ORGANIC ELECTROLUMINESCENT MATERIALS AND DEVICES

Provided are organometallic compounds of formula Os(LA)x(LB)y(LC)z, where LA has a structure of Formula I with the two indicated dashed lines for coordination to Os: Also provided are formulations comprising these organometallic compounds. Further provided are OLEDs and related consumer products that utilize these organometallic compounds.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description

This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 63/091,960, filed on Oct. 15, 2020, the entire contents of which are incorporated herein by reference.

FIELD

The present disclosure generally relates to organometallic compounds and formulations and their various uses including as emitters in devices such as organic light emitting diodes and related electronic devices.

BACKGROUND

Opto-electronic devices that make use of organic materials are becoming increasingly desirable for various reasons. Many of the materials used to make such devices are relatively inexpensive, so organic opto-electronic devices have the potential for cost advantages over inorganic devices. In addition, the inherent properties of organic materials, such as their flexibility, may make them well suited for particular applications such as fabrication on a flexible substrate. Examples of organic opto-electronic devices include organic light emitting diodes/devices (OLEDs), organic phototransistors, organic photovoltaic cells, and organic photodetectors. For OLEDs, the organic materials may have performance advantages over conventional materials.

OLEDs make use of thin organic films that emit light when voltage is applied across the device. OLEDs are becoming an increasingly interesting technology for use in applications such as flat panel displays, illumination, and backlighting.

One application for phosphorescent emissive molecules is a full color display. Industry standards for such a display call for pixels adapted to emit particular colors, referred to as “saturated” colors. In particular, these standards call for saturated red, green, and blue pixels. Alternatively, the OLED can be designed to emit white light. In conventional liquid crystal displays emission from a white backlight is filtered using absorption filters to produce red, green and blue emission. The same technique can also be used with OLEDs. The white OLED can be either a single emissive layer (EML) device or a stack structure. Color may be measured using CIE coordinates, which are well known to the art.

SUMMARY

In one aspect, the present disclosure provides a compound of Formula Os(LA)x(LB)y(LC)z, wherein LA has a structure of Formula I with the two indicated dashed lines for coordination to Os:

wherein each of moiety A and moiety B is independently a monocyclic or multicyclic fused ring structure comprising 5-membered and/or 6-membered carbocyclic or heterocyclic rings; one of Z1-Z2 is C, and the other is N; Z3 and Z4 are each independently C or N, with at least one of them being C; each of RA and RB independently represents zero, mono, or up to the maximum allowed number of substitutions to its associated ring; each of RA and RB is independently a hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, germyl, boryl, selenyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof; any two RA or RB can be joined or fused to form a ring; each of x, y and z is independently 0, 1, or 2, with x+y+z=3; each of LB, and LC is a bidentate ligand; and LA, LB, and LC are different from each other.

In another aspect, the present disclosure provides a formulation of a compound of Formula Os(LA)x(LB)y(LC)z as described herein.

In yet another aspect, the present disclosure provides an OLED having an organic layer comprising a compound of Formula Os(LA)x(LB)y(LC)z as described herein.

In yet another aspect, the present disclosure provides a consumer product comprising an OLED with an organic layer comprising a compound of Formula Os(LA)x(LB)y(LC)z as described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an organic light emitting device.

FIG. 2 shows an inverted organic light emitting device that does not have a separate electron transport layer.

DETAILED DESCRIPTION A. Terminology

Unless otherwise specified, the below terms used herein are defined as follows:

As used herein, the term “organic” includes polymeric materials as well as small molecule organic materials that may be used to fabricate organic opto-electronic devices. “Small molecule” refers to any organic material that is not a polymer, and “small molecules” may actually be quite large. Small molecules may include repeat units in some circumstances. For example, using a long chain alkyl group as a substituent does not remove a molecule from the “small molecule” class. Small molecules may also be incorporated into polymers, for example as a pendent group on a polymer backbone or as a part of the backbone. Small molecules may also serve as the core moiety of a dendrimer, which consists of a series of chemical shells built on the core moiety. The core moiety of a dendrimer may be a fluorescent or phosphorescent small molecule emitter. A dendrimer may be a “small molecule,” and it is believed that all dendrimers currently used in the field of OLEDs are small molecules.

As used herein, “top” means furthest away from the substrate, while “bottom” means closest to the substrate. Where a first layer is described as “disposed over” a second layer, the first layer is disposed further away from substrate. There may be other layers between the first and second layer, unless it is specified that the first layer is “in contact with” the second layer. For example, a cathode may be described as “disposed over” an anode, even though there are various organic layers in between.

As used herein, “solution processable” means capable of being dissolved, dispersed, or transported in and/or deposited from a liquid medium, either in solution or suspension form.

A ligand may be referred to as “photoactive” when it is believed that the ligand directly contributes to the photoactive properties of an emissive material. A ligand may be referred to as “ancillary” when it is believed that the ligand does not contribute to the photoactive properties of an emissive material, although an ancillary ligand may alter the properties of a photoactive ligand.

As used herein, and as would be generally understood by one skilled in the art, a first “Highest Occupied Molecular Orbital” (HOMO) or “Lowest Unoccupied Molecular Orbital” (LUMO) energy level is “greater than” or “higher than” a second HOMO or LUMO energy level if the first energy level is closer to the vacuum energy level. Since ionization potentials (IP) are measured as a negative energy relative to a vacuum level, a higher HOMO energy level corresponds to an IP having a smaller absolute value (an IP that is less negative). Similarly, a higher LUMO energy level corresponds to an electron affinity (EA) having a smaller absolute value (an EA that is less negative). On a conventional energy level diagram, with the vacuum level at the top, the LUMO energy level of a material is higher than the HOMO energy level of the same material. A “higher” HOMO or LUMO energy level appears closer to the top of such a diagram than a “lower” HOMO or LUMO energy level.

As used herein, and as would be generally understood by one skilled in the art, a first work function is “greater than” or “higher than” a second work function if the first work function has a higher absolute value. Because work functions are generally measured as negative numbers relative to vacuum level, this means that a “higher” work function is more negative. On a conventional energy level diagram, with the vacuum level at the top, a “higher” work function is illustrated as further away from the vacuum level in the downward direction. Thus, the definitions of HOMO and LUMO energy levels follow a different convention than work functions.

The terms “halo,” “halogen,” and “halide” are used interchangeably and refer to fluorine, chlorine, bromine, and iodine.

The term “acyl” refers to a substituted carbonyl radical (C(O)—Rs).

The term “ester” refers to a substituted oxycarbonyl (—O—C(O)—Rs or —C(O)—O—Rs) radical.

The term “ether” refers to an —ORs radical.

The terms “sulfanyl” or “thio-ether” are used interchangeably and refer to a −SRs radical.

The term “selenyl” refers to a —SeRs radical.

The term “sulfinyl” refers to a —S(O)—Rs radical.

The term “sulfonyl” refers to a —SO2—Rs radical.

The term “phosphino” refers to a —P(Rs)3 radical, wherein each Rs can be same or different.

The term “silyl” refers to a —Si(Rs)3 radical, wherein each Rs can be same or different.

The term “germyl” refers to a —Ge(Rs)3 radical, wherein each Rs can be same or different.

The term “boryl” refers to a —B(Rs)2 radical or its Lewis adduct —B(Rs)3 radical, wherein Rs can be same or different.

In each of the above, Rs can be hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, and combination thereof. Preferred Rs is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl, and combination thereof.

The term “alkyl” refers to and includes both straight and branched chain alkyl radicals. Preferred alkyl groups are those containing from one to fifteen carbon atoms and includes methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, and the like. Additionally, the alkyl group may be optionally substituted.

The term “cycloalkyl” refers to and includes monocyclic, polycyclic, and spiro alkyl radicals. Preferred cycloalkyl groups are those containing 3 to 12 ring carbon atoms and includes cyclopropyl, cyclopentyl, cyclohexyl, bicyclo[3.1.1]heptyl, spiro[4.5]decyl, spiro[5.5]undecyl, adamantyl, and the like. Additionally, the cycloalkyl group may be optionally substituted.

The terms “heteroalkyl” or “heterocycloalkyl” refer to an alkyl or a cycloalkyl radical, respectively, having at least one carbon atom replaced by a heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si and Se, preferably, O, S or N. Additionally, the heteroalkyl or heterocycloalkyl group may be optionally substituted.

The term “alkenyl” refers to and includes both straight and branched chain alkene radicals. Alkenyl groups are essentially alkyl groups that include at least one carbon-carbon double bond in the alkyl chain. Cycloalkenyl groups are essentially cycloalkyl groups that include at least one carbon-carbon double bond in the cycloalkyl ring. The term “heteroalkenyl” as used herein refers to an alkenyl radical having at least one carbon atom replaced by a heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si, and Se, preferably, O, S, or N. Preferred alkenyl, cycloalkenyl, or heteroalkenyl groups are those containing two to fifteen carbon atoms. Additionally, the alkenyl, cycloalkenyl, or heteroalkenyl group may be optionally substituted.

The term “alkynyl” refers to and includes both straight and branched chain alkyne radicals. Alkynyl groups are essentially alkyl groups that include at least one carbon-carbon triple bond in the alkyl chain. Preferred alkynyl groups are those containing two to fifteen carbon atoms. Additionally, the alkynyl group may be optionally substituted.

The terms “aralkyl” or “arylalkyl” are used interchangeably and refer to an alkyl group that is substituted with an aryl group. Additionally, the aralkyl group may be optionally substituted.

The term “heterocyclic group” refers to and includes aromatic and non-aromatic cyclic radicals containing at least one heteroatom. Optionally the at least one heteroatom is selected from O, S, N, P, B, Si, and Se, preferably, O, S, or N. Hetero-aromatic cyclic radicals may be used interchangeably with heteroaryl. Preferred hetero-non-aromatic cyclic groups are those containing 3 to 7 ring atoms which includes at least one hetero atom, and includes cyclic amines such as morpholino, piperidino, pyrrolidino, and the like, and cyclic ethers/thio-ethers, such as tetrahydrofuran, tetrahydropyran, tetrahydrothiophene, and the like. Additionally, the heterocyclic group may be optionally substituted.

The term “aryl” refers to and includes both single-ring aromatic hydrocarbyl groups and polycyclic aromatic ring systems. The polycyclic rings may have two or more rings in which two carbons are common to two adjoining rings (the rings are “fused”) wherein at least one of the rings is an aromatic hydrocarbyl group, e.g., the other rings can be cycloalkyls, cycloalkenyls, aryl, heterocycles, and/or heteroaryls. Preferred aryl groups are those containing six to thirty carbon atoms, preferably six to twenty carbon atoms, more preferably six to twelve carbon atoms. Especially preferred is an aryl group having six carbons, ten carbons or twelve carbons. Suitable aryl groups include phenyl, biphenyl, triphenyl, triphenylene, tetraphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene, preferably phenyl, biphenyl, triphenyl, triphenylene, fluorene, and naphthalene. Additionally, the aryl group may be optionally substituted.

The term “heteroaryl” refers to and includes both single-ring aromatic groups and polycyclic aromatic ring systems that include at least one heteroatom. The heteroatoms include, but are not limited to O, S, N, P, B, Si, and Se. In many instances, O, S, or N are the preferred heteroatoms. Hetero-single ring aromatic systems are preferably single rings with 5 or 6 ring atoms, and the ring can have from one to six heteroatoms. The hetero-polycyclic ring systems can have two or more rings in which two atoms are common to two adjoining rings (the rings are “fused”) wherein at least one of the rings is a heteroaryl, e.g., the other rings can be cycloalkyls, cycloalkenyls, aryl, heterocycles, and/or heteroaryls. The hetero-polycyclic aromatic ring systems can have from one to six heteroatoms per ring of the polycyclic aromatic ring system. Preferred heteroaryl groups are those containing three to thirty carbon atoms, preferably three to twenty carbon atoms, more preferably three to twelve carbon atoms. Suitable heteroaryl groups include dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine, preferably dibenzothiophene, dibenzofuran, dibenzoselenophene, carbazole, indolocarbazole, imidazole, pyridine, triazine, benzimidazole, 1,2-azaborine, 1,3-azaborine, 1,4-azaborine, borazine, and aza-analogs thereof. Additionally, the heteroaryl group may be optionally substituted.

Of the aryl and heteroaryl groups listed above, the groups of triphenylene, naphthalene, anthracene, dibenzothiophene, dibenzofuran, dibenzoselenophene, carbazole, indolocarbazole, imidazole, pyridine, pyrazine, pyrimidine, triazine, and benzimidazole, and the respective aza-analogs of each thereof are of particular interest.

The terms alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aralkyl, heterocyclic group, aryl, and heteroaryl, as used herein, are independently unsubstituted, or independently substituted, with one or more general substituents.

In many instances, the general substituents are selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, germyl, boryl, selenyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.

In some instances, the preferred general substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, boryl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, nitrile, isonitrile, sulfanyl, and combinations thereof.

In some instances, the preferred general substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, alkoxy, aryloxy, amino, silyl, boryl, aryl, heteroaryl, sulfanyl, and combinations thereof.

In yet other instances, the more preferred general substituents are selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, aryl, heteroaryl, and combinations thereof.

The terms “substituted” and “substitution” refer to a substituent other than H that is bonded to the relevant position, e.g., a carbon or nitrogen. For example, when R1 represents mono-substitution, then one R1 must be other than H (i.e., a substitution). Similarly, when R1 represents di-substitution, then two of R1 must be other than H. Similarly, when R1 represents zero or no substitution, R1, for example, can be a hydrogen for available valencies of ring atoms, as in carbon atoms for benzene and the nitrogen atom in pyrrole, or simply represents nothing for ring atoms with fully filled valencies, e.g., the nitrogen atom in pyridine. The maximum number of substitutions possible in a ring structure will depend on the total number of available valencies in the ring atoms.

As used herein, “combinations thereof” indicates that one or more members of the applicable list are combined to form a known or chemically stable arrangement that one of ordinary skill in the art can envision from the applicable list. For example, an alkyl and deuterium can be combined to form a partial or fully deuterated alkyl group; a halogen and alkyl can be combined to form a halogenated alkyl substituent; and a halogen, alkyl, and aryl can be combined to form a halogenated arylalkyl. In one instance, the term substitution includes a combination of two to four of the listed groups. In another instance, the term substitution includes a combination of two to three groups. In yet another instance, the term substitution includes a combination of two groups. Preferred combinations of substituent groups are those that contain up to fifty atoms that are not hydrogen or deuterium, or those which include up to forty atoms that are not hydrogen or deuterium, or those that include up to thirty atoms that are not hydrogen or deuterium. In many instances, a preferred combination of substituent groups will include up to twenty atoms that are not hydrogen or deuterium.

The “aza” designation in the fragments described herein, i.e. aza-dibenzofuran, aza-dibenzothiophene, etc. means that one or more of the C—H groups in the respective aromatic ring can be replaced by a nitrogen atom, for example, and without any limitation, azatriphenylene encompasses both dibenzo[fh]quinoxaline and dibenzo[fh]quinoline. One of ordinary skill in the art can readily envision other nitrogen analogs of the aza-derivatives described above, and all such analogs are intended to be encompassed by the terms as set forth herein.

As used herein, “deuterium” refers to an isotope of hydrogen. Deuterated compounds can be readily prepared using methods known in the art. For example, U.S. Pat. No. 8,557,400, Patent Pub. No. WO 2006/095951, and U.S. Pat. Application Pub. No. US 2011/0037057, which are hereby incorporated by reference in their entireties, describe the making of deuterium-substituted organometallic complexes. Further reference is made to Ming Yan, et al., Tetrahedron 2015, 71, 1425-30 and Atzrodt et al., Angew. Chem. Int. Ed. (Reviews) 2007, 46, 7744-65, which are incorporated by reference in their entireties, describe the deuteration of the methylene hydrogens in benzyl amines and efficient pathways to replace aromatic ring hydrogens with deuterium, respectively.

It is to be understood that when a molecular fragment is described as being a substituent or otherwise attached to another moiety, its name may be written as if it were a fragment (e.g. phenyl, phenylene, naphthyl, dibenzofuryl) or as if it were the whole molecule (e.g. benzene, naphthalene, dibenzofuran). As used herein, these different ways of designating a substituent or attached fragment are considered to be equivalent.

In some instance, a pair of adjacent substituents can be optionally joined or fused into a ring. The preferred ring is a five, six, or seven-membered carbocyclic or heterocyclic ring, includes both instances where the portion of the ring formed by the pair of substituents is saturated and where the portion of the ring formed by the pair of substituents is unsaturated. As used herein, “adjacent” means that the two substituents involved can be on the same ring next to each other, or on two neighboring rings having the two closest available substitutable positions, such as 2, 2′ positions in a biphenyl, or 1, 8 position in a naphthalene, as long as they can form a stable fused ring system.

B. The Compounds of the Present Disclosure

In one aspect, the present disclosure provides a compound of Formula Os(LA)x(LB)y(LC)z, wherein: LA has a structure of Formula I with the two indicated dashed lines for coordination to Os:

wherein:
each of moiety A and moiety B is independently a monocyclic or multicyclic fused ring structure comprising 5-membered and/or 6-membered carbocyclic or heterocyclic rings;
one of Z1-Z2 is C, and the other is N;
Z3 and Z4 are each independently C or N, with at least one of them being C;
each of RA and RB independently represents zero, mono, or up to the maximum allowed number of substitutions to its associated ring;
each of RA and RB is independently a hydrogen or a substituent selected from the group consisting of the general substituents defined herein;
any two RA or RB can be joined or fused to form a ring;
each of x, y and z is independently 0, 1, or 2, with x+y+z=3;
each of LB, and LC is a bidentate ligand; and
LA, LB, and LC are different from each other.

In some embodiments, each of RA and RB can be independently a hydrogen or a substituent selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, boryl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, nitrile, isonitrile, sulfanyl, and combinations thereof.

In some embodiments, one of Z1 or Z2 can be N, and the other can be C. In some embodiments, one of Z3 or Z4 can be C, and the other can be N. In some embodiments, both Z3 and Z4 can be C.

In some embodiments, moiety A can be a monocyclic 5-membered or 6-membered aromatic ring. In some embodiments, moiety A can comprise a bicyclic fused ring structure containing 5-membered and/or 6-membered aromatic rings. In some embodiments, moiety A can comprise a bicyclic fused ring structure having two 6-membered aromatic rings. In some embodiments, moiety A can comprise a bicyclic fused ring structure having one 6-membered aromatic ring and one 5-membered aromatic ring. In some embodiments, moiety A can comprise a tricyclic fused ring structure containing 5-membered and/or 6-membered aromatic rings. In some embodiments, moiety A can comprise a tricyclic fused ring structure having three 6-membered aromatic rings. In some embodiments, moiety A can comprise a tricyclic fused ring structure having two 6-membered aromatic rings and one 5-membered aromatic ring. In some embodiments, moiety A can be a tetracyclic, pentacyclic, or hexacyclic fused ring structure containing 5-membered and/or 6-membered aromatic rings.

In some embodiments, two adjacent RA substituents can be joined to form a 5-membered or 6-membered aromatic ring. In some embodiments, the 5-membered and 6-membered aromatic rings can be selected from the group consisting of benzene, pyridine, pyrimidine, pyridazine, pyrazine, imidazole, pyrazole, pyrrole, oxazole, furan, thiophene, and thiazole.

In some embodiments, LA can be selected from the group consisting of:

wherein each X is independently C or N; and each Y is selected from the group consisting of BRe, NRe, PRe, O, S, Se, C═O, S═O, SO2, CReRf, SiReRf, and GeReRf; Re and Rf can be fused or joined to form a ring; and each of Re and Rf is independently a hydrogen or a substituent selected from the group consisting of the general substituents defined herein.

In some embodiments, LA can be selected from the group consisting of:

wherein R is a hydrogen or a substituent selected from the group consisting of the general substituents defined herein; and
the remaining variables are the same as previously defined.

In some embodiments, LA can be selected from the group consisting of LAi-m, wherein i is an integer from 1 to 2088, m is an integer from 1 to 28, wherein each of LAi-1 to LAi-28 is defined below:

wherein for each LAi, RC, RD and G are defined below:

