chooses a response based on the comparison, and sends out an access determination signal based on the response.
Embodiments are also directed to a system for providing access verification. The system includes a security control device which communicates with a host device. Additionally, a verification signal, which originates from outside the system, is sent to a processor located within the security control device. The processor compares the verification signal to a table of stored criteria values. The processor then chooses a response based on the comparison, and generates an access determination signal based on the response.
The subject matter of the present invention is particularly pointed out and distinctly defined in the claims at the conclusion of the specification. The foregoing and other features and advantages are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
Various embodiments of the present invention are described herein with reference to the related drawings. Alternative embodiments can be devised without departing from the scope of this invention. It is noted that various connections and positional relationships (e.g., over, below, adjacent, etc.) are set forth between elements in the following description and in the drawings. These connections and/or positional relationships, unless specified otherwise, can be direct or indirect, and the present invention is not intended to be limiting in this respect. Accordingly, a coupling of entities can refer to either a direct or an indirect coupling, and a positional relationship between entities can be a direct or indirect positional relationship. As an example of an indirect positional relationship, references in the present description to forming layer “A” over layer “B” include situations in which one or more intermediate layers (e.g., layer “C”) is between layer “A” and layer “B” as long as the relevant characteristics and functionalities of layer “A” and layer “B” are not substantially changed by the intermediate layer(s).
The following definitions and abbreviations are to be used for the interpretation of the claims and the specification. As used herein, the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having,” “contains” or “containing,” or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, a composition, a mixture, process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but can include other elements not expressly listed or inherent to such composition, mixture, process, method, article, or apparatus.
Additionally, the term “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any embodiment or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments or designs. The terms “one or more” and “one and more” are understood to include any integer number greater than or equal to one, i.e. one, two, three, four, etc. The terms “a plurality” are understood to include any integer number greater than or equal to two, i.e. two, three, four, five, etc. The term “connection” can include an indirect “connection” and a direct “connection”.
References in the specification to “one embodiment,” “an embodiment,” “an example embodiment,” etc., indicate that the embodiment described can include a particular feature, structure, or characteristic, but every embodiment can include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
For purposes of the description hereinafter, the terms “upper,” “lower,” “right,” “left,” “vertical,” “horizontal,” “top,” “bottom,” and derivatives thereof shall relate to the described structures and methods, as oriented in the drawing figures. The terms “overlying,” “atop,” “on top,” “positioned on” or “positioned atop” mean that a first element, such as a first structure, is present on a second element, such as a second structure, where intervening elements such as an interface structure can be present between the first element and the second element. The term “direct contact” means that a first element, such as a first structure, and a second element, such as a second structure, are connected without any intermediary conducting, insulating or semiconductor layers at the interface of the two elements. It should be noted that the term “selective to,” such as, for example, “a first element selective to a second element,” means that the first element can be etched and the second element can act as an etch stop.
Turning now to an overview of the present invention, one or more embodiments provide a method for verifying a user's authorized access to a system using verification signals that are locally-based, yet are external to the system. The verification signals can include global positioning satellite system (GPS) signals, internet protocol (IP) address, local FM radio station signals, etc. Also, authorized access to a system can require a plurality of verification signals to be present at the same time in order to grant access. One or more embodiments are also shown for an access control device to be positioned within a host device at one location, or distributed throughout the host device to deter reverse engineering attempts. The host device can be an integrated circuit (IC) with a security control device co-located on the IC and fabricated with the same die as the host control device.
Turning now to a more detailed description of embodiments of the present invention,
In some embodiments, the verification signal 104 can include a plurality of signals such as GPS signals, IP addresses, FM transmissions, etc., all of which need to be present in order for the security control device to generate a positive response 108. In a similar manner, in a process 100 that is configured to look for four different verification signals 104, the presence of only three signals can trigger a negative, positive, or no response from the security control circuit. A characteristic of the verification signal(s) 104 is that it is a locally available signal that can be processed to derive the current location of a device that receives the local signal. For example, an FM transmission from a local broadcast can be processes to identify that a receiver that has received that particular FM transmission is likely to be in a particular location. In embodiments that require the presence of multiple types of verification signals 104, an extra level of security is provided against an unauthorized user mimicking some but not all of the required verification signals 104. Additionally, the particular combination of verification signals 104 can be selected to match a particular region. For example, if it is known that location “A” has limited FM transmissions, the combination of verification signals 104 used for location A would not include FM transmissions but would instead use another local signal that is more reliably present in location A.
In some embodiments, stored values 102 can include, but are not limited to, a list of data derived from signals including GPS locations, a set of IP addresses, a list of radio frequency (RF) transmissions, or other data derived from signal sources. The stored values 102 can be include data derived from one or more approved signals, whereupon access can be granted. Similarly, the list of stored values 102 can also include a list of data derived from non-approved signals, which would trigger a negative response 112.
