CELL LINE, SYSTEM AND METHOD FOR OPTICAL-BASED SCREENING OF ION-CHANNEL MODULATORS
A variety of applications, systems, methods and constructs are implemented for use in connection with screening of ion-channel modulators. Consistent with one such system, drug candidates are screened to identify their effects on cell membrane ion channels and pumps. The system includes screening cells having light responsive membrane ion switches, voltage-gated ion switches and fluorescence producing voltage sensors. A chemical delivery device introduces the drug candidates to be screened. An optical delivery device activates the light responsive ion switches. An optical sensor monitors fluorescence produced by the voltage sensors. A processor processes data received from the optical sensor. A memory stores the data received from the optical sensor.
This patent document claims the benefit, under 35 U.S.C. § 119(e), of U.S. Provisional Patent Application Ser. No. 60/955,116, entitled Cell Line, System and Method for Optical-Based Screening of Ion-Channel Modulators and filed on Aug. 10, 2007; this patent document is fully incorporated herein by reference.
This patent document also claims priority, as a CIP under 35 U.S.C. § 120, to the following patent documents which are also individually incorporated by reference: U.S. patent application Ser. No. 11/651,422 (STFD.150PA) filed on Jan. 9, 2007 and entitled, System for Optical Stimulation of Target Cells), which is a CIP of U.S. patent application Ser. No. 11/459,636 (STFD.169PA) filed on Jul. 24, 2006 and entitled, Light-Activated Cation Channel and Uses Thereof, which claims the benefit of U.S. Provisional Application No. 60/701,799 (STFD.169P1) filed Jul. 22, 2005.
FIELD OF THE INVENTIONThe present invention relates generally to systems and approaches for screening drug candidates and more particularly to a cell line, system and method for optically-based screening of the drug candidates with respect to their effect on cellular ion channels.
BACKGROUNDIon channels and ion pumps are cell-membrane proteins that control the transport of positively or negatively charged ions (e.g., sodium, potassium and chloride) across the cell membrane. Ion channels play an important part of various animal and human functions including signaling and metabolism. Ion-channel dysfunctions are associated with a wide variety of illnesses. For instance, diseases resulting from ion-channel dysfunctions in the central nervous system include anxiety, depression, epilepsy, insomnia, memory problems and chronic pain. Other diseases resulting from ion-channel dysfunctions include cardiac arrhythmia, and type II diabetes. Researchers are continually discovering diseases associated with ion-channel functionality.
Several drugs have been discovered to modify ion-channel functionality; however, the number of clinically approved drugs for restoring ion-channel functionality is limited. A major bottleneck in the discovery and development of new ion-channel drugs lies in the technical challenge of quickly, efficiently and cheaply screening drug candidates to identify structures that affect ion-channel functionality. Common screening techniques use patch clamping to measure the voltage and/or current in a cell. Micropipettes affixed to the cell membrane obtain the measurement. For example, whole-cell configuration can be used to monitor the functionality of the ion channels throughout the cell. In this manner, changes in voltage or current due to an introduced drug can be monitored. Such methods require contact between the micropipette and the cell. For this and other reasons, such techniques leave room for improvement in their ability to screen drugs quickly, efficiently and cheaply.
These and other issues have presented challenges to screening of drug candidates, including those affecting ion-channel function.
The invention may be more completely understood in consideration of the detailed description of various embodiments of the invention that follows in connection with the accompanying drawings, in which:
While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.
DETAILED DESCRIPTIONThe present invention is believed to be useful for enabling practical application of a variety of optical-based screening systems, and the invention has been found to be particularly suited for use in systems and methods dealing with identification of ion-channel modulating drugs. While the present invention is not necessarily limited to such applications, various aspects of the invention may be appreciated through a discussion of various examples using this context.
