TIME-FREQUENCY BLOCK-SPARSE CHANNEL ESTIMATION METHOD BASED ON COMPRESSED SENSING
A time-frequency block-sparse channel estimation method based on compressed sensing includes the following steps. Step 1: A channel model is established. Step 2: According to the channel model obtained in Step 1, a sparse signal estimation value is solved by a compressed sensing method to further calculate an index set. Step 3: According to the index set obtained in Step 2, a channel matrix estimation value is solved. The method provides a generalized block adaptive gBAMP algorithm, which uses time-frequency joint block sparsity of a massive MIMO system to further optimize selection of an index set in an algorithm iteration process to improve stability of the algorithm. Then, without a specified threshold parameter, based on an F norm, an adaptive iteration stop condition is determined based on a residual, and the validity of the method is proved.
Latest WUHAN UNIVERSITY Patents:
- PLATFORM AND METHOD FOR POWER GRID FREQUENCY REGULATION WITH PARTICIPATION OF LARGE-SCALE ENERGY STORAGE BASED ON MADDPG
- DEVICE, SYSTEM, AND METHOD FOR IN-SITU MEASUREMENT OF THREE-DIMENSIONAL MORPHOLOGY OF MELT POOLS
- MULTI-MODAL REMOTE SENSING IMAGE HYBRID MATCHING METHOD AND SYSTEM WITH MULTI-DIMENSIONAL ORIENTED SELF-SIMILAR FEATURES
- DRUGS, EXPRESSION VECTORS, AND THEIR APPLICATIONS IN THE TREATMENT OF NAFLD AND RELATED DISEASES
- Aluminum alloy pre-strengthening and hot forming production line
This application claims the priority benefit of China application serial no. 202010454893.2, filed on May 26, 2020. The entirety of the above-mentioned patent application is hereby incorporated by reference herein and made a part of this specification.
BACKGROUND Technical FieldThe disclosure relates to the field of pilot-assisted channel estimation in a wireless communication system, and in particular, to a time-frequency block-sparse channel estimation method based on compressed sensing.
Description of Related ArtMassive multiple-input and multiple-output (MIMO) is a key technology in next-generation 5G mobile cellular network communications and can improve the system capacity and spectrum utilization. However, in a massive MIMO system, as the antenna quantity at the base station end and the number of users in a cell increase, the acquisition and accuracy of channel state information become key issues. Compared with the time-division duplexing (TDD) system, the frequency-division duplexing (FDD) system can provide more efficient communication with low delay and dominates the current wireless communication. Therefore, it is necessary to study more effective channel estimation of the FDD system.
In a massive MIMO system, a channel has block sparsity of its time domain, frequency domain, and spatial domain. With respect to this sparsity structure, in recent years, many scholars have applied the compressed sensing theory to pilot-assisted channel estimation to achieve better performance. However, these algorithms all require a specified threshold condition to ensure the algorithm reconstruction precision, and for different occasions, the threshold is different. Therefore, how to determine the size of the threshold becomes a difficult issue.
SUMMARYThe disclosure addresses the issue of channel estimation of an FDD downlink massive MIMO system which remains unsolved in the related art, and provides a time-frequency block-sparse channel estimation method based on compressed sensing which can quickly and accurately recover massive MIMO channel information of which the sparsity degree is unknown.
The technical solutions adopted to solve the technical problems herein are as follows.
The disclosure provides a time-frequency block-sparse channel estimation method based on compressed sensing, where an orthogonal frequency-division multiplexing (OFDM) system of a downlink frequency-division duplexing (FDD) massive MIMO channel model is initialized, supposing M antennas are disposed at a base station end and U single-antenna users are simultaneously served, and let there be N subcarriers in the OFDM system, where NP subcarriers are used to transmit pilot signals, and L is a maximum path delay, considering observing in R adjacent OFDM symbols.
Based on a time-frequency block sparsity and a compressed sensing framework of a massive MIMO channel, the method includes the following steps.
Step 1: A pilot signal and a reception signal of a transmitting end are inputted, and a channel model is established as Y=ΨH+V according to the signal,
where Y∈N
Step 2: A sparse signal estimation value {tilde over (H)} is solved by a compressed sensing method according to the channel model obtained in Step 1 to further calculate an index set {tilde over (Γ)}k.