LAi RC RD G LAi RC RD G LAi RC RD G LA1 H H G1 LA2 RH1 H G1 LA3 RH2 H G1 LA4 H RH1 G1 LA5 RH1 RH1 G1 LA6 RH2 RH1 G1 LA7 H RH2 G1 LA8 RH1 RH2 G1 LA9 RH2 RH2 G1 LA10 H RH3 G1 LA11 RH1 RH3 G1 LA12 RH2 RH3 G1 LA13 H RH4 G1 LA14 RH1 RH4 G1 LA15 RH2 RH4 G1 LA16 H RH5 G1 LA17 RH1 RH5 G1 LA18 RH2 RH5 G1 LA19 H RH6 G1 LA20 RH1 RH6 G1 LA21 RH2 RH6 G1 LA22 H RH7 G1 LA23 RH1 RH7 G1 LA24 RH2 RH7 G1 LA25 H RH8 G1 LA26 RH1 RH8 G1 LA27 RH2 RH8 G1 LA28 H RH9 G1 LA29 RH1 RH9 G1 LA30 RH2 RH9 G1 LA31 H RH10 G1 LA32 RH1 RH10 G1 LA33 RH2 RH10 G1 LA34 H RH11 G1 LA35 RH1 RH11 G1 LA36 RH2 RH11 G1 LA37 H RH12 G1 LA38 RH1 RH12 G1 LA39 RH2 RH12 G1 LA40 H RH13 G1 LA41 RH1 RH13 G1 LA42 RH2 RH13 G1 LA43 H RH14 G1 LA44 RH1 RH14 G1 LA45 RH2 RH14 G1 LA46 H RH15 G1 LA47 RH1 RH15 G1 LA48 RH2 RH15 G1 LA49 H RH16 G1 LA50 RH1 RH16 G1 LA51 RH2 RH16 G1 LA52 H RH17 G1 LA53 RH1 RH17 G1 LA54 RH2 RH17 G1 LA55 H RH18 G1 LA56 RH1 RH18 G1 LA57 RH2 RH18 G1 LA58 H RH19 G1 LA59 RH1 RH19 G1 LA60 RH2 RH19 G1 LA61 H RH20 G1 LA62 RH1 RH20 G1 LA63 RH2 RH20 G1 LA64 H RH21 G1 LA65 RH1 RH21 G1 LA66 RH2 RH21 G1 LA67 H RH22 G1 LA68 RH1 RH22 G1 LA69 RH2 RH22 G1 LA70 H RH23 G1 LA71 RH1 RH23 G1 LA72 RH2 RH23 G1 LA73 H RH24 G1 LA74 RH1 RH24 G1 LA75 RH2 RH24 G1 LA76 H RH25 G1 LA77 RH1 RH25 G1 LA78 RH2 RH25 G1 LA79 H RH26 G1 LA80 RH1 RH26 G1 LA81 RH2 RH26 G1 LA82 H RH27 G1 LA83 RH1 RH27 G1 LA84 RH2 RH27 G1 LA85 H RH28 G1 LA86 RH1 RH28 G1 LA87 RH2 RH28 G1 LA88 H RH29 G1 LA89 RH1 RH29 G1 LA90 RH2 RH29 G1 LA91 H RH30 G1 LA92 RH1 RH30 G1 LA93 RH2 RH30 G1 LA94 H RH31 G1 LA95 RH1 RH31 G1 LA96 RH2 RH31 G1 LA97 H RH32 G1 LA98 RH1 RH32 G1 LA99 RH2 RH32 G1 LA100 H RH33 G1 LA101 RH1 RH33 G1 LA102 RH2 RH33 G1 LA103 H RH34 G1 LA104 RH1 RH34 G1 LA105 RH2 RH34 G1 LA106 H RH35 G1 LA107 RH1 RH55 G1 LA108 RH2 RH35 G1 LA109 H RH36 G1 LA110 RH1 RH36 G1 LA111 RH2 RH36 G1 LA112 H RH37 G1 LA113 RH1 RH37 G1 LA114 RH2 RH37 G1 LA115 H RH38 G1 LA116 RH1 RH38 G1 LA117 RH2 RH38 G1 LA118 H RH39 G1 LA119 RH1 RH39 G1 LA120 RH2 RH39 G1 LA121 H RH40 G1 LA122 RH1 RH40 G1 LA123 RH2 RH40 G1 LA124 H RH41 G1 LA125 RH1 RH41 G1 LA126 RH2 RH41 G1 LA127 H RH42 G1 LA128 RH1 RH42 G1 LA129 RH2 RH42 G1 LA130 H RH43 G1 LA131 RH1 RH43 G1 LA132 RH2 RH43 G1 LA133 H RH44 G1 LA134 RH1 RH44 G1 LA135 RH2 RH44 G1 LA136 H RH45 G1 LA137 RH1 RH45 G1 LA138 RH2 RH45 G1 LA139 H RH46 G1 LA140 RH1 RH46 G1 LA141 RH2 RH46 G1 LA142 H RH47 G1 LA143 RH1 RH47 G1 LA144 RH2 RH47 G1 LA145 H RH48 G1 LA146 RH1 RH48 G1 LA147 RH2 RH48 G1 LA148 H RH49 G1 LA149 RH1 RH49 G1 LA150 RH2 RH49 G1 LA151 H RH50 G1 LA152 RH1 RH50 G1 LA153 RH2 RH50 G1 LA154 H RH51 G1 LA155 RH1 RH51 G1 LA156 RH2 RH51 G1 LA157 H RH52 G1 LA158 RH1 RH52 G1 LA159 RH2 RH52 G1 LA160 H RH53 G1 LA161 RH1 RH53 G1 LA162 RH2 RH53 G1 LA163 H RH54 G1 LA164 RH1 RH54 G1 LA165 RH2 RH54 G1 LA166 H RH55 G1 LA167 RH1 RH55 G1 LA168 RH2 RH55 G1 LA169 H RH56 G1 LA170 RH1 RH56 G1 LA171 RH2 RH56 G1 LA172 RH6 H G1 LA173 RH8 H G1 LA174 RH4 H G1 LA175 RH6 RH1 G1 LA176 RH8 RH1 G1 LA177 RH4 RH1 G1 LA178 RH6 RH2 G1 LA179 RH8 RH2 G1 LA180 RH4 RH2 G1 LA181 RH6 RH3 G1 LA182 RH8 RH3 G1 LA183 RH4 RH3 G1 LA184 RH6 RH4 G1 LA185 RH8 RH4 G1 LA186 RH4 RH4 G1 LA187 RH6 RH5 G1 LA188 RH8 RH5 G1 LA189 RH4 RH5 G1 LA190 RH6 RH6 G1 LA191 RH8 RH6 G1 LA192 RH4 RH6 G1 LA193 RH6 RH7 G1 LA194 RH8 RH7 G1 LA195 RH4 RH7 G1 LA196 RH6 RH8 G1 LA197 RH8 RH8 G1 LA198 RH4 RH8 G1 LA199 RH6 RH9 G1 LA200 RH8 RH9 G1 LA201 RH4 RH9 G1 LA202 RH6 RH10 G1 LA203 RH8 RH10 G1 LA204 RH4 RH10 G1 LA205 RH6 RH11 G1 LA206 RH8 RH11 G1 LA207 RH4 RH11 G1 LA208 RH6 RH12 G1 LA209 RH8 RH12 G1 LA210 RH4 RH12 G1 LA211 RH6 RH13 G1 LA212 RH8 RH13 G1 LA213 RH4 RH13 G1 LA214 RH6 RH14 G1 LA215 RH8 RH14 G1 LA216 RH4 RH14 G1 LA217 RH6 RH15 G1 LA218 RH8 RH15 G1 LA219 RH4 RH15 G1 LA220 RH6 RH16 G1 LA221 RH8 RH16 G1 LA222 RH4 RH16 G1 LA223 RH6 RH17 G1 LA224 RH8 RH17 G1 LA225 RH4 RH17 G1 LA226 RH6 RH18 G1 LA227 RH8 RH18 G1 LA228 RH4 RH18 G1 LA229 RH6 RH19 G1 LA230 RH8 RH19 G1 LA231 RH4 RH19 G1 LA232 RH6 RH20 G1 LA233 RH8 RH20 G1 LA234 RH4 RH20 G1 LA235 RH6 RH21 G1 LA236 RH8 RH21 G1 LA237 RH4 RH21 G1 LA238 RH6 RH22 G1 LA239 RH8 RH22 G1 LA240 RH4 RH22 G1 LA241 RH6 RH23 G1 LA242 RH8 RH23 G1 LA243 RH4 RH23 G1 LA244 RH6 RH24 G1 LA245 RH8 RH24 G1 LA246 RH4 RH24 G1 LA247 RH6 RH25 G1 LA248 RH8 RH25 G1 LA249 RH4 RH25 G1 LA250 RH6 RH26 G1 LA251 RH8 RH26 G1 LA252 RH4 RH26 G1 LA253 RH6 RH27 G1 LA254 RH8 RH27 G1 LA255 RH4 RH27 G1 LA256 RH6 RH28 G1 LA257 RH8 RH28 G1 LA258 RH4 RH28 G1 LA259 RH6 RH29 G1 LA260 RH8 RH29 G1 LA261 RH4 RH29 G1 LA262 RH6 RH30 G1 LA263 RH8 RH30 G1 LA264 RH4 RH30 G1 LA265 RH6 RH31 G1 LA266 RH8 RH31 G1 LA267 RH4 RH31 G1 LA268 RH6 RH32 G1 LA269 RH8 RH32 G1 LA270 RH4 RH32 G1 LA271 RH6 RH33 G1 LA272 RH8 RH33 G1 LA273 RH4 RH33 G1 LA274 RH6 RH34 G1 LA275 RH8 RH34 G1 LA276 RH4 RH34 G1 LA277 RH6 RH35 G1 LA278 RH8 RH35 G1 LA279 RH4 RH35 G1 LA280 RH6 RH36 G1 LA281 RH8 RH36 G1 LA282 RH4 RH36 G1 LA283 RH6 RH37 G1 LA284 RH8 RH37 G1 LA285 RH4 RH37 G1 LA286 RH6 RH38 G1 LA287 RH8 RH38 G1 LA288 RH4 RH38 G1 LA289 RH6 RH39 G1 LA290 RH8 RH39 G1 LA291 RH4 RH39 G1 LA292 RH6 RH40 G1 LA293 RH8 RH40 G1 LA294 RH4 RH40 G1 LA295 RH6 RH41 G1 LA296 RH8 RH41 G1 LA297 RH4 RH41 G1 LA298 RH6 RH42 G1 LA299 RH8 RH42 G1 LA300 RH4 RH42 G1 LA301 RH6 RH43 G1 LA302 RH8 RH43 G1 LA303 RH4 RH43 G1 LA304 RH6 RH44 G1 LA305 RH8 RH44 G1 LA306 RH4 RH44 G1 LA307 RH6 RH45 G1 LA308 RH8 RH45 G1 LA309 RH4 RH45 G1 LA310 RH6 RH46 G1 LA311 RH8 RH46 G1 LA312 RH4 RH46 G1 LA313 RH6 RH47 G1 LA314 RH8 RH47 G1 LA315 RH4 RH47 G1 LA316 RH6 RH48 G1 LA317 RH8 RH48 G1 LA318 RH4 RH48 G1 LA319 RH6 RH49 G1 LA320 RH8 RH49 G1 LA321 RH4 RH49 G1 LA322 RH6 RH50 G1 LA323 RH8 RH50 G1 LA324 RH4 RH50 G1 LA325 RH6 RH51 G1 LA326 RH8 RH51 G1 LA327 RH4 RH51 G1 LA328 RH6 RH52 G1 LA329 RH8 RH52 G1 LA330 RH4 RH52 G1 LA331 RH6 RH53 G1 LA332 RH8 RH53 G1 LA333 RH4 RH55 G1 LA334 RH6 RH54 G1 LA335 RH8 RH54 G1 LA336 RH4 RH54 G1 LA337 RH6 RH55 G1 LA338 RH8 RH55 G1 LA339 RH4 RH55 G1 LA340 RH6 RH56 G1 LA341 RH8 RH56 G1 LA342 RH4 RH56 G1 LA343 H H G4 LA344 RH1 H G4 LA345 RH2 H G4 LA346 H RH1 G4 LA347 RH1 RH1 G4 LA348 RH2 RH1 G4 LA349 H RH2 G4 LA350 RH1 RH2 G4 LA351 RH2 RH2 G4 LA352 H RH3 G4 LA353 RH1 RH3 G4 LA354 RH2 RH3 G4 LA355 H RH4 G4 LA356 RH1 RH4 G4 LA357 RH2 RH4 G4 LA358 H RH5 G4 LA359 RH1 RH5 G4 LA360 RH2 RH5 G4 LA361 H RH6 G4 LA362 RH1 RH6 G4 LA363 RH2 RH6 G4 LA364 H RH7 G4 LA365 RH1 RH7 G4 LA366 RH2 RH7 G4 LA367 H RH8 G4 LA368 RH1 RH8 G4 LA369 RH2 RH8 G4 LA370 H RH9 G4 LA371 RH1 RH9 G4 LA372 RH2 RH9 G4 LA373 H RH10 G4 LA374 RH1 RH10 G4 LA375 RH2 RH10 G4 LA376 H RH11 G4 LA377 RH1 RH11 G4 LA378 RH2 RH11 G4 LA379 H RH12 G4 LA380 RH1 RH12 G4 LA381 RH2 RH12 G4 LA382 H RH13 G4 LA383 RH1 RH13 G4 LA384 RH2 RH13 G4 LA385 H RH14 G4 LA386 RH1 RH14 G4 LA387 RH2 RH14 G4 LA388 H RH15 G4 LA389 RH1 RH15 G4 LA390 RH2 RH15 G4 LA391 H RH16 G4 LA392 RH1 RH16 G4 LA393 RH2 RH16 G4 LA394 H RH17 G4 LA395 RH1 RH17 G4 LA396 RH2 RH17 G4 LA397 H RH18 G4 LA398 RH1 RH18 G4 LA399 RH2 RH18 G4 LA400 H RH19 G4 LA401 RH1 RH19 G4 LA402 RH2 RH19 G4 LA403 H RH20 G4 LA404 RH1 RH20 G4 LA405 RH2 RH20 G4 LA406 H RH21 G4 LA407 RH1 RH21 G4 LA408 RH2 RH21 G4 LA409 H RH22 G4 LA410 RH1 RH22 G4 LA411 RH2 RH22 G4 LA412 H RH23 G4 LA413 RH1 RH23 G4 LA414 RH2 RH23 G4 LA415 H RH24 G4 LA416 RH1 RH24 G4 LA417 RH2 RH24 G4 LA418 H RH25 G4 LA419 RH1 RH25 G4 LA420 RH2 RH25 G4 LA421 H RH26 G4 LA422 RH1 RH26 G4 LA423 RH2 RH26 G4 LA424 H RH27 G4 LA425 RH1 RH27 G4 LA426 RH2 RH27 G4 LA427 H RH28 G4 LA428 RH1 RH28 G4 LA429 RH2 RH28 G4 LA430 H RH29 G4 LA431 RH1 RH29 G4 LA432 RH2 RH29 G4 LA433 H RH30 G4 LA434 RH1 RH30 G4 LA435 RH2 RH30 G4 LA436 H RH31 G4 LA437 RH1 RH31 G4 LA438 RH2 RH31 G4 LA439 H RH32 G4 LA440 RH1 RH32 G4 LA441 RH2 RH32 G4 LA442 H RH33 G4 LA443 RH1 RH33 G4 LA444 RH2 RH33 G4 LA445 H RH34 G4 LA446 RH1 RH34 G4 LA447 RH2 RH34 G4 LA448 H RH35 G4 LA449 RH1 RH35 G4 LA450 RH2 RH35 G4 LA451 H RH36 G4 LA452 RH1 RH36 G4 LA453 RH2 RH36 G4 LA454 H RH37 G4 LA455 RH1 RH37 G4 LA456 RH2 RH37 G4 LA457 H RH38 G4 LA458 RH1 RH38 G4 LA459 RH2 RH38 G4 LA460 H RH39 G4 LA461 RH1 RH39 G4 LA462 RH2 RH39 G4 LA463 H RH40 G4 LA464 RH1 RH40 G4 LA465 RH2 RH40 G4 LA466 H RH41 G4 LA467 RH1 RH41 G4 LA468 RH2 RH41 G4 LA469 H RH42 G4 LA470 RH1 RH42 G4 LA471 RH2 RH42 G4 LA472 H RH43 G4 LA473 RH1 RH43 G4 LA474 RH2 RH43 G4 LA475 H RH44 G4 LA476 RH1 RH44 G4 LA477 RH2 RH44 G4 LA478 H RH45 G4 LA479 RH1 RH45 G4 LA480 RH2 RH45 G4 LA481 H RH46 G4 LA482 RH1 RH46 G4 LA483 RH2 RH46 G4 LA484 H RH47 G4 LA485 RH1 RH47 G4 LA486 RH2 RH47 G4 LA487 H RH48 G4 LA488 RH1 RH48 G4 LA489 RH2 RH48 G4 LA490 H RH49 G4 LA491 RH1 RH49 G4 LA492 RH2 RH49 G4 LA493 H RH50 G4 LA494 RH1 RH50 G4 LA495 RH2 RH50 G4 LA496 H RH51 G4 LA497 RH1 RH51 G4 LA498 RH2 RH51 G4 LA499 H RH52 G4 LA500 RH1 RH52 G4 LA501 RH2 RH52 G4 LA502 H RH53 G4 LA503 RH1 RH53 G4 LA504 RH2 RH55 G4 LA505 H RH54 G4 LA506 RH1 RH54 G4 LA507 RH2 RH54 G4 LA508 H RH55 G4 LA509 RH1 RH55 G4 LA510 RH2 RH55 G4 LA511 H RH56 G4 LA512 RH1 RH56 G4 LA513 RH2 RH56 G4 LA514 RH6 H G4 LA515 RH8 H G4 LA516 RH4 H G4 LA517 RH6 RH1 G4 LA518 RH8 RH1 G4 LA519 RH4 RH1 G4 LA520 RH6 RH2 G4 LA521 RH8 RH2 G4 LA522 RH4 RH2 G4 LA523 RH6 RH3 G4 LA524 RH8 RH3 G4 LA525 RH4 RH3 G4 LA526 RH6 RH4 G4 LA527 RH8 RH4 G4 LA528 RH4 RH4 G4 LA529 RH6 RH5 G4 LA530 RH8 RH5 G4 LA531 RH4 RH5 G4 LA532 RH6 RH6 G4 LA533 RH8 RH6 G4 LA534 RH4 RH6 G4 LA535 RH6 RH7 G4 LA536 RH8 RH7 G4 LA537 RH4 RH7 G4 LA538 RH6 RH8 G4 LA539 RH8 RH8 G4 LA540 RH4 RH8 G4 LA541 RH6 RH9 G4 LA542 RH8 RH9 G4 LA543 RH4 RH9 G4 LA544 RH6 RH10 G4 LA545 RH8 RH10 G4 LA546 RH4 RH10 G4 LA547 RH6 RH11 G4 LA548 RH8 RH11 G4 LA549 RH4 RH11 G4 LA550 RH6 RH12 G4 LA551 RH8 RH12 G4 LA552 RH4 RH12 G4 LA553 RH6 RH13 G4 LA554 RH8 RH13 G4 LA555 RH4 RH13 G4 LA556 RH6 RH14 G4 LA557 RH8 RH14 G4 LA558 RH4 RH14 G4 LA559 RH6 RH15 G4 LA560 RH8 RH15 G4 LA561 RH4 RH15 G4 LA562 RH6 RH16 G4 LA563 RH8 RH16 G4 LA564 RH4 RH16 G4 LA565 RH6 RH17 G4 LA566 RH8 RH17 G4 LA567 RH4 RH17 G4 LA568 RH6 RH18 G4 LA569 RH8 RH18 G4 LA570 RH4 RH18 G4 LA571 RH6 RH19 G4 LA572 RH8 RH19 G4 LA573 RH4 RH19 G4 LA574 RH6 RH20 G4 LA575 RH8 RH20 G4 LA576 RH4 RH20 G4 LA577 RH6 RH21 G4 LA578 RH8 RH21 G4 LA579 RH4 RH21 G4 LA580 RH6 RH22 G4 LA581 RH8 RH22 G4 LA582 RH4 RH22 G4 LA583 RH6 RH23 G4 LA584 RH8 RH23 G4 LA585 RH4 RH23 G4 LA586 RH6 RH24 G4 LA587 RH8 RH24 G4 LA588 RH4 RH24 G4 LA589 RH6 RH25 G4 LA590 RH8 RH25 G4 LA591 RH4 RH25 G4 LA592 RH6 RH26 G4 LA593 RH8 RH26 G4 LA594 RH4 RH26 G4 LA595 RH6 RH27 G4 LA596 RH8 RH27 G4 LA597 RH4 RH27 G4 LA598 RH6 RH28 G4 LA599 RH8 RH28 G4 LA600 RH4 RH28 G4 LA601 RH6 RH29 G4 LA602 RH8 RH29 G4 LA603 RH4 RH29 G4 LA604 RH6 RH30 G4 LA605 RH8 RH30 G4 LA606 RH4 RH30 G4 LA607 RH6 RH31 G4 LA608 RH8 RH31 G4 LA609 RH4 RH31 G4 LA610 RH6 RH32 G4 LA611 RH8 RH32 G4 LA612 RH4 RH32 G4 LA613 RH6 RH33 G4 LA614 RH8 RH33 G4 LA615 RH4 RH33 G4 LA616 RH6 RH34 G4 LA617 RH8 RH34 G4 LA618 RH4 RH34 G4 LA619 RH6 RH35 G4 LA620 RH8 RH35 G4 LA621 RH4 RH35 G4 LA622 RH6 RH36 G4 LA623 RH8 RH36 G4 LA624 RH4 RH36 G4 LA625 RH6 RH37 G4 LA626 RH8 RH37 G4 LA627 RH4 RH37 G4 LA628 RH6 RH38 G4 LA629 RH8 RH38 G4 LA630 RH4 RH38 G4 LA631 RH6 RH39 G4 LA632 RH8 RH39 G4 LA633 RH4 RH39 G4 LA634 RH6 RH40 G4 LA635 RH8 RH40 G4 LA636 RH4 RH40 G4 LA637 RH6 RH41 G4 LA638 RH8 RH41 G4 LA639 RH4 RH41 G4 LA640 RH6 RH42 G4 LA641 RH8 RH42 G4 LA642 RH4 RH42 G4 LA643 RH6 RH43 G4 LA644 RH8 RH43 G4 LA645 RH4 RH43 G4 LA646 RH6 RH44 G4 LA647 RH8 RH44 G4 LA648 RH4 RH44 G4 LA649 RH6 RH45 G4 LA650 RH8 RH45 G4 LA651 RH4 RH45 G4 LA652 RH6 RH46 G4 LA653 RH8 RH46 G4 LA654 RH4 RH46 G4 LA655 RH6 RH47 G4 LA656 RH8 RH47 G4 LA657 RH4 RH47 G4 LA658 RH6 RH48 G4 LA659 RH8 RH48 G4 LA660 RH4 RH48 G4 LA661 RH6 RH49 G4 LA662 RH8 RH49 G4 LA663 RH4 RH49 G4 LA664 RH6 RH50 G4 LA665 RH8 RH50 G4 LA666 RH4 RH50 G4 LA667 RH6 RH51 G4 LA668 RH8 RH51 G4 LA669 RH4 RH51 G4 LA670 RH6 RH52 G4 LA671 RH8 RH52 G4 LA672 RH4 RH52 G4 LA673 RH6 RH53 G4 LA674 RH8 RH53 G4 LA675 RH4 RH55 G4 LA676 RH6 RH54 G4 LA677 RH8 RH54 G4 LA678 RH4 RH54 G4 LA679 RH6 RH55 G4 LA680 RH8 RH55 G4 LA681 RH4 RH55 G4 LA682 RH6 RH56 G4 LA683 RH8 RH56 G4 LA684 RH4 RH56 G4 LA685 H H G6 LA686 RH1 H G6 LA687 RH2 H G6 LA688 H RH1 G6 LA689 RH1 RH1 G6 LA690 RH2 RH1 G6 LA691 H RH2 G6 LA692 RH1 RH2 G6 LA693 RH2 RH2 G6 LA694 H RH3 G6 LA695 RH1 RH3 G6 LA696 RH2 RH3 G6 LA697 H RH4 G6 LA698 RH1 RH4 G6 LA699 RH2 RH4 G6 LA700 H RH5 G6 LA701 RH1 RH5 G6 LA702 RH2 RH5 G6 LA703 H RH6 G6 LA704 RH1 RH6 G6 LA705 RH2 RH6 G6 LA706 H RH7 G6 LA707 RH1 RH7 G6 LA708 RH2 RH7 G6 LA709 H RH8 G6 LA710 RH1 RH8 G6 LA711 RH2 RH8 G6 LA712 H RH9 G6 LA713 RH1 RH9 G6 LA714 RH2 RH9 G6 LA715 H RH10 G6 LA716 RH1 RH10 G6 LA717 RH2 RH10 G6 LA718 H RH11 G6 LA719 RH1 RH11 G6 LA720 RH2 RH11 G6 LA721 H RH12 G6 LA722 RH1 RH12 G6 LA723 RH2 RH12 G6 LA724 H RH13 G6 LA725 RH1 RH13 G6 LA726 RH2 RH13 G6 LA727 H RH14 G6 LA728 RH1 RH14 G6 LA729 RH2 RH14 G6 LA730 H RH15 G6 LA731 RH1 RH15 G6 LA732 RH2 RH15 G6 LA733 H RH16 G6 LA734 RH1 RH16 G6 LA735 RH2 RH16 G6 LA736 H RH17 G6 LA737 RH1 RH17 G6 LA738 RH2 RH17 G6 LA739 H RH18 G6 LA740 RH1 RH18 G6 LA741 RH2 RH18 G6 LA742 H RH19 G6 LA743 RH1 RH19 G6 LA744 RH2 RH19 G6 LA745 H RH20 G6 LA746 RH1 RH20 G6 LA747 RH2 RH20 G6 LA748 H RH21 G6 LA749 RH1 RH21 G6 LA750 RH2 RH21 G6 LA751 H RH22 G6 LA752 RH1 RH22 G6 LA753 RH2 RH22 G6 LA754 H RH23 G6 LA755 RH1 RH23 G6 LA756 RH2 RH23 G6 LA757 H RH24 G6 LA758 RH1 RH24 G6 LA759 RH2 RH24 G6 LA760 H RH25 G6 LA761 RH1 RH25 G6 LA762 RH2 RH25 G6 LA763 H RH26 G6 LA764 RH1 RH26 G6 LA765 RH2 RH26 G6 LA766 H RH27 G6 LA767 RH1 RH27 G6 LA768 RH2 RH27 G6 LA769 H RH28 G6 LA770 RH1 RH28 G6 LA771 RH2 RH28 G6 LA772 H RH29 G6 LA773 RH1 RH29 G6 LA774 RH2 RH29 G6 LA775 H RH30 G6 LA776 RH1 RH30 G6 LA777 RH2 RH30 G6 LA778 H RH31 G6 LA779 RH1 RH31 G6 LA780 RH2 RH31 G6 LA781 H RH32 G6 LA782 RH1 RH32 G6 LA783 RH2 RH32 G6 LA784 H RH33 G6 LA785 RH1 RH33 G6 LA786 RH2 RH33 G6 LA787 H RH34 G6 LA788 RH1 RH34 G6 LA789 RH2 RH34 G6 LA790 H RH35 G6 LA791 RH1 RH35 G6 LA792 RH2 RH35 G6 LA793 H RH36 G6 LA794 RH1 RH36 G6 LA795 RH2 RH36 G6 LA796 H RH37 G6 LA797 RH1 RH37 G6 LA798 RH2 RH37 G6 LA799 H RH38 G6 LA800 RH1 RH38 G6 LA801 RH2 RH38 G6 LA802 H RH39 G6 LA803 RH1 RH39 G6 LA804 RH2 RH39 G6 LA805 H RH40 G6 LA806 RH1 RH40 G6 LA807 RH2 RH40 G6 LA808 H RH41 G6 LA809 RH1 RH41 G6 LA810 RH2 RH41 G6 LA811 H RH42 G6 LA812 RH1 RH42 G6 LA813 RH2 RH42 G6 LA814 H RH43 G6 LA815 RH1 RH43 G6 LA816 RH2 RH43 G6 LA817 H RH44 G6 LA818 RH1 RH44 G6 LA819 RH2 RH44 G6 LA820 H RH45 G6 LA821 RH1 RH45 G6 LA822 RH2 RH45 G6 LA823 H RH46 G6 LA824 RH1 RH46 G6 LA825 RH2 RH46 G6 LA826 H RH47 G6 LA827 RH1 RH47 G6 LA828 RH2 RH47 G6 LA829 H RH48 G6 LA830 RH1 RH48 G6 LA831 RH2 RH48 G6 LA832 H RH49 G6 LA833 RH1 RH49 G6 LA834 RH2 RH49 G6 LA835 H RH50 G6 LA836 RH1 RH50 G6 LA837 RH2 RH50 G6 LA838 H RH51 G6 LA839 RH1 RH51 G6 LA840 RH2 RH51 G6 LA841 H RH52 G6 LA842 RH1 RH52 G6 LA843 RH2 RH52 G6 LA844 H RH53 G6 LA845 RH1 RH53 G6 LA846 RH2 RH53 G6 LA847 H RH54 G6 LA848 RH1 RH54 G6 LA849 RH2 RH54 G6 LA850 H RH55 G6 LA851 RH1 RH55 G6 LA852 RH2 RH55 G6 LA853 H RH56 G6 LA854 RH1 RH56 G6 LA855 RH2 RH56 G6 LA856 RH6 H G6 LA857 RH8 H G6 LA858 RH4 H G6 LA859 RH6 RH1 G6 LA860 RH8 RH1 G6 LA861 RH4 RH1 G6 LA862 RH6 RH2 G6 LA863 RH8 RH2 G6 LA864 RH4 RH2 G6 LA865 RH6 RH3 G6 LA866 RH8 RH3 G6 LA867 RH4 RH3 G6 LA868 RH6 RH4 G6 LA869 RH8 RH4 G6 LA870 RH4 RH4 G6 LA871 RH6 RH5 G6 LA872 RH8 RH5 G6 LA873 RH4 RH5 G6 LA874 RH6 RH6 G6 LA875 RH8 RH6 G6 LA876 RH4 RH6 G6 LA877 RH6 RH7 G6 LA878 RH8 RH7 G6 LA879 RH4 RH7 G6 LA880 RH6 RH8 G6 LA881 RH8 RH8 G6 LA882 RH4 RH8 G6 LA883 RH6 RH9 G6 LA884 RH8 RH9 G6 LA885 RH4 RH9 G6 LA886 RH6 RH10 G6 LA887 RH8 RH10 G6 LA888 RH4 RH10 G6 LA889 RH6 RH11 G6 LA890 RH8 RH11 G6 LA891 RH4 RH11 G6 LA892 RH6 RH12 G6 LA893 RH8 RH12 G6 LA894 RH4 RH12 G6 LA895 RH6 RH13 G6 LA896 RH8 RH13 G6 LA897 RH4 RH13 G6 LA898 RH6 RH14 G6 LA899 RH8 RH14 G6 LA900 RH4 RH14 G6 LA901 RH6 RH15 G6 LA902 RH8 RH15 G6 LA903 RH4 RH15 G6 LA904 RH6 RH16 G6 LA905 RH8 RH16 G6 LA906 RH4 RH16 G6 LA907 RH6 RH17 G6 LA908 RH8 RH17 G6 LA909 RH4 RH17 G6 LA910 RH6 RH18 G6 LA911 RH8 RH18 G6 LA912 RH4 RH18 G6 LA913 RH6 RH19 G6 LA914 RH8 RH19 G6 LA915 RH4 RH19 G6 LA916 RH6 RH20 G6 LA917 RH8 RH20 G6 LA918 RH4 RH20 G6 LA919 RH6 RH21 G6 LA920 RH8 RH21 G6 LA921 RH4 RH21 G6 LA922 RH6 RH22 G6 LA923 RH8 RH22 G6 LA924 RH4 RH22 G6 LA925 RH6 RH23 G6 LA926 RH8 RH25 G6 LA927 RH4 RH25 G6 LA928 RH6 RH24 G6 LA929 RH8 RH24 G6 LA930 RH4 RH24 G6 LA931 RH6 RH25 G6 LA932 RH8 RH25 G6 LA933 RH4 RH25 G6 LA934 RH6 RH26 G6 LA935 RH8 RH26 G6 LA936 RH4 RH26 G6 LA937 RH6 RH27 G6 LA938 RH8 RH27 G6 LA939 RH4 RH27 G6 LA940 RH6 RH28 G6 LA941 RH8 RH28 G6 LA942 RH4 RH28 G6 LA943 RH6 RH29 G6 LA944 RH8 RH29 G6 LA945 RH4 RH29 G6 LA946 RH6 RH30 G6 LA947 RH8 RH30 G6 LA948 RH4 RH30 G6 LA949 RH6 RH31 G6 LA950 RH8 RH31 G6 LA951 RH4 RH31 G6 LA952 RH6 RH32 G6 LA953 RH8 RH32 G6 LA954 RH4 RH32 G6 LA955 RH6 RH33 G6 LA956 RH8 RH33 G6 LA957 RH4 RH33 G6 LA958 RH6 RH34 G6 LA959 RH8 RH34 G6 LA960 RH4 RH34 G6 LA961 RH6 RH35 G6 LA962 RH8 RH35 G6 LA963 RH4 RH35 G6 LA964 RH6 RH36 G6 LA965 RH8 RH36 G6 LA966 RH4 RH36 G6 LA967 RH6 RH37 G6 LA968 RH8 RH37 G6 LA969 RH4 RH37 G6 LA970 RH6 RH38 G6 LA971 RH8 RH38 G6 LA972 RH4 RH38 G6 LA973 RH6 RH39 G6 LA974 RH8 RH39 G6 LA975 RH4 RH39 G6 LA976 RH6 RH40 G6 LA977 RH8 RH40 G6 LA978 RH4 RH40 G6 LA979 RH6 RH41 G6 LA980 RH8 RH41 G6 LA981 RH4 RH41 G6 LA982 RH6 RH42 G6 LA983 RH8 RH42 G6 LA984 RH4 RH42 G6 LA985 RH6 RH43 G6 LA986 RH8 RH43 G6 LA987 RH4 RH43 G6 LA988 RH6 RH44 G6 LA989 RH8 RH44 G6 LA990 RH4 RH44 G6 LA991 RH6 RH45 G6 LA992 RH8 RH45 G6 LA993 RH4 RH45 G6 LA994 RH6 RH46 G6 LA995 RH8 RH46 G6 LA996 RH4 RH46 G6 LA997 RH6 RH47 G6 LA998 RH8 RH47 G6 LA999 RH4 RH47 G6 LA1000 RH6 RH48 G6 LA1001 RH8 RH48 G6 LA1002 RH4 RH48 G6 LA1003 RH6 RH49 G6 LA1004 RH8 RH49 G6 LA1005 RH4 RH49 G6 LA1006 RH6 RH50 G6 LA1007 RH8 RH50 G6 LA1008 RH4 RH50 G6 LA1009 RH6 RH51 G6 LA1010 RH8 RH51 G6 LA1011 RH4 RH51 G6 LA1012 RH6 RH52 G6 LA1013 RH8 RH52 G6 LA1014 RH4 RH52 G6 LA1015 RH6 RH53 G6 LA1016 RH8 RH53 G6 LA1017 RH4 RH55 G6 LA1018 RH6 RH54 G6 LA1019 RH8 RH54 G6 LA1020 RH4 RH54 G6 LA1021 RH6 RH55 G6 LA1022 RH8 RH55 G6 LA1023 RH4 RH55 G6 LA1024 RH6 RH56 G6 LA1025 RH8 RH56 G6 LA1026 RH4 RH56 G6 LA1027 H H G21 LA1028 RH1 H G21 LA1029 RH2 H G21 LA1030 H RH1 G21 LA1031 RH1 RH1 G21 LA1032 RH2 RH1 G21 LA1033 H RH2 G21 LA1034 RH1 RH2 G21 LA1035 RH2 RH2 G21 LA1036 H RH3 G21 LA1037 RH1 RH3 G21 LA1038 RH2 RH3 G21 LA1039 H RH4 G21 LA1040 RH1 RH4 G21 LA1041 RH2 RH4 G21 LA1042 H RH5 G21 LA1043 RH1 RH5 G21 LA1044 RH2 RH5 G21 LA1045 H RH6 G21 LA1046 RH1 RH6 G21 LA1047 RH2 RH6 G21 LA1048 H RH7 G21 LA1049 RH1 RH7 G21 LA1050 RH2 RH7 G21 LA1051 H RH8 G21 LA1052 RH1 RH8 G21 LA1053 RH2 RH8 G21 LA1054 H RH9 G21 LA1055 RH1 RH9 G21 LA1056 RH2 RH9 G21 LA1057 H RH10 G21 LA1058 RH1 RH10 G21 LA1059 RH2 RH10 G21 LA1060 H RH11 G21 LA1061 RH1 RH11 G21 LA1062 RH2 RH11 G21 LA1063 H RH12 G21 LA1064 RH1 RH12 G21 LA1065 RH2 RH12 G21 LA1066 H RH13 G21 LA1067 RH1 RH13 G21 LA1068 RH2 RH13 G21 LA1069 H RH14 G21 LA1070 RH1 RH14 G21 LA1071 RH2 RH14 G21 LA1072 H RH15 G21 LA1073 RH1 RH15 G21 LA1074 RH2 RH15 G21 LA1075 H RH16 G21 LA1076 RH1 RH16 G21 LA1077 RH2 RH16 G21 LA1078 H RH17 G21 LA1079 RH1 RH17 G21 LA1080 RH2 RH17 G21 LA1081 H RH18 G21 LA1082 RH1 RH18 G21 LA1083 RH2 RH18 G21 LA1084 H RH19 G21 LA1085 RH1 RH19 G21 LA1086 RH2 RH19 G21 LA1087 H RH20 G21 LA1088 RH1 RH20 G21 LA1089 RH2 RH20 G21 LA1090 H RH21 G21 LA1091 RH1 RH21 G21 LA1092 RH2 RH21 G21 LA1093 H RH22 G21 LA1094 RH1 RH22 G21 LA1095 RH2 RH22 G21 LA1096 H RH23 G21 LA1097 RH1 RH23 G21 LA1098 RH2 RH23 G21 LA1099 H RH24 G21 LA1100 RH1 