Recently discovered techniques allow for stimulation of cells resulting in the rapid depolarization of cells (e.g., in the millisecond range). Such techniques can be used to control the depolarization of cells such as neurons. Neurons use rapid depolarization to transmit signals throughout the body and for various purposes, such as motor control (e.g., muscle contractions), sensory responses (e.g., touch, hearing, and other senses) and computational functions (e.g., brain functions). Thus, the control of the depolarization of cells can be beneficial for a number of different biological applications, among others including psychological therapy, muscle control and sensory functions. For further details on specific implementations of photosensitive bio-molecular structures and methods, reference can be made to one or more of the above-listed patent documents (by Karl Deisseroth et al.) which are fully incorporated herein by reference. These references discuss use of blue-light-activated ion-channel channelrhodopsin-2 (ChR2) to cause calcium (Ca++)-mediated neural depolarization. Also discussed in one or more of these references are other applicable light-activated ion channels including, for example, halorhodopsin (NpHR) in which amber light affects chloride (Cl−) ion flow so as to hyperpolarize neuronal membrane, and make it resistant to firing. Collectively, these light-sensitive proteins, serving to regulate membrane voltage using ion switches that, when activated (or deactivated) in response to light, function as channels or pumps, are referred to herein as light-responsive ion switches or light-activated membrane potential switches (LAMPS).
Consistent with one example embodiment of the present invention, a system screens for ion-channel and ion-pump affecting compounds. The system introduces one or more drug candidates that could either block or enhance the activity of ion-channels or ion-pumps to cells that were made optically responsive by the addition of the above mentioned proteins (ChR2 and NpHR), for the purpose of screening the drug candidates. Light triggers optically responsive ion channels in the cells causing a change in the voltage seen across the cell membrane. The voltage change stimulates voltage-gated ion channels in the cells which will then cause a change in ion concentrations that can be read as optical outputs. These optical signals are detected and used to determine what effect, if any, the drug candidates have on the voltage-gated ion channels.
In addition to NpHR and ChR2, there are a number of channelrhodopsins, halorhodopsins, and microbial opsins that can be engineered to optically regulate ion flux or second messengers within cells. Various embodiments of the invention include codon-optimized, mutated, truncated, fusion proteins, targeted versions, or otherwise modified versions of such ion optical regulators. Thus, ChR2 and NpHR (e.g., GenBank accession number is EF474018 for the ‘mammalianized’ NpHR sequence and EF474017 for the ‘mammalianized’ ChR2(1-315) sequence) are used as representative of a number of different embodiments. Discussions specifically identifying ChR2 and NpHR are not meant to limit the invention to such specific examples of optical regulators. For further details regarding the above mentioned sequences reference can be made to “Multimodal fast optical interrogation of neural circuitry” by Feng Zhang, et al, Nature (Apr. 5, 2007) Vol. 446: 633-639, which is fully incorporated herein by reference.
In one instance, the system allows for different drug candidates to be screened without necessitating extensive setup between screenings. For example, an assay may be performed using optics both to stimulate the optically responsive cells and to detect the effectiveness of the drug. The use of optics instead of manual contacts, e.g., using a whole-cell patch clamp, can be particularly useful in increasing the throughput of the assay screening process. For instance, the time between screenings can be reduced by minimizing or eliminating physical manipulations otherwise necessary to stimulate or detect ion flow in the target cells. The cells can also be prepared prior to the screening process because the test equipment need only be optically coupled to the prepared cells. In another instance, throughput may be increased by screening a number of different drugs simultaneously using, for example, an array of photo detectors and a corresponding array of modified cells exposed to different drugs.
Consistent with another embodiment of the present invention, an optically-responsive cell line is created to screen for drugs that affect the functionality of ion channels. The cell line includes cells that co-express optically responsive ion switches of Channelrhodopsin-2 (ChR2) or NpHR, a voltage-gated Ca2+ channel and a hyperpolarizing channel/pump (e.g., hERG or TASK1, that can lower the membrane voltage to a point where the voltage-gated Ca2+ channel will be in a closed state). The system measures the concentration of Ca2+ using an indicator dye (e.g., Fura-2) or genetically encoded activity sensor. The above mentioned components are introduced to the cell line by standard liposomal transfection methods and the ChR2 related channel is stimulated using (blue) light; for further information in the regard, reference may be made to the patent documents cited herein and to the articles cited supra. Time lapse images of light from the Ca2+ sensitive portion of the system are taken and stored as data. A processor analyzes the data to identify potential channel-affecting drugs. For instance, the processor may identify all chemicals that have concentrations of Ca2+ that do not fall within expected parameters (e.g., concentrations that exceed or are less than an expected range of concentrations).