The comparator process 106 can decide to take no action when receiving a valid or invalid verification signal 104. During operations, a security control device 158 (shown in
Comparator block 106 is configured to compare the stored values 102 with the data stream derived from the verification signal 104. The data stream values can, but are not required to, include a range or variation of values to accommodate small data errors or random noise in receiving and processing the verification signal 104. The comparison process 106 can be, but is not required to, located within the computer system 500 (shown in
The disablement of the system by a negative action response 112 can be temporary or permanent. A temporary disablement can be a momentary denial of access to a host device (as described in
In the present embodiment, the security control device 158 contains an embedded antenna within the die. In some embodiments, RFID technology is used for receiving or processing verification signals 156. In some embodiments, the security control device 158 is a standalone device that is either located near the host device 154 or the system 152.
In another embodiment, the system 152 can be configured to look for multiple verification signals. In this embodiment, some or all of the signals received must be present in order for the security control device to generate a positive action response. As a result, if one signal is absent while other signals are present and approved, the system would still receive a “no action” or negative action response signal sent from the security control device as described in
Computer system 500 includes one or more processors, such as processor 502. Processor 502 is connected to a communication infrastructure 504 (e.g., a communications bus, cross-over bar, or network). Computer system 500 can include a display interface 506 that forwards graphics, textual content, and other data from communication infrastructure 504 (or from a frame buffer not shown) for display on a display unit 508. Computer system 500 also includes a main memory 510, preferably random access memory (RAM), and can also include a secondary memory 512. Secondary memory 512 can include, for example, a hard disk drive 514 and/or a removable storage drive 516, representing, for example, a floppy disk drive, a magnetic tape drive, or an optical disc drive. Hard disk drive 514 can be in the form of a solid state drive (SSD), a traditional magnetic disk drive, or a hybrid of the two. There also can be more than one hard disk drive 514 contained within secondary memory 512. Removable storage drive 516 reads from and/or writes to a removable storage unit 518 in a manner well known to those having ordinary skill in the art. Removable storage unit 518 represents, for example, a floppy disk, a compact disc, a magnetic tape, or an optical disc, etc. which is read by and written to by removable storage drive 516. As will be appreciated, removable storage unit 518 includes a computer-readable medium having stored therein computer software and/or data.
In alternative embodiments, secondary memory 512 can include other similar means for allowing computer programs or other instructions to be loaded into the computer system. Such means can include, for example, a removable storage unit 520 and an interface 522. Examples of such means can include a program package and package interface (such as that found in video game devices), a removable memory chip (such as an EPROM, secure digital card (SD card), compact flash card (CF card), universal serial bus (USB) memory, or PROM) and associated socket, and other removable storage units 520 and interfaces 522 which allow software and data to be transferred from the removable storage unit 520 to computer system 500.
Computer system 500 can also include a communications interface 524. Communications interface 524 allows software and data to be transferred between the computer system and external devices. Examples of communications interface 524 can include a modem, a network interface (such as an Ethernet card), a communications port, or a PC card slot and card, a universal serial bus port (USB), and the like. Software and data transferred via communications interface 524 are in the form of signals that can be, for example, electronic, electromagnetic, optical, or other signals capable of being received by communications interface 524. These signals are provided to communications interface 524 via communication path (i.e., channel) 526. Communication path 526 carries signals and can be implemented using wire or cable, fiber optics, a phone line, a cellular phone link, an RF link, and/or other communications channels.
In the present description, the terms “computer program medium,” “computer usable medium,” and “computer-readable medium” are used to refer to media such as main memory 510 and secondary memory 512, removable storage drive 516, and a hard disk installed in hard disk drive 514. Computer programs (also called computer control logic) are stored in main memory 510 and/or secondary memory 512. Computer programs also can be received via communications interface 524. Such computer programs, when run, enable the computer system to perform the features discussed herein. In particular, the computer programs, when run, enable processor 502 to perform the features of the computer system. Accordingly, such computer programs represent controllers of the computer system. Thus it can be seen from the forgoing detailed description that one or more embodiments provide technical benefits and advantages.
Referring now to
Embodiments can be a system, a method, and/or a computer program product. The computer program product can include a computer-readable storage medium (or media) having computer-readable program instructions thereon for causing a processor to carry out aspects of embodiments of the present invention.
