Electronic Devices Having Side-Mounted Antenna Modules

An electronic device may be provided with a sidewall and an antenna module pressed against an interior surface of the sidewall. The module may include a phased antenna array. The sidewall may have apertures aligned with respective antenna in the array. The antennas may convey radio-frequency signals in first and second frequency bands greater than 10 GHz and with vertical and horizontal polarizations. Each aperture may include a corresponding cavity with non-linear cavity walls. The antennas may excite resonant cavity modes of the cavities that cause the cavities to radiate the radio-frequency signals as waveguide radiators. At the same time, the apertures may form a smooth impedance transition between the antennas and free space for the radio-frequency signals of both the horizontal and vertical polarizations.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description

This application claims the benefit of provisional patent application No. 63/047,809, filed Jul. 2, 2020, which is hereby incorporated by reference herein in its entirety.

BACKGROUND

This relates generally to electronic devices and, more particularly, to electronic devices with wireless circuitry.

Electronic devices often include wireless circuitry. For example, cellular telephones, computers, and other devices often contain antennas and wireless transceivers for supporting wireless communications.

It may be desirable to support wireless communications in millimeter wave and centimeter wave communications bands. Millimeter wave communications, which are sometimes referred to as extremely high frequency (EHF) communications, and centimeter wave communications involve communications at frequencies of about 10-300 GHz. Operation at these frequencies may support high bandwidths but may raise significant challenges. For example, radio-frequency communications in millimeter and centimeter wave communications bands can be characterized by substantial attenuation and/or distortion during signal propagation through various mediums. In addition, the presence of conductive electronic device components can make it difficult to incorporate circuitry for handling millimeter and centimeter wave communications into the electronic device.

It would therefore be desirable to be able to provide electronic devices with improved wireless circuitry such as wireless circuitry that supports millimeter and centimeter wave communications.

SUMMARY

An electronic device may be provided with a housing, a display, and wireless circuitry. The housing may include peripheral conductive housing structures that run around a periphery of the device. The display may include a display cover layer mounted to the peripheral conductive housing structures. The wireless circuitry may include a phased antenna array that conveys radio-frequency signals in first and second frequency bands between 10 GHz and 300 GHz.

The peripheral conductive housing structures may have an interior surface at the interior of the device and an exterior surface at the exterior of the device. The phased antenna array may be formed on a substrate in an antenna module. The substrate may be pressed against the interior surface of the peripheral conductive housing structures. A set of apertures may be formed in the peripheral conductive housing structures. Each aperture may be aligned with a respective antenna in the phased antenna array. The antennas in the phased antenna array may convey radio-frequency signals through the apertures. The antennas may be stacked patch antennas that convey radio-frequency signals in the first and second frequency bands with orthogonal vertical and horizontal polarizations.

Each aperture may include a corresponding cavity with non-linear cavity walls extending from the interior surface to the exterior surface. The antennas may excite resonant cavity modes of the cavities (e.g., in both the vertical and horizontal polarizations). This may cause the cavities to resonate and to radiate the radio-frequency signals (e.g., as waveguide radiators in the peripheral conductive housing structures). At the same time, the apertures may serve to match an impedance of the antennas to a free space impedance at the exterior of the device. For example, each of the apertures may have a length and a width. The width may be less than the length. The cavities may be wider at the exterior surface than at the interior surface. This may configure the apertures to form a smooth impedance transition from the antennas to free space for the radio-frequency signals of both the horizontal and vertical polarizations.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view of an illustrative electronic device in accordance with some embodiments.

FIG. 2 is a schematic diagram of illustrative circuitry in an electronic device in accordance with some embodiments.

FIG. 3 is a schematic diagram of illustrative wireless circuitry in accordance with some embodiments.

FIG. 4 is a diagram of an illustrative phased antenna array that may be adjusted using control circuitry to direct a beam of signals in accordance with some embodiments.

FIG. 5 is a perspective view of illustrative patch antenna structures in accordance with some embodiments.

FIG. 6 is a perspective view of an illustrative antenna module in accordance with some embodiments.

FIG. 7 is a front view of an illustrative antenna module in accordance with some embodiments.

FIG. 8 is a front view of an illustrative electronic device showing exemplary locations for mounting an antenna module that radiates through peripheral conductive housing structures in accordance with some embodiments.

FIG. 9 is a side view of an illustrative electronic device having peripheral conductive housing structures with apertures that are aligned with an antenna module in accordance with some embodiments.

FIG. 10 is a cross-sectional top view of an illustrative electronic device having an antenna module that radiates through apertures in peripheral conductive housing structures in accordance with some embodiments.

FIG. 11 is a cross-sectional side view of an illustrative electronic device having an antenna module that radiates through apertures in peripheral conductive housing structures in accordance with some embodiments.

FIG. 12 is a plot of antenna performance (gain) as a function of frequency for an illustrative antenna module that radiates through apertures in peripheral conductive housing structures in accordance with some embodiments.

DETAILED DESCRIPTION

An electronic device such as electronic device 10 of FIG. 1 may contain wireless circuitry. The wireless circuitry may include one or more antennas. The antennas may include phased antenna arrays that are used for performing wireless communications using millimeter and centimeter wave signals. Millimeter wave signals, which are sometimes referred to as extremely high frequency (EHF) signals, propagate at frequencies above about 30 GHz (e.g., at 60 GHz or other frequencies between about 30 GHz and 300 GHz). Centimeter wave signals propagate at frequencies between about 10 GHz and 30 GHz. If desired, device 10 may also contain antennas for handling satellite navigation system signals, cellular telephone signals, local wireless area network signals, near-field communications, light-based wireless communications, or other wireless communications.

Electronic device 10 may be a portable electronic device or other suitable electronic device. For example, electronic device 10 may be a laptop computer, a tablet computer, a somewhat smaller device such as a wrist-watch device, pendant device, headphone device, earpiece device, or other wearable or miniature device, a handheld device such as a cellular telephone, a media player, or other small portable device. Device 10 may also be a set-top box, a desktop computer, a display into which a computer or other processing circuitry has been integrated, a display without an integrated computer, a wireless access point, a wireless base station, an electronic device incorporated into a kiosk, building, or vehicle, or other suitable electronic equipment.

Device 10 may include a housing such as housing 12. Housing 12, which may sometimes be referred to as a case, may be formed of plastic, glass, ceramics, fiber composites, metal (e.g., stainless steel, aluminum, etc.), other suitable materials, or a combination of these materials. In some situations, parts of housing 12 may be formed from dielectric or other low-conductivity material (e.g., glass, ceramic, plastic, sapphire, etc.). In other situations, housing 12 or at least some of the structures that make up housing 12 may be formed from metal elements.

Device 10 may, if desired, have a display such as display 14. Display 14 may be mounted on the front face of device 10. Display 14 may be a touch screen that incorporates capacitive touch electrodes or may be insensitive to touch. The rear face of housing 12 (i.e., the face of device 10 opposing the front face of device 10) may have a substantially planar housing wall such as rear housing wall 12R (e.g., a planar housing wall). Rear housing wall 12R may have slots that pass entirely through the rear housing wall and that therefore separate portions of housing 12 from each other. Rear housing wall 12R may include conductive portions and/or dielectric portions. If desired, rear housing wall 12R may include a planar metal layer covered by a thin layer or coating of dielectric such as glass, plastic, sapphire, or ceramic. Housing 12 may also have shallow grooves that do not pass entirely through housing 12. The slots and grooves may be filled with plastic or other dielectric. If desired, portions of housing 12 that have been separated from each other (e.g., by a through slot) may be joined by internal conductive structures (e.g., sheet metal or other metal members that bridge the slot).

Housing 12 may include peripheral housing structures such as peripheral structures 12W. Conductive portions of peripheral structures 12W and conductive portions of rear housing wall 12R may sometimes be referred to herein collectively as conductive structures of housing 12. Peripheral structures 12W may run around the periphery of device 10 and display 14. In configurations in which device 10 and display 14 have a rectangular shape with four edges, peripheral structures 12W may be implemented using peripheral housing structures that have a rectangular ring shape with four corresponding edges and that extend from rear housing wall 12R to the front face of device 10 (as an example). Peripheral structures 12W or part of peripheral structures 12W may serve as a bezel for display 14 (e.g., a cosmetic trim that surrounds all four sides of display 14 and/or that helps hold display 14 to device 10) if desired. Peripheral structures 12W may, if desired, form sidewall structures for device 10 (e.g., by forming a metal band with vertical sidewalls, curved sidewalls, etc.).

Peripheral structures 12W may be formed of a conductive material such as metal and may therefore sometimes be referred to as peripheral conductive housing structures, conductive housing structures, peripheral metal structures, peripheral conductive sidewalls, peripheral conductive sidewall structures, conductive housing sidewalls, peripheral conductive housing sidewalls, sidewalls, sidewall structures, or a peripheral conductive housing member (as examples). Peripheral conductive housing structures 12W may be formed from a metal such as stainless steel, aluminum, or other suitable materials. One, two, or more than two separate structures may be used in forming peripheral conductive housing structures 12W.

It is not necessary for peripheral conductive housing structures 12W to have a uniform cross-section. For example, the top portion of peripheral conductive housing structures 12W may, if desired, have an inwardly protruding ledge that helps hold display 14 in place. The bottom portion of peripheral conductive housing structures 12W may also have an enlarged lip (e.g., in the plane of the rear surface of device 10). Peripheral conductive housing structures 12W may have substantially straight vertical sidewalls, may have sidewalls that are curved, or may have other suitable shapes. In some configurations (e.g., when peripheral conductive housing structures 12W serve as a bezel for display 14), peripheral conductive housing structures 12W may run around the lip of housing 12 (i.e., peripheral conductive housing structures 12W may cover only the edge of housing 12 that surrounds display 14 and not the rest of the sidewalls of housing 12).