RH24 G21 LA1101 RH2 RH24 G21 LA1102 H RH25 G21 LA1103 RH1 RH25 G21 LA1104 RH2 RH25 G21 LA1105 H RH26 G21 LA1106 RH1 RH26 G21 LA1107 RH2 RH26 G21 LA1108 H RH27 G21 LA1109 RH1 RH27 G21 LA1110 RH2 RH27 G21 LA1111 H RH28 G21 LA1112 RH1 RH28 G21 LA1113 RH2 RH28 G21 LA1114 H RH29 G21 LA1115 RH1 RH29 G21 LA1116 RH2 RH29 G21 LA1117 H RH30 G21 LA1118 RH1 RH30 G21 LA1119 RH2 RH30 G21 LA1120 H RH31 G21 LA1121 RH1 RH31 G21 LA1122 RH2 RH31 G21 LA1123 H RH32 G21 LA1124 RH1 RH32 G21 LA1125 RH2 RH32 G21 LA1126 H RH33 G21 LA1127 RH1 RH33 G21 LA1128 RH2 RH33 G21 LA1129 H RH34 G21 LA1130 RH1 RH34 G21 LA1131 RH2 RH34 G21 LA1132 H RH35 G21 LA1133 RH1 RH35 G21 LA1134 RH2 RH35 G21 LA1135 H RH36 G21 LA1136 RH1 RH36 G21 LA1137 RH2 RH36 G21 LA1138 H RH37 G21 LA1139 RH1 RH37 G21 LA1140 RH2 RH37 G21 LA1141 H RH38 G21 LA1142 RH1 RH38 G21 LA1143 RH2 RH38 G21 LA1144 H RH39 G21 LA1145 RH1 RH39 G21 LA1146 RH2 RH39 G21 LA1147 H RH40 G21 LA1148 RH1 RH40 G21 LA1149 RH2 RH40 G21 LA1150 H RH41 G21 LA1151 RH1 RH41 G21 LA1152 RH2 RH41 G21 LA1153 H RH42 G21 LA1154 RH1 RH42 G21 LA1155 RH2 RH42 G21 LA1156 H RH43 G21 LA1157 RH1 RH43 G21 LA1158 RH2 RH43 G21 LA1159 H RH44 G21 LA1160 RH1 RH44 G21 LA1161 RH2 RH44 G21 LA1162 H RH45 G21 LA1163 RH1 RH45 G21 LA1164 RH2 RH45 G21 LA1165 H RH46 G21 LA1166 RH1 RH46 G21 LA1167 RH2 RH46 G21 LA1168 H RH47 G21 LA1169 RH1 RH47 G21 LA1170 RH2 RH47 G21 LA1171 H RH48 G21 LA1172 RH1 RH48 G21 LA1173 RH2 RH48 G21 LA1174 H RH49 G21 LA1175 RH1 RH49 G21 LA1176 RH2 RH49 G21 LA1177 H RH50 G21 LA1178 RH1 RH50 G21 LA1179 RH2 RH50 G21 LA1180 H RH51 G21 LA1181 RH1 RH51 G21 LA1182 RH2 RH51 G21 LA1183 H RH52 G21 LA1184 RH1 RH52 G21 LA1185 RH2 RH52 G21 LA1186 H RH53 G21 LA1187 RH1 RH53 G21 LA1188 RH2 RH53 G21 LA1189 H RH54 G21 LA1190 RH1 RH54 G21 LA1191 RH2 RH54 G21 LA1192 H RH55 G21 LA1193 RH1 RH55 G21 LA1194 RH2 RH55 G21 LA1195 H RH56 G21 LA1196 RH1 RH56 G21 LA1197 RH2 RH56 G21 LA1198 RH6 H G21 LA1199 RH8 H G21 LA1200 RH4 H G21 LA1201 RH6 RH1 G21 LA1202 RH8 RH1 G21 LA1203 RH4 RH1 G21 LA1204 RH6 RH2 G21 LA1205 RH8 RH2 G21 LA1206 RH4 RH2 G21 LA1207 RH6 RH3 G21 LA1208 RH8 RH3 G21 LA1209 RH4 RH3 G21 LA1210 RH6 RH4 G21 LA1211 RH8 RH4 G21 LA1212 RH4 RH4 G21 LA1213 RH6 RH5 G21 LA1214 RH8 RH5 G21 LA1215 RH4 RH5 G21 LA1216 RH6 RH6 G21 LA1217 RH8 RH6 G21 LA1218 RH4 RH6 G21 LA1219 RH6 RH7 G21 LA1220 RH8 RH7 G21 LA1221 RH4 RH7 G21 LA1222 RH6 RH8 G21 LA1223 RH8 RH8 G21 LA1224 RH4 RH8 G21 LA1225 RH6 RH9 G21 LA1226 RH8 RH9 G21 LA1227 RH4 RH9 G21 LA1228 RH6 RH10 G21 LA1229 RH8 RH10 G21 LA1230 RH4 RH10 G21 LA1231 RH6 RH11 G21 LA1232 RH8 RH11 G21 LA1233 RH4 RH11 G21 LA1234 RH6 RH12 G21 LA1235 RH8 RH12 G21 LA1236 RH4 RH12 G21 LA1237 RH6 RH13 G21 LA1238 RH8 RH13 G21 LA1239 RH4 RH13 G21 LA1240 RH6 RH14 G21 LA1241 RH8 RH14 G21 LA1242 RH4 RH14 G21 LA1243 RH6 RH15 G21 LA1244 RH8 RH15 G21 LA1245 RH4 RH15 G21 LA1246 RH6 RH16 G21 LA1247 RH8 RH16 G21 LA1248 RH4 RH16 G21 LA1249 RH6 RH17 G21 LA1250 RH8 RH17 G21 LA1251 RH4 RH17 G21 LA1252 RH6 RH18 G21 LA1253 RH8 RH18 G21 LA1254 RH4 RH18 G21 LA1255 RH6 RH19 G21 LA1256 RH8 RH19 G21 LA1257 RH4 RH19 G21 LA1258 RH6 RH20 G21 LA1259 RH8 RH20 G21 LA1260 RH4 RH20 G21 LA1261 RH6 RH21 G21 LA1262 RH8 RH21 G21 LA1263 RH4 RH21 G21 LA1264 RH6 RH22 G21 LA1265 RH8 RH22 G21 LA1266 RH4 RH22 G21 LA1267 RH6 RH23 G21 LA1268 RH8 RH23 G21 LA1269 RH4 RH23 G21 LA1270 RH6 RH24 G21 LA1271 RH8 RH24 G21 LA1272 RH4 RH24 G21 LA1273 RH6 RH25 G21 LA1274 RH8 RH25 G21 LA1275 RH4 RH25 G21 LA1276 RH6 RH26 G21 LA1277 RH8 RH26 G21 LA1278 RH4 RH26 G21 LA1279 RH6 RH27 G21 LA1280 RH8 RH27 G21 LA1281 RH4 RH27 G21 LA1282 RH6 RH28 G21 LA1283 RH8 RH28 G21 LA1284 RH4 RH28 G21 LA1285 RH6 RH29 G21 LA1286 RH8 RH29 G21 LA1287 RH4 RH29 G21 LA1288 RH6 RH30 G21 LA1289 RH8 RH30 G21 LA1290 RH4 RH30 G21 LA1291 RH6 RH31 G21 LA1292 RH8 RH31 G21 LA1293 RH4 RH31 G21 LA1294 RH6 RH32 G21 LA1295 RH8 RH32 G21 LA1296 RH4 RH32 G21 LA1297 RH6 RH33 G21 LA1298 RH8 RH33 G21 LA1299 RH4 RH33 G21 LA1300 RH6 RH34 G21 LA1301 RH8 RH34 G21 LA1302 RH4 RH34 G21 LA1303 RH6 RH35 G21 LA1304 RH8 RH35 G21 LA1305 RH4 RH35 G21 LA1306 RH6 RH36 G21 LA1307 RH8 RH36 G21 LA1308 RH4 RH36 G21 LA1309 RH6 RH37 G21 LA1310 RH8 RH37 G21 LA1311 RH4 RH37 G21 LA1312 RH6 RH38 G21 LA1313 RH8 RH38 G21 LA1314 RH4 RH38 G21 LA1315 RH6 RH39 G21 LA1316 RH8 RH39 G21 LA1317 RH4 RH39 G21 LA1318 RH6 RH40 G21 LA1319 RH8 RH40 G21 LA1320 RH4 RH40 G21 LA1321 RH6 RH41 G21 LA1322 RH8 RH41 G21 LA1323 RH4 RH41 G21 LA1324 RH6 RH42 G21 LA1325 RH8 RH42 G21 LA1326 RH4 RH42 G21 LA1327 RH6 RH43 G21 LA1328 RH8 RH43 G21 LA1329 RH4 RH43 G21 LA1330 RH6 RH44 G21 LA1331 RH8 RH44 G21 LA1332 RH4 RH44 G21 LA1333 RH6 RH45 G21 LA1334 RH8 RH45 G21 LA1335 RH4 RH45 G21 LA1336 RH6 RH46 G21 LA1337 RH8 RH46 G21 LA1338 RH4 RH46 G21 LA1339 RH6 RH47 G21 LA1340 RH8 RH47 G21 LA1341 RH4 RH47 G21 LA1342 RH6 RH48 G21 LA1343 RH8 RH48 G21 LA1344 RH4 RH48 G21 LA1345 RH6 RH49 G21 LA1346 RH8 RH49 G21 LA1347 RH4 RH49 G21 LA1348 RH6 RH50 G21 LA1349 RH8 RH50 G21 LA1350 RH4 RH50 G21 LA1351 RH6 RH51 G21 LA1352 RH8 RH51 G21 LA1353 RH4 RH51 G21 LA1354 RH6 RH52 G21 LA1355 RH8 RH52 G21 LA1356 RH4 RH52 G21 LA1357 RH6 RH53 G21 LA1358 RH8 RH53 G21 LA1359 RH4 RH53 G21 LA1360 RH6 RH54 G21 LA1361 RH8 RH54 G21 LA1362 RH4 RH54 G21 LA1363 RH6 RH55 G21 LA1364 RH8 RH55 G21 LA1365 RH4 RH55 G21 LA1366 RH6 RH56 G21 LA1367 RH8 RH56 G21 LA1368 RH4 RH56 G21 LA1369 H H G22 LA1370 RH1 H G22 LA1371 RH2 H G22 LA1372 H RH1 G22 LA1373 RH1 RH1 G22 LA1374 RH2 RH1 G22 LA1375 H RH2 G22 LA1376 RH1 RH2 G22 LA1377 RH2 RH2 G22 LA1378 H RH3 G22 LA1379 RH1 RH3 G22 LA1380 RH2 RH3 G22 LA1381 H RH4 G22 LA1382 RH1 RH4 G22 LA1383 RH2 RH4 G22 LA1384 H RH5 G22 LA1385 RH1 RH5 G22 LA1386 RH2 RH5 G22 LA1387 H RH6 G22 LA1388 RH1 RH6 G22 LA1389 RH2 RH6 G22 LA1390 H RH7 G22 LA1391 RH1 RH7 G22 LA1392 RH2 RH7 G22 LA1393 H RH8 G22 LA1394 RH1 RH8 G22 LA1395 RH2 RH8 G22 LA1396 H RH9 G22 LA1397 RH1 RH9 G22 LA1398 RH2 RH9 G22 LA1399 H RH10 G22 LA1400 RH1 RH10 G22 LA1401 RH2 RH10 G22 LA1402 H RH11 G22 LA1403 RH1 RH11 G22 LA1404 RH2 RH11 G22 LA1405 H RH12 G22 LA1406 RH1 RH12 G22 LA1407 RH2 RH12 G22 LA1408 H RH13 G22 LA1409 RH1 RH13 G22 LA1410 RH2 RH13 G22 LA1411 H RH14 G22 LA1412 RH1 RH14 G22 LA1413 RH2 RH14 G22 LA1414 H RH15 G22 LA1415 RH1 RH15 G22 LA1416 RH2 RH15 G22 LA1417 H RH16 G22 LA1418 RH1 RH16 G22 LA1419 RH2 RH16 G22 LA1420 H RH17 G22 LA1421 RH1 RH17 G22 LA1422 RH2 RH17 G22 LA1423 H RH18 G22 LA1424 RH1 RH18 G22 LA1425 RH2 RH18 G22 LA1426 H RH19 G22 LA1427 RH1 RH19 G22 LA1428 RH2 RH19 G22 LA1429 H RH20 G22 LA1430 RH1 RH20 G22 LA1431 RH2 RH20 G22 LA1432 H RH21 G22 LA1433 RH1 RH21 G22 LA1434 RH2 RH21 G22 LA1435 H RH22 G22 LA1436 RH1 RH22 G22 LA1437 RH2 RH22 G22 LA1438 H RH23 G22 LA1439 RH1 RH23 G22 LA1440 RH2 RH23 G22 LA1441 H RH24 G22 LA1442 RH1 RH24 G22 LA1443 RH2 RH24 G22 LA1444 H RH25 G22 LA1445 RH1 RH25 G22 LA1446 RH2 RH25 G22 LA1447 H RH26 G22 LA1448 RH1 RH26 G22 LA1449 RH2 RH26 G22 LA1450 H RH27 G22 LA1451 RH1 RH27 G22 LA1452 RH2 RH27 G22 LA1453 H RH28 G22 LA1454 RH1 RH28 G22 LA1455 RH2 RH28 G22 LA1456 H RH29 G22 LA1457 RH1 RH29 G22 LA1458 RH2 RH29 G22 LA1459 H RH30 G22 LA1460 RH1 RH30 G22 LA1461 RH2 RH30 G22 LA1462 H RH31 G22 LA1463 RH1 RH31 G22 LA1464 RH2 RH31 G22 LA1465 H RH32 G22 LA1466 RH1 RH32 G22 LA1467 RH2 RH32 G22 LA1468 H RH33 G22 LA1469 RH1 RH33 G22 LA1470 RH2 RH33 G22 LA1471 H RH34 G22 LA1472 RH1 RH34 G22 LA1473 RH2 RH34 G22 LA1474 H RH35 G22 LA1475 RH1 RH35 G22 LA1476 RH2 RH35 G22 LA1477 H RH36 G22 LA1478 RH1 RH36 G22 LA1479 RH2 RH36 G22 LA1480 H RH37 G22 LA1481 RH1 RH37 G22 LA1482 RH2 RH37 G22 LA1483 H RH38 G22 LA1484 RH1 RH38 G22 LA1485 RH2 RH38 G22 LA1486 H RH39 G22 LA1487 RH1 RH39 G22 LA1488 RH2 RH39 G22 LA1489 H RH40 G22 LA1490 RH1 RH40 G22 LA1491 RH2 RH40 G22 LA1492 H RH41 G22 LA1493 RH1 RH41 G22 LA1494 RH2 RH41 G22 LA1495 H RH42 G22 LA1496 RH1 RH42 G22 LA1497 RH2 RH42 G22 LA1498 H RH43 G22 LA1499 RH1 RH43 G22 LA1500 RH2 RH43 G22 LA1501 H RH44 G22 LA1502 RH1 RH44 G22 LA1503 RH2 RH44 G22 LA1504 H RH45 G22 LA1505 RH1 RH45 G22 LA1506 RH2 RH45 G22 LA1507 H RH46 G22 LA1508 RH1 RH46 G22 LA1509 RH2 RH46 G22 LA1510 H RH47 G22 LA1511 RH1 RH47 G22 LA1512 RH2 RH47 G22 LA1513 H RH48 G22 LA1514 RH1 RH48 G22 LA1515 RH2 RH48 G22 LA1516 H RH49 G22 LA1517 RH1 RH49 G22 LA1518 RH2 RH49 G22 LA1519 H RH50 G22 LA1520 RH1 RH50 G22 LA1521 RH2 RH50 G22 LA1522 H RH51 G22 LA1523 RH1 RH51 G22 LA1524 RH2 RH51 G22 LA1525 H RH52 G22 LA1526 RH1 RH52 G22 LA1527 RH2 RH52 G22 LA1528 H RH53 G22 LA1529 RH1 RH53 G22 LA1530 RH2 RH53 G22 LA1531 H RH54 G22 LA1532 RH1 RH54 G22 LA1533 RH2 RH54 G22 LA1534 H RH55 G22 LA1535 RH1 RH55 G22 LA1536 RH2 RH55 G22 LA1537 H RH56 G22 LA1538 RH1 RH56 G22 LA1539 RH2 RH56 G22 LA1540 RH6 H G22 LA1541 RH8 H G22 LA1542 RH4 H G22 LA1543 RH6 RH1 G22 LA1544 RH8 RH1 G22 LA1545 RH4 RH1 G22 LA1546 RH6 RH2 G22 LA1547 RH8 RH2 G22 LA1548 RH4 RH2 G22 LA1549 RH6 RH3 G22 LA1550 RH8 RH3 G22 LA1551 RH4 RH3 G22 LA1552 RH6 RH4 G22 LA1553 RH8 RH4 G22 LA1554 RH4 RH4 G22 LA1555 RH6 RH5 G22 LA1556 RH8 RH5 G22 LA1557 RH4 RH5 G22 LA1558 RH6 RH6 G22 LA1559 RH8 RH6 G22 LA1560 RH4 RH6 G22 LA1561 RH6 RH7 G22 LA1562 RH8 RH7 G22 LA1563 RH4 RH7 G22 LA1564 RH6 RH8 G22 LA1565 RH8 RH8 G22 LA1566 RH4 RH8 G22 LA1567 RH6 RH9 G22 LA1568 RH8 RH9 G22 LA1569 RH4 RH9 G22 LA1570 RH6 RH10 G22 LA1571 RH8 RH10 G22 LA1572 RH4 RH10 G22 LA1573 RH6 RH11 G22 LA1574 RH8 RH11 G22 LA1575 RH4 RH11 G22 LA1576 RH6 RH12 G22 LA1577 RH8 RH12 G22 LA1578 RH4 RH12 G22 LA1579 RH6 RH13 G22 LA1580 RH8 RH13 G22 LA1581 RH4 RH13 G22 LA1582 RH6 RH14 G22 LA1583 RH8 RH14 G22 LA1584 RH4 RH14 G22 LA1585 RH6 RH15 G22 LA1586 RH8 RH15 G22 LA1587 RH4 RH15 G22 LA1588 RH6 RH16 G22 LA1589 RH8 RH16 G22 LA1590 RH4 RH16 G22 LA1591 RH6 RH17 G22 LA1592 RH8 RH17 G22 LA1593 RH4 RH17 G22 LA1594 RH6 RH18 G22 LA1595 RH8 RH18 G22 LA1596 RH4 RH18 G22 LA1597 RH6 RH19 G22 LA1598 RH8 RH19 G22 LA1599 RH4 RH19 G22 LA1600 RH6 RH20 G22 LA1601 RH8 RH20 G22 LA1602 RH4 RH20 G22 LA1603 RH6 RH21 G22 LA1604 RH8 RH21 G22 LA1605 RH4 RH21 G22 LA1606 RH6 RH22 G22 LA1607 RH8 RH22 G22 LA1608 RH4 RH22 G22 LA1609 RH6 RH23 G22 LA1610 RH8 RH23 G22 LA1611 RH4 RH23 G22 LA1612 RH6 RH24 G22 LA1613 RH8 RH24 G22 LA1614 RH4 RH24 G22 LA1615 RH6 RH25 G22 LA1616 RH8 RH25 G22 LA1617 RH4 RH25 G22 LA1618 RH6 RH26 G22 LA1619 RH8 RH26 G22 LA1620 RH4 RH26 G22 LA1621 RH6 RH27 G22 LA1622 RH8 RH27 G22 LA1623 RH4 RH27 G22 LA1624 RH6 RH28 G22 LA1625 RH8 RH28 G22 LA1626 RH4 RH28 G22 LA1627 RH6 RH29 G22 LA1628 RH8 RH29 G22 LA1629 RH4 RH29 G22 LA1630 RH6 RH30 G22 LA1631 RH8 RH30 G22 LA1632 RH4 RH30 G22 LA1633 RH6 RH31 G22 LA1634 RH8 RH31 G22 LA1635 RH4 RH31 G22 LA1636 RH6 RH32 G22 LA1637 RH8 RH32 G22 LA1638 RH4 RH32 G22 LA1639 RH6 RH33 G22 LA1640 RH8 RH33 G22 LA1641 RH4 RH33 G22 LA1642 RH6 RH34 G22 LA1643 RH8 RH34 G22 LA1644 RH4 RH34 G22 LA1645 RH6 RH35 G22 LA1646 RH8 RH35 G22 LA1647 RH4 RH35 G22 LA1648 RH6 RH36 G22 LA1649 RH8 RH36 G22 LA1650 RH4 RH36 G22 LA1651 RH6 RH37 G22 LA1652 RH8 RH37 G22 LA1653 RH4 RH37 G22 LA1654 RH6 RH38 G22 LA1655 RH8 RH38 G22 LA1656 RH4 RH38 G22 LA1657 RH6 RH39 G22 LA1658 RH8 RH39 G22 LA1659 RH4 RH39 G22 LA1660 RH6 RH40 G22 LA1661 RH8 RH40 G22 LA1662 RH4 RH40 G22 LA1663 RH6 RH41 G22 LA1664 RH8 RH41 G22 LA1665 RH4 RH41 G22 LA1666 RH6 RH42 G22 LA1667 RH8 RH42 G22 LA1668 RH4 RH42 G22 LA1669 RH6 RH43 G22 LA1670 RH8 RH43 G22 LA1671 RH4 RH43 G22 LA1672 RH6 RH44 G22 LA1673 RH8 RH44 G22 LA1674 RH4 RH44 G22 LA1675 RH6 RH45 G22 LA1676 RH8 RH45 G22 LA1677 RH4 RH45 G22 LA1678 RH6 RH46 G22 LA1679 RH8 RH46 G22 LA1680 RH4 RH46 G22 LA1681 RH6 RH47 G22 LA1682 RH8 RH47 G22 LA1683 RH4 RH47 G22 LA1684 RH6 RH48 G22 LA1685 RH8 RH48 G22 LA1686 RH4 RH48 G22 LA1687 RH6 RH49 G22 LA1688 RH8 RH49 G22 LA1689 RH4 RH49 G22 LA1690 RH6 RH50 G22 LA1691 RH8 RH50 G22 LA1692 RH4 RH50 G22 LA1693 RH6 RH51 G22 LA1694 RH8 RH51 G22 LA1695 RH4 RH51 G22 LA1696 RH6 RH52 G22 LA1697 RH8 RH52 G22 LA1698 RH4 RH52 G22 LA1699 RH6 RH53 G22 LA1700 RH8 RH55 G22 LA1701 RH4 RH55 G22 LA1702 RH6 RH54 G22 LA1703 RH8 RH54 G22 LA1704 RH4 RH54 G22 LA1705 RH6 RH55 G22 LA1706 RH8 RH55 G22 LA1707 RH4 RH55 G22 LA1708 RH6 RH56 G22 LA1709 RH8 RH56 G22 LA1710 RH4 RH56 G22 LA1711 H H G36 LA1712 RH1 H G36 LA1713 RH2 H G36 LA1714 H RH1 G36 LA1715 RH1 RH1 G36 LA1716 RH2 RH1 G36 LA1717 H RH2 G36 LA1718 RH1 RH2 G36 LA1719 RH2 RH2 G36 LA1720 H RH3 G36 LA1721 RH1 RH3 G36 LA1722 RH2 RH3 G36 LA1723 H RH4 G36 LA1724 RH1 RH4 G36 LA1725 RH2 RH4 G36 LA1726 H RH5 G36 LA1727 RH1 RH5 G36 LA1728 RH2 RH5 G36 LA1729 H RH6 G36 LA1730 RH1 RH6 G36 LA1731 RH2 RH6 G36 LA1732 H RH7 G36 LA1733 RH1 RH7 G36 LA1734 RH2 RH7 G36 LA1735 H RH8 G36 LA1736 RH1 RH8 G36 LA1737 RH2 RH8 G36 LA1738 H RH9 G36 LA1739 RH1 RH9 G36 LA1740 RH2 RH9 G36 LA1741 H RH10 G36 LA1742 RH1 RH10 G36 LA1743 RH2 RH10 G36 LA1744 H RH11 G36 LA1745 RH1 RH11 G36 LA1746 RH2 RH11 G36 LA1747 H RH12 G36 LA1748 RH1 RH12 G36 LA1749 RH2 RH12 G36 LA1750 H RH13 G36 LA1751 RH1 RH13 G36 LA1752 RH2 RH13 G36 LA1753 H RH14 G36 LA1754 RH1 RH14 G36 LA1755 RH2 RH14 G36 LA1756 H RH15 G36 LA1757 RH1 RH15 G36 LA1758 RH2 RH15 G36 LA1759 H RH16 G36 LA1760 RH1 RH16 G36 LA1761 RH2 RH16 G36 LA1762 H RH17 G36 LA1763 RH1 RH17 G36 LA1764 RH2 RH17 G36 LA1765 H RH18 G36 LA1766 RH1 RH18 G36 LA1767 RH2 RH18 G36 LA1768 H RH19 G36 LA1769 RH1 RH19 G36 LA1770 RH2 RH19 G36 LA1771 H RH20 G36 LA1772 RH1 RH20 G36 LA1773 RH2 RH20 G36 LA1774 H RH21 G36 LA1775 RH1 RH21 G36 LA1776 RH2 RH21 G36 LA1777 H RH22 G36 LA1778 RH1 RH22 G36 LA1779 RH2 RH22 G36 LA1780 H RH23 G36 LA1781 RH1 RH25 G36 LA1782 RH2 RH25 G36 LA1783 H RH24 G36 LA1784 RH1 RH24 G36 LA1785 RH2 RH24 G36 LA1786 H RH25 G36 LA1787 RH1 RH25 G36 LA1788 RH2 RH25 G36 LA1789 H RH26 G36 LA1790 RH1 RH26 G36 LA1791 RH2 RH26 G36 LA1792 H RH27 G36 LA1793 RH1 RH27 G36 LA1794 RH2 RH27 G36 LA1795 H RH28 G36 LA1796 RH1 RH28 G36 LA1797 RH2 RH28 G36 LA1798 H RH29 G36 LA1799 RH1 RH29 G36 LA1800 RH2 RH29 G36 LA1801 H RH30 G36 LA1802 RH1 RH30 G36 LA1803 RH2 RH30 G36 LA1804 H RH31 G36 LA1805 RH1 RH31 G36 LA1806 RH2 RH31 G36 LA1807 H RH32 G36 LA1808 RH1 RH32 G36 LA1809 RH2 RH32 G36 LA1810 H RH33 G36 LA1811 RH1 RH33 G36 LA1812 RH2 RH33 G36 LA1813 H RH34 G36 LA1814 RH1 RH34 G36 LA1815 RH2 RH34 G36 LA1816 H RH35 G36 LA1817 RH1 RH35 G36 LA1818 RH2 RH35 G36 LA1819 H RH36 G36 LA1820 RH1 RH36 G36 LA1821 RH2 RH36 G36 LA1822 H RH37 G36 LA1823 RH1 RH37 G36 LA1824 RH2 RH37 G36 LA1825 H RH38 G36 LA1826 RH1 RH38 G36 LA1827 RH2 RH38 G36 LA1828 H RH39 G36 LA1829 RH1 RH39 G36 LA1830 RH2 RH39 G36 LA1831 H RH40 G36 LA1832 RH1 RH40 G36 LA1833 RH2 RH40 G36 LA1834 H RH41 G36 LA1835 RH1 RH41 G36 LA1836 RH2 RH41 G36 LA1837 H RH42 G36 LA1838 RH1 RH42 G36 LA1839 RH2 RH42 G36 LA1840 H RH43 G36 LA1841 RH1 RH45 G36 LA1842 RH2 RH45 G36 LA1843 H RH44 G36 LA1844 RH1 RH44 G36 LA1845 RH2 RH44 G36 LA1846 H RH45 G36 LA1847 RH1 RH45 G36 LA1848 RH2 RH45 G36 LA1849 H RH46 G36 LA1850 RH1 RH46 G36 LA1851 RH2 RH46 G36 LA1852 H RH47 G36 LA1853 RH1 RH47 G36 LA1854 RH2 RH47 G36 LA1855 H RH48 G36 LA1856 RH1 RH48 G36 LA1857 RH2 RH48 G36 LA1858 H RH49 G36 LA1859 RH1 RH49 G36 LA1860 RH2 RH49 G36 LA1861 H RH50 G36 LA1862 RH1 RH50 G36 LA1863 RH2 RH50 G36 LA1864 H RH51 G36 LA1865 RH1 RH51 G36 LA1866 RH2 RH51 G36 LA1867 H RH52 G36 LA1868 RH1 RH52 G36 LA1869 RH2 RH52 G36 LA1870 H RH53 G36 LA1871 RH1 RH55 G36 LA1872 RH2 RH55 G36 LA1873 H RH54 G36 LA1874 RH1 RH54 G36 LA1875 RH2 RH54 G36 LA1876 H RH55 G36 LA1877 RH1 RH55 G36 LA1878 RH2 RH55 G36 LA1879 H RH56 G36 LA1880 RH1 RH56 G36 LA1881 RH2 RH56 G36 LA1882 RH6 H G36 LA1883 RH8 H G36 LA1884 RH4 H G36 LA1885 RH6 RH1 G36 LA1886 RH8 RH1 G36 LA1887 RH4 RH1 G36 LA1888 RH6 RH2 G36 LA1889 RH8 RH2 G36 LA1890 RH4 RH2 G36 LA1891 RH6 RH3 G36 LA1892 RH8 RH3 G36 LA1893 RH4 RH3 G36 LA1894 RH6 RH4 G36 LA1895 RH8 RH4 G36 LA1896 RH4 RH4 G36 LA1897 RH6 RH5 G36 LA1898 RH8 RH5 G36 LA1899 RH4 RH5 G36 LA1900 RH6 RH6 G36 LA1901 RH8 RH6 G36 LA1902 RH4 RH6 G36 LA1903 RH6 RH7 G36 LA1904 RH8 RH7 G36 LA1905 RH4 RH7 G36 LA1906 RH6 RH8 G36 LA1907 RH8 RH8 G36 LA1908 RH4 RH8 G36 LA1909 RH6 RH9 G36 LA1910 RH8 RH9 G36 LA1911 RH4 RH9 G36 LA1912 RH6 RH10 G36 LA1913 RH8 RH10 G36 LA1914 RH4 RH10 G36 LA1915 RH6 RH11 G36 LA1916 RH8 RH11 G36 LA1917 RH4 RH11 G36 LA1918 RH6 RH12 G36 LA1919 RH8 RH12 G36 LA1920 RH4 RH12 G36 LA1921 RH6 RH13 G36 LA1922 RH8 RH13 G36 LA1923 RH4 RH13 G36 LA1924 RH6 RH14 G36 LA1925 RH8 RH14 G36 LA1926 RH4 RH14 G36 LA1927 RH6 RH15 G36 LA1928 RH8 RH15 G36 LA1929 RH4 RH15 G36 LA1930 RH6 RH16 G36 LA1931 RH8 RH16 G36 LA1932 RH4 RH16 G36 LA1933 RH6 RH17 G36 LA1934 RH8 RH17 G36 LA1935 RH4 RH17 G36 LA1936 RH6 RH18 G36 LA1937 RH8 RH18 G36 LA1938 RH4 RH18 G36 LA1939 RH6 RH19 G36 LA1940 RH8 RH19 G36 LA1941 RH4 RH19 G36 LA1942 RH6 RH20 G36 LA1943 RH8 RH20 G36 LA1944 RH4 RH20 G36 LA1945 RH6 RH21 G36 LA1946 RH8 RH21 G36 LA1947 RH4 RH21 G36 LA1948 RH6 RH22 G36 LA1949 RH8 RH22 G36 LA1950 RH4 RH22 G36 LA1951 RH6 RH23 G36 LA1952 RH8 RH23 G36 LA1953 RH4 RH23 G36 LA1954 RH6 RH24 G36 LA1955 RH8 RH24 G36 LA1956 RH4 RH24 G36 LA1957 RH6 RH25 G36 LA1958 RH8 RH25 G36 LA1959 RH4 RH25 G36 LA1960 RH6 RH26 G36 LA1961 RH8 RH26 G36 LA1962 RH4 RH26 G36 LA1963 RH6 RH27 G36 LA1964 RH8 RH27 G36 LA1965 RH4 RH27 G36 LA1966 RH6 RH28 G36 LA1967 RH8 RH28 G36 LA1968 RH4 RH28 G36 LA1969 RH6 RH29 G36 LA1970 RH8 RH29 G36 LA1971 RH4 RH29 G36 LA1972 RH6 RH30 G36 LA1973 RH8 RH30 G36 LA1974 RH4 RH30 G36 LA1975 RH6 RH31 G36 LA1976 RH8 RH31 G36 LA1977 RH4 RH31 G36 LA1978 RH6 RH32 G36 LA1979 RH8 RH32 G36 LA1980 RH4 RH32 G36 LA1981 RH6 RH33 G36 LA1982 RH8 RH33 G36 LA1983 RH4 RH33 G36 LA1984 RH6 RH34 G36 LA1985 RH8 RH34 G36 LA1986 RH4 RH34 G36 LA1987 RH6 RH35 G36 LA1988 RH8 RH35 G36 LA1989 RH4 RH35 G36 LA1990 RH6 RH36 G36 LA1991 RH8 RH36 G36 LA1992 RH4 RH36 G36 LA1993 RH6 RH37 G36 LA1994 RH8 RH37 G36 LA1995 RH4 RH37 G36 LA1996 RH6 RH38 G36 LA1997 RH8 RH38 G36 LA1998 RH4 RH38 G36 LA1999 RH6 RH39 G36 LA2000 RH8 RH39 G36 LA2001 RH4 RH39 G36 LA2002 RH6 RH40 G36 LA2003 RH8 RH40 G36 LA2004 RH4 RH40 G36 LA2005 RH6 RH41 G36 LA2006 RH8 RH41 G36 LA2007 RH4 RH41 G36 LA2008 RH6 RH42 G36 LA2009 RH8 RH42 G36 LA2010 RH4 RH42 G36 LA2011 RH6 RH43 G36 LA2012 RH8 RH45 G36 LA2013 RH4 RH45 G36 LA2014 RH6 RH44 G36 LA2015 RH8 RH44 G36 LA2016 RH4 RH44 G36 LA2017 RH6 RH45 G36 LA2018 RH8 RH45 G36 LA2019 RH4 RH45 G36 LA2020 RH6 RH46 G36 LA2021 RH8 RH46 G36 LA2022 RH4 RH46 G36 LA2023 RH6 RH47 G36 LA2024 RH8 RH47 G36 LA2025 RH4 RH47 G36 LA2026 RH6 RH48 G36 LA2027 RH8 RH48 G36 LA2028 RH4 RH48 G36 LA2029 RH6 RH49 G36 LA2030 RH8 RH49 G36 LA2031 RH4 RH49 G36 LA2032 RH6 RH50 G36 LA2033 RH8 RH50 G36 LA2034 RH4 RH50 G36 LA2035 RH6 RH51 G36 LA2036 RH8 RH51 G36 LA2037 RH4 RH51 G36 LA2038 RH6 RH52 G36 LA2039 RH8 RH52 G36 LA2040 RH4 RH52 G36 LA2041 RH6 RH53 G36 LA2042 RH8 RH55 G36 LA2043 RH4 RH55 G36 LA2044 RH6 RH54 G36 LA2045 RH8 RH54 G36 LA2046 RH4 RH54 G36 LA2047 RH6 RH55 G36 LA2048 RH8 RH55 G36 LA2049 RH4 RH55 G36 LA2050 RH6 RH56 G36 LA2051 RH8 RH56 G36 LA2052 RH4 RH56 G36 LA2053 RH1 RH1 G1 LA2054 RH1 RH1 G2 LA2055 RH1 RH1 G3 LA2056 RH1 RH1 G4 LA2057 RH1 RH1 G5 LA2058 RH1 RH1 G6 LA2059 RH1 RH1 G7 LA2060 RH1 RH1 G8 LA2061 RH1 RH1 G9 LA2062 RH1 RH1 G10 LA2063 RH1 RH1 G11 LA2064 RH1 RH1 G12 LA2065 RH1 RH1 G13 LA2066 RH1 RH1 G14 LA2067 RH1 RH1 G15 LA2068 RH1 RH1 G16 LA2069 RH1 RH1 G17 LA2070 RH1 RH1 G18 LA2071 RH1 RH1 G19 LA2072 RH1 RH1 G20 LA2073 RH1 RH1 G21 LA2074 RH1 RH1 G22 LA2075 RH1 RH1 G23 LA2076 RH1 RH1 G24 LA2077 RH1 RH1 G25 LA2078 RH1 RH1 G26 LA2079 RH1 RH1 G27 LA2080 RH1 RH1 G28 LA2081 RH1 RH1 G29 LA2082 RH1 RH1 G30 LA2083 RH1 RH1 G31 LA2084 RH1 RH1 G32 LA2085 RH1 RH1 G33 LA2086 RH1 RH1 G34 LA2087 RH1 RH1 G35 LA2088 RH1 RH1 G36