Step 3: A channel matrix estimation value {tilde over (H)}{tilde over (Γ)}
Further, Step 1 of the disclosure further includes the following.
After the channel model is established, since NP<<LM, it is determined that the channel model is an underdetermined equation, and since a joint sparsity structure is present in the massive MIMO channel, it is determined to reconstruct a high-dimensional channel H from a low-dimensional vector Y by a channel estimation method based on compressed sensing.
Further, the compressed sensing method in Step 2 specifically includes the following.
Parameters are inputted as a measurement value Y, a sensing matrix Ψ, a step size S, and a maximum path delay L; a residual vector ν0=Y is initialized, a signal estimation value H=Ø∈LM×T is reconstructed, an index set Γ=Ø, let an initial iteration count k=1, and a step size count I=1 is updated. The method includes the following steps.
Step 201: A projection coefficient of each column of the sensing matrix on the residual vector is calculated, i.e., Z=ΨHνk−1.
Step 202: A matrix Z∈LM×R is converted into a matrix {circumflex over (Z)} of L×RM by joint sparsity of the channel, and {circumflex over (Z)} is summed by row to obtain {circumflex over (Z)}=ΣiRM∥{circumflex over (Z)}∥F2∈L×1.
Step 203: The index set updated: ΓkL=Γk−1L∪{arg max ({tilde over (Z)},S)}.
Step 204: The index set ΓkL is extended to ΓkLi=ΓkL+iL, 1≤i≤M, and the index sets are merged, Γk=ΓkL∪ΓkL2 . . . ∪ΓkLM.
Step 205: The estimation value of the channel H is solved by a least squares method: ĤΓ
Step 206: A matrix ĤΓ
Step 207: An index set is obtained: ΓkL=arg max (
Step 208: The index set
Step 209: The estimation value of the channel H is solved by a least squares method: {tilde over (H)}
Step 210: The residual is updated: ν′k=Y−Ψ{tilde over (H)}
Step 211: If ∥ν′k∥F>∥νk−1∥F, then {tilde over (Γ)}k={circumflex over (Γ)}k and operation is stopped.
Step 212: If ∥ν′k∥F=∥νk−1∥F, then I=I+1, S=S×I, {circumflex over (Γ)}k=
Step 213: If ∥ν′k∥F<∥νk−1∥F, then νk=ν′k, ΓkL=
Step 214: k=k+1, Step 201 to Step 214 are repeated until the stop condition is satisfied.
In the time-frequency block-sparse channel estimation method based on compressed sensing of the disclosure, with respect to an FDD downlink massive MIMO system, the iteration stop condition is adaptively determined based on the residual by using channel time-frequency block sparsity while there is no threshold parameter and the sparsity degree is unknown, which achieves more accurate channel estimation performance than conventional matching pursuit algorithms. Simulation shows that the algorithm can quickly and accurately recover massive MIMO channel information of which the sparsity degree is unknown.
The disclosure will be further described below with reference to the accompanying drawings and embodiments.
To make the objectives, technical solutions, and advantages of the disclosure more apparent, the disclosure will be described in further detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are merely illustrative of the disclosure and are not intended to limit the disclosure.
In an embodiment of the disclosure, an FDD downlink massive MIMO system is considered, in which an antenna quantity of a base station is M=20, and U=6 single-antenna users are simultaneously served. A total number of subcarriers of OFDM symbols is N=4096, where NP=100 subcarriers are used to transmit pilot signals. Pilots are placed all in the same manner; namely, they are distributed randomly and the pilots among different antennas are orthogonal to each other. A channel length L is 160, and a TU-6 channel model is adopted, where a number of paths S=6, path delays are respectively 0.0, 0.2, 0.5, 1.6, 2.3, 5, and path gains are respectively −3, 0, −2, −6, −8, −10. Let a coherence time T of the channel be T=4 OFDM symbols. Based on a time-frequency block sparsity and a compressed sensing framework of a massive MIMO channel, the channel estimation method includes the following steps.
Step 1: A pilot signal and a reception signal of a transmitting end are inputted, and a channel model is established as Y=ΨH+V according to the signal.
where Y∈N
Step 2: A sparse signal estimation value {tilde over (H)} is solved by a compressed sensing method according to the channel model obtained in Step 1 to further calculate an index set {tilde over (Γ)}k.