Rear housing wall 12R may lie in a plane that is parallel to display 14. In configurations for device 10 in which some or all of rear housing wall 12R is formed from metal, it may be desirable to form parts of peripheral conductive housing structures 12W as integral portions of the housing structures forming rear housing wall 12R. For example, rear housing wall 12R of device 10 may include a planar metal structure and portions of peripheral conductive housing structures 12W on the sides of housing 12 may be formed as flat or curved vertically extending integral metal portions of the planar metal structure (e.g., housing structures 12R and 12W may be formed from a continuous piece of metal in a unibody configuration). Housing structures such as these may, if desired, be machined from a block of metal and/or may include multiple metal pieces that are assembled together to form housing 12. Rear housing wall 12R may have one or more, two or more, or three or more portions. Peripheral conductive housing structures 12W and/or conductive portions of rear housing wall 12R may form one or more exterior surfaces of device 10 (e.g., surfaces that are visible to a user of device 10) and/or may be implemented using internal structures that do not form exterior surfaces of device 10 (e.g., conductive housing structures that are not visible to a user of device 10 such as conductive structures that are covered with layers such as thin cosmetic layers, protective coatings, and/or other coating layers that may include dielectric materials such as glass, ceramic, plastic, or other structures that form the exterior surfaces of device 10 and/or serve to hide peripheral conductive housing structures 12W and/or conductive portions of rear housing wall 12R from view of the user).

Display 14 may have an array of pixels that form an active area AA that displays images for a user of device 10. For example, active area AA may include an array of display pixels. The array of pixels may be formed from liquid crystal display (LCD) components, an array of electrophoretic pixels, an array of plasma display pixels, an array of organic light-emitting diode display pixels or other light-emitting diode pixels, an array of electrowetting display pixels, or display pixels based on other display technologies. If desired, active area AA may include touch sensors such as touch sensor capacitive electrodes, force sensors, or other sensors for gathering a user input.

Display 14 may have an inactive border region that runs along one or more of the edges of active area AA. Inactive area IA of display 14 may be free of pixels for displaying images and may overlap circuitry and other internal device structures in housing 12. To block these structures from view by a user of device 10, the underside of the display cover layer or other layers in display 14 that overlap inactive area IA may be coated with an opaque masking layer in inactive area IA. The opaque masking layer may have any suitable color. Inactive area IA may include a recessed region such as notch 8 that extends into active area AA. Active area AA may, for example, be defined by the lateral area of a display module for display 14 (e.g., a display module that includes pixel circuitry, touch sensor circuitry, etc.). The display module may have a recess or notch in upper region 20 of device 10 that is free from active display circuitry (i.e., that forms notch 8 of inactive area IA). Notch 8 may be a substantially rectangular region that is surrounded (defined) on three sides by active area AA and on a fourth side by peripheral conductive housing structures 12W.

Display 14 may be protected using a display cover layer such as a layer of transparent glass, clear plastic, transparent ceramic, sapphire, or other transparent crystalline material, or other transparent layer(s). The display cover layer may have a planar shape, a convex curved profile, a shape with planar and curved portions, a layout that includes a planar main area surrounded on one or more edges with a portion that is bent out of the plane of the planar main area, or other suitable shapes. The display cover layer may cover the entire front face of device 10. In another suitable arrangement, the display cover layer may cover substantially all of the front face of device 10 or only a portion of the front face of device 10. Openings may be formed in the display cover layer. For example, an opening may be formed in the display cover layer to accommodate a button. An opening may also be formed in the display cover layer to accommodate ports such as speaker port 16 in notch 8 or a microphone port. Openings may be formed in housing 12 to form communications ports (e.g., an audio jack port, a digital data port, etc.) and/or audio ports for audio components such as a speaker and/or a microphone if desired.

Display 14 may include conductive structures such as an array of capacitive electrodes for a touch sensor, conductive lines for addressing pixels, driver circuits, etc. Housing 12 may include internal conductive structures such as metal frame members and a planar conductive housing member (sometimes referred to as a backplate) that spans the walls of housing 12 (i.e., a substantially rectangular sheet formed from one or more metal parts that is welded or otherwise connected between opposing sides of peripheral conductive structures 12W). The backplate may form an exterior rear surface of device 10 or may be covered by layers such as thin cosmetic layers, protective coatings, and/or other coatings that may include dielectric materials such as glass, ceramic, plastic, or other structures that form the exterior surfaces of device 10 and/or serve to hide the backplate from view of the user. Device 10 may also include conductive structures such as printed circuit boards, components mounted on printed circuit boards, and other internal conductive structures. These conductive structures, which may be used in forming a ground plane in device 10, may extend under active area AA of display 14, for example.

In regions 22 and 20, openings may be formed within the conductive structures of device 10 (e.g., between peripheral conductive housing structures 12W and opposing conductive ground structures such as conductive portions of rear housing wall 12R, conductive traces on a printed circuit board, conductive electrical components in display 14, etc.). These openings, which may sometimes be referred to as gaps, may be filled with air, plastic, and/or other dielectrics and may be used in forming slot antenna resonating elements for one or more antennas in device 10, if desired.

Conductive housing structures and other conductive structures in device 10 may serve as a ground plane for the antennas in device 10. The openings in regions 22 and 20 may serve as slots in open or closed slot antennas, may serve as a central dielectric region that is surrounded by a conductive path of materials in a loop antenna, may serve as a space that separates an antenna resonating element such as a strip antenna resonating element or an inverted-F antenna resonating element from the ground plane, may contribute to the performance of a parasitic antenna resonating element, or may otherwise serve as part of antenna structures formed in regions 22 and 20. If desired, the ground plane that is under active area AA of display 14 and/or other metal structures in device 10 may have portions that extend into parts of the ends of device 10 (e.g., the ground may extend towards the dielectric-filled openings in regions 22 and 20), thereby narrowing the slots in regions 22 and 20.

In general, device 10 may include any suitable number of antennas (e.g., one or more, two or more, three or more, four or more, etc.). The antennas in device 10 may be located at opposing first and second ends of an elongated device housing (e.g., ends at regions 22 and 20 of device 10 of FIG. 1), along one or more edges of a device housing, in the center of a device housing, in other suitable locations, or in one or more of these locations. The arrangement of FIG. 1 is merely illustrative.

Portions of peripheral conductive housing structures 12W may be provided with peripheral gap structures. For example, peripheral conductive housing structures 12W may be provided with one or more gaps such as gaps 18, as shown in FIG. 1. The gaps in peripheral conductive housing structures 12W may be filled with dielectric such as polymer, ceramic, glass, air, other dielectric materials, or combinations of these materials. Gaps 18 may divide peripheral conductive housing structures 12W into one or more peripheral conductive segments. The conductive segments that are formed in this way may form parts of antennas in device 10 if desired. Other dielectric openings may be formed in peripheral conductive housing structures 12W (e.g., dielectric openings other than gaps 18) and may serve as dielectric antenna windows for antennas mounted within the interior of device 10. Antennas within device 10 may be aligned with the dielectric antenna windows for conveying radio-frequency signals through peripheral conductive housing structures 12W. Antennas within device 10 may also be aligned with inactive area IA of display 14 for conveying radio-frequency signals through display 14.

In order to provide an end user of device 10 with as large of a display as possible (e.g., to maximize an area of the device used for displaying media, running applications, etc.), it may be desirable to increase the amount of area at the front face of device 10 that is covered by active area AA of display 14. Increasing the size of active area AA may reduce the size of inactive area IA within device 10. This may reduce the area behind display 14 that is available for antennas within device 10. For example, active area AA of display 14 may include conductive structures that serve to block radio-frequency signals handled by antennas mounted behind active area AA from radiating through the front face of device 10. It would therefore be desirable to be able to provide antennas that occupy a small amount of space within device 10 (e.g., to allow for as large of a display active area AA as possible) while still allowing the antennas to communicate with wireless equipment external to device 10 with satisfactory efficiency bandwidth.

In a typical scenario, device 10 may have one or more upper antennas and one or more lower antennas (as an example). An upper antenna may, for example, be formed at the upper end of device 10 in region 20. A lower antenna may, for example, be formed at the lower end of device 10 in region 22. Additional antennas may be formed along the edges of housing 12 extending between regions 20 and 22 if desired. The antennas may be used separately to cover identical communications bands, overlapping communications bands, or separate communications bands. The antennas may be used to implement an antenna diversity scheme or a multiple-input-multiple-output (MIMO) antenna scheme. Other antennas for covering any other desired frequencies may also be mounted at any desired locations within the interior of device 10. The example of FIG. 1 is merely illustrative. If desired, housing 12 may have other shapes (e.g., a square shape, cylindrical shape, spherical shape, combinations of these and/or different shapes, etc.).

A schematic diagram of illustrative components that may be used in device 10 is shown in FIG. 2. As shown in FIG. 2, device 10 may include control circuitry 28. Control circuitry 28 may include storage such as storage circuitry 30. Storage circuitry 30 may include hard disk drive storage, nonvolatile memory (e.g., flash memory or other electrically-programmable-read-only memory configured to form a solid-state drive), volatile memory (e.g., static or dynamic random-access-memory), etc. Control circuitry 28 may include processing circuitry such as processing circuitry 32. Processing circuitry 32 may be used to control the operation of device 10. Processing circuitry 32 may include on one or more microprocessors, microcontrollers, digital signal processors, host processors, baseband processor integrated circuits, application specific integrated circuits, central processing units (CPUs), etc. Control circuitry 28 may be configured to perform operations in device 10 using hardware (e.g., dedicated hardware or circuitry), firmware, and/or software. Software code for performing operations in device 10 may be stored on storage circuitry 30 (e.g., storage circuitry 30 may include non-transitory (tangible) computer readable storage media that stores the software code). The software code may sometimes be referred to as program instructions, software, data, instructions, or code. Software code stored on storage circuitry 30 may be executed by processing circuitry 32.

Control circuitry 28 may be used to run software on device 10 such as internet browsing applications, voice-over-internet-protocol (VOIP) telephone call applications, email applications, media playback applications, operating system functions, etc. To support interactions with external equipment, control circuitry 28 may be used in implementing communications protocols. Communications protocols that may be implemented using control circuitry 28 include internet protocols, wireless local area network protocols (e.g., IEEE 802.11 protocols—sometimes referred to as WiFi®), protocols for other short-range wireless communications links such as the Bluetooth® protocol or other WPAN protocols, IEEE 802.11ad protocols, cellular telephone protocols, MIMO protocols, antenna diversity protocols, satellite navigation system protocols, antenna-based spatial ranging protocols (e.g., radio detection and ranging (RADAR) protocols or other desired range detection protocols for signals conveyed at millimeter and centimeter wave frequencies), etc. Each communication protocol may be associated with a corresponding radio access technology (RAT) that specifies the physical connection methodology used in implementing the protocol.