In a specific instance, the cell line is derived from 293T cells by co-expressing ChR2 and a voltage-gated Ca2+ channel. The 293T cells (and 293T cell line) are a variant of Human Embryonic Kidney (HEK) cells that include the Simian vacuolating virus 40 (SV40) T antigen (see, e.g., N. Louis, C. Evelegh, F. L. Graham, Cloning and sequencing of the cellular-viral junctions from the human adenovirus type 5 transformed 293 cell line, Virology, 233(2):423-9, Jul. 7, 1997; see also U.S. Pat. No. 5,939,320 to Littman, et al. filed Jun. 19, 1996, U.S. Pat. No. 6,790,657 to Arya filed Jun. 28, 2001 and U.S. Pat. No. 6,489,115 to Lahue, et al. filed Dec. 3, 2002). Expression of the light-responsive ion channels, the voltage-gated ion channels and the hyperpolarizing channels by the 293T cells may be accomplished using appropriate transfection vectors.
More specifically, the cell lines may be derived from a stable homogeneous cell line such as HEK293, NIH3T3, or CHO. Several genes responsible for making different subunits of calcium channels have been introduced into the cell lines to provide functional calcium channel activity. In addition to the calcium channel genes, an inward-rectifying potassium channel may be expressed to mimic the natural state of calcium channels by maintaining a more hyperpolarized membrane potential (compared to the default resting membrane potential of HEK293, NIH3T3, or CHO cell lines). Also, a light-activated cation channel channelrhodopsin-2 (ChR2) may be expressed to facilitate optical depolarization and subsequent activation of the calcium channels. Another option includes the expression of a light-activated chloride pump Natronomonaspharonis halorhodopsin (NpHR) to enable rapid optical hyperpolarization of the cell membrane potential.
This cell line based approach is not limited to voltage-gated calcium channels. For example, similar cell lines can be created for voltage-gated sodium (e.g., Nav1.1 through Nav1.9), potassium (e.g., Kv such as hERG, TASK1, Shaker, or KvLQT1), or chloride conducting channels/pumps (e.g., members of the CLC family of chloride channels). The methods of introducing such genes into the cell line are known in the art and may include, for example liposomal tranfection, or viral gene transfer. For further information in this regard, reference may be made to one or more of the following references:
- Warren Pear, Transient Transfection Methods for Preparation of High-Titer Retroviral Supernatants, Supplement 68, Current Protocols in Molecular Biology, 9.11.1-9.11.18, John Wiley & Sons, Inc. (1996).
- R. E. Kingston, C. A. Chen, H. Okayama, and J. K. Rose, Transfection of DNA into Eukarotic Cells. Supplement 63, Current Protocols in Molecular Biology, 9.1.1-9.1.11, John Wiley & Sons, Inc. (1996).
- R. Mortensen, J. D. Chesnut, J. P. Hoeffler, and R. E. Kingston, Selection of Transfected Mammalian Cells, Supplement 62, Current Protocols in Molecular Biology, 9.5.1-09.5.19, John Wiley & Sons, Inc. (1997).
- H. Potter, Transfection by Electroporation, Supplement 62, Current Protocols in Molecular Biology, 9.3.1-9.3.6, John Wiley & Sons, Inc. (1996).
- T. Gulick, Transfection using DEAE-Dextran, Supplement 40, Current Protocols in Molecular Biology, 9.2.1-9.2.10, John Wiley & Sons, Inc. (1997).
- R. E. Kingston, C. A. Chen, H. Okayama, Transfection and Expression of Cloned DNA, Supplement 31, Current Protocols in Immunology (CPI), 10.13.1-10.13.9, John Wiley & Sons, Inc.
Each of the above references is incorporated by reference.
These and other transfer vectors may be generated using various genetic engineering techniques. For instance, the transfer vectors may be derived from a provirus clone of a retrovirus, such as an immunodeficiency virus (e.g., HIV-1 or HIV-2, or SIV). For further details on the use of 293T cells and transfection thereof, reference can be made to U.S. Pat. No. 6,790,657 (entitled, Lentivirus Vector System, to Arya), which is fully incorporated herein by reference.
