SiGe FINS FORMED ON A SUBSTRATE
A method includes selectively forming a silicon-germanium (SiGe) layer on a substrate. At least one SiGe fin with a first width is formed from the SiGe layer. At least one Si fin with a second width is formed from an upper portion of the substrate. The at least one SiGe fin with the first width, the at least one Si fin with the second width and a surface of the substrate below the at least one Si fin are oxidized. The first width of the at least one SiGe fin is condensed in width to a target width.
SiGe Fin field-effect transistor (FinFET) semiconductor structures are a viable option for continued scaling of FinFET to 10 nm and beyond, however, there are two major issues with SiGe fin fabrication. SiGe fins formed by growing a SiGe layer on a bulk Si substrate is limited by the so-called critical thickness. When SiGe is grown on Si, beyond the critical thickness, dislocations start to generate in SiGe films, resulting in defective SiGe fins. Isolation of SiGe fin from the bulk Si is not trivial. N-type dopants (e.g., phosphorus or arsenic) are used for a punchthrough stopping region under SiGe fins to suppress source/drain punchthrough. Unfortunately, N-type dopants have a greater diffusion rate in SiGe than in Si, resulting in undesired encroachment of punchthrough Si (PTS) dopants into SiGe channel, resulting in degradation of device performance and increase of device variability.
SUMMARYEmbodiments relate to semiconductor structures, in particular, for defect-free silicon-germanium (SiGe)-on-insulator fins formed on a bulk silicon (Si) substrate and a method of manufacturing the same. In one embodiment, a method includes selectively forming a silicon-germanium (SiGe) layer on a substrate. At least one SiGe fin with a first width is formed from the SiGe layer. At least one Si fin with a second width is formed from an upper portion of the substrate. The at least one SiGe fin with the first width, the at least one Si fin with the second width and a surface of the substrate below the at least one Si fin are oxidized. The first width of the at least one SiGe fin is condensed in width to a target width.
In one embodiment, a method includes selectively forming a SiGe layer on a substrate by epitaxially growing the SiGe layer on a top surface of the substrate. At least one fin with a first width is formed from the SiGe layer by forming a masking layer on the top surface of the SiGe layer, etching the at least one fin with the first width, and forming a spacer layer on the at least one fin with the first width. At least one other fin with a second width is formed from the substrate by etching the substrate to form the at least one other fin with the second width. The second width is less than the first width. The spacer layer is selectively removed from the at least one fin with the first width. The at least one fin with the first width, the at least one other fin with the second width and a surface of the substrate below the at least one other fin with the second width are oxidized. The first width is condensed in width to a target width. The at least one other fin is completely oxidized forming an oxide layer between the at least one fin with the first width and the substrate.
These and other features, aspects and advantages of the embodiments will become understood with reference to the following description, appended claims and accompanying figures.
The descriptions of the various embodiments have been presented for purposes of illustration, but are not intended to be exhaustive or limited to the embodiments disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the described embodiments. The terminology used herein was chosen to best explain the principles of the embodiments, the practical application or technical improvement over technologies found in the marketplace, or to enable others of ordinary skill in the art to understand the embodiments disclosed herein.
As used herein, a “lengthwise” element is an element that extends along a corresponding lengthwise direction, and a “widthwise” element is an element that extends along a corresponding widthwise direction.
For example, with SiGe fins 104 having a 20 nm width and the Si fins 110 having a 10 nm width, a 20 nm oxidization of the SiGe fins 104 and Si fins 110 will result in fully oxidized Si fins oxidize 12 nm oxidization of the SiGe fin 112. As a result, the percentage of Ge in the oxidized SiGe fins 112 is higher than the percentage of Ge to Si in the SiGe layer 102 (e.g., 25 percent compared to 10 percent). Moreover, the higher Ge SiGe fins 112 have been condensed in width to their target width (8 nm in this example).