Device 10 may include input-output circuitry 24. Input-output circuitry 24 may include input-output devices 26. Input-output devices 26 may be used to allow data to be supplied to device 10 and to allow data to be provided from device 10 to external devices. Input-output devices 26 may include user interface devices, data port devices, sensors, and other input-output components. For example, input-output devices may include touch screens, displays without touch sensor capabilities, buttons, joysticks, scrolling wheels, touch pads, key pads, keyboards, microphones, cameras, speakers, status indicators, light sources, audio jacks and other audio port components, digital data port devices, light sensors, gyroscopes, accelerometers or other components that can detect motion and device orientation relative to the Earth, capacitance sensors, proximity sensors (e.g., a capacitive proximity sensor and/or an infrared proximity sensor), magnetic sensors, and other sensors and input-output components.

Input-output circuitry 24 may include wireless circuitry such as wireless circuitry 34 for wirelessly conveying radio-frequency signals. While control circuitry 28 is shown separately from wireless circuitry 34 in the example of FIG. 2 for the sake of clarity, wireless circuitry 34 may include processing circuitry that forms a part of processing circuitry 32 and/or storage circuitry that forms a part of storage circuitry 30 of control circuitry 28 (e.g., portions of control circuitry 28 may be implemented on wireless circuitry 34). As an example, control circuitry 28 may include baseband processor circuitry or other control components that form a part of wireless circuitry 34.

Wireless circuitry 34 may include millimeter and centimeter wave transceiver circuitry such as millimeter/centimeter wave transceiver circuitry 38. Millimeter/centimeter wave transceiver circuitry 38 may support communications at frequencies between about 10 GHz and 300 GHz. For example, millimeter/centimeter wave transceiver circuitry 38 may support communications in Extremely High Frequency (EHF) or millimeter wave communications bands between about 30 GHz and 300 GHz and/or in centimeter wave communications bands between about 10 GHz and 30 GHz (sometimes referred to as Super High Frequency (SHF) bands). As examples, millimeter/centimeter wave transceiver circuitry 38 may support communications in an IEEE K communications band between about 18 GHz and 27 GHz, a Ka communications band between about 26.5 GHz and 40 GHz, a Ku communications band between about 12 GHz and 18 GHz, a V communications band between about 40 GHz and 75 GHz, a W communications band between about 75 GHz and 110 GHz, or any other desired frequency band between approximately 10 GHz and 300 GHz. If desired, millimeter/centimeter wave transceiver circuitry 38 may support IEEE 802.11ad communications at 60 GHz and/or 5th generation mobile networks or 5th generation wireless systems (5G) communications bands between 27 GHz and 90 GHz. Millimeter/centimeter wave transceiver circuitry 38 may be formed from one or more integrated circuits (e.g., multiple integrated circuits mounted on a common printed circuit in a system-in-package device, one or more integrated circuits mounted on different substrates, etc.).

If desired, millimeter/centimeter wave transceiver circuitry 38 (sometimes referred to herein simply as transceiver circuitry 38 or millimeter/centimeter wave circuitry 38) may perform spatial ranging operations using radio-frequency signals at millimeter and/or centimeter wave signals that are transmitted and received by millimeter/centimeter wave transceiver circuitry 38. The received signals may be a version of the transmitted signals that have been reflected off of external objects and back towards device 10. Control circuitry 28 may process the transmitted and received signals to detect or estimate a range between device 10 and one or more external objects in the surroundings of device 10 (e.g., objects external to device 10 such as the body of a user or other persons, other devices, animals, furniture, walls, or other objects or obstacles in the vicinity of device 10). If desired, control circuitry 28 may also process the transmitted and received signals to identify a two or three-dimensional spatial location of the external objects relative to device 10.

Spatial ranging operations performed by millimeter/centimeter wave transceiver circuitry 38 are unidirectional. Millimeter/centimeter wave transceiver circuitry 38 may perform bidirectional communications with external wireless equipment. Bidirectional communications involve both the transmission of wireless data by millimeter/centimeter wave transceiver circuitry 38 and the reception of wireless data that has been transmitted by external wireless equipment. The wireless data may, for example, include data that has been encoded into corresponding data packets such as wireless data associated with a telephone call, streaming media content, internet browsing, wireless data associated with software applications running on device 10, email messages, etc.

If desired, wireless circuitry 34 may include transceiver circuitry for handling communications at frequencies below 10 GHz such as non-millimeter/centimeter wave transceiver circuitry 36. Non-millimeter/centimeter wave transceiver circuitry 36 may include wireless local area network (WLAN) transceiver circuitry that handles 2.4 GHz and 5 GHz bands for Wi-Fi® (IEEE 802.11) communications, wireless personal area network (WPAN) transceiver circuitry that handles the 2.4 GHz Bluetooth® communications band, cellular telephone transceiver circuitry that handles cellular telephone communications bands from 700 to 960 MHz, 1710 to 2170 MHz, 2300 to 2700 MHz, and/or or any other desired cellular telephone communications bands between 600 MHz and 4000 MHz, GPS receiver circuitry that receives GPS signals at 1575 MHz or signals for handling other satellite positioning data (e.g., GLONASS signals at 1609 MHz), television receiver circuitry, AM/FM radio receiver circuitry, paging system transceiver circuitry, ultra-wideband (UWB) transceiver circuitry, near field communications (NFC) circuitry, etc. Non-millimeter/centimeter wave transceiver circuitry 36 and millimeter/centimeter wave transceiver circuitry 38 may each include one or more integrated circuits, power amplifier circuitry, low-noise input amplifiers, passive radio-frequency components, switching circuitry, transmission line structures, and other circuitry for handling radio-frequency signals. Non-millimeter/centimeter wave transceiver circuitry 36 may be omitted if desired.

Wireless circuitry 34 may include antennas 40. Non-millimeter/centimeter wave transceiver circuitry 36 may convey radio-frequency signals below 10 GHz using one or more antennas 40. Millimeter/centimeter wave transceiver circuitry 38 may convey radio-frequency signals above 10 GHz (e.g., at millimeter wave and/or centimeter wave frequencies) using antennas 40. In general, transceiver circuitry 36 and 38 may be configured to cover (handle) any suitable communications (frequency) bands of interest. The transceiver circuitry may convey radio-frequency signals using antennas 40 (e.g., antennas 40 may convey the radio-frequency signals for the transceiver circuitry). The term “convey radio-frequency signals” as used herein means the transmission and/or reception of the radio-frequency signals (e.g., for performing unidirectional and/or bidirectional wireless communications with external wireless communications equipment). Antennas 40 may transmit the radio-frequency signals by radiating the radio-frequency signals into free space (or to freespace through intervening device structures such as a dielectric cover layer). Antennas 40 may additionally or alternatively receive the radio-frequency signals from free space (e.g., through intervening devices structures such as a dielectric cover layer). The transmission and reception of radio-frequency signals by antennas 40 each involve the excitation or resonance of antenna currents on an antenna resonating element in the antenna by the radio-frequency signals within the frequency band(s) of operation of the antenna.

In satellite navigation system links, cellular telephone links, and other long-range links, radio-frequency signals are typically used to convey data over thousands of feet or miles. In Wi-Fi® and Bluetooth® links at 2.4 and 5 GHz and other short-range wireless links, radio-frequency signals are typically used to convey data over tens or hundreds of feet. Millimeter/centimeter wave transceiver circuitry 38 may convey radio-frequency signals over short distances that travel over a line-of-sight path. To enhance signal reception for millimeter and centimeter wave communications, phased antenna arrays and beam steering techniques may be used (e.g., schemes in which antenna signal phase and/or magnitude for each antenna in an array are adjusted to perform beam steering). Antenna diversity schemes may also be used to ensure that the antennas that have become blocked or that are otherwise degraded due to the operating environment of device 10 can be switched out of use and higher-performing antennas used in their place.

Antennas 40 in wireless circuitry 34 may be formed using any suitable antenna types. For example, antennas 40 may include antennas with resonating elements that are formed from stacked patch antenna structures, loop antenna structures, patch antenna structures, inverted-F antenna structures, slot antenna structures, planar inverted-F antenna structures, waveguide structures, monopole antenna structures, dipole antenna structures, helical antenna structures, Yagi (Yagi-Uda) antenna structures, hybrids of these designs, etc. In another suitable arrangement, antennas 40 may include antennas with dielectric resonating elements such as dielectric resonator antennas. If desired, one or more of antennas 40 may be cavity-backed antennas. Different types of antennas may be used for different bands and combinations of bands. For example, one type of antenna may be used in forming a non-millimeter/centimeter wave wireless link for non-millimeter/centimeter wave transceiver circuitry 36 and another type of antenna may be used in conveying radio-frequency signals at millimeter and/or centimeter wave frequencies for millimeter/centimeter wave transceiver circuitry 38. Antennas 40 that are used to convey radio-frequency signals at millimeter and centimeter wave frequencies may be arranged in one or more phased antenna arrays.

A schematic diagram of an antenna 40 that may be formed in a phased antenna array for conveying radio-frequency signals at millimeter and centimeter wave frequencies is shown in FIG. 3. As shown in FIG. 3, antenna 40 may be coupled to millimeter/centimeter (MM/CM) wave transceiver circuitry 38. Millimeter/centimeter wave transceiver circuitry 38 may be coupled to antenna feed 44 of antenna 40 using a transmission line path that includes radio-frequency transmission line 42. Radio-frequency transmission line 42 may include a positive signal conductor such as signal conductor 46 and may include a ground conductor such as ground conductor 48. Ground conductor 48 may be coupled to the antenna ground for antenna 40 (e.g., over a ground antenna feed terminal of antenna feed 44 located at the antenna ground). Signal conductor 46 may be coupled to the antenna resonating element for antenna 40. For example, signal conductor 46 may be coupled to a positive antenna feed terminal of antenna feed 44 located at the antenna resonating element.