wherein RH1 to RH56 have the following structures:

wherein G1 to G36 have the following structures:

In some embodiments, the compound can have a formula of Os(LA)(LB)(LC) or Os(LA)2(LB). In some embodiments, the compound can have a formula of Os(LA)(LB)(LC).

In some embodiments, LB can be selected from the group consisting of LBk, wherein k is an integer from 1 to 324, and each LBk is as defined below in LIST 1:

In some embodiments, LC can be a neutral compound selected from the group consisting of:

wherein RE and RF are each independently a hydrogen or a substituent selected from the group consisting of the general substituents defined herein; and each X is independently C or N.

In some embodiments, LC can be selected from the group consisting of:

wherein RE and RF are each independently a hydrogen or a substituent selected from the group consisting of the general substituents defined herein.

In some embodiments, LC can be selected from the group consisting of LCj-n, wherein j is an integer from 1 to 184, n is an integer from 1 to 10, and each LCj-i to LCj-10 are defined below:

wherein for each LC, RE and RF are as defined below:

LCj RE RF LCj RE RF LCj RE RF LCj RE RF LC1 H H LC2 H RH1 LC3 H RH2 LC4 H RH3 LC5 RH1 RH1 LC6 RH1 RH1 LC7 RH1 RH2 LC8 RH1 RH3 LC9 RH2 RH2 LC10 RH2 RH1 LC11 RH2 RH2 LC12 RH2 RH3 LC13 RH3 RH3 LC14 RH3 RH1 LC15 RH3 RH2 LC16 RH3 RH3 LC17 RH4 RH4 LC18 RH4 RH1 LC19 RH4 RH2 LC20 RH4 RH3 LC21 RH5 RH5 LC22 RH5 RH1 LC23 RH5 RH2 LC24 RH5 RH3 LC25 RH6 RH6 LC26 RH6 RH1 LC27 RH6 RH2 LC28 RH6 RH3 LC29 RH7 RH7 LC30 RH7 RH1 LC31 RH7 RH2 LC32 RH7 RH3 LC33 RH8 RH8 LC34 RH8 RH1 LC35 RH8 RH2 LC36 RH8 RH3 LC37 RH9 RH9 LC38 RH9 RH1 LC39 RH9 RH2 LC40 RH9 RH3 LC41 RH10 RH10 LC42 RH10 RH1 LC43 RH10 RH2 LC44 RH10 RH3 LC45 RH11 RH11 LC46 RH11 RH1 LC47 RH11 RH2 LC48 RH11 RH3 LC49 RH12 RH12 LC50 RH12 RH1 LC51 RH12 RH2 LC52 RH12 RH3 LC53 RH13 RH13 LC54 RH13 RH1 LC55 RH13 RH2 LC56 RH13 RH3 LC57 RH14 RH14 LC58 RH14 RH1 LC59 RH14 RH2 LC60 RH14 RH3 LC61 RH15 RH15 LC62 RH15 RH1 LC63 RH15 RH2 LC64 RH15 RH3 LC65 RH16 RH16 LC66 RH16 RH1 LC67 RH16 RH2 LC68 RH16 RH3 LC69 RH17 RH17 LC70 RH17 RH1 LC71 RH17 RH2 LC72 RH17 RH3 LC73 RH18 RH18 LC74 RH18 RH1 LC75 RH18 RH2 LC76 RH18 RH3 LC77 RH19 RH19 LC78 RH19 RH1 LC79 RH19 RH2 LC80 RH19 RH3 LC81 RH20 RH20 LC82 RH20 RH1 LC83 RH20 RH2 LC84 RH20 RH3 LC85 RH21 RH21 LC86 RH21 RH1 LC87 RH21 RH2 LC88 RH21 RH3 LC89 RH22 RH22 LC90 RH22 RH1 LC91 RH22 RH2 LC92 RH22 RH3 LC93 H RH8 LC94 H RH9 LC95 H RH16 LC96 H RH19 LC97 RH1 RH8 LC98 RH1 RH9 LC99 RH1 RH16 LC100 RH1 RH19 LC101 RH2 RH8 LC102 RH2 RH9 LC103 RH2 RH16 LC104 RH2 RH19 LC105 RH3 RH8 LC106 RH3 RH9 LC107 RH3 RH16 LC108 RH3 RH19 LC109 RH4 RH8 LC110 RH4 RH9 LC111 RH4 RH16 LC112 RH4 RH19 LC113 RH5 RH8 LC114 RH5 RH9 LC115 RH5 RH16 LC116 RH5 RH19 LC117 RH6 RH8 LC118 RH6 RH9 LC119 RH6 RH16 LC120 RH6 RH19 LC121 RH7 RH8 LC122 RH7 RH9 LC123 RH7 RH16 LC124 RH7 RH19 LC125 RH8 RH8 LC126 RH8 RH9 LC127 RH8 RH16 LC128 RH8 RH19 LC129 RH9 RH8 LC130 RH9 RH9 LC131 RH9 RH16 LC132 RH9 RH19 LC133 RH10 RH8 LC134 RH10 RH9 LC135 RH10 RH16 LC136 RH10 RH19 LC137 RH11 RH8 LC138 RH11 RH9 LC139 RH11 RH16 LC140 RH11 RH19 LC141 RH12 RH8 LC142 RH12 RH9 LC143 RH12 RH16 LC144 RH12 RH19 LC145 RH13 RH8 LC146 RH13 RH9 LC147 RH13 RH16 LC148 RH13 RH19 LC149 RH14 RH8 LC150 RH14 RH9 LC151 RH14 RH16 LC152 RH14 RH19 LC153 RH15 RH8 LC154 RH15 RH9 LC155 RH15 RH16 LC156 RH15 RH19 LC157 RH16 RH8 LC158 RH16 RH9 LC159 RH16 RH16 LC160 RH16 RH19 LC161 RH17 RH8 LC162 RH17 RH9 LC163 RH17 RH16 LC164 RH17 RH19 LC165 RH18 RH8 LC166 RH18 RH9 LC167 RH18 RH16 LC168 RH18 RH19 LC169 RH19 RH8 LC170 RH19 RH9 LC171 RH19 RH16 LC172 RH19 RH19 LC173 RH20 RH8 LC174 RH20 RH9 LC175 RH20 RH16 LC176 RH20 RH19 LC177 RH21 RH8 LC178 RH21 RH9 LC179 RH21 RH16 LC180 RH21 RH19 LC181 RH22 RH8 LC182 RH22 RH9 LC183 RH22 RH16 LC184 RH22 RH19

wherein RH1 to RH22 have the following structures:

In some embodiments, when the compound has the formula Os(LAi-m)(LBk)(LCj-n), i is an integer from 1 to 2088; m is an integer from 1 to 28; k is an integer from 1 to 324; J is an integer from 1 to 184; and n is an integer from 1 to 10; and the compound can be selected from the group consisting of Os(LA1-1)(LB1)(LC1-1) to Os Ir(LA2088-28)(LB324)(LC184-10); and

when the compound has the formula Os(LAi-m)2(LCj-n), i is an integer from 1 to 2088; m is an integer from 1 to 28; j is an integer from 1 to 184; and n is an integer from 1 to 10; and the compound can be selected from the group consisting of Os(LA1-1)2(LC1-1) to Os Ir(LA2088-28)2(LC184-10).