In one embodiment of the invention, optical stimulation of the modified cells may be altered to determine specific properties of an introduced drug candidate. For example, the intensity of the optical stimulus may be modified to change the corresponding level of depolarization. The level of desired depolarization can be tuned to further characterize the effectiveness of the drug under test. In another example, the optical stimulus may include rapid pulsing of the light. By correlating the temporal relationship between the optical stimulus and the resultant detected fluorescence, the drug may be further characterized in terms of a kinetic response. Thus, the drug may be characterized for a variety of different aspects including, but not limited to, the steady state effect on ion concentrations, a change in the level of depolarization necessary to trigger the voltage gated ion channels and the effect on repeated depolarization.
In one embodiment, the system allows for simple calibration of the optical stimulation and/or detection. The modified cells may be optically stimulated prior to introduction of the drug candidate. The ion channel responsiveness is detected and recorded. The recorded values may be used as a baseline for comparison to the ion channel responsiveness of the same modified cells after the introduction of the drug under test. The recorded values may also be used to modify the optical stimulus or the sensitivity of the optical detector. Such modifications may be applied to an individual test sample or an array of test samples. For such an array of test samples, each test sample may be individually calibrated by adjusting the corresponding optical stimulus. Similarly, each corresponding photo detector may be individually adjusted.
It should be apparent that optical source 106 may be implemented using a single light source, such as a light-emitting diode (LED), or using several light sources. Similarly, optical detector 109 may use one or more detectors and database 102 may be implemented using any number of suitable storage devices.
Dichroic mirror 170 allows for upward reflection of both the wavelength required to stimulate the optical gating of the membrane (e.g., blue for ChR2), and the wavelength required by any LEIA used (e.g., ultraviolet for FURA-2). This dichroic mirror may be arranged to allow passage of the output spectrum of the LEIA (e.g., blue-green for FURA-2) with minimal reflection or absorption.
The combination of photostimulation with optical imaging techniques of LEIAs may be useful for a number of different reasons. For example, photostimulation may simplify the study of excitable cells by reducing the need to use mechanical electrodes for stimulation. Several commercially available LEIAs are suitable for photogrammetrically indicating the activation of electrically excitable cells. One such LEIA is calcium dye Fura-2, which may be stimulated with violet/ultraviolet light around 340 nm, and whose fluorescent output is detectable as blue-green light around 535 nm. Another example is voltage sensitive dye RH 1691, which may be stimulated with green light at about 550 nm, and whose fluorescent output is detectable as red light at about 70 nm. Another example is voltage sensitive dye di-4-ANEPPS, which is stimulated by blue light at about 560 nm, and whose fluorescent output is detectable as red light at about 640 nm.
Operation of the photodetector is shown in photovoltaic mode, but the element may also be used in the photoconductive mode of operation. Of course, many other light-detection devices and methods may also be used, including phototransistors, photothyristors, and charged-coupled device (CCD) elements, or arrays of elements.
Alternatively, the 4B circuit can be used without Schmitt-triggered hex inverter 470, permitting a continuum of signal intensities to be transmitted directly to an analog input to computer 450 or to an analog-to-digital converter. Various other signal conditioning circuits are also possible.
In step 520, the signal resulting from the impingement of light onto the photodetector element is sent back to the computer. This may be a binary (e.g. “high” versus “low” signal intensity), or may be graded to reflect a continuum of activation levels. In the case that multiple photodetectors are used to determine energies at different wavelengths, the individual readings of these photodetectors may be logged in parallel or in sequence for appropriate interpretation in a later stage of the automated process. In step 530, the system calls for the next tray to be placed by the automated system. The next tray is moved into position at step 535 and the process may be repeated until all trays in a batch have been processed.