In another suitable arrangement, antenna 40 may be a probe-fed antenna that is fed using a feed probe. In this arrangement, antenna feed 44 may be implemented as a feed probe. Signal conductor 46 may be coupled to the feed probe. Radio-frequency transmission line 42 may convey radio-frequency signals to and from the feed probe. When radio-frequency signals are being transmitted over the feed probe and the antenna, the feed probe may excite the resonating element for the antenna (e.g., may excite electromagnetic resonant modes of a dielectric antenna resonating element for antenna 40). The resonating element may radiate the radio-frequency signals in response to excitation by the feed probe. Similarly, when radio-frequency signals are received by the antenna (e.g., from free space), the radio-frequency signals may excite the resonating element for the antenna (e.g., may excite electromagnetic resonant modes of the dielectric antenna resonating element for antenna 40). This may produce antenna currents on the feed probe and the corresponding radio-frequency signals may be passed to the transceiver circuitry over the radio-frequency transmission line.

Radio-frequency transmission line 42 may include a stripline transmission line (sometimes referred to herein simply as a stripline), a coaxial cable, a coaxial probe realized by metalized vias, a microstrip transmission line, an edge-coupled microstrip transmission line, an edge-coupled stripline transmission lines, a waveguide structure, combinations of these, etc. Multiple types of transmission lines may be used to form the transmission line path that couples millimeter/centimeter wave transceiver circuitry 38 to antenna feed 44. Filter circuitry, switching circuitry, impedance matching circuitry, phase shifter circuitry, amplifier circuitry, and/or other circuitry may be interposed on radio-frequency transmission line 42, if desired.

Radio-frequency transmission lines in device 10 may be integrated into ceramic substrates, rigid printed circuit boards, and/or flexible printed circuits. In one suitable arrangement, radio-frequency transmission lines in device 10 may be integrated within multilayer laminated structures (e.g., layers of a conductive material such as copper and a dielectric material such as a resin that are laminated together without intervening adhesive) that may be folded or bent in multiple dimensions (e.g., two or three dimensions) and that maintain a bent or folded shape after bending (e.g., the multilayer laminated structures may be folded into a particular three-dimensional shape to route around other device components and may be rigid enough to hold its shape after folding without being held in place by stiffeners or other structures). All of the multiple layers of the laminated structures may be batch laminated together (e.g., in a single pressing process) without adhesive (e.g., as opposed to performing multiple pressing processes to laminate multiple layers together with adhesive).

FIG. 4 shows how antennas 40 for handling radio-frequency signals at millimeter and centimeter wave frequencies may be formed in a phased antenna array. As shown in FIG. 4, phased antenna array 54 (sometimes referred to herein as array 54, antenna array 54, or array 54 of antennas 40) may be coupled to radio-frequency transmission lines 42. For example, a first antenna 40-1 in phased antenna array 54 may be coupled to a first radio-frequency transmission line 42-1, a second antenna 40-2 in phased antenna array 54 may be coupled to a second radio-frequency transmission line 42-2, an Nth antenna 40-N in phased antenna array 54 may be coupled to an Nth radio-frequency transmission line 42-N, etc. While antennas 40 are described herein as forming a phased antenna array, the antennas 40 in phased antenna array 54 may sometimes also be referred to as collectively forming a single phased array antenna.

Antennas 40 in phased antenna array 54 may be arranged in any desired number of rows and columns or in any other desired pattern (e.g., the antennas need not be arranged in a grid pattern having rows and columns). During signal transmission operations, radio-frequency transmission lines 42 may be used to supply signals (e.g., radio-frequency signals such as millimeter wave and/or centimeter wave signals) from millimeter/centimeter wave transceiver circuitry 38 (FIG. 3) to phased antenna array 54 for wireless transmission. During signal reception operations, radio-frequency transmission lines 42 may be used to supply signals received at phased antenna array 54 (e.g., from external wireless equipment or transmitted signals that have been reflected off of external objects) to millimeter/centimeter wave transceiver circuitry 38 (FIG. 3).

The use of multiple antennas 40 in phased antenna array 54 allows beam steering arrangements to be implemented by controlling the relative phases and magnitudes (amplitudes) of the radio-frequency signals conveyed by the antennas. In the example of FIG. 4, antennas 40 each have a corresponding radio-frequency phase and magnitude controller 50 (e.g., a first phase and magnitude controller 50-1 interposed on radio-frequency transmission line 42-1 may control phase and magnitude for radio-frequency signals handled by antenna 40-1, a second phase and magnitude controller 50-2 interposed on radio-frequency transmission line 42-2 may control phase and magnitude for radio-frequency signals handled by antenna 40-2, an Nth phase and magnitude controller 50-N interposed on radio-frequency transmission line 42-N may control phase and magnitude for radio-frequency signals handled by antenna 40-N, etc.).

Phase and magnitude controllers 50 may each include circuitry for adjusting the phase of the radio-frequency signals on radio-frequency transmission lines 42 (e.g., phase shifter circuits) and/or circuitry for adjusting the magnitude of the radio-frequency signals on radio-frequency transmission lines 42 (e.g., power amplifier and/or low noise amplifier circuits). Phase and magnitude controllers 50 may sometimes be referred to collectively herein as beam steering circuitry (e.g., beam steering circuitry that steers the beam of radio-frequency signals transmitted and/or received by phased antenna array 54).

Phase and magnitude controllers 50 may adjust the relative phases and/or magnitudes of the transmitted signals that are provided to each of the antennas in phased antenna array 54 and may adjust the relative phases and/or magnitudes of the received signals that are received by phased antenna array 54. Phase and magnitude controllers 50 may, if desired, include phase detection circuitry for detecting the phases of the received signals that are received by phased antenna array 54. The term “beam” or “signal beam” may be used herein to collectively refer to wireless signals that are transmitted and received by phased antenna array 54 in a particular direction. The signal beam may exhibit a peak gain that is oriented in a particular pointing direction at a corresponding pointing angle (e.g., based on constructive and destructive interference from the combination of signals from each antenna in the phased antenna array). The term “transmit beam” may sometimes be used herein to refer to radio-frequency signals that are transmitted in a particular direction whereas the term “receive beam” may sometimes be used herein to refer to radio-frequency signals that are received from a particular direction.

If, for example, phase and magnitude controllers 50 are adjusted to produce a first set of phases and/or magnitudes for transmitted radio-frequency signals, the transmitted signals will form a transmit beam as shown by beam B1 of FIG. 4 that is oriented in the direction of point A. If, however, phase and magnitude controllers 50 are adjusted to produce a second set of phases and/or magnitudes for the transmitted signals, the transmitted signals will form a transmit beam as shown by beam B2 that is oriented in the direction of point B. Similarly, if phase and magnitude controllers 50 are adjusted to produce the first set of phases and/or magnitudes, radio-frequency signals (e.g., radio-frequency signals in a receive beam) may be received from the direction of point A, as shown by beam B1. If phase and magnitude controllers 50 are adjusted to produce the second set of phases and/or magnitudes, radio-frequency signals may be received from the direction of point B, as shown by beam B2.

Each phase and magnitude controller 50 may be controlled to produce a desired phase and/or magnitude based on a corresponding control signal 52 received from control circuitry 28 of FIG. 2 (e.g., the phase and/or magnitude provided by phase and magnitude controller 50-1 may be controlled using control signal 52-1, the phase and/or magnitude provided by phase and magnitude controller 50-2 may be controlled using control signal 52-2, etc.). If desired, the control circuitry may actively adjust control signals 52 in real time to steer the transmit or receive beam in different desired directions over time. Phase and magnitude controllers 50 may provide information identifying the phase of received signals to control circuitry 28 if desired.

When performing wireless communications using radio-frequency signals at millimeter and centimeter wave frequencies, the radio-frequency signals are conveyed over a line of sight path between phased antenna array 54 and external communications equipment. If the external object is located at point A of FIG. 4, phase and magnitude controllers 50 may be adjusted to steer the signal beam towards point A (e.g., to steer the pointing direction of the signal beam towards point A). Phased antenna array 54 may transmit and receive radio-frequency signals in the direction of point A. Similarly, if the external communications equipment is located at point B, phase and magnitude controllers 50 may be adjusted to steer the signal beam towards point B (e.g., to steer the pointing direction of the signal beam towards point B). Phased antenna array 54 may transmit and receive radio-frequency signals in the direction of point B. In the example of FIG. 4, beam steering is shown as being performed over a single degree of freedom for the sake of simplicity (e.g., towards the left and right on the page of FIG. 4). However, in practice, the beam may be steered over two or more degrees of freedom (e.g., in three dimensions, into and out of the page and to the left and right on the page of FIG. 4). Phased antenna array 54 may have a corresponding field of view over which beam steering can be performed (e.g., in a hemisphere or a segment of a hemisphere over the phased antenna array). If desired, device 10 may include multiple phased antenna arrays that each face a different direction to provide coverage from multiple sides of the device.

Any desired antenna structures may be used for implementing antennas 40. In one suitable arrangement that is sometimes described herein as an example, patch antenna structures may be used for implementing antennas 40. Antennas 40 that are implemented using patch antenna structures may sometimes be referred to herein as patch antennas. An illustrative patch antenna that may be used in phased antenna array 54 of FIG. 4 is shown in FIG. 5.

As shown in FIG. 5, antenna 40 may have a patch antenna resonating element 58 that is separated from and parallel to a ground plane such as antenna ground 56. Patch antenna resonating element 58 may lie within a plane such as the A-B plane of FIG. 5 (e.g., the lateral surface area of element 58 may lie in the A-B plane). Patch antenna resonating element 58 may sometimes be referred to herein as patch 58, patch element 58, patch resonating element 58, antenna resonating element 58, or resonating element 58. Antenna ground 56 may lie within a plane that is parallel to the plane of patch element 58. Patch element 58 and antenna ground 56 may therefore lie in separate parallel planes that are separated by distance 65. Patch element 58 and antenna ground 56 may be formed from conductive traces patterned on a dielectric substrate such as a rigid or flexible printed circuit board substrate, metal foil, stamped sheet metal, electronic device housing structures, or any other desired conductive structures.