In some embodiments, the compound can be selected from the group consisting of:

In some embodiments, the compound having a ligand LA of Formula I described herein can be at least 30% deuterated, at least 40% deuterated, at least 50% deuterated, at least 60% deuterated, at least 70% deuterated, at least 80% deuterated, at least 90% deuterated, at least 95% deuterated, at least 99% deuterated, or 100% deuterated. As used herein, percent deuteration has its ordinary meaning and includes the percent of possible hydrogen atoms (e.g., positions that are hydrogen, deuterium, or halogen) that are replaced by deuterium atoms.

C. The OLEDs and the Devices of the Present Disclosure

In another aspect, the present disclosure also provides an OLED device comprising an organic layer that contains a compound as disclosed in the above compounds section of the present disclosure.

In some embodiments, the organic layer can comprise a compound of Formula Os(LA)x(LB)y(LC)z, wherein LA has a structure of Formula I with the two indicated dashed lines for coordination to Os:

wherein each of moiety A and moiety B is independently a monocyclic or multicyclic fused ring structure comprising 5-membered and/or 6-membered carbocyclic or heterocyclic rings; one of Z1-Z2 is C, and the other is N; Z3 and Z4 are each independently C or N, with at least one of them being C; each of RA and RB independently represents zero, mono, or up to the maximum allowed number of substitutions to its associated ring; each of RA and RB is independently a hydrogen or a substituent selected from the group consisting of the general substituents defined herein; any two RA or RB can be joined or fused to form a ring; each of x, y and z is independently 0, 1, or 2, with x+y+z=3; each of LB, and LC is a bidentate ligand; and LA, LB, and LC are different from each other.

In some embodiments, the organic layer may be an emissive layer and the compound as described herein may be an emissive dopant or a non-emissive dopant.

In some embodiments, the organic layer may further comprise a host, wherein the host comprises a triphenylene containing benzo-fused thiophene or benzo-fused furan, wherein any substituent in the host is an unfused substituent independently selected from the group consisting of CnH2n+1, OCnH2n+1, OAr1, N(CnH2n+1)2, N(Ar1)(Ar2), CH═CH—CnH2n+1, C≡CCnH2n+1, Ar1, Ar1—Ar2, CnH2n—Ar1, or no substitution, wherein n is from 1 to 10; and wherein Ar1 and Ar2 are independently selected from the group consisting of benzene, biphenyl, naphthalene, triphenylene, carbazole, and heteroaromatic analogs thereof.

In some embodiments, the organic layer may further comprise a host, wherein host comprises at least one chemical moiety selected from the group consisting of naphthalene, fluorene, triphenylene, carbazole, indolocarbazole, dibenzothiphene, dibenzofuran, dibenzoselenophene, 5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene, aza-naphthalene, aza-fluorene, aza-triphenylene, aza-carbazole, aza-indolocarbazole, aza-dibenzothiophene, aza-dibenzofuran, aza-dibenzoselenophene, and aza-(5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene).

In some embodiments, the host may be selected from the group consisting of:

and combinations thereof.

In some embodiments, the organic layer may further comprise a host, wherein the host comprises a metal complex.

In some embodiments, the compound as described herein may be a sensitizer; wherein the device may further comprise an acceptor; and wherein the acceptor may be selected from the group consisting of fluorescent emitter, delayed fluorescence emitter, and combination thereof.

In yet another aspect, the OLED of the present disclosure may also comprise an emissive region containing a compound as disclosed in the above compounds section of the present disclosure.

In some embodiments, the emissive region may comprise a compound of Formula Os(LA)x(LB)y(LC)z, wherein LA has a structure of Formula I with the two indicated dashed lines for coordination to Os:

wherein each of moiety A and moiety B is independently a monocyclic or multicyclic fused ring structure comprising 5-membered and/or 6-membered carbocyclic or heterocyclic rings; one of Z1-Z2 is C, and the other is N; Z3 and Z4 are each independently C or N, with at least one of them being C; each of RA and RB independently represents zero, mono, or up to the maximum allowed number of substitutions to its associated ring; each of RA and RB is independently a hydrogen or a substituent selected from the group consisting of the general substituents defined herein; any two RA or RB can be joined or fused to form a ring; each of x, y and z is independently 0, 1, or 2, with x+y+z=3; each of LB, and LC is a bidentate ligand; and LA, LB, and LC are different from each other.

In some embodiments, at least one of the anode, the cathode, or a new layer disposed over the organic emissive layer functions as an enhancement layer. The enhancement layer comprises a plasmonic material exhibiting surface plasmon resonance that non-radiatively couples to the emitter material and transfers excited state energy from the emitter material to non-radiative mode of surface plasmon polariton. The enhancement layer is provided no more than a threshold distance away from the organic emissive layer, wherein the emitter material has a total non-radiative decay rate constant and a total radiative decay rate constant due to the presence of the enhancement layer and the threshold distance is where the total non-radiative decay rate constant is equal to the total radiative decay rate constant. In some embodiments, the OLED further comprises an outcoupling layer. In some embodiments, the outcoupling layer is disposed over the enhancement layer on the opposite side of the organic emissive layer. In some embodiments, the outcoupling layer is disposed on opposite side of the emissive layer from the enhancement layer but still outcouples energy from the surface plasmon mode of the enhancement layer. The outcoupling layer scatters the energy from the surface plasmon polaritons. In some embodiments this energy is scattered as photons to free space. In other embodiments, the energy is scattered from the surface plasmon mode into other modes of the device such as but not limited to the organic waveguide mode, the substrate mode, or another waveguiding mode. If energy is scattered to the non-free space mode of the OLED other outcoupling schemes could be incorporated to extract that energy to free space. In some embodiments, one or more intervening layer can be disposed between the enhancement layer and the outcoupling layer. The examples for intervening layer(s) can be dielectric materials, including organic, inorganic, perovskites, oxides, and may include stacks and/or mixtures of these materials.

The enhancement layer modifies the effective properties of the medium in which the emitter material resides resulting in any or all of the following: a decreased rate of emission, a modification of emission line-shape, a change in emission intensity with angle, a change in the stability of the emitter material, a change in the efficiency of the OLED, and reduced efficiency roll-off of the OLED device. Placement of the enhancement layer on the cathode side, anode side, or on both sides results in OLED devices which take advantage of any of the above-mentioned effects. In addition to the specific functional layers mentioned herein and illustrated in the various OLED examples shown in the figures, the OLEDs according to the present disclosure may include any of the other functional layers often found in OLEDs.

The enhancement layer can be comprised of plasmonic materials, optically active metamaterials, or hyperbolic metamaterials. As used herein, a plasmonic material is a material in which the real part of the dielectric constant crosses zero in the visible or ultraviolet region of the electromagnetic spectrum. In some embodiments, the plasmonic material includes at least one metal. In such embodiments the metal may include at least one of Ag, Al, Au, Ir, Pt, Ni, Cu, W, Ta, Fe, Cr, Mg, Ga, Rh, Ti, Ru, Pd, In, Bi, Ca alloys or mixtures of these materials, and stacks of these materials. In general, a metamaterial is a medium composed of different materials where the medium as a whole acts differently than the sum of its material parts. In particular, we define optically active metamaterials as materials which have both negative permittivity and negative permeability. Hyperbolic metamaterials, on the other hand, are anisotropic media in which the permittivity or permeability are of different sign for different spatial directions. Optically active metamaterials and hyperbolic metamaterials are strictly distinguished from many other photonic structures such as Distributed Bragg Reflectors (“DBRs”) in that the medium should appear uniform in the direction of propagation on the length scale of the wavelength of light. Using terminology that one skilled in the art can understand: the dielectric constant of the metamaterials in the direction of propagation can be described with the effective medium approximation. Plasmonic materials and metamaterials provide methods for controlling the propagation of light that can enhance OLED performance in a number of ways.

In some embodiments, the enhancement layer is provided as a planar layer. In other embodiments, the enhancement layer has wavelength-sized features that are arranged periodically, quasi-periodically, or randomly, or sub-wavelength-sized features that are arranged periodically, quasi-periodically, or randomly. In some embodiments, the wavelength-sized features and the sub-wavelength-sized features have sharp edges.

In some embodiments, the outcoupling layer has wavelength-sized features that are arranged periodically, quasi-periodically, or randomly, or sub-wavelength-sized features that are arranged periodically, quasi-periodically, or randomly. In some embodiments, the outcoupling layer may be composed of a plurality of nanoparticles and in other embodiments the outcoupling layer is composed of a plurality of nanoparticles disposed over a material. In these embodiments the outcoupling may be tunable by at least one of varying a size of the plurality of nanoparticles, varying a shape of the plurality of nanoparticles, changing a material of the plurality of nanoparticles, adjusting a thickness of the material, changing the refractive index of the material or an additional layer disposed on the plurality of nanoparticles, varying a thickness of the enhancement layer, and/or varying the material of the enhancement layer. The plurality of nanoparticles of the device may be formed from at least one of metal, dielectric material, semiconductor materials, an alloy of metal, a mixture of dielectric materials, a stack or layering of one or more materials, and/or a core of one type of material and that is coated with a shell of a different type of material. In some embodiments, the outcoupling layer is composed of at least metal nanoparticles wherein the metal is selected from the group consisting of Ag, Al, Au, Ir, Pt, Ni, Cu, W, Ta, Fe, Cr, Mg, Ga, Rh, Ti, Ru, Pd, In, Bi, Ca, alloys or mixtures of these materials, and stacks of these materials. The plurality of nanoparticles may have additional layer disposed over them. In some embodiments, the polarization of the emission can be tuned using the outcoupling layer. Varying the dimensionality and periodicity of the outcoupling layer can select a type of polarization that is preferentially outcoupled to air. In some embodiments the outcoupling layer also acts as an electrode of the device.

In yet another aspect, the present disclosure also provides a consumer product comprising an organic light-emitting device (OLED) having an anode; a cathode; and an organic layer disposed between the anode and the cathode, wherein the organic layer may comprise a compound as disclosed in the above compounds section of the present disclosure.

In some embodiments, the consumer product comprises an organic light-emitting device (OLED) having an anode; a cathode; and an organic layer disposed between the anode and the cathode, wherein the organic layer may comprise a compound of Formula Os(LA)x(LB)y(LC)z, wherein LA has a structure of Formula I with the two indicated dashed lines for coordination to Os:

wherein each of moiety A and moiety B is independently a monocyclic or multicyclic fused ring structure comprising 5-membered and/or 6-membered carbocyclic or heterocyclic rings; one of Z1-Z2 is C, and the other is N; Z3 and Z4 are each independently C or N, with at least one of them being C; each of RA and RB independently represents zero, mono, or up to the maximum allowed number of substitutions to its associated ring; each of RA and RB is independently a hydrogen or a substituent selected from the group consisting of the general substituents defined herein; any two RA or RB can be joined or fused to form a ring; each of x, y and z is independently 0, 1, or 2, with x+y+z=3; each of LB, and LC is a bidentate ligand; and LA, LB, and LC are different from each other.

In some embodiments, the consumer product can be one of a flat panel display, a computer monitor, a medical monitor, a television, a billboard, a light for interior or exterior illumination and/or signaling, a heads-up display, a fully or partially transparent display, a flexible display, a laser printer, a telephone, a cell phone, tablet, a phablet, a personal digital assistant (PDA), a wearable device, a laptop computer, a digital camera, a camcorder, a viewfinder, a micro-display that is less than 2 inches diagonal, a 3-D display, a virtual reality or augmented reality display, a vehicle, a video wall comprising multiple displays tiled together, a theater or stadium screen, a light therapy device, and a sign.

Generally, an OLED comprises at least one organic layer disposed between and electrically connected to an anode and a cathode. When a current is applied, the anode injects holes and the cathode injects electrons into the organic layer(s). The injected holes and electrons each migrate toward the oppositely charged electrode. When an electron and hole localize on the same molecule, an “exciton,” which is a localized electron-hole pair having an excited energy state, is formed. Light is emitted when the exciton relaxes via a photoemissive mechanism. In some cases, the exciton may be localized on an excimer or an exciplex. Non-radiative mechanisms, such as thermal relaxation, may also occur, but are generally considered undesirable.

Several OLED materials and configurations are described in U.S. Pat. Nos. 5,844,363, 6,303,238, and 5,707,745, which are incorporated herein by reference in their entirety.

The initial OLEDs used emissive molecules that emitted light from their singlet states (“fluorescence”) as disclosed, for example, in U.S. Pat. No. 4,769,292, which is incorporated by reference in its entirety. Fluorescent emission generally occurs in a time frame of less than 10 nanoseconds.

More recently, OLEDs having emissive materials that emit light from triplet states (“phosphorescence”) have been demonstrated. Baldo et al., “Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices,” Nature, vol. 395, 151-154, 1998; (“Baldo-I”) and Baldo et al., “Very high-efficiency green organic light-emitting devices based on electrophosphorescence,” Appl. Phys. Lett., vol. 75, No. 3, 4-6 (1999) (“Baldo-II”), are incorporated by reference in their entireties. Phosphorescence is described in more detail in U.S. Pat. No. 7,279,704 at cols. 5-6, which are incorporated by reference.

FIG. 1 shows an organic light emitting device 100. The figures are not necessarily drawn to scale. Device 100 may include a substrate 110, an anode 115, a hole injection layer 120, a hole transport layer 125, an electron blocking layer 130, an emissive layer 135, a hole blocking layer 140, an electron transport layer 145, an electron injection layer 150, a protective layer 155, a cathode 160, and a barrier layer 170. Cathode 160 is a compound cathode having a first conductive layer 162 and a second conductive layer 164. Device 100 may be fabricated by depositing the layers described, in order. The properties and functions of these various layers, as well as example materials, are described in more detail in U.S. Pat. No. 7,279,704 at cols. 6-10, which are incorporated by reference.

More examples for each of these layers are available. For example, a flexible and transparent substrate-anode combination is disclosed in U.S. Pat. No. 5,844,363, which is incorporated by reference in its entirety. An example of a p-doped hole transport layer is m-MTDATA doped with F4-TCNQ at a molar ratio of 50:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. Examples of emissive and host materials are disclosed in U.S. Pat. No. 6,303,238 to Thompson et al., which is incorporated by reference in its entirety. An example of an n-doped electron transport layer is BPhen doped with Li at a molar ratio of 1:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. U.S. Pat. Nos. 5,703,436 and 5,707,745, which are incorporated by reference in their entireties, disclose examples of cathodes including compound cathodes having a thin layer of metal such as Mg:Ag with an overlying transparent, electrically-conductive, sputter-deposited ITO layer. The theory and use of blocking layers is described in more detail in U.S. Pat. No. 6,097,147 and U.S. Patent Application Publication No. 2003/0230980, which are incorporated by reference in their entireties. Examples of injection layers are provided in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety. A description of protective layers may be found in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety.

FIG. 2 shows an inverted OLED 200. The device includes a substrate 210, a cathode 215, an emissive layer 220, a hole transport layer 225, and an anode 230. Device 200 may be fabricated by depositing the layers described, in order. Because the most common OLED configuration has a cathode disposed over the anode, and device 200 has cathode 215 disposed under anode 230, device 200 may be referred to as an “inverted” OLED. Materials similar to those described with respect to device 100 may be used in the corresponding layers of device 200. FIG. 2 provides one example of how some layers may be omitted from the structure of device 100.

The simple layered structure illustrated in FIGS. 1 and 2 is provided by way of non-limiting example, and it is understood that embodiments of the present disclosure may be used in connection with a wide variety of other structures. The specific materials and structures described are exemplary in nature, and other materials and structures may be used. Functional OLEDs may be achieved by combining the various layers described in different ways, or layers may be omitted entirely, based on design, performance, and cost factors. Other layers not specifically described may also be included. Materials other than those specifically described may be used. Although many of the examples provided herein describe various layers as comprising a single material, it is understood that combinations of materials, such as a mixture of host and dopant, or more generally a mixture, may be used. Also, the layers may have various sublayers. The names given to the various layers herein are not intended to be strictly limiting. For example, in device 200, hole transport layer 225 transports holes and injects holes into emissive layer 220, and may be described as a hole transport layer or a hole injection layer. In one embodiment, an OLED may be described as having an “organic layer” disposed between a cathode and an anode. This organic layer may comprise a single layer, or may further comprise multiple layers of different organic materials as described, for example, with respect to FIGS. 1 and 2.

Structures and materials not specifically described may also be used, such as OLEDs comprised of polymeric materials (PLEDs) such as disclosed in U.S. Pat. No. 5,247,190 to Friend et al., which is incorporated by reference in its entirety. By way of further example, OLEDs having a single organic layer may be used. OLEDs may be stacked, for example as described in U.S. Pat. No. 5,707,745 to Forrest et al, which is incorporated by reference in its entirety. The OLED structure may deviate from the simple layered structure illustrated in FIGS. 1 and 2. For example, the substrate may include an angled reflective surface to improve outcoupling, such as a mesa structure as described in U.S. Pat. No. 6,091,195 to Forrest et al., and/or a pit structure as described in U.S. Pat. No. 5,834,893 to Bulovic et al., which are incorporated by reference in their entireties.

Unless otherwise specified, any of the layers of the various embodiments may be deposited by any suitable method. For the organic layers, preferred methods include thermal evaporation, ink-jet, such as described in U.S. Pat. Nos. 6,013,982 and 6,087,196, which are incorporated by reference in their entireties, organic vapor phase deposition (OVPD), such as described in U.S. Pat. No. 6,337,102 to Forrest et al., which is incorporated by reference in its entirety, and deposition by organic vapor jet printing (OVJP), such as described in U.S. Pat. No. 7,431,968, which is incorporated by reference in its entirety. Other suitable deposition methods include spin coating and other solution based processes. Solution based processes are preferably carried out in nitrogen or an inert atmosphere. For the other layers, preferred methods include thermal evaporation. Preferred patterning methods include deposition through a mask, cold welding such as described in U.S. Pat. Nos. 6,294,398 and 6,468,819, which are incorporated by reference in their entireties, and patterning associated with some of the deposition methods such as ink-jet and organic vapor jet printing (OVJP). Other methods may also be used. The materials to be deposited may be modified to make them compatible with a particular deposition method. For example, substituents such as alkyl and aryl groups, branched or unbranched, and preferably containing at least 3 carbons, may be used in small molecules to enhance their ability to undergo solution processing. Substituents having 20 carbons or more may be used, and 3-20 carbons are a preferred range. Materials with asymmetric structures may have better solution processability than those having symmetric structures, because asymmetric materials may have a lower tendency to recrystallize. Dendrimer substituents may be used to enhance the ability of small molecules to undergo solution processing.

Devices fabricated in accordance with embodiments of the present disclosure may further optionally comprise a barrier layer. One purpose of the barrier layer is to protect the electrodes and organic layers from damaging exposure to harmful species in the environment including moisture, vapor and/or gases, etc. The barrier layer may be deposited over, under or next to a substrate, an electrode, or over any other parts of a device including an edge. The barrier layer may comprise a single layer, or multiple layers. The barrier layer may be formed by various known chemical vapor deposition techniques and may include compositions having a single phase as well as compositions having multiple phases. Any suitable material or combination of materials may be used for the barrier layer. The barrier layer may incorporate an inorganic or an organic compound or both. The preferred barrier layer comprises a mixture of a polymeric material and a non-polymeric material as described in U.S. Pat. No. 7,968,146, PCT Pat. Application Nos. PCT/US2007/023098 and PCT/US2009/042829, which are herein incorporated by reference in their entireties. To be considered a “mixture”, the aforesaid polymeric and non-polymeric materials comprising the barrier layer should be deposited under the same reaction conditions and/or at the same time. The weight ratio of polymeric to non-polymeric material may be in the range of 95:5 to 5:95. The polymeric material and the non-polymeric material may be created from the same precursor material. In one example, the mixture of a polymeric material and a non-polymeric material consists essentially of polymeric silicon and inorganic silicon.

Devices fabricated in accordance with embodiments of the present disclosure can be incorporated into a wide variety of electronic component modules (or units) that can be incorporated into a variety of electronic products or intermediate components. Examples of such electronic products or intermediate components include display screens, lighting devices such as discrete light source devices or lighting panels, etc. that can be utilized by the end-user product manufacturers. Such electronic component modules can optionally include the driving electronics and/or power source(s). Devices fabricated in accordance with embodiments of the present disclosure can be incorporated into a wide variety of consumer products that have one or more of the electronic component modules (or units) incorporated therein. A consumer product comprising an OLED that includes the compound of the present disclosure in the organic layer in the OLED is disclosed. Such consumer products would include any kind of products that include one or more light source(s) and/or one or more of some type of visual displays. Some examples of such consumer products include flat panel displays, curved displays, computer monitors, medical monitors, televisions, billboards, lights for interior or exterior illumination and/or signaling, heads-up displays, fully or partially transparent displays, flexible displays, rollable displays, foldable displays, stretchable displays, laser printers, telephones, mobile phones, tablets, phablets, personal digital assistants (PDAs), wearable devices, laptop computers, digital cameras, camcorders, viewfinders, micro-displays (displays that are less than 2 inches diagonal), 3-D displays, virtual reality or augmented reality displays, vehicles, video walls comprising multiple displays tiled together, theater or stadium screen, a light therapy device, and a sign. Various control mechanisms may be used to control devices fabricated in accordance with the present disclosure, including passive matrix and active matrix. Many of the devices are intended for use in a temperature range comfortable to humans, such as 18 degrees C. to 30 degrees C., and more preferably at room temperature (20-25° C.), but could be used outside this temperature range, for example, from −40 degree C. to +80° C.

More details on OLEDs, and the definitions described above, can be found in U.S. Pat. No. 7,279,704, which is incorporated herein by reference in its entirety.

The materials and structures described herein may have applications in devices other than OLEDs. For example, other optoelectronic devices such as organic solar cells and organic photodetectors may employ the materials and structures. More generally, organic devices, such as organic transistors, may employ the materials and structures.

In some embodiments, the OLED has one or more characteristics selected from the group consisting of being flexible, being rollable, being foldable, being stretchable, and being curved. In some embodiments, the OLED is transparent or semi-transparent. In some embodiments, the OLED further comprises a layer comprising carbon nanotubes.

In some embodiments, the OLED further comprises a layer comprising a delayed fluorescent emitter. In some embodiments, the OLED comprises a RGB pixel arrangement or white plus color filter pixel arrangement. In some embodiments, the OLED is a mobile device, a hand held device, or a wearable device. In some embodiments, the OLED is a display panel having less than 10 inch diagonal or 50 square inch area. In some embodiments, the OLED is a display panel having at least 10 inch diagonal or 50 square inch area. In some embodiments, the OLED is a lighting panel.

In some embodiments, the compound can be an emissive dopant. In some embodiments, the compound can produce emissions via phosphorescence, fluorescence, thermally activated delayed fluorescence, i.e., TADF (also referred to as E-type delayed fluorescence; see, e.g., U.S. application Ser. No. 15/700,352, which is hereby incorporated by reference in its entirety), triplet-triplet annihilation, or combinations of these processes. In some embodiments, the emissive dopant can be a racemic mixture, or can be enriched in one enantiomer. In some embodiments, the compound can be homoleptic (each ligand is the same). In some embodiments, the compound can be heteroleptic (at least one ligand is different from others). When there are more than one ligand coordinated to a metal, the ligands can all be the same in some embodiments. In some other embodiments, at least one ligand is different from the other ligands. In some embodiments, every ligand can be different from each other. This is also true in embodiments where a ligand being coordinated to a metal can be linked with other ligands being coordinated to that metal to form a tridentate, tetradentate, pentadentate, or hexadentate ligands. Thus, where the coordinating ligands are being linked together, all of the ligands can be the same in some embodiments, and at least one of the ligands being linked can be different from the other ligand(s) in some other embodiments.

In some embodiments, the compound can be used as a phosphorescent sensitizer in an OLED where one or multiple layers in the OLED contains an acceptor in the form of one or more fluorescent and/or delayed fluorescence emitters. In some embodiments, the compound can be used as one component of an exciplex to be used as a sensitizer. As a phosphorescent sensitizer, the compound must be capable of energy transfer to the acceptor and the acceptor will emit the energy or further transfer energy to a final emitter. The acceptor concentrations can range from 0.001% to 100%. The acceptor could be in either the same layer as the phosphorescent sensitizer or in one or more different layers. In some embodiments, the acceptor is a TADF emitter. In some embodiments, the acceptor is a fluorescent emitter. In some embodiments, the emission can arise from any or all of the sensitizer, acceptor, and final emitter.

According to another aspect, a formulation comprising the compound described herein is also disclosed.

The OLED disclosed herein can be incorporated into one or more of a consumer product, an electronic component module, and a lighting panel. The organic layer can be an emissive layer and the compound can be an emissive dopant in some embodiments, while the compound can be a non-emissive dopant in other embodiments.

In yet another aspect of the present disclosure, a formulation that comprises the novel compound disclosed herein is described. The formulation can include one or more components selected from the group consisting of a solvent, a host, a hole injection material, hole transport material, electron blocking material, hole blocking material, and an electron transport material, disclosed herein.

The present disclosure encompasses any chemical structure comprising the novel compound of the present disclosure, or a monovalent or polyvalent variant thereof. In other words, the inventive compound, or a monovalent or polyvalent variant thereof, can be a part of a larger chemical structure. Such chemical structure can be selected from the group consisting of a monomer, a polymer, a macromolecule, and a supramolecule (also known as supermolecule). As used herein, a “monovalent variant of a compound” refers to a moiety that is identical to the compound except that one hydrogen has been removed and replaced with a bond to the rest of the chemical structure. As used herein, a “polyvalent variant of a compound” refers to a moiety that is identical to the compound except that more than one hydrogen has been removed and replaced with a bond or bonds to the rest of the chemical structure. In the instance of a supramolecule, the inventive compound can also be incorporated into the supramolecule complex without covalent bonds.