The computer-readable storage medium can be a tangible device that can retain and store instructions for use by an instruction execution device. The computer-readable storage medium can be, for example, but is not limited to, an electronic storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing. A non-exhaustive list of more specific examples of the computer-readable storage medium includes the following: a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), a static random access memory (SRAM), a portable compact disc read-only memory (CD-ROM), a digital versatile disk (DVD), a memory stick, a floppy disk, a mechanically encoded device such as punch-cards or raised structures in a groove having instructions recorded thereon, and any suitable combination of the foregoing. A computer-readable storage medium, as used herein, is not to be construed as being transitory signals per se, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through a waveguide or other transmission media (e.g., light pulses passing through a fiber-optic cable), or electrical signals transmitted through a wire.
Computer-readable program instructions described herein can be downloaded to respective computing/processing devices from a computer-readable storage medium or to an external computer or external storage device via a network, for example, the Internet, a local area network, a wide area network and/or a wireless network. The network can comprise copper transmission cables, optical transmission fibers, wireless transmission, routers, firewalls, switches, gateway computers, and/or edge servers. A network adapter card or network interface in each computing/processing device receives computer-readable program instructions from the network and forwards the computer-readable program instructions for storage in a computer-readable storage medium within the respective computing/processing device.
Computer-readable program instructions for carrying out embodiments can include assembler instructions, instruction-set-architecture (ISA) instructions, machine instructions, machine dependent instructions, microcode, firmware instructions, state-setting data, or either source code or object code written in any combination of one or more programming languages, including an object-oriented programming language such as Smalltalk, C++ or the like, and conventional procedural programming languages, such as the “C” programming language or similar programming languages. The computer-readable program instructions can execute entirely on the operator's computer, partly on the operator's computer, as a stand-alone software package, partly on the operator's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer can be connected to the operator's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection can be made to an external computer (for example, through the Internet using an Internet Service Provider). In some embodiments, electronic circuitry including, for example, programmable logic circuitry, field-programmable gate arrays (FPGA), or programmable logic arrays (PLA) can execute the computer-readable program instructions by utilizing state information of the computer-readable program instructions to personalize the electronic circuitry, in order to perform embodiments of the present invention.
Aspects of various embodiments are described herein with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to various embodiments. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer-readable program instructions.
These computer-readable program instructions can be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks. These computer-readable program instructions can also be stored in a computer-readable storage medium that can direct a computer, a programmable data processing apparatus, and/or other devices to function in a particular manner, such that the computer-readable storage medium having instructions stored therein comprises an article of manufacture including instructions which implement aspects of the function/act specified in the flowchart and/or block diagram block or blocks.
The computer-readable program instructions can also be loaded onto a computer, other programmable data processing apparatus, or other device to cause a series of operational steps to be performed on the computer, other programmable apparatus or other device to produce a computer implemented process, such that the instructions which execute on the computer, other programmable apparatus, or other device implement the functions/acts specified in the flowchart and/or block diagram block or blocks.
The flowchart and block diagrams in the figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods, and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams can represent a module, segment, or portion of instructions, which comprises one or more executable instructions for implementing the specified logical function(s). In some alternative implementations, the functions noted in the block can occur out of the order noted in the figures. For example, two blocks shown in succession can, in fact, be executed substantially concurrently, or the blocks can sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts or carry out combinations of special purpose hardware and computer instructions.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, element components, and/or groups thereof.
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The descriptions presented herein are for purposes of illustration and description, but is not intended to be exhaustive or limited. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of embodiments of the invention. The embodiment was chosen and described in order to best explain the principles of operation and the practical application, and to enable others of ordinary skill in the art to understand embodiments of the present invention for various embodiments with various modifications as are suited to the particular use contemplated.
In some embodiments, various functions or acts can take place at a given location and/or in connection with the operation of one or more apparatuses or systems. In some embodiments, a portion of a given function or act can be performed at a first device or location, and the remainder of the function or act can be performed at one or more additional devices or locations.
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the form described. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. The embodiments were chosen and described in order to best explain the principles of the invention and the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.
The flowchart and block diagrams in the figures illustrate the functionality and operation of possible implementations of systems and methods according to various embodiments of the present invention. In some alternative implementations, the functions noted in the block can occur out of the order noted in the figures. For example, two blocks shown in succession can, in fact, be executed substantially concurrently, or the blocks can sometimes be executed in the reverse order, depending upon the functionality involved. The actions can be performed in a differing order or actions can be added, deleted or modified. Also, the term “coupled” describes having a signal path between two elements and does not imply a direct connection between the elements with no intervening elements/connections therebetween. All of these variations are considered a part of the invention.
The terms “about,” “substantially,” “approximately,” and variations thereof, are intended to include the degree of error associated with measurement of the particular quantity hosted upon the equipment available at the time of filing the application. For example, “about” can include a range of ±8% or 5%, or 2% of a given value.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the present invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, element components, and/or groups thereof.