The length of the sides of patch element 58 may be selected so that antenna 40 resonates at a desired operating frequency. For example, the sides of patch element 58 may each have a length 68 that is approximately equal to half of the wavelength of the signals conveyed by antenna 40 (e.g., the effective wavelength given the dielectric properties of the materials surrounding patch element 58). In one suitable arrangement, length 68 may be between 0.8 mm and 1.2 mm (e.g., approximately 1.1 mm) for covering a millimeter wave frequency band between 57 GHz and 70 GHz or between 1.6 mm and 2.2 mm (e.g., approximately 1.85 mm) for covering a millimeter wave frequency band between 37 GHz and 41 GHz, as just two examples.

The example of FIG. 5 is merely illustrative. Patch element 58 may have a square shape in which all of the sides of patch element 58 are the same length or may have a different rectangular shape. Patch element 58 may be formed in other shapes having any desired number of straight and/or curved edges.

To enhance the polarizations handled by antenna 40, antenna 40 may be provided with multiple feeds. As shown in FIG. 5, antenna 40 may have a first feed at antenna port P1 that is coupled to a first radio-frequency transmission line 42 such as radio-frequency transmission line 42V. Antenna 40 may have a second feed at antenna port P2 that is coupled to a second radio-frequency transmission line 42 such as radio-frequency transmission line 42H. The first antenna feed may have a first ground feed terminal coupled to antenna ground 56 (not shown in FIG. 5 for the sake of clarity) and a first positive antenna feed terminal 62V coupled to patch element 58. The second antenna feed may have a second ground feed terminal coupled to antenna ground 56 (not shown in FIG. 5 for the sake of clarity) and a second positive antenna feed terminal 62H on patch element 58.

Holes or openings such as openings 64 and 66 may be formed in antenna ground 56. Radio-frequency transmission line 42V may include a vertical conductor (e.g., a conductive through-via, conductive pin, metal pillar, solder bump, combinations of these, or other vertical conductive interconnect structures) that extends through opening 64 to positive antenna feed terminal 62V on patch element 58. Radio-frequency transmission line 42H may include a vertical conductor that extends through opening 66 to positive antenna feed terminal 62H on patch element 58. This example is merely illustrative and, if desired, other transmission line structures may be used (e.g., coaxial cable structures, stripline transmission line structures, etc.).

When using the first antenna feed associated with port P1, antenna 40 may transmit and/or receive radio-frequency signals having a first polarization (e.g., the electric field E1 of radio-frequency signals 70 associated with port P1 may be oriented parallel to the B-axis in FIG. 5). When using the antenna feed associated with port P2, antenna 40 may transmit and/or receive radio-frequency signals having a second polarization (e.g., the electric field E2 of radio-frequency signals 70 associated with port P2 may be oriented parallel to the A-axis of FIG. 5 so that the polarizations associated with ports P1 and P2 are orthogonal to each other).

One of ports P1 and P2 may be used at a given time so that antenna 40 operates as a single-polarization antenna or both ports may be operated at the same time so that antenna 40 operates with other polarizations (e.g., as a dual-polarization antenna, a circularly-polarized antenna, an elliptically-polarized antenna, etc.). If desired, the active port may be changed over time so that antenna 40 can switch between covering vertical or horizontal polarizations at a given time. Ports P1 and P2 may be coupled to different phase and magnitude controllers 50 (FIG. 3) or may both be coupled to the same phase and magnitude controller 50. If desired, ports P1 and P2 may both be operated with the same phase and magnitude at a given time (e.g., when antenna 40 acts as a dual-polarization antenna). If desired, the phases and magnitudes of radio-frequency signals conveyed over ports P1 and P2 may be controlled separately and varied over time so that antenna 40 exhibits other polarizations (e.g., circular or elliptical polarizations).

If care is not taken, antennas 40 such as dual-polarization patch antennas of the type shown in FIG. 5 may have insufficient bandwidth for covering relatively wide ranges of frequencies. It may be desirable for antenna 40 to be able to cover both a first frequency band and a second frequency band at frequencies higher than the first frequency band. In one suitable arrangement that is described herein as an example, the first frequency band may include frequencies from about 24-30 GHz whereas the second frequency band includes frequencies from about 37-40 GHz. In these scenarios, patch element 58 may not exhibit sufficient bandwidth on its own to cover an entirety of both the first and second frequency bands.

If desired, antenna 40 may include one or more additional patch elements 60 that are stacked over patch element 58. Each patch element 60 may partially or completely overlap patch element 58. Patch elements 60 may have sides with lengths other than length 68, which configure patch elements 60 to radiate at different frequencies than patch element 58, thereby extending the overall bandwidth of antenna 40. Patch elements 60 may include directly-fed patch elements (e.g., patch elements with positive antenna feed terminals directly coupled to transmission lines) and/or parasitic antenna resonating elements that are not directly fed by antenna feed terminals and transmission lines. One or more patch elements 60 may be coupled to patch element 58 by one or more conductive through vias if desired (e.g., so that at least one patch element 60 and patch element 58 are coupled together as a single directly fed resonating element). In scenarios where patch elements 60 are directly fed, patch elements 60 may include two positive antenna feed terminals for conveying signals with different (e.g., orthogonal) polarizations and/or may include a single positive antenna feed terminal for conveying signals with a single polarization. The combined resonance of patch element 58 and each of patch elements 60 may configure antenna 40 to radiate with satisfactory antenna efficiency across an entirety of both the first and second frequency bands (e.g., from 24-30 GHz and from 37-40 GHz). The example of FIG. 5 is merely illustrative. Patch elements 60 may be omitted if desired. Patch elements 60 may be rectangular, square, cross-shaped, or any other desired shape having any desired number of straight and/or curved edges. Patch element 60 may be provided at any desired orientation relative to patch element 58. Antenna 40 may have any desired number of feeds. Other antenna types may be used if desired (e.g., dipole antennas, monopole antennas, slot antennas, etc.).

If desired, phased antenna array 54 may be integrated with other circuitry such as a radio-frequency integrated circuit to form an integrated antenna module. FIG. 6 is a rear perspective view of an illustrative integrated antenna module for handling signals at frequencies greater than 10 GHz in device 10. As shown in FIG. 6, device 10 may be provided with an integrated antenna module such as integrated antenna module 72 (sometimes referred to herein as antenna module 72 or module 72).

Antenna module 72 may include phased antenna array 54 of antennas 40 formed on a dielectric substrate such as substrate 85. Substrate 85 may be, for example, a rigid or printed circuit board or other dielectric substrate. Substrate 85 may be a stacked dielectric substrate that includes multiple stacked dielectric layers 80 (e.g., multiple layers of printed circuit board substrate such as multiple layers of fiberglass-filled epoxy, rigid printed circuit board material, flexible printed circuit board material, ceramic, plastic, glass, or other dielectrics). Phased antenna array 54 may include any desired number of antennas 40 arranged in any desired pattern.

Antennas 40 in phased antenna array 54 may include antenna elements such as patch elements 91 (e.g., patch elements 91 may form patch element 58 and/or one or more patch elements 60 of FIG. 5). Ground traces 82 may be patterned onto substrate 85 (e.g., conductive traces forming antenna ground 56 of FIG. 5 for each of the antennas 40 in phased antenna array 54). Patch elements 91 may be patterned on (bottom) surface 78 of substrate 85 or may be embedded within dielectric layers 80 at or adjacent to surface 78. Only two patch elements 91 are shown in FIG. 6 for the sake of clarity. This is merely illustrative and, in general, antennas 40 may include any desired number of patch elements 91.

One or more electrical components 74 may be mounted on (top) surface 76 of substrate 85 (e.g., the surface of substrate 85 opposite surface 78 and patch elements 91). Component 74 may, for example, include an integrated circuit (e.g., an integrated circuit chip) or other circuitry mounted to surface 76 of substrate 85. Component 74 may include radio-frequency components such as amplifier circuitry, phase shifter circuitry (e.g., phase and magnitude controllers 50 of FIG. 4), and/or other circuitry that operates on radio-frequency signals. Component 74 may sometimes be referred to herein as radio-frequency integrated circuit (RFIC) 74. However, this is merely illustrative and, in general, the circuitry of RFIC 74 need not be formed on an integrated circuit.

The dielectric layers 80 in substrate 85 may include a first set of layers 86 (sometimes referred to herein as antenna layers 86) and a second set of layers 84 (sometimes referred to herein as transmission line layers 84). Ground traces 82 may separate antenna layers 86 from transmission line layers 84. Conductive traces or other metal layers on transmission line layers 84 may be used in forming transmission line structures such as radio-frequency transmission lines 42 of FIG. 4 (e.g., radio-frequency transmission lines 42V and 42H of FIG. 5). For example, conductive traces on transmission line layers 84 may be used in forming stripline or microstrip transmission lines that are coupled between the antenna feeds for antennas 40 (e.g., over conductive vias extending through antenna layers 86) and RFIC 74 (e.g., over conductive vias extending through transmission line layers 84). A board-to-board connector (not shown) may couple RFIC 74 to the baseband and/or transceiver circuitry for phased antenna array 54 (e.g., millimeter/centimeter wave transceiver circuitry 38 of FIG. 3).

If desired, each antenna 40 in phased antenna array 54 may be laterally surrounded by fences of conductive vias 88 (e.g., conductive vias extending parallel to the X-axis and through antenna layers 86 of FIG. 6). The fences of conductive vias 88 for phased antenna array 54 may be shorted to ground traces 82 so that the fences of conductive vias 88 are held at a ground potential. Conductive vias 88 may extend downwards to surface 78 or to the same dielectric layer 80 as the bottom-most conductive patch 91 in phased antenna array 54.

The fences of conductive vias 88 may be opaque at the frequencies covered by antennas 40. Each antenna 40 may lie within a respective antenna cavity 92 having conductive cavity walls defined by a corresponding set of fences of conductive vias 88 in antenna layers 86. The fences of conductive vias 88 may help to ensure that each antenna 40 in phased antenna array 54 is suitably isolated, for example. Phased antenna array 54 may include a number of antenna unit cells 90. Each antenna unit cell 90 may include respective fences of conductive vias 88, a respective antenna cavity 92 defined by (e.g., laterally surrounded by) those fences of conductive vias, and a respective antenna 40 (e.g., set of patch elements 91) within that antenna cavity 92.