D. Combination of the Compounds of the Present Disclosure with Other Materials

The materials described herein as useful for a particular layer in an organic light emitting device may be used in combination with a wide variety of other materials present in the device. For example, emissive dopants disclosed herein may be used in conjunction with a wide variety of hosts, transport layers, blocking layers, injection layers, electrodes and other layers that may be present. The materials described or referred to below are non-limiting examples of materials that may be useful in combination with the compounds disclosed herein, and one of skill in the art can readily consult the literature to identify other materials that may be useful in combination.

a) Conductivity Dopants:

A charge transport layer can be doped with conductivity dopants to substantially alter its density of charge carriers, which will in turn alter its conductivity. The conductivity is increased by generating charge carriers in the matrix material, and depending on the type of dopant, a change in the Fermi level of the semiconductor may also be achieved. Hole-transporting layer can be doped by p-type conductivity dopants and n-type conductivity dopants are used in the electron-transporting layer.

Non-limiting examples of the conductivity dopants that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: EP01617493, EP01968131, EP2020694, EP2684932, US20050139810, US20070160905, US20090167167, US2010288362, WO06081780, WO2009003455, WO2009008277, WO2009011327, WO2014009310, US2007252140, US2015060804, US20150123047, and US2012146012.

b) HIL/HTL:

A hole injecting/transporting material to be used in the present disclosure is not particularly limited, and any compound may be used as long as the compound is typically used as a hole injecting/transporting material. Examples of the material include, but are not limited to: a phthalocyanine or porphyrin derivative; an aromatic amine derivative; an indolocarbazole derivative; a polymer containing fluorohydrocarbon; a polymer with conductivity dopants; a conducting polymer, such as PEDOT/PSS; a self-assembly monomer derived from compounds such as phosphonic acid and silane derivatives; a metal oxide derivative, such as MoOx; a p-type semiconducting organic compound, such as 1,4,5,8,9,12-Hexaazatriphenylenehexacarbonitrile; a metal complex, and a cross-linkable compounds.

Examples of aromatic amine derivatives used in HIL or HTL include, but not limit to the following general structures:

Each of Ar1 to Ar9 is selected from the group consisting of aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene; the group consisting of aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine;

and the group consisting of 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Each Ar may be unsubstituted or may be substituted by a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.

In one aspect, Ar1 to Ar9 is independently selected from the group consisting of:

wherein k is an integer from 1 to 20; X101 to X108 is C (including CH) or N; Z101 is NAr1, O, or S; Ar1 has the same group defined above.

Examples of metal complexes used in HIL or HTL include, but are not limited to the following general formula:

wherein Met is a metal, which can have an atomic weight greater than 40; (Y101-Y102) is a bidentate ligand, Y101 and Y102 are independently selected from C, N, O, P, and S; L101 is an ancillary ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and k′+k″ is the maximum number of ligands that may be attached to the metal.

In one aspect, (Y101-Y102) is a 2-phenylpyridine derivative. In another aspect, (Y101-Y102) is a carbene ligand. In another aspect, Met is selected from Ir, Pt, Os, and Zn. In a further aspect, the metal complex has a smallest oxidation potential in solution vs. Fc+/Fc couple less than about 0.6 V.

Non-limiting examples of the HIL and HTL materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: CN102702075, DE102012005215, EP01624500, EP01698613, EP01806334, EP01930964, EP01972613, EP01997799, EP02011790, EP02055700, EP02055701, EP1725079, EP2085382, EP2660300, EP650955, JP07-073529, JP2005112765, JP2007091719, JP2008021687, JP2014-009196, KR20110088898, KR20130077473, TW201139402, U.S. Ser. No. 06/517,957, US20020158242, US20030162053, US20050123751, US20060182993, US20060240279, US20070145888, US20070181874, US20070278938, US20080014464, US20080091025, US20080106190, US20080124572, US20080145707, US20080220265, US20080233434, US20080303417, US2008107919, US20090115320, US20090167161, US2009066235, US2011007385, US20110163302, US2011240968, US2011278551, US2012205642, US2013241401, US20140117329, US2014183517, U.S. Pat. Nos. 5,061,569, 5,639,914, WO05075451, WO07125714, WO08023550, WO08023759, WO2009145016, WO2010061824, WO2011075644, WO2012177006, WO2013018530, WO2013039073, WO2013087142, WO2013118812, WO2013120577, WO2013157367, WO2013175747, WO2014002873, WO2014015935, WO2014015937, WO2014030872, WO2014030921, WO2014034791, WO2014104514, WO2014157018.

c) EBL:

An electron blocking layer (EBL) may be used to reduce the number of electrons and/or excitons that leave the emissive layer. The presence of such a blocking layer in a device may result in substantially higher efficiencies, and/or longer lifetime, as compared to a similar device lacking a blocking layer. Also, a blocking layer may be used to confine emission to a desired region of an OLED. In some embodiments, the EBL material has a higher LUMO (closer to the vacuum level) and/or higher triplet energy than the emitter closest to the EBL interface. In some embodiments, the EBL material has a higher LUMO (closer to the vacuum level) and/or higher triplet energy than one or more of the hosts closest to the EBL interface. In one aspect, the compound used in EBL contains the same molecule or the same functional groups used as one of the hosts described below.

d) Hosts:

The light emitting layer of the organic EL device of the present disclosure preferably contains at least a metal complex as light emitting material, and may contain a host material using the metal complex as a dopant material. Examples of the host material are not particularly limited, and any metal complexes or organic compounds may be used as long as the triplet energy of the host is larger than that of the dopant. Any host material may be used with any dopant so long as the triplet criteria is satisfied.

Examples of metal complexes used as host are preferred to have the following general formula:

wherein Met is a metal; (Y103-Y104) is a bidentate ligand, Y103 and Y104 are independently selected from C, N, O, P, and S; L101 is an another ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and k′+k″ is the maximum number of ligands that may be attached to the metal.

In one aspect, the metal complexes are:

wherein (O—N) is a bidentate ligand, having metal coordinated to atoms O and N.

In another aspect, Met is selected from Ir and Pt. In a further aspect, (Y103-Y104) is a carbene ligand.

In one aspect, the host compound contains at least one of the following groups selected from the group consisting of aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, tetraphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, and azulene; the group consisting of aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and the group consisting of 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Each option within each group may be unsubstituted or may be substituted by a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.

In one aspect, the host compound contains at least one of the following groups in the molecule:

wherein R101 is selected from the group consisting of hydrogen, deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, and when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above. k is an integer from 0 to 20 or 1 to 20. X101 to X108 are independently selected from C (including CH) or N. Z101 and Z102 are independently selected from NR101, O, or S.

Non-limiting examples of the host materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: EP2034538, EP2034538A, EP2757608, JP2007254297, KR20100079458, KR20120088644, KR20120129733, KR20130115564, TW201329200, US20030175553, US20050238919, US20060280965, US20090017330, US20090030202, US20090167162, US20090302743, US20090309488, US20100012931, US20100084966, US20100187984, US2010187984, US2012075273, US2012126221, US2013009543, US2013105787, US2013175519, US2014001446, US20140183503, US20140225088, US2014034914, U.S. Pat. No. 7,154,114, WO2001039234, WO2004093207, WO2005014551, WO2005089025, WO2006072002, WO2006114966, WO2007063754, WO2008056746, WO2009003898, WO2009021126, WO2009063833, WO2009066778, WO2009066779, WO2009086028, WO2010056066, WO2010107244, WO2011081423, WO2011081431, WO2011086863, WO2012128298, WO2012133644, WO2012133649, WO2013024872, WO2013035275, WO2013081315, WO2013191404, WO2014142472, US20170263869, US20160163995, U.S. Pat. No. 9,466,803,

e) Additional Emitters:

One or more additional emitter dopants may be used in conjunction with the compound of the present disclosure. Examples of the additional emitter dopants are not particularly limited, and any compounds may be used as long as the compounds are typically used as emitter materials. Examples of suitable emitter materials include, but are not limited to, compounds which can produce emissions via phosphorescence, fluorescence, thermally activated delayed fluorescence, i.e., TADF (also referred to as E-type delayed fluorescence), triplet-triplet annihilation, or combinations of these processes.

Non-limiting examples of the emitter materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: CN103694277, CN1696137, EB01238981, EP01239526, EP01961743, EP1239526, EP1244155, EP1642951, EP1647554, EP1841834, EP1841834B, EP2062907, EP2730583, JP2012074444, JP2013110263, JP4478555, KR1020090133652, KR20120032054, KR20130043460, TW201332980, U.S. Ser. No. 06/699,599, U.S. Ser. No. 06/916,554, US20010019782, US20020034656, US20030068526, US20030072964, US20030138657, US20050123788, US20050244673, US2005123791, US2005260449, US20060008670, US20060065890, US20060127696, US20060134459, US20060134462, US20060202194, US20060251923, US20070034863, US20070087321, US20070103060, US20070111026, US20070190359, US20070231600, US2007034863, US2007104979, US2007104980, US2007138437, US2007224450, US2007278936, US20080020237, US20080233410, US20080261076, US20080297033, US200805851, US2008161567, US2008210930, US20090039776, US20090108737, US20090115322, US20090179555, US2009085476, US2009104472, US20100090591, US20100148663, US20100244004, US20100295032, US2010102716, US2010105902, US2010244004, US2010270916, US20110057559, US20110108822, US20110204333, US2011215710, US2011227049, US2011285275, US2012292601, US20130146848, US2013033172, US2013165653, US2013181190, US2013334521, US20140246656, US2014103305, U.S. Pat. Nos. 6,303,238, 6,413,656, 6,653,654, 6,670,645, 6,687,266, 6,835,469, 6,921,915, 7,279,704, 7,332,232, 7,378,162, 7,534,505, 7,675,228, 7,728,137, 7,740,957, 7,759,489, 7,951,947, 8,067,099, 8,592,586, 8,871,361, WO06081973, WO06121811, WO07018067, WO07108362, WO07115970, WO07115981, WO08035571, WO2002015645, WO2003040257, WO2005019373, WO2006056418, WO2008054584, WO2008078800, WO2008096609, WO2008101842, WO2009000673, WO2009050281, WO2009100991, WO2010028151, WO2010054731, WO2010086089, WO2010118029, WO2011044988, WO2011051404, WO2011107491, WO2012020327, WO2012163471, WO2013094620, WO2013107487, WO2013174471, WO2014007565, WO2014008982, WO2014023377, WO2014024131, WO2014031977, WO2014038456, WO2014112450.

f) HBL:

A hole blocking layer (HBL) may be used to reduce the number of holes and/or excitons that leave the emissive layer. The presence of such a blocking layer in a device may result in substantially higher efficiencies and/or longer lifetime as compared to a similar device lacking a blocking layer. Also, a blocking layer may be used to confine emission to a desired region of an OLED. In some embodiments, the HBL material has a lower HOMO (further from the vacuum level) and/or higher triplet energy than the emitter closest to the HBL interface. In some embodiments, the HBL material has a lower HOMO (further from the vacuum level) and/or higher triplet energy than one or more of the hosts closest to the HBL interface.

In one aspect, compound used in HBL contains the same molecule or the same functional groups used as host described above.

In another aspect, compound used in HBL contains at least one of the following groups in the molecule:

wherein k is an integer from 1 to 20; L101 is another ligand, k′ is an integer from 1 to 3.

g) ETL:

Electron transport layer (ETL) may include a material capable of transporting electrons. Electron transport layer may be intrinsic (undoped), or doped. Doping may be used to enhance conductivity. Examples of the ETL material are not particularly limited, and any metal complexes or organic compounds may be used as long as they are typically used to transport electrons.

In one aspect, compound used in ETL contains at least one of the following groups in the molecule:

wherein R101 is selected from the group consisting of hydrogen, deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acids, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof, when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above. Ar1 to Ar1 has the similar definition as Ar's mentioned above. k is an integer from 1 to 20. X101 to X108 is selected from C (including CH) or N.

In another aspect, the metal complexes used in ETL contains, but not limit to the following general formula:

wherein (O—N) or (N—N) is a bidentate ligand, having metal coordinated to atoms O, N or N, N; L101 is another ligand; k′ is an integer value from 1 to the maximum number of ligands that may be attached to the metal.

Non-limiting examples of the ETL materials that may be used in an OLED in combination with materials disclosed herein are exemplified below together with references that disclose those materials: CN103508940, EP01602648, EP01734038, EP01956007, JP2004-022334, JP2005149918, JP2005-268199, KR0117693, KR20130108183, US20040036077, US20070104977, US2007018155, US20090101870, US20090115316, US20090140637, US20090179554, US2009218940, US2010108990, US2011156017, US2011210320, US2012193612, US2012214993, US2014014925, US2014014927, US20140284580, U.S. Pat. Nos. 6,656,612, 8,415,031, WO2003060956, WO2007111263, WO2009148269, WO2010067894, WO2010072300, WO2011074770, WO2011105373, WO2013079217, WO2013145667, WO2013180376, WO2014104499, WO2014104535,

h) Charge Generation Layer (CGL)

In tandem or stacked OLEDs, the CGL plays an essential role in the performance, which is composed of an n-doped layer and a p-doped layer for injection of electrons and holes, respectively. Electrons and holes are supplied from the CGL and electrodes. The consumed electrons and holes in the CGL are refilled by the electrons and holes injected from the cathode and anode, respectively; then, the bipolar currents reach a steady state gradually. Typical CGL materials include n and p conductivity dopants used in the transport layers.

In any above-mentioned compounds used in each layer of the OLED device, the hydrogen atoms can be partially or fully deuterated. The minimum amount of hydrogen of the compound being deuterated is selected from the group consisting of 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%, and 100%. Thus, any specifically listed substituent, such as, without limitation, methyl, phenyl, pyridyl, etc. may be undeuterated, partially deuterated, and fully deuterated versions thereof. Similarly, classes of substituents such as, without limitation, alkyl, aryl, cycloalkyl, heteroaryl, etc. also may be undeuterated, partially deuterated, and fully deuterated versions thereof.

It is understood that the various embodiments described herein are by way of example only and are not intended to limit the scope of the invention. For example, many of the materials and structures described herein may be substituted with other materials and structures without deviating from the spirit of the invention. The present invention as claimed may therefore include variations from the particular examples and preferred embodiments described herein, as will be apparent to one of skill in the art. It is understood that various theories as to why the invention works are not intended to be limiting.

E. Experimental Section

An example of the inventive compounds, Compound 1, can be synthesized by the following scheme.

4-(3,5-dimethylphenyl)-8-methylquinazoline (L1) can react with carbonyl reagent Os3(CO)2 by modifying literature procedure (Adv. Funct. Mater. 2009, 19, 2639-2647) to afford Os(L1)2(CO)2 intermediate, which is then treated with 1,2-bis(dimethylphosphaneyl)benzene to give Compound 1.

The structure of the inventive compound, Compound 1, is optimized by DFT calculations. The first triplet excited state energy T1 is calculated to be 880 nm. The result shows the inventive compound is expected to show phosphorescence in near infrared region, which is of great importance for potential applications in organic light emitting diodes (OLED), chemical sensors, and bioimaging.

It should be understood that these compounds related calculations obtained with the DFT functional set and basis set as identified herein are theoretical. Computational composite protocols, such as Gaussian with the CEP-31G basis set used herein, rely on the assumption that electronic effects are additive and, therefore, larger basis sets can be used to extrapolate to the complete basis set (CBS) limit. However, when the goal of a study is to understand variations in HOMO, LUMO, Si, T1, bond dissociation energies, etc. over a series of structurally-related compounds, the additive effects are expected to be similar. Accordingly, while absolute errors from using the B3LYP may be significant compared to other computational methods, the relative differences between the HOMO, LUMO, Si, T1, and bond dissociation energy values calculated with B3LYP protocol are expected to reproduce experiment quite well. See, e.g., Hong et al., Chem. Mater. 2016, 28, 5791-98, 5792-93 and Supplemental Information (discussing the reliability of DFT calculations in the context of OLED materials). Moreover, with respect to iridium or platinum complexes that are useful in the OLED art, the data obtained from DFT calculations correlates very well to actual experimental data. See Tavasli et al., J. Mater. Chem. 2012, 22, 6419-29, 6422 (Table 3) (showing DFT calculations closely correlating with actual data for a variety of emissive complexes); Morello, G. R., J. Mol. Model. 2017, 23:174 (studying of a variety of DFT functional sets and basis sets and concluding the combination of B3LYP and CEP-31G is particularly accurate for emissive complexes).

Claims

1. A compound of formula Os(LA)x(LB)y(LC)z,

wherein: LA has a structure of Formula I with the two indicated dashed lines for coordination to Os:
wherein: each of moiety A and moiety B is independently a monocyclic or multicyclic fused ring structure comprising 5-membered and/or 6-membered carbocyclic or heterocyclic rings; one of Z1-Z2 is C, and the other is N; Z3 and Z4 are each independently C or N, with at least one of them being C; each of RA and RB independently represents zero, mono, or up to the maximum allowed number of substitutions to its associated ring; each of RA and RB is independently a hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, germyl, boryl, selenyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof; any two RA or RB can be joined or fused to form a ring; each of x, y and z is independently 0, 1, or 2, with x+y+z=3; each of LB, and LC is a bidentate ligand; and LA, LB, and LC are different from each other.

2. The compound of claim 1, wherein each of RA and RB is independently a hydrogen or a substituent selected from the group consisting of deuterium, fluorine, alkyl, cycloalkyl, heteroalkyl, alkoxy, aryloxy, amino, silyl, boryl, alkenyl, cycloalkenyl, heteroalkenyl, aryl, heteroaryl, nitrile, isonitrile, sulfanyl, and combinations thereof.

3. The compound of claim 1, wherein one of Z1 or Z2 is N, and the other is C; or one of Z3 or Z4 is C, and the other is N; or both Z3 and Z4 are C.

4. The compound of claim 1, wherein moiety A is a monocyclic 5-membered or 6-membered aromatic ring.

5. The compound of claim 1, wherein moiety A comprises a bicyclic, tricyclic, tetracyclic, pentacyclic, or hexacyclic fused ring structure containing 5-membered and/or 6-membered aromatic rings fused ring structure containing 5-membered and/or 6-membered aromatic rings.

6. The compound of claim 1, wherein LA is selected from the group consisting of:

wherein each X is independently C or N; each Y is selected from the group consisting of BRe, NRe, PRe, O, S, Se, C═O, S═O, SO2, CReRf, SiReRf, and GeReRf; Re and Rf can be fused or joined to form a ring; each of Re and Rf is independently a hydrogen or a substituent selected from the group consisting of deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, germyl, boryl, selenyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acid, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.

7. The compound of claim 1, wherein LA is selected from the group consisting of:

wherein R is a hydrogen or a substituent selected from the group consisting of deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, germyl, boryl, selenyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acid, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof.