In one embodiment, in block 204 formation of SiGe fins may comprise forming a hardmask layer (106,
In one embodiment, block 206 comprises applying a spacer layer 108 (
In one embodiment, step 208 involves condensing the SiGe fins 104 (
Moreover, in one embodiment, as a result of condensing the SiGe fins and Si fins in block 208, the Si is fully oxidized from the Si fins, resulting in the formation of an oxide layer 114 (
In one embodiment, by forming the Si fins 204, the Si fins have a width which is less than the width of the SiGe fins 104 (
The exemplary methods and techniques described herein may be used in the fabrication of IC chips. In one embodiment, the IC chips may be distributed by a fabricator in raw wafer form (i.e., as a single wafer that has multiple unpackaged IC chips), as a bare die, or in a packaged form. In the latter case, the IC chip is mounted in a single IC chip package (e.g., a plastic carrier with leads that are affixed to a motherboard or other higher level carrier) or in a multilC chip package (e.g., a ceramic carrier that has either or both surface interconnections or buried interconnections). The IC chip is then integrated with other IC chips, discrete circuit elements and/or other signal processing devices as part of either (a) an intermediate product, such as a motherboard, or (b) an end product, such as microprocessors, smart phones, mobile phones, cellular handsets, set-top boxes, DVD recorders and players, automotive navigation, printers and peripherals, networking and telecom equipment, gaming systems, toys and digital cameras, as non-limiting examples. One or more embodiments may be applied in any of various highly integrated semiconductor devices.
Unless described otherwise or in addition to that described herein, “depositing” may include any now known or later developed techniques appropriate for the material to be deposited, including, but not limited to: CVD, LPCVD, PECVD, semi-atmosphere CVD (SACVD), high density plasma CVD (HDPCVD), rapid thermal CVD (RTCVD), ultra-high vacuum CVD (UHVCVD), limited reaction processing CVD (LRPCVD), metalorganic CVD (MOCVD), sputtering deposition, ion beam deposition, electron beam deposition, laser assisted deposition, thermal oxidation, thermal nitridation, spin-on methods, PVD, ALD, chemical oxidation, MBE, plating or evaporation. Any references to “poly” or “poly silicon” should be understood to refer to polycrystalline silicon.
References herein to terms such as “vertical”, “horizontal,” etc. are made by way of example, and not by way of limitation, to establish a frame of reference. The term “horizontal” as used herein is defined as a plane parallel to the conventional plane or surface of the substrate, regardless of the actual spatial orientation of the semiconductor substrate. The term “vertical” refers to a direction perpendicular to the horizontal, as just defined. Terms, such as “on,” “above,” “below,” “side” (as in “sidewall”), “higher,” “lower,” “over,” “beneath” and “under,” are defined with respect to the horizontal plane. It is understood that various other frames of reference may be employed for describing one or more embodiments without departing from the spirit and scope of the one or more embodiments.
References in the claims to an element in the singular is not intended to mean “one and only” unless explicitly so stated, but rather “one or more.” All structural and functional equivalents to the elements of the above-described exemplary embodiment that are currently known or later come to be known to those of ordinary skill in the art are intended to be encompassed by the present claims. No claim element herein is to be construed under the provisions of 35 U.S.C. section 112, sixth paragraph, unless the element is expressly recited using the phrase “means for” or “step for.”
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the embodiments. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, steps, operations, elements, materials, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, materials, components, and/or groups thereof.
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the embodiments has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the embodiments in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the embodiments. The embodiment was chosen and described in order to best explain the principles of the embodiments and the practical application, and to enable others of ordinary skill in the art to understand the embodiments with various modifications as are suited to the particular use contemplated.
Claims
1. A method, comprising:
- selectively forming a silicon-germanium (SiGe) layer on a substrate;
- forming at least one SiGe fin with a first width from the SiGe layer;
- forming at least one Si fin with a second width from an upper portion of the substrate; and
- oxidizing the at least one SiGe fin with the first width, the at least one Si fin with the second width and a surface of the substrate below the at least one Si fin, wherein the first width of the at least one SiGe fin is condensed in width to a target width.
2. The method of claim 1, wherein the at least one Si fin is completely oxidized forming an oxide layer between the at least one SiGe fin and the substrate.
3. The method of claim 2, wherein the oxidizing results in a higher percentage of Ge in the at least one SiGe fin with the target width than a percentage of Ge in the SiGe layer, the target width is less than the second width, and the second width is less than the first width.