FIG. 7 is a front view of antenna module 72 (e.g., taken in the direction of arrow 77 of FIG. 6). In the example of FIG. 7, phased antenna array 54 includes a single row of antennas 40 (only three of which are illustrated in FIG. 7 for the sake of clarity). This is merely illustrative and, in general, phased antenna array 54 may include any desired number of antennas arranged in any desired pattern.

As shown in FIG. 7, phased antenna array 54 may include a number of antenna unit cells 90 that each include fences of conductive vias 88, an antenna cavity 92 surrounded by the fences of conductive vias, and an antenna 40 having conductive patches 91 within the antenna cavity. Each antenna 40 may include any desired number of patch elements 91 for covering one or more frequency bands (e.g., patch elements 91 that are vertically stacked on one or more dielectric layers 80 of FIG. 6). The outer-most patch element 91 in each antenna 40 may be patterned onto surface 78 of substrate 85 or may be embedded within the layers of substrate 85.

In the example of FIG. 7, each antenna cavity 92 has a rectangular shape (e.g., a rectangular periphery, outline, or footprint). This is merely illustrative and, in general, antenna cavities 92 may have any desired shape (e.g., shapes having one or more curved and/or straight edges). If desired, antenna cavities 92 need not have the same size and antennas 40 need not cover identical frequency bands across the entirety of phased antenna array 54.

If desired, each antenna cavity 92 and thus each antenna unit cell 90 may have a length L1 (parallel to the Y-axis) and a width W1 (parallel to the Z-axis). Length L1 may be greater than width W1, may be less than width W1, or may be equal to width W1. Each conductive via 88 may be separated from two adjacent conductive vias of the same antenna unit cell 90 by a distance that is sufficiently small such that the fences of conductive vias appear as a solid opaque wall to radio-frequency signals at the frequencies of operation of antenna 40. For example, each conductive via 88 may be separated by less than about one-eighth of the effective wavelength of operation of antennas 40 from two adjacent conductive vias 88. Metallization 93 may couple the fences of conductive vias 88 in adjacent antenna unit cells 90 together. Metallization 93 may include ground traces and vias that flood the region of substrate 85 between antenna unit cells 90 such that these regions appear as a solid conductor at the frequencies of operation of antennas 40.

Antenna unit cells 90 may be spaced apart such that the center of each antenna 40 is separated from the center of the antenna in the adjacent unit cell(s) of phased antenna array 54 by distance D. Distance D may, for example, be approximately equal to (e.g., within 15% of) one-half of the effective wavelength corresponding to a frequency in the frequency band of operation of antennas 40. In the example where antennas 40 are dual-band antennas for covering both the first frequency band from 24-30 GHz and the second frequency band from 37-40 GHz, distance D may be approximately equal to one-half of the effective wavelength corresponding to a frequency in the first frequency band, a frequency in the second frequency band, or a frequency between the first and second frequency bands (e.g., distance D may be approximately 3-7 mm, 3-6 mm, 5 mm, or other distances). The effective wavelength is equal to a free space wavelength multiplied by a constant factor determined by the dielectric constant of substrate 85. Configuring distance D in this way may allow phased antenna array 54 to perform beam steering operations using antennas 40 with satisfactory antenna gain.

Antenna module 72 may be mounted at any desired location within device 10 for conveying radio-frequency signals with external wireless communications equipment. In one suitable arrangement that is described herein as an example, antenna module 72 may convey radio-frequency signals through the peripheral sidewalls of device 10. FIG. 8 is a top view of device 10 showing different illustrative locations for positioning antenna module 72 to convey radio-frequency signals through the peripheral sidewalls of device 10.

As shown in FIG. 8, device 10 may include peripheral conductive housing structures 12W (e.g., four peripheral conductive housing sidewalls that surround the rectangular periphery of device 10). In other words, device 10 may have a length (parallel to the Y-axis), a width that is less than the length (parallel to the X-axis), and a height that is less than the width (parallel to the Z-axis). Peripheral conductive housing structures 12W may extend across the length and the width of device 10 (e.g., peripheral conductive housing structures 12W may include a first conductive sidewall extending along the left edge of device 10, a second conductive sidewall extending along the top edge of device 10, a third conductive sidewall extending along the right edge of device 10, and a fourth conductive sidewall extending along the bottom edge of device 10). Peripheral conductive housing structures 12W may also extend across the height of device 10 (e.g., as shown in the perspective view of FIG. 1).

As shown in FIG. 8, display 14 may have a display module such as display module 94. Peripheral conductive housing structures 12W may run around the periphery of display module 94 (e.g., along all four sides of device 10). Display module 94 may be covered by a display cover layer (not shown). The display cover layer may extend across the entire length and width of device 10 and may, if desired, be mounted to or otherwise supported by peripheral conductive housing structures 12W.

Display module 94 (sometimes referred to as a display panel, active display circuitry, or active display structures) may be any desired type of display panel and may include pixels formed from light-emitting diodes (LEDs), organic LEDs (OLEDs), plasma cells, electrowetting pixels, electrophoretic pixels, liquid crystal display (LCD) components, or other suitable pixel structures. The lateral area of display module 94 may, for example, determine the size of the active area of display 14 (e.g., active area AA of FIG. 1). Display module 94 may include active light emitting components, touch sensor components (e.g., touch sensor electrodes), force sensor components, and/or other active components. Because display module 94 includes conductive components, display module 94 may block radio-frequency signals from passing through display 14. Antenna module 72 of FIGS. 6 and 7 may therefore be located within regions 96 around the periphery of display module 94 and device 10. One or more regions 96 of FIG. 8 may, for example, include a corresponding antenna module 72. Apertures may be formed within peripheral conductive housing structures 12W within regions 96 to allow the antennas in antenna module 72 to convey radio-frequency signals to and/or from the exterior of device 10 (e.g., through the apertures).

In the example of FIG. 8, each region 96 is located along a respective side (edge) of device 10 (e.g., along the top conductive sidewall of device 10 within region 20, along the bottom conductive sidewall of device 10 within region 22, along the left conductive sidewall of device 10, and along the right conductive sidewall of device 10). Antennas mounted in these regions may provide millimeter and centimeter wave communications coverage for device 10 around the lateral periphery of device 10. When combined with the contribution of antennas that radiate through the front and/or rear faces of device 10, the antennas in device 10 may provide a full sphere of millimeter/centimeter wave coverage around device 10. The example of FIG. 8 is merely illustrative. Each edge of device 10 may include multiple regions 96 and some edges of device 10 may include no regions 96. If desired, additional regions 96 may be located elsewhere on device 10.

FIG. 9 is a side view showing how apertures may be formed in peripheral conductive housing structures 12W to allow the antennas in antenna module 72 to convey radio-frequency signals to and/or from the exterior of device 10 (within a given region 96 of FIG. 8). The example of FIG. 9 illustrates apertures that may be formed in the right-most region 96 of FIG. 8 (e.g., along the right conductive sidewall as viewed in the direction of arrow 97 of FIG. 8).

Similar apertures may be formed in any desired conductive sidewall of device 10.

As shown in FIG. 9, device 10 may have a first (front) face defined by display 14 and a second (rear) face defined by rear housing wall 12R. Display 14 may be mounted to peripheral conductive structures 12W, which extend from the rear face to the front face and around the periphery of device 10. One or more gaps 18 may extend from the rear face to the front face to divide peripheral conductive housing structures 12W into different segments.

One or more antenna apertures such as apertures 98 may be formed in peripheral conductive housing structures 12W. Apertures 98 (sometimes referred to herein as slots 98) may be filled with one or more dielectric materials and may have edges that are defined by the conductive material in peripheral conductive housing structures 12W. Antenna module 72 of FIGS. 6 and 7 may be mounted within the interior of device 10 (e.g., with the antennas facing apertures 98). Each aperture 98 may be aligned with a respective antenna 40 in the antenna module. The center of each aperture 98 may therefore be separated from the center of one or two adjacent apertures 98 by distance D.

In addition to allowing radio-frequency signals to pass between the antenna module and the exterior of device 10, apertures 98 may also form waveguide radiators for the antennas in the antenna module. For example, the radio-frequency signals conveyed by the antennas may excite one or more electromagnetic waveguide (cavity) modes within apertures 98, which contribute to the overall resonance and frequency response of the antennas in the antenna module.

Apertures 98 may have any desired shape. In the example of FIG. 9, apertures 98 are rectangular. Each aperture 98 may have a corresponding length L2 and width W2. Length L2 and width W2 may be selected establish resonant cavity modes within apertures 98 (e.g., electromagnetic waveguide modes that contribute to the radiative response of antennas 40). Length L2 may, for example, be selected to establish a horizontally-polarized resonant cavity mode for aperture 98 and width W2 may be selected to establish a vertically-polarized resonant cavity mode for aperture 98.

At the same time, if care is not taken, impedance discontinuities between the antennas in the antenna module and free space at the exterior of device 10 may introduce undesirable signal reflections and losses that limits the overall gain and efficiency for the antennas. Apertures 98 may therefore also serve as an impedance transition between the antenna module and free space at the exterior of device 10 that is free from undesirable impedance discontinuities.

In scenarios where antennas 40 include dual-polarization antennas (e.g., with at least two antenna feeds as shown in FIG. 5), the radio-frequency signals propagating through and exciting apertures 98 may be subjected to different impedance loading depending on whether the signals are horizontally or vertically polarized. For example, vertically polarized signals (e.g., signals having an electric field vector EVPOL oriented parallel to the Z-axis) may be subjected to a first amount of impedance loading whereas horizontally polarized signals (e.g., signals having an electric field vector EHPOL oriented parallel to the Y-axis) are subjected to a second amount of impedance loading during excitation of and propagation through apertures 98.