The compressed sensing method in Step 2 specifically includes the following.
Parameters are inputted as a measurement value Y, a sensing matrix Ψ, a step size S, and a maximum path delay L; a residual vector ν0=Y is initialized, a signal estimation value H=Ø∈LM×T is reconstructed, an index set Γ=Ø, letting an initial iteration count k=1, and a step size count I=1 is updated; the method includes the following steps.
Step 201: A projection coefficient of each column of the sensing matrix on the residual vector is calculated, i.e., Z=ΨHνk−1.
Step 202: A matrix Z∈LM×R is converted into a matrix {circumflex over (Z)} of L×RM by joint sparsity of the channel, and {circumflex over (Z)} is summed by row to obtain {tilde over (Z)}=ΣiRM∥{circumflex over (Z)}∥F2∈L×1.
Step 203: The index set is updated: ΓkL=Γk−1L∪{arg max ({tilde over (Z)}, S)}.
Step 204: The index set ΓkL is extended to ΓkLi=ΓkL+iL, 1≤i≤M, and the index sets are merged, Γk=ΓkL∪ΓkL2 . . . ∪ΓkLM.
Step 205: The estimation value of the channel H is solved by a least squares method: ĤΓ
Step 206: A matrix ĤΓ
Step 207: An index set is obtained:
Step 208: The index set
Step 209: The estimation value of the channel H is solved by a least squares method: {tilde over (H)}
Step 210: The residual is updated: ν′k=Y−Ψ{tilde over (H)}
Step 211: If ∥ν′k∥F>∥νk−1∥F, then {tilde over (Γ)}k={circumflex over (Γ)}k and operation is stopped.
Step 212: If ∥ν′k∥F=∥νk−1∥F, then I=I+1, S=S×I, {circumflex over (Γ)}k=
Step 213: If ∥ν′k∥F<∥νk−1∥F, then νk=ν′k, ΓkL=
Step 214: k=k+1; Step 201 to Step 214 are repeated until the stop condition is satisfied.
Step 3: According to the index set {tilde over (Γ)}k obtained in Step 2, a channel matrix estimation value {tilde over (H)}{tilde over (Γ)}
To evaluate the performance of the disclosure, when the antenna quantity M is 16, the step size s is 2, and a threshold parameter μ of the algorithm reconstruction precision is all 0.001, normalized least mean square errors of channel estimation algorithms at different signal-to-noise ratios are calculated, and the result is shown in
To further evaluate the performance of the disclosure, when the signal-to-noise ratio is 20 dB, the step size s is 2, the threshold parameter μ of the algorithm reconstruction precision is all 0.001, normalized least mean square errors of channel estimation algorithms at different transmitting antennas of the base station are calculated, and the result is shown in
The normalized least mean square error is defined as follows:
where Ne represents an operation count of the algorithm at each signal-to-noise ratio, and herein, Ne is 20.
According to
According to
The time-frequency block-sparse channel estimation method based on compressed sensing in the embodiment of the disclosure, i.e., a generalized block adaptive gBAMP algorithm, has good reconstruction performance and is applicable to occasions requiring pilot-assisted channel estimation of a wireless communication system.
Simulation shows that the method of the disclosure can quickly and accurately recover massive MIMO channel information of which a sparsity degree is unknown.
It will be understood that modifications and variations may be made by persons skilled in the art according to the above description, and all such modifications and variations are intended to be included within the scope of the disclosure as defined in the appended claims.