While the present invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the present invention is not limited to such described embodiments. Rather, the present invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the present invention. Additionally, while various embodiments of the present invention have been described, it is to be understood that aspects of the present invention can include only some of the described embodiments. Accordingly, the present invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
Claims
1. A method of providing access verification for an electronic system, the method comprising:
- activating a security control circuit by a host device, wherein the security control circuit is communicatively coupled to the host device, and wherein the host device comprises an electronic device having at least communications, power, input/output, and processing capability, wherein the host device and the security control circuit are physically integrated with one another on an integrated circuit;
- receiving, by the security control circuit, one or more verification signals, wherein the one or more verification signals originate from outside the system and are locally-based, and wherein the one or more verification signals include one or more of a global positioning satellite signal, an internet protocol signal originating from a server, switch, or gateway, a wireless router signal, and a radio frequency signal;
- comparing, by the security control circuit, the one or more verification signals to a table of stored criteria values to determine whether the one or more verification signals are valid signals or invalid signals, wherein the table of stored criteria values include a database of preselected signals based on location;
- choosing, by the security control circuit, a positive response or negative response based on the comparison, wherein the positive response results from one or more valid signals received by the security control circuit, and enables the host device to continue operating, and wherein the negative response results from one or more invalid signals received by the security control circuit, and disables the host device by restricting one or more functions of the host device including communications, power, input/output, and processing capability; and
- sending an access determination signal to the system based on the positive response or negative response.
2-11. (canceled)
12. The method of claim 1, wherein the negative response includes causing physical damage to one or more of memory, communication ports, power connections, and processors.
13. The method of claim 1, wherein the negative response is includes temporarily disabling the host device.
14. The method of claim 1, wherein the positive response or the negative response includes sending a location signal of the host device to a remote site.
15. A device to provide access verification for a system, the device comprising:
- a security control circuit activated by a host device and, communicatively coupled to the host device, wherein the host device comprises an electronic device having at least communications, power, input/output, and processing capability, wherein the host device and the security control circuit are physically integrated with one another on an integrated circuit;
- one or more verification signals originating from outside the system and are locally-based, wherein the one or more verification signals include one or more a global positioning satellite signal, an internet protocol signal originating from a server, switch, or gateway, a wireless router signal, and a radio frequency signal;
- a table of stored criteria values located within the security control circuit, wherein the stored criteria values are used to determine whether the one or more verification signals are valid signals or invalid signals, and wherein the stored criteria values include a database of preselected signals based on location;
- a processor, located within the security control circuit, wherein the processor compares the one or more verification signals to the table of stored criteria values and chooses a positive response or a negative response based on the comparison, wherein the positive response results from one or more valid signals being present, and enables the host device to continue operating, and wherein the negative response results from one or more invalid signals being present, and disables the host device by restricting one or more functions of the host device including communications, power, input/output, and processing capability; and
- an access determination signal based on the response.
16-21. (canceled)
22. The device of claim 15, comprising a plurality of verification signals originating from outside the system.
23. The device of claim 22, wherein the plurality of verification signals are present simultaneously.
24. The method of claim 1, comprising receiving, by the security control circuit, a plurality of verification signals.
25. The method of claim 24, wherein the plurality of verification signals are present simultaneously.
26. A method of determining access for an electronic system, the method comprising:
- activating a security control circuit, wherein the security control circuit is communicatively coupled to a host device, and wherein the host device comprises an electronic device, wherein the host device and the security control circuit are physically integrated with one another on an integrated circuit;
- receiving, by the security control circuit, a verification signal, wherein the verification signal originates from outside the system and is locally-based;
- comparing, by the security control circuit, the verification signal to a table of stored criteria values; and
- physically damaging the host device based on the comparison.
27. (canceled)
28. The method of claim 26, wherein the verification signal comprises a plurality of signals.
29. The method of claim 26, wherein physically damaging the host device includes physically damaging a processor of the host device.
30. The method of claim 26, wherein physically damaging the host device includes causing physical damage to one or more of memory, communication ports, and power connections.
31. (canceled)
32. The method of claim 1, wherein the one or more verification signals includes a cell phone transmission.
33. The method of claim 32, wherein the cell phone transmission includes a signal from an individual cell phone.
34. The method of claim 32, wherein the cell phone transmission includes a signal from a local cell tower.
35. The method of claim 1, wherein the one or more verification signals includes an internet protocol signal.
36. The method of claim 35, wherein the internet protocol signal includes an internet protocol address of the server.
Type: Application
Filed: Oct 10, 2016
Publication Date: Apr 12, 2018
Inventors: Kangguo Cheng (Schenectady, NY), Shawn P. Fetterolf (Cornwall, VT)
Application Number: 15/289,455