In order to mitigate this differential impedance loading, length L2 may be selected to be greater than width W2. This may serve to match the vertically polarized resonant mode of apertures 98 to the vertically polarized resonant mode of antennas 40 while also matching the horizontally polarized resonant mode of apertures 98 to the vertically polarized resonant mode of antennas 40. At the same time, length L2 may be greater than length L1 (FIG. 7) and/or width W2 may be greater than width W1 (FIG. 7). This may help to establish a smooth impedance transition from the antenna module to free space at the exterior of device 10 for both the horizontally and vertically polarized signals.

FIG. 10 is a cross-sectional top view showing how antenna module 72 may be aligned with apertures 98 for conveying radio-frequency signals through peripheral conductive housing structures 12W (e.g., as taken in the direction of arrow 100 of FIG. 9). As shown in FIG. 10, peripheral conductive housing structures 12W may have an interior surface 114 facing interior 112 of device 10 and may have an exterior surface 118 facing free space. While exterior surface 118 is referred to herein as an exterior surface of device 10, exterior surface 118 may be covered with a thin cosmetic or protective coating at the exterior of device 10 if desired.

Antenna module 72 may be mounted to or against interior surface 114 of peripheral conductive housing structures 12W. For example, surface 78 of substrate 85 may be secured, attached, affixed, or adhered to interior surface 114 of peripheral conductive housing structures 12W using a layer of adhesive such as adhesive 106. Adhesive 106 may be sufficiently thin so as not to substantially affect the propagation of radio-frequency signals through adhesive 106. This is merely illustrative and, if desired, other mounting structures (e.g., clips, brackets, springs, etc.) may be used to mount surface 78 of substrate 85 to interior surface 114 of peripheral conductive housing structures 12W. As one example, biasing structures may be used to press antenna module 72 against interior surface 114 of peripheral conductive housing structures 12W. If desired, surface 78 of substrate 85 may directly contact interior surface 114 of peripheral conductive housing structures 12W without being affixed to interior surface 114. Pressing surface 78 against peripheral conductive housing structures 12W in this way may serve to minimize impedance discontinuities and thus undesirable signal reflections between antennas 40 and apertures 98. Antenna module 72 may sometimes be referred to herein as being “pressed against” interior surface 114, which means that adhesive 106 or other structures are used to adhere antenna module 72 to interior surface 114, that other biasing structures are used to “pull” antenna module 72 towards and against interior surface 114, that other biasing structures are used to “push” antenna module 72 towards and against interior surface 114, and/or that surface 78 is otherwise held or placed in direct contact with interior surface 114 (e.g., without other biasing structures and/or adhesive).

When arranged in this way, antenna layers 86 of substrate 85 in antenna module 72 may face peripheral conductive housing structures 12W whereas transmission line layers 84 face interior 112 of device 10. RFIC 74 may be mounted to surface 76 of antenna module 72. An optional plastic over-mold 116 may be used to encapsulate RFIC 74 and/or other portions of antenna module 72. The fences of conductive vias 88 may extend from ground traces 82 to surface 78 to define antenna cavities 92 for the antennas 40 in phased antenna array 85. Metallization 93 may couple the grounded conductive vias 88 in adjacent antenna unit cells 90 together. This may configure metallization 93 to appear as a solid conductive wall to the radio-frequency signals handled by phased antenna array 54.

Antenna module 72 may be mounted to peripheral conductive housing structures 12W such that each antenna 40 in phased antenna array 54 is aligned with (e.g., overlapping and centered on) a respective aperture 98 in peripheral conductive housing structures 12W. Each aperture 98 may define a respective cavity 102 within peripheral conductive housing structures 12W (e.g., a cavity 102 overlapping and centered on a respective antenna 40 in phased antenna array 54). Cavities 102 may have non-linear cavity walls such as cavity walls 110 defined by the conductive material in peripheral conductive housing structures 12W. The fences of conductive vias 88 in each antenna unit cell 90 may be aligned with the cavity walls 110 of a respective cavity 102 (aperture 98). This may effectively form a single continuous electromagnetic cavity for each antenna 40 that includes both an antenna cavity 92 and a cavity 102 in aperture 98 (e.g., a single continuous cavity having conductive cavity walls defined by cavity walls 110 from exterior surface 118 to interior surface 114 and defined by conductive vias 88 within antenna layers 86 of substrate 85).

Each cavity 102 may be filled with one or more dielectric materials. A cosmetic cover layer such as dielectric cover layer 108 may be layered onto exterior surface 118 of peripheral conductive housing structures 12W. Dielectric cover layer 108 may cover each aperture 98 for antenna module 72 if desired. Dielectric cover layer 108 may hide apertures 98 from view and may protect apertures 98 from damage, dirt, or other contaminants.

Each cavity 102 may form a waveguide radiator for the respective antenna 40 aligned with that cavity 102. For example, during signal transmission, patch elements 91 may be excited (e.g., by at least antenna feed terminals 62V and 62H of FIG. 5) to radiate radio-frequency signals. The radio-frequency signals may couple into cavities 102 and may electromagnetically excite one or more resonant cavity modes of cavities 102. This may cause cavities 102 to serve as waveguide radiators that radiate corresponding radio-frequency signals 104 into free space. Conversely, radio-frequency signals 104 received from free space may excite the resonant cavity modes of cavities 102, which may in turn produce antenna currents on patch elements 91 that are received by millimeter/centimeter wave transceiver circuitry 38 (FIG. 3) (e.g., over at least antenna feed terminals 62V and 62H of FIG. 5). Cavities 102 may therefore also sometimes be referred to herein as waveguides 102, resonant waveguides 102, waveguide resonators 102, radiating waveguides 102, or waveguide radiators 102.

Cavities 102 and thus apertures 98 may also be configured to match the impedance of antennas 40 to the free space impedance at the exterior of device 10. For example, cavity walls 110 may include one or more curves or steps as the cavity walls extend from interior surface 114 to exterior surface 118 (e.g., in the direction of the X-axis). This may configure cavity walls 110 and thus cavities 102 to exhibit a fan-out shape in which cavities 102 have a first length L3 at antenna module 72 but fan out to a greater length L2 at exterior surface 118.

Length L3 may be selected to be greater than or equal to (e.g., approximately equal to) length L1 of antenna unit cells 90. This may serve to match the impedance of cavities 102 at antenna module 72 to the impedance of antennas 40 within phased antenna array 54. Increasing the length of cavities 102 to length L2 at exterior surface 118 may serve to establish a smooth impedance transition from the impedance of antennas 40 to the free space impedance at the exterior of device 10 (e.g., without introducing excessive impedance discontinuities to the system).

Cavity walls 110 may be continuously curved from antenna module 72 to exterior surface 118 (e.g., such that cavities 102 have a continuously curved profile or shape that extends from length L3 at interior surface 114 to length L2 at exterior surface 118) or may be shaped such that cavities 102 have one or more discrete increases in length from length L3 at interior surface 114 to length L2 at exterior surface 118. In this way, cavities 102 and thus apertures 98 may serve to allow radio-frequency signals to be conveyed by phased antenna array 54 through peripheral conductive housing structures 12W, may serve to contribute to the radiative/frequency response of phased antenna array 54, and may serve to match the impedance of antennas 40 to the free space impedance external to device 10, thereby maximizing efficiency for phased antenna array 54.

While the example of FIG. 10 illustrates how cavities 102 may perform impedance matching for horizontally polarized signals (e.g., signals having electric field vector EHPOL), cavities 102 may also perform impedance matching for vertically polarized signals (e.g., signals having electric field vector EVPOL). FIG. 11 is a cross-sectional side view of a given antenna 40 in antenna module 72 in alignment with a corresponding aperture 98 (e.g., as taken in the direction of arrow AA′ of FIG. 10).

As shown in FIG. 11, aperture 98 may include cavity 102 formed in peripheral conductive housing structures 12W. A dielectric substrate such as dielectric substrate 128 may be mounted within cavity 102. Dielectric substrate 128 may be formed from injection molded plastic, as one example. Dielectric substrate 128 may have an inner surface 120 (e.g., at interior surface 114 of peripheral conductive housing structures 12W) and an outer surface 122 (e.g., at dielectric cover layer 108). Surface 78 of substrate 85 in antenna module 72 may be mounted to inner surface 120 of dielectric substrate 128. Adhesive 106 of FIG. 10 is not shown in FIG. 11 for the sake of clarity. Conductive vias 88 may extend through substrate 85 to interior surface 114 of peripheral conductive housing structures 12W. Conductive vias 88 may be aligned with cavity walls 110 of cavity 102 so that antenna cavity 92 and cavity 102 form a single continuous electromagnetic cavity.

Dielectric cover layer 108 may also be mounted within cavity 102. Dielectric cover layer 108 may have an inner surface 126 that contacts outer surface 122 of dielectric substrate 128. Dielectric cover layer 108 has an outer surface 124 at the exterior of device 10. Outer surface 124 of dielectric cover layer 108 may, for example, lie flush with exterior surface 118 of peripheral conductive housing structures 12W.

Cavity walls 110 may configure cavity 102 to exhibit a first width W3 at antenna module 72 and second width W2 at dielectric cover layer 108 (e.g., cavity walls 110 may include at least one curve or step from antenna module 72 to exterior surface 118). Width W3 may be less than width W2. For example, width W3 may be greater than or equal to (e.g., approximately equal to) width W1 of antenna unit cell 90 and antenna cavity 92. This may configure cavity 102 to match the impedance of patch elements 91 in antenna 40 for vertically polarized signals. By fanning out the width of cavity 102 (e.g., parallel to the Z-axis of FIG. 11) from width W3 at antenna module 72 to width W2 at the exterior of device 10, cavity 102 may form a smooth impedance transition from antenna 40 to free space for the vertically polarized signals. Selecting width W2 to be less than length L2 (FIGS. 9 and 10) may allow aperture 98 to match the impedance of antenna 40 to free space for both the horizontally and vertically polarized signals.

Dielectric substrate 128 may have dielectric constant dk1. Dielectric cover layer 108 may have dielectric constant dk2. Dielectric constant dk2 may, for example, be greater than dielectric constant dk1. In other arrangements, dielectric constant dk2 may be less than or equal to dielectric constant dk1. Dielectric substrate 128 may have a thickness T1 (measured parallel to the X-axis). Dielectric cover layer 108 may have a thickness T2. Thickness T2 may be less than thickness T1.