4. The method of claim 3, further comprising:
- selectively removing the oxide layer from side surfaces of the at least one SiGe fin.
5. The method of claim 4, further comprising:
- depositing a nitride liner on a surface of a remaining portion of the oxide layer; and
- depositing a flowable oxide layer on the nitride layer,
- wherein forming the SiGe layer comprises epitaxially growing the SiGe layer on a top surface of the substrate.
6. The method of claim 4, wherein forming the at least one SiGe fin with a first width comprises:
- forming a masking layer on a top surface of the SiGe layer; and
- etching the at least one SiGe fin with the first width.
7. The method of claim 6, further comprising forming a spacer layer on the at least one SiGe fin with the first width.
8. The method of claim 7, wherein forming the at least one Si fin with the second width comprises:
- etching the substrate to form the at least one Si fin with the second width; and
- selectively removing the spacer layer from the at least one SiGe fin with the first width.
9. The method of claim 4, wherein oxidizing comprises removing a portion of Si from the at least one SiGe fin with the first width and the at least one Si fin with the second width.
10. The method of claim 9, wherein oxidizing the at least one Si fin with the second width creates an oxide layer isolating the at least one SiGe fin with the target width from the substrate.
11. The method of claim 9, wherein a height of the at least one SiGe fin with the target width is reduced after oxidizing.
12. The method of claim 4, wherein:
- the at least one Si fin is formed directly below the at least on SiGe fin; and
- the oxidizing results without a need for employing a punchthrough stopping region under the at least one SiGe fin to suppress source/drain punchthrough.
13. A method, comprising:
- forming at least one silicon-germanium (SiGe) fin with a first width from an SiGe layer on a substrate;
- forming at least one Si fin with a second width from an upper portion of the substrate; and
- oxidizing the at least one SiGe fin with the first width, the at least one Si fin with the second width and a surface of the substrate below the at least one Si fin, wherein the first width of the at least one SiGe fin is condensed in width to a target width.
14. The method of claim 13, wherein the at least one Si fin is completely oxidized forming an oxide layer between the at least one SiGe fin and the substrate.
15. The method of claim 14, wherein the oxidizing results in a higher percentage of Ge in the at least one SiGe fin with the target width than a percentage of Ge in the SiGe layer, the target width is less than the second width, and the second width is less than the first width.
16. The method of claim 15, further comprising:
- selectively removing the oxide layer from side surfaces of the at least one SiGe fin.
17. The method of claim 16, further comprising:
- depositing a nitride liner on a surface of a remaining portion of the oxide layer; and
- depositing a flowable oxide layer on the nitride layer,
- wherein forming the SiGe layer comprises epitaxially growing the SiGe layer on a top surface of the substrate.
18. The method of claim 16, wherein forming the at least one SiGe fin with a first width comprises:
- forming a masking layer on a top surface of the SiGe layer; and
- etching the at least one SiGe fin with the first width.
19. The method of claim 18, further comprising forming a spacer layer on the at least one SiGe fin with the first width.
20. The method of claim 19, wherein:
- forming the at least one Si fin with the second width comprises: etching the substrate to form the at least one Si fin with the second width; and selectively removing the spacer layer from the at least one SiGe fin with the first width;
- oxidizing comprises removing a portion of Si from the at least one SiGe fin with the first width and the at least one Si fin with the second width;
- oxidizing the at least one Si fin with the second width creates an oxide layer isolating the at least one SiGe fin with the target width from the substrate;
- a height of the at least one SiGe fin with the target width is reduced after oxidizing;
- the at least one Si fin is formed directly below the at least on SiGe fin; and
- the oxidizing results without a need for employing a punchthrough stopping region under the at least one SiGe fin to suppress source/drain punchthrough.
Type: Application
Filed: Mar 19, 2019
Publication Date: Jul 11, 2019
Inventors: Veeraraghavan S. Basker (Schenectady, NY), Kangguo Cheng (Schenectady, NY), Theodorus E. Standaert (Clifton Park, NY), Junli Wang (Slingerlands, NY)
Application Number: 16/358,240