8. The compound of claim 1, wherein LA is selected from the group consisting of LAi-m, wherein i is an integer from 1 to 2088, m is an integer from 1 to 28, wherein each of LAi-1 to LAi-28 is defined below: wherein for each LAi, RC, RD and G are as defined below: LAi RC RD G LAi RC RD G LAi RC RD G LA1 H H G1 LA2 RH1 H G1 LA3 RH2 H G1 LA4 H RH1 G1 LA5 RH1 RH1 G1 LA6 RH2 RH1 G1 LA7 H RH2 G1 LA8 RH1 RH2 G1 LA9 RH2 RH2 G1 LA10 H RH3 G1 LA11 RH1 RH3 G1 LA12 RH2 RH3 G1 LA13 H RH4 G1 LA14 RH1 RH4 G1 LA15 RH2 RH4 G1 LA16 H RH5 G1 LA17 RH1 RH5 G1 LA18 RH2 RH5 G1 LA19 H RH6 G1 LA20 RH1 RH6 G1 LA21 RH2 RH6 G1 LA22 H RH7 G1 LA23 RH1 RH7 G1 LA24 RH2 RH7 G1 LA25 H RH8 G1 LA26 RH1 RH8 G1 LA27 RH2 RH8 G1 LA28 H RH9 G1 LA29 RH1 RH9 G1 LA30 RH2 RH9 G1 LA31 H RH10 G1 LA32 RH1 RH10 G1 LA33 RH2 RH10 G1 LA34 H RH11 G1 LA35 RH1 RH11 G1 LA36 RH2 RH11 G1 LA37 H RH12 G1 LA38 RH1 RH12 G1 LA39 RH2 RH12 G1 LA40 H RH13 G1 LA41 RH1 RH13 G1 LA42 RH2 RH13 G1 LA43 H RH14 G1 LA44 RH1 RH14 G1 LA45 RH2 RH14 G1 LA46 H RH15 G1 LA47 RH1 RH15 G1 LA48 RH2 RH15 G1 LA49 H RH16 G1 LA50 RH1 RH16 G1 LA51 RH2 RH16 G1 LA52 H RH17 G1 LA53 RH1 RH17 G1 LA54 RH2 RH17 G1 LA55 H RH18 G1 LA56 RH1 RH18 G1 LA57 RH2 RH18 G1 LA58 H RH19 G1 LA59 RH1 RH19 G1 LA60 RH2 RH19 G1 LA61 H RH20 G1 LA62 RH1 RH20 G1 LA63 RH2 RH20 G1 LA64 H RH21 G1 LA65 RH1 RH21 G1 LA66 RH2 RH21 G1 LA67 H RH22 G1 LA68 RH1 RH22 G1 LA69 RH2 RH22 G1 LA70 H RH23 G1 LA71 RH1 RH23 G1 LA72 RH2 RH23 G1 LA73 H RH24 G1 LA74 RH1 RH24 G1 LA75 RH2 RH24 G1 LA76 H RH25 G1 LA77 RH1 RH25 G1 LA78 RH2 RH25 G1 LA79 H RH26 G1 LA80 RH1 RH26 G1 LA81 RH2 RH26 G1 LA82 H RH27 G1 LA83 RH1 RH27 G1 LA84 RH2 RH27 G1 LA85 H RH28 G1 LA86 RH1 RH28 G1 LA87 RH2 RH28 G1 LA88 H RH29 G1 LA89 RH1 RH29 G1 LA90 RH2 RH29 G1 LA91 H RH30 G1 LA92 RH1 RH30 G1 LA93 RH2 RH30 G1 LA94 H RH31 G1 LA95 RH1 RH31 G1 LA96 RH2 RH31 G1 LA97 H RH32 G1 LA98 RH1 RH32 G1 LA99 RH2 RH32 G1 LA100 H RH33 G1 LA101 RH1 RH33 G1 LA102 RH2 RH33 G1 LA103 H RH34 G1 LA104 RH1 RH34 G1 LA105 RH2 RH34 G1 LA106 H RH35 G1 LA107 RH1 RH55 G1 LA108 RH2 RH35 G1 LA109 H RH36 G1 LA110 RH1 RH36 G1 LA111 RH2 RH36 G1 LA112 H RH37 G1 LA113 RH1 RH37 G1 LA114 RH2 RH37 G1 LA115 H RH38 G1 LA116 RH1 RH38 G1 LA117 RH2 RH38 G1 LA118 H RH39 G1 LA119 RH1 RH39 G1 LA120 RH2 RH39 G1 LA121 H RH40 G1 LA122 RH1 RH40 G1 LA123 RH2 RH40 G1 LA124 H RH41 G1 LA125 RH1 RH41 G1 LA126 RH2 RH41 G1 LA127 H RH42 G1 LA128 RH1 RH42 G1 LA129 RH2 RH42 G1 LA130 H RH43 G1 LA131 RH1 RH43 G1 LA132 RH2 RH43 G1 LA133 H RH44 G1 LA134 RH1 RH44 G1 LA135 RH2 RH44 G1 LA136 H RH45 G1 LA137 RH1 RH45 G1 LA138 RH2 RH45 G1 LA139 H RH46 G1 LA140 RH1 RH46 G1 LA141 RH2 RH46 G1 LA142 H RH47 G1 LA143 RH1 RH47 G1 LA144 RH2 RH47 G1 LA145 H RH48 G1 LA146 RH1 RH48 G1 LA147 RH2 RH48 G1 LA148 H RH49 G1 LA149 RH1 RH49 G1 LA150 RH2 RH49 G1 LA151 H RH50 G1 LA152 RH1 RH50 G1 LA153 RH2 RH50 G1 LA154 H RH51 G1 LA155 RH1 RH51 G1 LA156 RH2 RH51 G1 LA157 H RH52 G1 LA158 RH1 RH52 G1 LA159 RH2 RH52 G1 LA160 H RH53 G1 LA161 RH1 RH53 G1 LA162 RH2 RH53 G1 LA163 H RH54 G1 LA164 RH1 RH54 G1 LA165 RH2 RH54 G1 LA166 H RH55 G1 LA167 RH1 RH55 G1 LA168 RH2 RH55 G1 LA169 H RH56 G1 LA170 RH1 RH56 G1 LA171 RH2 RH56 G1 LA172 RH6 H G1 LA173 RH8 H G1 LA174 RH4 H G1 LA175 RH6 RH1 G1 LA176 RH8 RH1 G1 LA177 RH4 RH1 G1 LA178 RH6 RH2 G1 LA179 RH8 RH2 G1 LA180 RH4 RH2 G1 LA181 RH6 RH3 G1 LA182 RH8 RH3 G1 LA183 RH4 RH3 G1 LA184 RH6 RH4 G1 LA185 RH8 RH4 G1 LA186 RH4 RH4 G1 LA187 RH6 RH5 G1 LA188 RH8 RH5 G1 LA189 RH4 RH5 G1 LA190 RH6 RH6 G1 LA191 RH8 RH6 G1 LA192 RH4 RH6 G1 LA193 RH6 RH7 G1 LA194 RH8 RH7 G1 LA195 RH4 RH7 G1 LA196 RH6 RH8 G1 LA197 RH8 RH8 G1 LA198 RH4 RH8 G1 LA199 RH6 RH9 G1 LA200 RH8 RH9 G1 LA201 RH4 RH9 G1 LA202 RH6 RH10 G1 LA203 RH8 RH10 G1 LA204 RH4 RH10 G1 LA205 RH6 RH11 G1 LA206 RH8 RH11 G1 LA207 RH4 RH11 G1 LA208 RH6 RH12 G1 LA209 RH8 RH12 G1 LA210 RH4 RH12 G1 LA211 RH6 RH13 G1 LA212 RH8 RH13 G1 LA213 RH4 RH13 G1 LA214 RH6 RH14 G1 LA215 RH8 RH14 G1 LA216 RH4 RH14 G1 LA217 RH6 RH15 G1 LA218 RH8 RH15 G1 LA219 RH4 RH15 G1 LA220 RH6 RH16 G1 LA221 RH8 RH16 G1 LA222 RH4 RH16 G1 LA223 RH6 RH17 G1 LA224 RH8 RH17 G1 LA225 RH4 RH17 G1 LA226 RH6 RH18 G1 LA227 RH8 RH18 G1 LA228 RH4 RH18 G1 LA229 RH6 RH19 G1 LA230 RH8 RH19 G1 LA231 RH4 RH19 G1 LA232 RH6 RH20 G1 LA233 RH8 RH20 G1 LA234 RH4 RH20 G1 LA235 RH6 RH21 G1 LA236 RH8 RH21 G1 LA237 RH4 RH21 G1 LA238 RH6 RH22 G1 LA239 RH8 RH22 G1 LA240 RH4 RH22 G1 LA241 RH6 RH23 G1 LA242 RH8 RH23 G1 LA243 RH4 RH23 G1 LA244 RH6 RH24 G1 LA245 RH8 RH24 G1 LA246 RH4 RH24 G1 LA247 RH6 RH25 G1 LA248 RH8 RH25 G1 LA249 RH4 RH25 G1 LA250 RH6 RH26 G1 LA251 RH8 RH26 G1 LA252 RH4 RH26 G1 LA253 RH6 RH27 G1 LA254 RH8 RH27 G1 LA255 RH4 RH27 G1 LA256 RH6 RH28 G1 LA257 RH8 RH28 G1 LA258 RH4 RH28 G1 LA259 RH6 RH29 G1 LA260 RH8 RH29 G1 LA261 RH4 RH29 G1 LA262 RH6 RH30 G1 LA263 RH8 RH30 G1 LA264 RH4 RH30 G1 LA265 RH6 RH31 G1 LA266 RH8 RH31 G1 LA267 RH4 RH31 G1 LA268 RH6 RH32 G1 LA269 RH8 RH32 G1 LA270 RH4 RH32 G1 LA271 RH6 RH33 G1 LA272 RH8 RH33 G1 LA273 RH4 RH33 G1 LA274 RH6 RH34 G1 LA275 RH8 RH34 G1 LA276 RH4 RH34 G1 LA277 RH6 RH35 G1 LA278 RH8 RH35 G1 LA279 RH4 RH35 G1 LA280 RH6 RH36 G1 LA281 RH8 RH36 G1 LA282 RH4 RH36 G1 LA283 RH6 RH37 G1 LA284 RH8 RH37 G1 LA285 RH4 RH37 G1 LA286 RH6 RH38 G1 LA287 RH8 RH38 G1 LA288 RH4 RH38 G1 LA289 RH6 RH39 G1 LA290 RH8 RH39 G1 LA291 RH4 RH39 G1 LA292 RH6 RH40 G1 LA293 RH8 RH40 G1 LA294 RH4 RH40 G1 LA295 RH6 RH41 G1 LA296 RH8 RH41 G1 LA297 RH4 RH41 G1 LA298 RH6 RH42 G1 LA299 RH8 RH42 G1 LA300 RH4 RH42 G1 LA301 RH6 RH43 G1 LA302 RH8 RH43 G1 LA303 RH4 RH43 G1 LA304 RH6 RH44 G1 LA305 RH8 RH44 G1 LA306 RH4 RH44 G1 LA307 RH6 RH45 G1 LA308 RH8 RH45 G1 LA309 RH4 RH45 G1 LA310 RH6 RH46 G1 LA311 RH8 RH46 G1 LA312 RH4 RH46 G1 LA313 RH6 RH47 G1 LA314 RH8 RH47 G1 LA315 RH4 RH47 G1 LA316 RH6 RH48 G1 LA317 RH8 RH48 G1 LA318 RH4 RH48 G1 LA319 RH6 RH49 G1 LA320 RH8 RH49 G1 LA321 RH4 RH49 G1 LA322 RH6 RH50 G1 LA323 RH8 RH50 G1 LA324 RH4 RH50 G1 LA325 RH6 RH51 G1 LA326 RH8 RH51 G1 LA327 RH4 RH51 G1 LA328 RH6 RH52 G1 LA329 RH8 RH52 G1 LA330 RH4 RH52 G1 LA331 RH6 RH53 G1 LA332 RH8 RH53 G1 LA333 RH4 RH55 G1 LA334 RH6 RH54 G1 LA335 RH8 RH54 G1 LA336 RH4 RH54 G1 LA337 RH6 RH55 G1 LA338 RH8 RH55 G1 LA339 RH4 RH55 G1 LA340 RH6 RH56 G1 LA341 RH8 RH56 G1 LA342 RH4 RH56 G1 LA343 H H G4 LA344 RH1 H G4 LA345 RH2 H G4 LA346 H RH1 G4 LA347 RH1 RH1 G4 LA348 RH2 RH1 G4 LA349 H RH2 G4 LA350 RH1 RH2 G4 LA351 RH2 RH2 G4 LA352 H RH3 G4 LA353 RH1 RH3 G4 LA354 RH2 RH3 G4 LA355 H RH4 G4 LA356 RH1 RH4 G4 LA357 RH2 RH4 G4 LA358 H RH5 G4 LA359 RH1 RH5 G4 LA360 RH2 RH5 G4 LA361 H RH6 G4 LA362 RH1 RH6 G4 LA363 RH2 RH6 G4 LA364 H RH7 G4 LA365 RH1 RH7 G4 LA366 RH2 RH7 G4 LA367 H RH8 G4 LA368 RH1 RH8 G4 LA369 RH2 RH8 G4 LA370 H RH9 G4 LA371 RH1 RH9 G4 LA372 RH2 RH9 G4 LA373 H RH10 G4 LA374 RH1 RH10 G4 LA375 RH2 RH10 G4 LA376 H RH11 G4 LA377 RH1 RH11 G4 LA378 RH2 RH11 G4 LA379 H RH12 G4 LA380 RH1 RH12 G4 LA381 RH2 RH12 G4 LA382 H RH13 G4 LA383 RH1 RH13 G4 LA384 RH2 RH13 G4 LA385 H RH14 G4 LA386 RH1 RH14 G4 LA387 RH2 RH14 G4 LA388 H RH15 G4 LA389 RH1 RH15 G4 LA390 RH2 RH15 G4 LA391 H RH16 G4 LA392 RH1 RH16 G4 LA393 RH2 RH16 G4 LA394 H RH17 G4 LA395 RH1 RH17 G4 LA396 RH2 RH17 G4 LA397 H RH18 G4 LA398 RH1 RH18 G4 LA399 RH2 RH18 G4 LA400 H RH19 G4 LA401 RH1 RH19 G4 LA402 RH2 RH19 G4 LA403 H RH20 G4 LA404 RH1 RH20 G4 LA405 RH2 RH20 G4 LA406 H RH21 G4 LA407 RH1 RH21 G4 LA408 RH2 RH21 G4 LA409 H RH22 G4 LA410 RH1 RH22 G4 LA411 RH2 RH22 G4 LA412 H RH23 G4 LA413 RH1 RH23 G4 LA414 RH2 RH23 G4 LA415 H RH24 G4 LA416 RH1 RH24 G4 LA417 RH2 RH24 G4 LA418 H RH25 G4 LA419 RH1 RH25 G4 LA420 RH2 RH25 G4 LA421 H RH26 G4 LA422 RH1 RH26 G4 LA423 RH2 RH26 G4 LA424 H RH27 G4 LA425 RH1 RH27 G4 LA426 RH2 RH27 G4 LA427 H RH28 G4 LA428 RH1 RH28 G4 LA429 RH2 RH28 G4 LA430 H RH29 G4 LA431 RH1 RH29 G4 LA432 RH2 RH29 G4 LA433 H RH30 G4 LA434 RH1 RH30 G4 LA435 RH2 RH30 G4 LA436 H RH31 G4 LA437 RH1 RH31 G4 LA438 RH2 RH31 G4 LA439 H RH32 G4 LA440 RH1 RH32 G4 LA441 RH2 RH32 G4 LA442 H RH33 G4 LA443 RH1 RH33 G4 LA444 RH2 RH33 G4 LA445 H RH34 G4 LA446 RH1 RH34 G4 LA447 RH2 RH34 G4 LA448 H RH35 G4 LA449 RH1 RH35 G4 LA450 RH2 RH35 G4 LA451 H RH36 G4 LA452 RH1 RH36 G4 LA453 RH2 RH36 G4 LA454 H RH37 G4 LA455 RH1 RH37 G4 LA456 RH2 RH37 G4 LA457 H RH38 G4 LA458 RH1 RH38 G4 LA459 RH2 RH38 G4 LA460 H RH39 G4 LA461 RH1 RH39 G4 LA462 RH2 RH39 G4 LA463 H RH40 G4 LA464 RH1 RH40 G4 LA465 RH2 RH40 G4 LA466 H RH41 G4 LA467 RH1 RH41 G4 LA468 RH2 RH41 G4 LA469 H RH42 G4 LA470 RH1 RH42 G4 LA471 RH2 RH42 G4 LA472 H RH43 G4 LA473 RH1 RH43 G4 LA474 RH2 RH43 G4 LA475 H RH44 G4 LA476 RH1 RH44 G4 LA477 RH2 RH44 G4 LA478 H RH45 G4 LA479 RH1 RH45 G4 LA480 RH2 RH45 G4 LA481 H RH46 G4 LA482 RH1 RH46 G4 LA483 RH2 RH46 G4 LA484 H RH47 G4 LA485 RH1 RH47 G4 LA486 RH2 RH47 G4 LA487 H RH48 G4 LA488 RH1 RH48 G4 LA489 RH2 RH48 G4 LA490 H RH49 G4 LA491 RH1 RH49 G4 LA492 RH2 RH49 G4 LA493 H RH50 G4 LA494 RH1 RH50 G4 LA495 RH2 RH50 G4 LA496 H RH51 G4 LA497 RH1 RH51 G4 LA498 RH2 RH51 G4 LA499 H RH52 G4 LA500 RH1 RH52 G4 LA501 RH2 RH52 G4 LA502 H RH53 G4 LA503 RH1 RH53 G4 LA504 RH2 RH55 G4 LA505 H RH54 G4 LA506 RH1 RH54 G4 LA507 RH2 RH54 G4 LA508 H RH55 G4 LA509 RH1 RH55 G4 LA510 RH2 RH55 G4 LA511 H RH56 G4 LA512 RH1 RH56 G4 LA513 RH2 RH56 G4 LA514 RH6 H G4 LA515 RH8 H G4 LA516 RH4 H G4 LA517 RH6 RH1 G4 LA518 RH8 RH1 G4 LA519 RH4 RH1 G4 LA520 RH6 RH2 G4 LA521 RH8 RH2 G4 LA522 RH4 RH2 G4 LA523 RH6 RH3 G4 LA524 RH8 RH3 G4 LA525 RH4 RH3 G4 LA526 RH6 RH4 G4 LA527 RH8 RH4 G4 LA528 RH4 RH4 G4 LA529 RH6 RH5 G4 LA530 RH8 RH5 G4 LA531 RH4 RH5 G4 LA532 RH6 RH6 G4 LA533 RH8 RH6 G4 LA534 RH4 RH6 G4 LA535 RH6 RH7 G4 LA536 RH8 RH7 G4 LA537 RH4 RH7 G4 LA538 RH6 RH8 G4 LA539 RH8 RH8 G4 LA540 RH4 RH8 G4 LA541 RH6 RH9 G4 LA542 RH8 RH9 G4 LA543 RH4 RH9 G4 LA544 RH6 RH10 G4 LA545 RH8 RH10 G4 LA546 RH4 RH10 G4 LA547 RH6 RH11 G4 LA548 RH8 RH11 G4 LA549 RH4 RH11 G4 LA550 RH6 RH12 G4 LA551 RH8 RH12 G4 LA552 RH4 RH12 G4 LA553 RH6 RH13 G4 LA554 RH8 RH13 G4 LA555 RH4 RH13 G4 LA556 RH6 RH14 G4 LA557 RH8 RH14 G4 LA558 RH4 RH14 G4 LA559 RH6 RH15 G4 LA560 RH8 RH15 G4 LA561 RH4 RH15 G4 LA562 RH6 RH16 G4 LA563 RH8 RH16 G4 LA564 RH4 RH16 G4 LA565 RH6 RH17 G4 LA566 RH8 RH17 G4 LA567 RH4 RH17 G4 LA568 RH6 RH18 G4 LA569 RH8 RH18 G4 LA570 RH4 RH18 G4 LA571 RH6 RH19 G4 LA572 RH8 RH19 G4 LA573 RH4 RH19 G4 LA574 RH6 RH20 G4 LA575 RH8 RH20 G4 LA576 RH4 RH20 G4 LA577 RH6 RH21 G4 LA578 RH8 RH21 G4 LA579 RH4 RH21 G4 LA580 RH6 RH22 G4 LA581 RH8 RH22 G4 LA582 RH4 RH22 G4 LA583 RH6 RH23 G4 LA584 RH8 RH23 G4 LA585 RH4 RH23 G4 LA586 RH6 RH24 G4 LA587 RH8 RH24 G4 LA588 RH4 RH24 G4 LA589 RH6 RH25 G4 LA590 RH8 RH25 G4 LA591 RH4 RH25 G4 LA592 RH6 RH26 G4 LA593 RH8 RH26 G4 LA594 RH4 RH26 G4 LA595 RH6 RH27 G4 LA596 RH8 RH27 G4 LA597 RH4 RH27 G4 LA598 RH6 RH28 G4 LA599 RH8 RH28 G4 LA600 RH4 RH28 G4 LA601 RH6 RH29 G4 LA602 RH8 RH29 G4 LA603 RH4 RH29 G4 LA604 RH6 RH30 G4 LA605 RH8 RH30 G4 LA606 RH4 RH30 G4 LA607 RH6 RH31 G4 LA608 RH8 RH31 G4 LA609 RH4 RH31 G4 LA610 RH6 RH32 G4 LA611 RH8 RH32 G4 LA612 RH4 RH32 G4 LA613 RH6 RH33 G4 LA614 RH8 RH33 G4 LA615 RH4 RH33 G4 LA616 RH6 RH34 G4 LA617 RH8 RH34 G4 LA618 RH4 RH34 G4 LA619 RH6 RH35 G4 LA620 RH8 RH35 G4 LA621 RH4 RH35 G4 LA622 RH6 RH36 G4 LA623 RH8 RH36 G4 LA624 RH4 RH36 G4 LA625 RH6 RH37 G4 LA626 RH8 RH37 G4 LA627 RH4 RH37 G4 LA628 RH6 RH38 G4 LA629 RH8 RH38 G4 LA630 RH4 RH38 G4 LA631 RH6 RH39 G4 LA632 RH8 RH39 G4 LA633 RH4 RH39 G4 LA634 RH6 RH40 G4 LA635 RH8 RH40 G4 LA636 RH4 RH40 G4 LA637 RH6 RH41 G4 LA638 RH8 RH41 G4 LA639 RH4 RH41 G4 LA640 RH6 RH42 G4 LA641 RH8 RH42 G4 LA642 RH4 RH42 G4 LA643 RH6 RH43 G4 LA644 RH8 RH43 G4 LA645 RH4 RH43 G4 LA646 RH6 RH44 G4 LA647 RH8 RH44 G4 LA648 RH4 RH44 G4 LA649 RH6 RH45 G4 LA650 RH8 RH45 G4 LA651 RH4 RH45 G4 LA652 RH6 RH46 G4 LA653 RH8 RH46 G4 LA654 RH4 RH46 G4 LA655 RH6 RH47 G4 LA656 RH8 RH47 G4 LA657 RH4 RH47 G4 LA658 RH6 RH48 G4 LA659 RH8 RH48 G4 LA660 RH4 RH48 G4 LA661 RH6 RH49 G4 LA662 RH8 RH49 G4 LA663 RH4 RH49 G4 LA664 RH6 RH50 G4 LA665 RH8 RH50 G4 LA666 RH4 RH50 G4 LA667 RH6 RH51 G4 LA668 RH8 RH51 G4 LA669 RH4 RH51 G4 LA670 RH6 RH52 G4 LA671 RH8 RH52 G4 LA672 RH4 RH52 G4 LA673 RH6 RH53 G4 LA674 RH8 RH53 G4 LA675 RH4 RH55 G4 LA676 RH6 RH54 G4 LA677 RH8 RH54 G4 LA678 RH4 RH54 G4 LA679 RH6 RH55 G4 LA680 RH8 RH55 G4 LA681 RH4 RH55 G4 LA682 RH6 RH56 G4 LA683 RH8 RH56 G4 LA684 RH4 RH56 G4 LA685 H H G6 LA686 RH1 H G6 LA687 RH2 H G6 LA688 H RH1 G6 LA689 RH1 RH1 G6 LA690 RH2 RH1 G6 LA691 H RH2 G6 LA692 RH1 RH2 G6 LA693 RH2 RH2 G6 LA694 H RH3 G6 LA695 RH1 RH3 G6 LA696 RH2 RH3 G6 LA697 H RH4 G6 LA698 RH1 RH4 G6 LA699 RH2 RH4 G6 LA700 H RH5 G6 LA701 RH1 RH5 G6 LA702 RH2 RH5 G6 LA703 H RH6 G6 LA704 RH1 RH6 G6 LA705 RH2 RH6 G6 LA706 H RH7 G6 LA707 RH1 RH7 G6 LA708 RH2 RH7 G6 LA709 H RH8 G6 LA710 RH1 RH8 G6 LA711 RH2 RH8 G6 LA712 H RH9 G6 LA713 RH1 RH9 G6 LA714 RH2 RH9 G6 LA715 H RH10 G6 LA716 RH1 RH10 G6 LA717 RH2 RH10 G6 LA718 H RH11 G6 LA719 RH1 RH11 G6 LA720 RH2 RH11 G6 LA721 H RH12 G6 LA722 RH1 RH12 G6 LA723 RH2 RH12 G6 LA724 H RH13 G6 LA725 RH1 RH13 G6 LA726 RH2 RH13 G6 LA727 H RH14 G6 LA728 RH1 RH14 G6 LA729 RH2 RH14 G6 LA730 H RH15 G6 LA731 RH1 RH15 G6 LA732 RH2 RH15 G6 LA733 H RH16 G6 LA734 RH1 RH16 G6 LA735 RH2 RH16 G6 LA736 H RH17 G6 LA737 RH1 RH17 G6 LA738 RH2 RH17 G6 LA739 H RH18 G6 LA740 RH1 RH18 G6 LA741 RH2 RH18 G6 LA742 H RH19 G6 LA743 RH1 RH19 G6 LA744 RH2 RH19 G6 LA745 H RH20 G6 LA746 RH1 RH20 G6 LA747 RH2 RH20 G6 LA748 H RH21 G6 LA749 RH1 RH21 G6 LA750 RH2 RH21 G6 LA751 H RH22 G6 LA752 RH1 RH22 G6 LA753 RH2 RH22 G6 LA754 H RH23 G6 LA755 RH1 RH23 G6 LA756 RH2 RH23 G6 LA757 H RH24 G6 LA758 RH1 RH24 G6 LA759 RH2 RH24 G6 LA760 H RH25 G6 LA761 RH1 RH25 G6 LA762 RH2 RH25 G6 LA763 H RH26 G6 LA764 RH1 RH26 G6 LA765 RH2 RH26 G6 LA766 H RH27 G6 LA767 RH1 RH27 G6 LA768 RH2 RH27 G6 LA769 H RH28 G6 LA770 RH1 RH28 G6 LA771 RH2 RH28 G6 LA772 H RH29 G6 LA773 RH1 RH29 G6 LA774 RH2 RH29 G6 LA775 H RH30 G6 LA776 RH1 RH30 G6 LA777 RH2 RH30 G6 LA778 H RH31 G6 LA779 RH1 RH31 G6 LA780 RH2 RH31 G6 LA781 H RH32 G6 LA782 RH1 RH32 G6 LA783 RH2 RH32 G6 LA784 H RH33 G6 LA785 RH1 RH33 G6 LA786 RH2 RH33 G6 LA787 H RH34 G6 LA788 RH1 RH34 G6 LA789 RH2 RH34 G6 LA790 H RH35 G6 LA791 RH1 RH35 G6 LA792 RH2 RH35 G6 LA793 H RH36 G6 LA794 RH1 RH36 G6 LA795 RH2 RH36 G6 LA796 H RH37 G6 LA797 RH1 RH37 G6 LA798 RH2 RH37 G6 LA799 H RH38 G6 LA800 RH1 RH38 G6 LA801 RH2 RH38 G6 LA802 H RH39 G6 LA803 RH1 RH39 G6 LA804 RH2 RH39 G6 LA805 H RH40 G6 LA806 RH1 RH40 G6 LA807 RH2 RH40 G6 LA808 H RH41 G6 LA809 RH1 RH41 G6 LA810 RH2 RH41 G6 LA811 H RH42 G6 LA812 RH1 RH42 G6 LA813 RH2 RH42 G6 LA814 H RH43 G6 LA815 RH1 RH43 G6 LA816 RH2 RH43 G6 LA817 H RH44 G6 LA818 RH1 RH44 G6 LA819 RH2 RH44 G6 LA820 H RH45 G6 LA821 RH1 RH45 G6 LA822 RH2 RH45 G6 LA823 H RH46 G6 LA824 RH1 RH46 G6 LA825 RH2 RH46 G6 LA826 H RH47 G6 LA827 RH1 RH47 G6 LA828 RH2 RH47 G6 LA829 H RH48 G6 LA830 RH1 RH48 G6 LA831 RH2 RH48 G6 LA832 H RH49 G6 LA833 RH1 RH49 G6 LA834 RH2 RH49 G6 LA835 H RH50 G6 