Claims
1. A time-frequency block-sparse channel estimation method based on compressed sensing, wherein an orthogonal frequency-division multiplexing (OFDM) system of a downlink frequency-division duplexing (FDD) massive MIMO channel model is initialized, supposing M antennas are disposed at a base station end and U single-antenna users are simultaneously served, and let there be N subcarriers in the OFDM system, wherein NP subcarriers are used to transmit pilot signals, and L is a maximum path delay, considering observing in R adjacent OFDM symbols, the method comprising:
- Step 1: inputting a pilot signal and a reception signal of a transmitting end, and establishing a channel model as Y=ΨH+V according to the signal,
- wherein Y∈NP×R is a reception signal matrix, H∈LM×R is a channel matrix, Ψ∈NP×LM is a pilot matrix, V∈NP×R is a noise matrix;
- Step 2: solving a sparse signal estimation value {tilde over (H)} by a compressed sensing method according to the channel model obtained in Step 1 to further calculate an index set {tilde over (Γ)}k; and
- Step 3: solving a channel matrix estimation value {tilde over (H)}{tilde over (Γ)}k according to the index set {tilde over (Γ)}k obtained in Step 2, i.e., {tilde over (H)}{tilde over (Γ)}k=Ψ{tilde over (Γ)}k†Y, wherein a superscript “†” represents a pseudoinverse, i.e., Ψ{tilde over (Γ)}k† represents a pseudoinverse with respect to Ψ{tilde over (Γ)}k, and after a baseband signal is demodulated, outputting data information of the transmitting end according to the obtained channel matrix estimation value {tilde over (H)}{tilde over (Γ)}k.
2. The time-frequency block-sparse channel estimation method based on compressed sensing according to claim 1, wherein Step 1 further comprises:
- after establishing the channel model, since NP<<LM, determining that the channel model is an underdetermined equation, and since a joint sparsity structure is present in the massive MIMO channel, determining to reconstruct a high-dimensional channel H from a low-dimensional vector Y by a channel estimation method based on compressed sensing.
3. The time-frequency block-sparse channel estimation method based on compressed sensing according to claim 1, wherein the compressed sensing method in Step 2 specifically comprises:
- inputting parameters as a measurement value Y, a sensing matrix W, a step size S, and a maximum path delay L; initializing a residual vector ν0=Y, reconstructing a signal estimation value H=Ø∈LM×T, an index set r=0, letting an initial iteration count k=1, and updating a step size count I=1, the method comprising:
- Step 201: calculating a projection coefficient of each column of the sensing matrix on the residual vector, i.e., Z=ΨHνk−1;
- Step 202: converting a matrix Z∈LM×R into a matrix {circumflex over (Z)} of L×RM by joint sparsity of the channel, and summing {circumflex over (Z)} by row to obtain {circumflex over (Z)}=ΣiRM∥{circumflex over (Z)}∥F2∈L×1;
- Step 203: updating the index set: ΓkL=Γk−1L∪{arg max ({tilde over (Z)},S)};
- Step 204: extending the index set ΓkL to ΓkLi=ΓkL+iL, 1≤i≤M, and merging the index sets, Γk=ΓkL∪ΓkL2... ∪ΓkLM;
- Step 205: solving the estimation value of the channel H by a least squares method: ĤΓkk=ΨΓk†Y;
- Step 206: converting a matrix ĤΓkk∈LM×R into a matrix H̆Γkk of L×RM, and summing H̆Γkk by row to obtain HΓkk=ΣiRMH̆Γkk∈L×1;
- Step 207: obtaining an index set: ΓkL=arg max (HΓkk, S);
- Step 208: extending the index set ΓkL to ΓkLi=ΓkL+iL, 1≤i≤M, and merging the index sets, Γk=ΓkL∪ΓkL2... ∪ΓkLM;
- Step 209: solving the estimation value of the channel H by a least squares method: {tilde over (H)}Γkk=ΨΓk†Y;
- Step 210: updating the residual: ν′k=Y−Ψ{tilde over (H)}Γkk;
- Step 211: if ∥ν′k∥F>∥νk−1∥F, then {tilde over (Γ)}k={circumflex over (Γ)}k and stopping operation;
- Step 212: if ∥ν′k∥F=∥νk−1∥F, then I=I+1, S=S×I, {circumflex over (Γ)}k=Γk;
- Step 213: if ∥ν′k∥F<∥νk−1∥F, then νk=ν′k, ΓkL=ΓkL; and
- Step 214: k=k+1, repeating Step 201 to Step 214 until the stop condition is satisfied.
Type: Application
Filed: Jan 28, 2021
Publication Date: Dec 2, 2021
Applicant: WUHAN UNIVERSITY (HUBEI)
Inventors: Yigang HE (Hubei), Yuan HUANG (Hubei), Liulu HE (Hubei), Chaolong ZHANG (Hubei), Bolun DU (Hubei)
Application Number: 17/161,628