The level of light fluoresced is typically much lower than that required to optically stimulate a cell via light-sensitive ion channels or pumps. For example, ChR2 may require blue light of 1-10 mW/mm2 or more in order to robustly depolarize cells. RH 1691 may require approximately 0.1 mW/mm2 to stimulate it. Given that RH1691 shows significant sensitivity to blue light, (peak sensitivity is at the blue-green wavelengths), RH1691 is adequately stimulated by the same pulse used to stimulate ChR2, but emits light upon depolarization at a power of only on the order of 0.001 mW/mm2. This small amount of output light would be difficult to distinguish from the comparatively massive blue pulse used to stimulate ChR2, even if efficient filters were used in front of the detectors. Fortunately, temporal differences between the ChR2 stimulation (with simultaneous LEIA stimulation), and the fluorescent output of depolarized cells can be used to distinguish the light sources. For instance, the dye-based fluorescence may continue for a few seconds after the delivery of the depolarization pulse and the resultant action potential. Thus in some instances, such as a non-fluorescent LEIA or a luminescent activity dye, a separate stimulation flash is not required.
The amount of time allotted for light delivery may vary, and depends on factors including the level of light-gated ion channel/pump expression, and the density and characteristics of other ionic channel characteristics of that cell population. The amount of time allotted for light receipt may vary, and depends upon factors including the degree of accuracy required for the screening session. The amount of time allotted for well-plate (tray) changing may vary, and depends upon factors including the mechanical speed of the automated apparatus. If fast neurons are used as the cells being tested, the cellular stimulation and LEIA detection process may be accomplished in milliseconds.
In an example process, a 293T cell line expressing TASK-1 (to simulate the natural hyperpolarized membrane potential of neurons), ChR2 (to induce depolarization of the cell membrane), and the L-type calcium channel are used. Whole-cell patch clamping experiments show that the membrane of the modified 293T cell line is hyperpolarized to the point where the L-type calcium channels are closed. The cells are stimulated for 5 seconds with continuous blue light (470 nm) to activate ChR2. ChR2-mediated depolarization opens the co-expressed voltage-gated calcium channels. Upon ChR2 illumination, a strong calcium influx is recorded using a genetically-encoded calcium dye indicator, which fluoresced light with cellular depolarization. Nimodopine, a well-known L-type calcium channel blocker, abolishes the calcium influx- and hence the fluoresced signal when applied to the cells for 10 minutes. This data demonstrates the effectiveness of the system described herein.
The process above may be repeated under varying conditions. For example, a given set of cells may be tested with no drug present, and subsequently with one or more drugs present. The response of electrically-excitable cells under those conditions may be thereby documented, compared and studied. If the invention is implemented with at least one emitter/detector for each well on a tray and at least two concurrently operating devices, continuous operation may be maintained for extended periods of time.
As an example of a functional layout of contents introduced into these wells, rows A-H of a single plate might be used for the testing of two different drugs. To represent a baseline condition, column 1 might contain optically gated cells, an endogenous or exogenous LEIA, but no drug. Columns 2-6 might be used for five different concentrations of Drug X, one concentration level per column. Likewise, columns 7-11 might be use for five different concentrations of Drug Y, one concentration per column. Column 12, while fully usable, is left unused in this particular example.
Variables in the various wells might include the type of cell being tested, the type of ion channel being tested for, the type of drug placed in the cell, the concentration of the drug placed in the well, the specific LEIA used, and the optical gating stimulation parameters (e.g. wavelength, intensity, frequency, duration) applied to the cells in that well.
Consistent with the above discussion, example screening methods could include the collection of multiple data points without having to switch samples. Because control over the samples is reversible in the same sample preparation by simply turning the activating light on and off with fast shutters, the same samples can be reused. Further, a range of patterns of stimulation can be provided to the same cell sample so that testing can be performed for the effect of drugs without concern with regards to differences across different sample preparations. By modulating the level of excitation (e.g., by ramping the level from no light to a high or maximum intensity), the effect of the drug across a range of membrane potentials can be tested. This permits for the identification of drugs that are efficacious during hyperpolarized, natural, or depolarized membrane potentials.
The cell lines described herein may be a particularly useful for detailed characterization of drug candidates in a high-throughput manner. Optical control is relatively fast, thereby allowing for the testing the drug's activity under more physiological forms of activation. For example, different frequencies of depolarization and/or hyperpolarization may be used to determine how a drug interacts with the channel under physiological forms of neural activity. In some instances, the process may be accomplished without the application of expensive chemical dyes to the cell lines.