In general, greater thicknesses T1 may improve the horizontal polarization performance of antenna 40 in the first frequency band (e.g., between 24 and 30 GHz) whereas thinner thicknesses T1 may improve the vertical and horizontal polarization performance of antenna 40 in the second frequency band (e.g., between 37 and 40 GHz). Thickness T1 may be selected to optimize performance across both the first and second frequency bands and both the horizontal and vertical polarizations. As just one example, thickness T1 may be approximately equal to one-half the effective wavelength corresponding to a frequency in the first frequency band, in the second frequency band, or between the first and second frequency bands.

Thickness T2 and/or dielectric constant dk2 may be selected to configure dielectric cover layer 108 to form a quarter wave impedance transformer for antenna 40. Thickness T2 may, for example, be approximately equal to one-quarter of the effective wavelength corresponding to a frequency in the first frequency band, a frequency in the second frequency band, or a frequency between the first and second frequency bands, given the dielectric constant dk2 of dielectric cover layer 108. Forming dielectric cover layer 108 as a quarter wave impedance transformer may serve to minimize destructive interference and signal attenuation within dielectric cover layer 108 and aperture 98. Dielectric constants dk1 and dk2 may also be selected to help match the impedance of antenna 40 to the free space impedance external to device 10.

FIG. 12 is a plot of antenna performance (gain) as a function of frequency that illustrates how different dielectric constants dk2 may affect the performance of antenna 40. The vertical axis of FIG. 12 plots antenna gain in a given frequency band for horizontally-polarized signals. Curve 132 plots the gain of antenna 40 when dielectric constant dk2 is relatively small (e.g., 3-5). As shown by curve 132, antenna 40 may exhibit relatively low gain across a frequency band B1 of operation for antenna 40 when dielectric constant dk2 is this small. Frequency band B1 may extend between frequencies F1 and F2. Frequency F1 may be, for example, 24 GHz whereas frequency F2 is 30 GHz.

Curve 134 plots the gain of antenna 40 when dielectric constant dk2 is relatively large (e.g., 16 or greater). As shown by curve 134, antenna 40 may exhibit relatively low gain across frequency band B1 when dielectric constant dk2 is this large. Curve 130 plots the gain of antenna 40 when dielectric constant dk2 is less than that associated with curve 134 and greater than that associated with curve 132 (e.g., when dielectric constant dk2 is between about 8 and 12). As shown by curve 130, when dielectric constant dk2 has this optimal value, antenna 40 may exhibit satisfactory gain (e.g., a gain greater than threshold gain TH) across the entirety of band B1 (e.g., from frequency F1 to frequency F2).

The example of FIG. 12 is merely illustrative. Curves 132, 134, and 136 may have other shapes. While FIG. 12 plots the effects of different dielectric constants dk2 for a fixed geometry of aperture 98, FIG. 12 may equivalently plot the effects of different aperture geometries for a fixed dielectric constant dk2. FIG. 12 only plots the performance of antenna 40 for a single frequency band and a single polarization. Similar plots may be generated for each polarization and frequency band handled by antenna 40. The geometry of cavity 102 and the dielectric constants of the materials within cavity 102 may be selected to optimize performance of antenna 40 across each polarization and frequency band. For example, thickness T1, thickness T2, dielectric constant dk1, dielectric constant dk2, and the shape of cavity walls 110 and thus cavity 102 of (e.g., widths W3 and W2 of FIG. 11 and lengths L3 and L2 of FIG. 10) may be selected to optimize the performance (e.g., antenna efficiency) of antenna 40 across both the first and second frequency bands and both horizontal and vertical polarization. This may serve to optimize the overall performance of phased antenna array 54 in conveying radio-frequency signals through the peripheral conductive housing structures.

The foregoing is merely illustrative and various modifications can be made by those skilled in the art without departing from the scope and spirit of the described embodiments. The foregoing embodiments may be implemented individually or in any combination.

Claims

1. An electronic device having opposing first and second faces, a periphery, and an interior, the electronic device comprising:

a housing having a housing wall at the first face of the electronic device and having peripheral conductive housing structures that run around the periphery, wherein the peripheral conductive housing structures have an interior surface at the interior of the electronic device;
a display mounted to the peripheral conductive housing structures at the second face of the electronic device;
a set of apertures in the peripheral conductive housing structures; and
an antenna module pressed against the interior surface of the peripheral conductive housing structures, wherein the antenna module comprises: a phased antenna array having a set of antennas configured to convey radio-frequency signals at a frequency greater than 10 GHz through the set of apertures, wherein each antenna in the set of antennas is aligned with a respective aperture in the set of apertures.

2. The electronic device defined in claim 1, wherein the set of antennas are configured to convey the radio-frequency signals with first and second orthogonal polarizations.

3. The electronic device defined in claim 2, wherein each aperture in the set of apertures has a width and a length that is greater than the width.

4. The electronic device defined in claim 3, wherein the electronic device has a length, a width that is less than the length, and a height that is less than the width, the width of each aperture in the set of apertures extending parallel to the height of the electronic device, and the length of each aperture in the set of apertures extending parallel to the length of the electronic device.

5. The electronic device defined in claim 3, wherein the peripheral conductive housing structures have an exterior surface opposite the interior surface, each aperture in the set of apertures comprising a respective cavity having cavity walls that extend from the interior surface to the exterior surface.

6. The electronic device defined in claim 5, wherein the cavity is wider at the exterior surface than at the interior surface.

7. The electronic device defined in claim 6, wherein the antenna module further comprises:

a substrate for the phased antenna array;
ground traces in the substrate; and
fences of conductive vias that surround each of the antennas in the set of antennas and that extend from the ground traces to the interior surface of the peripheral conductive housing walls, wherein the fences of conductive vias are aligned with cavity walls.

8. The electronic device defined in claim 6, further comprising:

a dielectric substrate in the cavity; and
a dielectric cover layer overlapping the dielectric substrate, wherein the dielectric cover layer has a first surface that contacts the dielectric substrate and an opposing second surface at the exterior of the electronic device.

9. The electronic device defined in claim 8, wherein the dielectric substrate has a first dielectric constant and the dielectric cover layer has a second dielectric constant that is greater than the first dielectric constant.

10. The electronic device defined in claim 9, wherein the dielectric cover layer is configured to form a quarter wave impedance transformer at the frequency.

11. The electronic device defined in claim 3, wherein the antenna module further comprises:

a substrate for the phased antenna array, wherein the set of antennas comprises stacked patch elements in the substrate.

12. The electronic device defined in claim 11, wherein the set of antennas is configured to convey the radio-frequency signals in a first frequency band that includes frequencies between 24 and 30 GHz and in a second frequency band that includes frequencies between 37 and 40 GHz.

13. The electronic device defined in claim 12, wherein the set of antennas is configured to excite resonant cavity modes of the set of apertures in the first and second frequency bands and with the first and second orthogonal polarizations.

14. An electronic device having a periphery, an interior, and an exterior, the electronic device comprising:

peripheral conductive housing structures that extend along the periphery, wherein the peripheral conductive housing structures have a first surface at the interior and a second surface at the exterior of the electronic device;
first and second apertures in the peripheral conductive housing structures, wherein the first and second apertures comprise non-linear cavity walls extending from the first surface to the second surface of the peripheral conductive housing structures; and
a phased antenna array configured to convey radio-frequency signals at a frequency greater than 10 GHz, wherein the phased antenna array comprises a first antenna resonating element aligned with the first aperture and a second antenna resonating element aligned with the second aperture.

15. The electronic device defined in claim 14, further comprising:

a first injection-molded plastic substrate in the first aperture;
a second injection-molded plastic substrate in the second aperture; and
a dielectric cover layer that overlaps the first and second apertures.

16. The electronic device defined in claim 14, further comprising:

a dielectric substrate, wherein the first and second antenna resonating elements are on the dielectric substrate;
first fences of conductive vias extending through the dielectric substrate, wherein the first fences of conductive vias are aligned with the non-linear cavity walls of the first aperture and laterally surround the first antenna resonating element; and
second fences of conductive vias extending through the dielectric substrate, wherein the second fences of conductive vias are aligned with the non-linear cavity walls of the second aperture and laterally surround the second antenna resonating element.

17. The electronic device defined in claim 14, wherein the first and second apertures have a first length at the first surface and a second length at the second surface, the second length being greater than the first length.

18. The electronic device defined in claim 17, wherein the first and second apertures have a width at the second surface, the width being orthogonal to and less than the second length.

19. An electronic device comprising:

a conductive housing sidewall;
a phased antenna array on a dielectric substrate that is pressed against the conductive sidewall, wherein the phased antenna array comprises a set of antennas configured to radiate at a frequency greater than 10 GHz;
a set of waveguides in the conductive housing sidewall and aligned with the set of antennas in the phased antenna array, wherein the set of waveguides are configured to: exhibit resonant cavity modes that radiate in response to an excitation at the frequency by the set of antennas, and match an impedance of the set of antennas to a free space impedance external to the electronic device.

20. The electronic device defined in claim 19, wherein the set of antennas are configured to radiate at the frequency in first and second orthogonal polarizations, each waveguide in the set of waveguides has a length that is configured to match, to the free space impedance, a first impedance of the set of antennas associated with the first polarization, and each waveguide in the set of waveguides has a width that is configured to match, to the free space impedance, a second impedance of the set of antennas associated with the second polarization, the length being greater than the width.

Patent History
Publication number: 20220006198
Type: Application
Filed: Nov 13, 2020
Publication Date: Jan 6, 2022
Patent Grant number: 11552402
Inventors: Jennifer M. Edwards (San Francisco, CA), Bhaskara R. Rupakula (Sunnyvale, CA), Harish Rajagopalan (San Jose, CA), Bilgehan Avser (San Bruno, CA), Simone Paulotto (Redwood City, CA), Mattia Pascolini (San Francisco, CA)
Application Number: 17/098,108
Classifications
International Classification: H01Q 13/18 (20060101); H01Q 1/24 (20060101); H01Q 1/42 (20060101); H01Q 21/28 (20060101);