In conjunction with the various properties discussed herein, the use of various embodiments of the invention may be particularly useful for improving screening throughput by eliminating the need for cumbersome mechanical manipulation and liquid handling. Various embodiments may also be useful for repeatable the screening assay using the same samples, reducing screening cost by eliminating the need for chemically-based fluorescence reports, producing high temporal precision and low signal artifact (due to the optical nature of the voltage manipulation), modulating the level of depolarization by attenuating the light intensity used for stimulation, and ascertaining the kinetics of the drug's modulation on the ion channel through the use of pulsed light patterns.
The various embodiments described above are provided by way of illustration only and should not be construed to limit the invention. Based on the above discussion and illustrations, those skilled in the art will readily recognize that various modifications and changes may be made to the present invention without strictly following the exemplary embodiments and applications illustrated and described herein. For instance, such changes may include the use of digital logic or microprocessors to control the emitted light. Such modifications and changes do not depart from the true spirit and scope of the present invention, which is set forth in the following claims.
Claims
1. A modified cell line derived from parental cell line 293T, wherein the modified cell line comprises:
- voltage-gated ion channels; and
- light-responsive ion switches that mediate depolarization from activation of the voltage-responsive ion channels.
2. The cell line of claim 1, wherein the ion switches are ChR2 ion channels.
3. The cell line of claim 1, wherein the ion switches are NpHR ion pumps.
4. The cell line of claim 1, wherein the voltage-gated ion channels are Ca2+ channels.
5. The cell line of claim 1, wherein the modified cell line further possesses the properties of genetically-encoded ion indicators.
6. The cell line of claim 5, wherein the genetically-encoded ion indicators are calcium indicators
7. A system for screening drug candidates to identify their effects on cell membrane ion channels and pumps, comprising:
- screening cells having light responsive membrane ion switches, voltage-gated ion switches and fluorescence producing voltage sensors;
- a chemical delivery device for introducing the drug candidates to be screened;
- an optical delivery device to activate the light responsive ion switches;
- an optical sensor to monitor fluorescence produced by the voltage sensors;
- a processor to process data received from the optical sensor; and
- memory for storing the data received from the optical sensor.
8. The system of claim 7, wherein the light responsive membrane ion switches are ChR2 ion channels.
9. The system of claim 7, wherein the light responsive membrane ion switches are NpHR ion pumps.
10. The system of claim 7, wherein the voltage-gated ion switches are Ca2+ channels.
11. The system of claim 7, wherein the fluorescence producing voltage sensors are genetically-encoded calcium dye indicators.
12. The system of claim 7, further comprising an array of wells each containing a portion of the screening cells and an array of optical sensors for detecting light from respective wells from the array of wells.
13. A method for screening drug candidates to identify their effects on cell membrane ion channels and pumps, the method comprising:
- introducing a drug candidate to be screened to cells having light responsive membrane ion switches, voltage gated ion switches and fluorescence producing voltage sensors;
- activating the light responsive membrane ion switches by generating light pulses;
- detecting fluorescence produced by the voltage sensors;
- processing data received from the optical sensor to identify changes in the cells electrical properties; and
- storing the processed data received from the optical sensor.
14. The method of claim 13, wherein the light responsive membrane ion switches are ChR2 ion channels.
15. The method of claim 13, wherein the light responsive membrane ion switches are NpHR ion pumps.
16. The method of claim 13, wherein the voltage-gated ion switches are Ca2+ channels.
17. The method of claim 13, wherein the fluorescence producing voltage sensors are genetically-encoded calcium dye indicators.
18. The method of claim 13, further comprising introducing a plurality of drug candidates to respective wells of an array of wells that each contain a portion of the screening cells and detecting light from respective wells from the array of wells using an array of optical sensors for detecting light.
19. (canceled)
Type: Application
Filed: Sep 5, 2019
Publication Date: Mar 5, 2020
Inventors: Karl Deisseroth (Stanford, CA), Feng Zhang (Cambridge, MA), Viviana Gradinaru (Menlo Park, CA), M. Bret Schneider (Portola Valley, CA)
Application Number: 16/562,176