LA836 RH1 RH50 G6 LA837 RH2 RH50 G6 LA838 H RH51 G6 LA839 RH1 RH51 G6 LA840 RH2 RH51 G6 LA841 H RH52 G6 LA842 RH1 RH52 G6 LA843 RH2 RH52 G6 LA844 H RH53 G6 LA845 RH1 RH53 G6 LA846 RH2 RH53 G6 LA847 H RH54 G6 LA848 RH1 RH54 G6 LA849 RH2 RH54 G6 LA850 H RH55 G6 LA851 RH1 RH55 G6 LA852 RH2 RH55 G6 LA853 H RH56 G6 LA854 RH1 RH56 G6 LA855 RH2 RH56 G6 LA856 RH6 H G6 LA857 RH8 H G6 LA858 RH4 H G6 LA859 RH6 RH1 G6 LA860 RH8 RH1 G6 LA861 RH4 RH1 G6 LA862 RH6 RH2 G6 LA863 RH8 RH2 G6 LA864 RH4 RH2 G6 LA865 RH6 RH3 G6 LA866 RH8 RH3 G6 LA867 RH4 RH3 G6 LA868 RH6 RH4 G6 LA869 RH8 RH4 G6 LA870 RH4 RH4 G6 LA871 RH6 RH5 G6 LA872 RH8 RH5 G6 LA873 RH4 RH5 G6 LA874 RH6 RH6 G6 LA875 RH8 RH6 G6 LA876 RH4 RH6 G6 LA877 RH6 RH7 G6 LA878 RH8 RH7 G6 LA879 RH4 RH7 G6 LA880 RH6 RH8 G6 LA881 RH8 RH8 G6 LA882 RH4 RH8 G6 LA883 RH6 RH9 G6 LA884 RH8 RH9 G6 LA885 RH4 RH9 G6 LA886 RH6 RH10 G6 LA887 RH8 RH10 G6 LA888 RH4 RH10 G6 LA889 RH6 RH11 G6 LA890 RH8 RH11 G6 LA891 RH4 RH11 G6 LA892 RH6 RH12 G6 LA893 RH8 RH12 G6 LA894 RH4 RH12 G6 LA895 RH6 RH13 G6 LA896 RH8 RH13 G6 LA897 RH4 RH13 G6 LA898 RH6 RH14 G6 LA899 RH8 RH14 G6 LA900 RH4 RH14 G6 LA901 RH6 RH15 G6 LA902 RH8 RH15 G6 LA903 RH4 RH15 G6 LA904 RH6 RH16 G6 LA905 RH8 RH16 G6 LA906 RH4 RH16 G6 LA907 RH6 RH17 G6 LA908 RH8 RH17 G6 LA909 RH4 RH17 G6 LA910 RH6 RH18 G6 LA911 RH8 RH18 G6 LA912 RH4 RH18 G6 LA913 RH6 RH19 G6 LA914 RH8 RH19 G6 LA915 RH4 RH19 G6 LA916 RH6 RH20 G6 LA917 RH8 RH20 G6 LA918 RH4 RH20 G6 LA919 RH6 RH21 G6 LA920 RH8 RH21 G6 LA921 RH4 RH21 G6 LA922 RH6 RH22 G6 LA923 RH8 RH22 G6 LA924 RH4 RH22 G6 LA925 RH6 RH23 G6 LA926 RH8 RH25 G6 LA927 RH4 RH25 G6 LA928 RH6 RH24 G6 LA929 RH8 RH24 G6 LA930 RH4 RH24 G6 LA931 RH6 RH25 G6 LA932 RH8 RH25 G6 LA933 RH4 RH25 G6 LA934 RH6 RH26 G6 LA935 RH8 RH26 G6 LA936 RH4 RH26 G6 LA937 RH6 RH27 G6 LA938 RH8 RH27 G6 LA939 RH4 RH27 G6 LA940 RH6 RH28 G6 LA941 RH8 RH28 G6 LA942 RH4 RH28 G6 LA943 RH6 RH29 G6 LA944 RH8 RH29 G6 LA945 RH4 RH29 G6 LA946 RH6 RH30 G6 LA947 RH8 RH30 G6 LA948 RH4 RH30 G6 LA949 RH6 RH31 G6 LA950 RH8 RH31 G6 LA951 RH4 RH31 G6 LA952 RH6 RH32 G6 LA953 RH8 RH32 G6 LA954 RH4 RH32 G6 LA955 RH6 RH33 G6 LA956 RH8 RH33 G6 LA957 RH4 RH33 G6 LA958 RH6 RH34 G6 LA959 RH8 RH34 G6 LA960 RH4 RH34 G6 LA961 RH6 RH35 G6 LA962 RH8 RH35 G6 LA963 RH4 RH35 G6 LA964 RH6 RH36 G6 LA965 RH8 RH36 G6 LA966 RH4 RH36 G6 LA967 RH6 RH37 G6 LA968 RH8 RH37 G6 LA969 RH4 RH37 G6 LA970 RH6 RH38 G6 LA971 RH8 RH38 G6 LA972 RH4 RH38 G6 LA973 RH6 RH39 G6 LA974 RH8 RH39 G6 LA975 RH4 RH39 G6 LA976 RH6 RH40 G6 LA977 RH8 RH40 G6 LA978 RH4 RH40 G6 LA979 RH6 RH41 G6 LA980 RH8 RH41 G6 LA981 RH4 RH41 G6 LA982 RH6 RH42 G6 LA983 RH8 RH42 G6 LA984 RH4 RH42 G6 LA985 RH6 RH43 G6 LA986 RH8 RH43 G6 LA987 RH4 RH43 G6 LA988 RH6 RH44 G6 LA989 RH8 RH44 G6 LA990 RH4 RH44 G6 LA991 RH6 RH45 G6 LA992 RH8 RH45 G6 LA993 RH4 RH45 G6 LA994 RH6 RH46 G6 LA995 RH8 RH46 G6 LA996 RH4 RH46 G6 LA997 RH6 RH47 G6 LA998 RH8 RH47 G6 LA999 RH4 RH47 G6 LA1000 RH6 RH48 G6 LA1001 RH8 RH48 G6 LA1002 RH4 RH48 G6 LA1003 RH6 RH49 G6 LA1004 RH8 RH49 G6 LA1005 RH4 RH49 G6 LA1006 RH6 RH50 G6 LA1007 RH8 RH50 G6 LA1008 RH4 RH50 G6 LA1009 RH6 RH51 G6 LA1010 RH8 RH51 G6 LA1011 RH4 RH51 G6 LA1012 RH6 RH52 G6 LA1013 RH8 RH52 G6 LA1014 RH4 RH52 G6 LA1015 RH6 RH53 G6 LA1016 RH8 RH53 G6 LA1017 RH4 RH55 G6 LA1018 RH6 RH54 G6 LA1019 RH8 RH54 G6 LA1020 RH4 RH54 G6 LA1021 RH6 RH55 G6 LA1022 RH8 RH55 G6 LA1023 RH4 RH55 G6 LA1024 RH6 RH56 G6 LA1025 RH8 RH56 G6 LA1026 RH4 RH56 G6 LA1027 H H G21 LA1028 RH1 H G21 LA1029 RH2 H G21 LA1030 H RH1 G21 LA1031 RH1 RH1 G21 LA1032 RH2 RH1 G21 LA1033 H RH2 G21 LA1034 RH1 RH2 G21 LA1035 RH2 RH2 G21 LA1036 H RH3 G21 LA1037 RH1 RH3 G21 LA1038 RH2 RH3 G21 LA1039 H RH4 G21 LA1040 RH1 RH4 G21 LA1041 RH2 RH4 G21 LA1042 H RH5 G21 LA1043 RH1 RH5 G21 LA1044 RH2 RH5 G21 LA1045 H RH6 G21 LA1046 RH1 RH6 G21 LA1047 RH2 RH6 G21 LA1048 H RH7 G21 LA1049 RH1 RH7 G21 LA1050 RH2 RH7 G21 LA1051 H RH8 G21 LA1052 RH1 RH8 G21 LA1053 RH2 RH8 G21 LA1054 H RH9 G21 LA1055 RH1 RH9 G21 LA1056 RH2 RH9 G21 LA1057 H RH10 G21 LA1058 RH1 RH10 G21 LA1059 RH2 RH10 G21 LA1060 H RH11 G21 LA1061 RH1 RH11 G21 LA1062 RH2 RH11 G21 LA1063 H RH12 G21 LA1064 RH1 RH12 G21 LA1065 RH2 RH12 G21 LA1066 H RH13 G21 LA1067 RH1 RH13 G21 LA1068 RH2 RH13 G21 LA1069 H RH14 G21 LA1070 RH1 RH14 G21 LA1071 RH2 RH14 G21 LA1072 H RH15 G21 LA1073 RH1 RH15 G21 LA1074 RH2 RH15 G21 LA1075 H RH16 G21 LA1076 RH1 RH16 G21 LA1077 RH2 RH16 G21 LA1078 H RH17 G21 LA1079 RH1 RH17 G21 LA1080 RH2 RH17 G21 LA1081 H RH18 G21 LA1082 RH1 RH18 G21 LA1083 RH2 RH18 G21 LA1084 H RH19 G21 LA1085 RH1 RH19 G21 LA1086 RH2 RH19 G21 LA1087 H RH20 G21 LA1088 RH1 RH20 G21 LA1089 RH2 RH20 G21 LA1090 H RH21 G21 LA1091 RH1 RH21 G21 LA1092 RH2 RH21 G21 LA1093 H RH22 G21 LA1094 RH1 RH22 G21 LA1095 RH2 RH22 G21 LA1096 H RH23 G21 LA1097 RH1 RH23 G21 LA1098 RH2 RH23 G21 LA1099 H RH24 G21 LA1100 RH1 RH24 G21 LA1101 RH2 RH24 G21 LA1102 H RH25 G21 LA1103 RH1 RH25 G21 LA1104 RH2 RH25 G21 LA1105 H RH26 G21 LA1106 RH1 RH26 G21 LA1107 RH2 RH26 G21 LA1108 H RH27 G21 LA1109 RH1 RH27 G21 LA1110 RH2 RH27 G21 LA1111 H RH28 G21 LA1112 RH1 RH28 G21 LA1113 RH2 RH28 G21 LA1114 H RH29 G21 LA1115 RH1 RH29 G21 LA1116 RH2 RH29 G21 LA1117 H RH30 G21 LA1118 RH1 RH30 G21 LA1119 RH2 RH30 G21 LA1120 H RH31 G21 LA1121 RH1 RH31 G21 LA1122 RH2 RH31 G21 LA1123 H RH32 G21 LA1124 RH1 RH32 G21 LA1125 RH2 RH32 G21 LA1126 H RH33 G21 LA1127 RH1 RH33 G21 LA1128 RH2 RH33 G21 LA1129 H RH34 G21 LA1130 RH1 RH34 G21 LA1131 RH2 RH34 G21 LA1132 H RH35 G21 LA1133 RH1 RH35 G21 LA1134 RH2 RH35 G21 LA1135 H RH36 G21 LA1136 RH1 RH36 G21 LA1137 RH2 RH36 G21 LA1138 H RH37 G21 LA1139 RH1 RH37 G21 LA1140 RH2 RH37 G21 LA1141 H RH38 G21 LA1142 RH1 RH38 G21 LA1143 RH2 RH38 G21 LA1144 H RH39 G21 LA1145 RH1 RH39 G21 LA1146 RH2 RH39 G21 LA1147 H RH40 G21 LA1148 RH1 RH40 G21 LA1149 RH2 RH40 G21 LA1150 H RH41 G21 LA1151 RH1 RH41 G21 LA1152 RH2 RH41 G21 LA1153 H RH42 G21 LA1154 RH1 RH42 G21 LA1155 RH2 RH42 G21 LA1156 H RH43 G21 LA1157 RH1 RH43 G21 LA1158 RH2 RH43 G21 LA1159 H RH44 G21 LA1160 RH1 RH44 G21 LA1161 RH2 RH44 G21 LA1162 H RH45 G21 LA1163 RH1 RH45 G21 LA1164 RH2 RH45 G21 LA1165 H RH46 G21 LA1166 RH1 RH46 G21 LA1167 RH2 RH46 G21 LA1168 H RH47 G21 LA1169 RH1 RH47 G21 LA1170 RH2 RH47 G21 LA1171 H RH48 G21 LA1172 RH1 RH48 G21 LA1173 RH2 RH48 G21 LA1174 H RH49 G21 LA1175 RH1 RH49 G21 LA1176 RH2 RH49 G21 LA1177 H RH50 G21 LA1178 RH1 RH50 G21 LA1179 RH2 RH50 G21 LA1180 H RH51 G21 LA1181 RH1 RH51 G21 LA1182 RH2 RH51 G21 LA1183 H RH52 G21 LA1184 RH1 RH52 G21 LA1185 RH2 RH52 G21 LA1186 H RH53 G21 LA1187 RH1 RH53 G21 LA1188 RH2 RH53 G21 LA1189 H RH54 G21 LA1190 RH1 RH54 G21 LA1191 RH2 RH54 G21 LA1192 H RH55 G21 LA1193 RH1 RH55 G21 LA1194 RH2 RH55 G21 LA1195 H RH56 G21 LA1196 RH1 RH56 G21 LA1197 RH2 RH56 G21 LA1198 RH6 H G21 LA1199 RH8 H G21 LA1200 RH4 H G21 LA1201 RH6 RH1 G21 LA1202 RH8 RH1 G21 LA1203 RH4 RH1 G21 LA1204 RH6 RH2 G21 LA1205 RH8 RH2 G21 LA1206 RH4 RH2 G21 LA1207 RH6 RH3 G21 LA1208 RH8 RH3 G21 LA1209 RH4 RH3 G21 LA1210 RH6 RH4 G21 LA1211 RH8 RH4 G21 LA1212 RH4 RH4 G21 LA1213 RH6 RH5 G21 LA1214 RH8 RH5 G21 LA1215 RH4 RH5 G21 LA1216 RH6 RH6 G21 LA1217 RH8 RH6 G21 LA1218 RH4 RH6 G21 LA1219 RH6 RH7 G21 LA1220 RH8 RH7 G21 LA1221 RH4 RH7 G21 LA1222 RH6 RH8 G21 LA1223 RH8 RH8 G21 LA1224 RH4 RH8 G21 LA1225 RH6 RH9 G21 LA1226 RH8 RH9 G21 LA1227 RH4 RH9 G21 LA1228 RH6 RH10 G21 LA1229 RH8 RH10 G21 LA1230 RH4 RH10 G21 LA1231 RH6 RH11 G21 LA1232 RH8 RH11 G21 LA1233 RH4 RH11 G21 LA1234 RH6 RH12 G21 LA1235 RH8 RH12 G21 LA1236 RH4 RH12 G21 LA1237 RH6 RH13 G21 LA1238 RH8 RH13 G21 LA1239 RH4 RH13 G21 LA1240 RH6 RH14 G21 LA1241 RH8 RH14 G21 LA1242 RH4 RH14 G21 LA1243 RH6 RH15 G21 LA1244 RH8 RH15 G21 LA1245 RH4 RH15 G21 LA1246 RH6 RH16 G21 LA1247 RH8 RH16 G21 LA1248 RH4 RH16 G21 LA1249 RH6 RH17 G21 LA1250 RH8 RH17 G21 LA1251 RH4 RH17 G21 LA1252 RH6 RH18 G21 LA1253 RH8 RH18 G21 LA1254 RH4 RH18 G21 LA1255 RH6 RH19 G21 LA1256 RH8 RH19 G21 LA1257 RH4 RH19 G21 LA1258 RH6 RH20 G21 LA1259 RH8 RH20 G21 LA1260 RH4 RH20 G21 LA1261 RH6 RH21 G21 LA1262 RH8 RH21 G21 LA1263 RH4 RH21 G21 LA1264 RH6 RH22 G21 LA1265 RH8 RH22 G21 LA1266 RH4 RH22 G21 LA1267 RH6 RH23 G21 LA1268 RH8 RH23 G21 LA1269 RH4 RH23 G21 LA1270 RH6 RH24 G21 LA1271 RH8 RH24 G21 LA1272 RH4 RH24 G21 LA1273 RH6 RH25 G21 LA1274 RH8 RH25 G21 LA1275 RH4 RH25 G21 LA1276 RH6 RH26 G21 LA1277 RH8 RH26 G21 LA1278 RH4 RH26 G21 LA1279 RH6 RH27 G21 LA1280 RH8 RH27 G21 LA1281 RH4 RH27 G21 LA1282 RH6 RH28 G21 LA1283 RH8 RH28 G21 LA1284 RH4 RH28 G21 LA1285 RH6 RH29 G21 LA1286 RH8 RH29 G21 LA1287 RH4 RH29 G21 LA1288 RH6 RH30 G21 LA1289 RH8 RH30 G21 LA1290 RH4 RH30 G21 LA1291 RH6 RH31 G21 LA1292 RH8 RH31 G21 LA1293 RH4 RH31 G21 LA1294 RH6 RH32 G21 LA1295 RH8 RH32 G21 LA1296 RH4 RH32 G21 LA1297 RH6 RH33 G21 LA1298 RH8 RH33 G21 LA1299 RH4 RH33 G21 LA1300 RH6 RH34 G21 LA1301 RH8 RH34 G21 LA1302 RH4 RH34 G21 LA1303 RH6 RH35 G21 LA1304 RH8 RH35 G21 LA1305 RH4 RH35 G21 LA1306 RH6 RH36 G21 LA1307 RH8 RH36 G21 LA1308 RH4 RH36 G21 LA1309 RH6 RH37 G21 LA1310 RH8 RH37 G21 LA1311 RH4 RH37 G21 LA1312 RH6 RH38 G21 LA1313 RH8 RH38 G21 LA1314 RH4 RH38 G21 LA1315 RH6 RH39 G21 LA1316 RH8 RH39 G21 LA1317 RH4 RH39 G21 LA1318 RH6 RH40 G21 LA1319 RH8 RH40 G21 LA1320 RH4 RH40 G21 LA1321 RH6 RH41 G21 LA1322 RH8 RH41 G21 LA1323 RH4 RH41 G21 LA1324 RH6 RH42 G21 LA1325 RH8 RH42 G21 LA1326 RH4 RH42 G21 LA1327 RH6 RH43 G21 LA1328 RH8 RH43 G21 LA1329 RH4 RH43 G21 LA1330 RH6 RH44 G21 LA1331 RH8 RH44 G21 LA1332 RH4 RH44 G21 LA1333 RH6 RH45 G21 LA1334 RH8 RH45 G21 LA1335 RH4 RH45 G21 LA1336 RH6 RH46 G21 LA1337 RH8 RH46 G21 LA1338 RH4 RH46 G21 LA1339 RH6 RH47 G21 LA1340 RH8 RH47 G21 LA1341 RH4 RH47 G21 LA1342 RH6 RH48 G21 LA1343 RH8 RH48 G21 LA1344 RH4 RH48 G21 LA1345 RH6 RH49 G21 LA1346 RH8 RH49 G21 LA1347 RH4 RH49 G21 LA1348 RH6 RH50 G21 LA1349 RH8 RH50 G21 LA1350 RH4 RH50 G21 LA1351 RH6 RH51 G21 LA1352 RH8 RH51 G21 LA1353 RH4 RH51 G21 LA1354 RH6 RH52 G21 LA1355 RH8 RH52 G21 LA1356 RH4 RH52 G21 LA1357 RH6 RH53 G21 LA1358 RH8 RH53 G21 LA1359 RH4 RH53 G21 LA1360 RH6 RH54 G21 LA1361 RH8 RH54 G21 LA1362 RH4 RH54 G21 LA1363 RH6 RH55 G21 LA1364 RH8 RH55 G21 LA1365 RH4 RH55 G21 LA1366 RH6 RH56 G21 LA1367 RH8 RH56 G21 LA1368 RH4 RH56 G21 LA1369 H H G22 LA1370 RH1 H G22 LA1371 RH2 H G22 LA1372 H RH1 G22 LA1373 RH1 RH1 G22 LA1374 RH2 RH1 G22 LA1375 H RH2 G22 LA1376 RH1 RH2 G22 LA1377 RH2 RH2 G22 LA1378 H RH3 G22 LA1379 RH1 RH3 G22 LA1380 RH2 RH3 G22 LA1381 H RH4 G22 LA1382 RH1 RH4 G22 LA1383 RH2 RH4 G22 LA1384 H RH5 G22 LA1385 RH1 RH5 G22 LA1386 RH2 RH5 G22 LA1387 H RH6 G22 LA1388 RH1 RH6 G22 LA1389 RH2 RH6 G22 LA1390 H RH7 G22 LA1391 RH1 RH7 G22 LA1392 RH2 RH7 G22 LA1393 H RH8 G22 LA1394 RH1 RH8 G22 LA1395 RH2 RH8 G22 LA1396 H RH9 G22 LA1397 RH1 RH9 G22 LA1398 RH2 RH9 G22 LA1399 H RH10 G22 LA1400 RH1 RH10 G22 LA1401 RH2 RH10 G22 LA1402 H RH11 G22 LA1403 RH1 RH11 G22 LA1404 RH2 RH11 G22 LA1405 H RH12 G22 LA1406 RH1 RH12 G22 LA1407 RH2 RH12 G22 LA1408 H RH13 G22 LA1409 RH1 RH13 G22 LA1410 RH2 RH13 G22 LA1411 H RH14 G22 LA1412 RH1 RH14 G22 LA1413 RH2 RH14 G22 LA1414 H RH15 G22 LA1415 RH1 RH15 G22 LA1416 RH2 RH15 G22 LA1417 H RH16 G22 LA1418 RH1 RH16 G22 LA1419 RH2 RH16 G22 LA1420 H RH17 G22 LA1421 RH1 RH17 G22 LA1422 RH2 RH17 G22 LA1423 H RH18 G22 LA1424 RH1 RH18 G22 LA1425 RH2 RH18 G22 LA1426 H RH19 G22 LA1427 RH1 RH19 G22 LA1428 RH2 RH19 G22 LA1429 H RH20 G22 LA1430 RH1 RH20 G22 LA1431 RH2 RH20 G22 LA1432 H RH21 G22 LA1433 RH1 RH21 G22 LA1434 RH2 RH21 G22 LA1435 H RH22 G22 LA1436 RH1 RH22 G22 LA1437 RH2 RH22 G22 LA1438 H RH23 G22 LA1439 RH1 RH23 G22 LA1440 RH2 RH23 G22 LA1441 H RH24 G22 LA1442 RH1 RH24 G22 LA1443 RH2 RH24 G22 LA1444 H RH25 G22 LA1445 RH1 RH25 G22 LA1446 RH2 RH25 G22 LA1447 H RH26 G22 LA1448 RH1 RH26 G22 LA1449 RH2 RH26 G22 LA1450 H RH27 G22 LA1451 RH1 RH27 G22 LA1452 RH2 RH27 G22 LA1453 H RH28 G22 LA1454 RH1 RH28 G22 LA1455 RH2 RH28 G22 LA1456 H RH29 G22 LA1457 RH1 RH29 G22 LA1458 RH2 RH29 G22 LA1459 H RH30 G22 LA1460 RH1 RH30 G22 LA1461 RH2 RH30 G22 LA1462 H RH31 G22 LA1463 RH1 RH31 G22 LA1464 RH2 RH31 G22 LA1465 H RH32 G22 LA1466 RH1 RH32 G22 LA1467 RH2 RH32 G22 LA1468 H RH33 G22 LA1469 RH1 RH33 G22 LA1470 RH2 RH33 G22 LA1471 H RH34 G22 LA1472 RH1 RH34 G22 LA1473 RH2 RH34 G22 LA1474 H RH35 G22 LA1475 RH1 RH35 G22 LA1476 RH2 RH35 G22 LA1477 H RH36 G22 LA1478 RH1 RH36 G22 LA1479 RH2 RH36 G22 LA1480 H RH37 G22 LA1481 RH1 RH37 G22 LA1482 RH2 RH37 G22 LA1483 H RH38 G22 LA1484 RH1 RH38 G22 LA1485 RH2 RH38 G22 LA1486 H RH39 G22 LA1487 RH1 RH39 G22 LA1488 RH2 RH39 G22 LA1489 H RH40 G22 LA1490 RH1 RH40 G22 LA1491 RH2 RH40 G22 LA1492 H RH41 G22 LA1493 RH1 RH41 G22 LA1494 RH2 RH41 G22 LA1495 H RH42 G22 LA1496 RH1 RH42 G22 LA1497 RH2 RH42 G22 LA1498 H RH43 G22 LA1499 RH1 RH43 G22 LA1500 RH2 RH43 G22 LA1501 H RH44 G22 LA1502 RH1 RH44 G22 LA1503 RH2 RH44 G22 LA1504 H RH45 G22 LA1505 RH1 RH45 G22 LA1506 RH2 RH45 G22 LA1507 H RH46 G22 LA1508 RH1 RH46 G22 LA1509 RH2 RH46 G22 LA1510 H RH47 G22 LA1511 RH1 RH47 G22 LA1512 RH2 RH47 G22 LA1513 H RH48 G22 LA1514 RH1 RH48 G22 LA1515 RH2 RH48 G22 LA1516 H RH49 G22 LA1517 RH1 RH49 G22 LA1518 RH2 RH49 G22 LA1519 H RH50 G22 LA1520 RH1 RH50 G22 LA1521 RH2 RH50 G22 LA1522 H RH51 G22 LA1523 RH1 RH51 G22 LA1524 RH2 RH51 G22 LA1525 H RH52 G22 LA1526 RH1 RH52 G22 LA1527 RH2 RH52 G22 LA1528 H RH53 G22 LA1529 RH1 RH53 G22 LA1530 RH2 RH53 G22 LA1531 H RH54 G22 LA1532 RH1 RH54 G22 LA1533 RH2 RH54 G22 LA1534 H RH55 G22 LA1535 RH1 RH55 G22 LA1536 RH2 RH55 G22 LA1537 H RH56 G22 LA1538 RH1 RH56 G22 LA1539 RH2 RH56 G22 LA1540 RH6 H G22 LA1541 RH8 H G22 LA1542 RH4 H G22 LA1543 RH6 RH1 G22 LA1544 RH8 RH1 G22 LA1545 RH4 RH1 G22 LA1546 RH6 RH2 G22 LA1547 RH8 RH2 G22 LA1548 RH4 RH2 G22 LA1549 RH6 RH3 G22 LA1550 RH8 RH3 G22 LA1551 RH4 RH3 G22 LA1552 RH6 RH4 G22 LA1553 RH8 RH4 G22 LA1554 RH4 RH4 G22 LA1555 RH6 RH5 G22 LA1556 RH8 RH5 G22 LA1557 RH4 RH5 G22 LA1558 RH6 RH6 G22 LA1559 RH8 RH6 G22 LA1560 RH4 RH6 G22 LA1561 RH6 RH7 G22 LA1562 RH8 RH7 G22 LA1563 RH4 RH7 G22 LA1564 RH6 RH8 G22 LA1565 RH8 RH8 G22 LA1566 RH4 RH8 G22 LA1567 RH6 RH9 G22 LA1568 RH8 RH9 G22 LA1569 RH4 RH9 G22 LA1570 RH6 RH10 G22 LA1571 RH8 RH10 G22 LA1572 RH4 RH10 G22 LA1573 RH6 RH11 G22 LA1574 RH8 RH11 G22 LA1575 RH4 RH11 G22 LA1576 RH6 RH12 G22 LA1577 RH8 RH12 G22 LA1578 RH4 RH12 G22 LA1579 RH6 RH13 G22 LA1580 RH8 RH13 G22 LA1581 RH4 RH13 G22 LA1582 RH6 RH14 G22 LA1583 RH8 RH14 G22 LA1584 RH4 RH14 G22 LA1585 RH6 RH15 G22 LA1586 RH8 RH15 G22 LA1587 RH4 RH15 G22 LA1588 RH6 RH16 G22 LA1589 RH8 RH16 G22 LA1590 RH4 RH16 G22 LA1591 RH6 RH17 G22 LA1592 RH8 RH17 G22 LA1593 RH4 RH17 G22 LA1594 RH6 RH18 G22 LA1595 RH8 RH18 G22 LA1596 RH4 RH18 G22 LA1597 RH6 RH19 G22 LA1598 RH8 RH19 G22 LA1599 RH4 RH19 G22 LA1600 RH6 RH20 G22 LA1601 RH8 RH20 G22 LA1602 RH4 RH20 G22 LA1603 RH6 RH21 G22 LA1604 RH8 RH21 G22 LA1605 RH4 RH21 G22 LA1606 RH6 RH22 G22 LA1607 RH8 RH22 G22 LA1608 RH4 RH22 G22 LA1609 RH6 RH23 G22 LA1610 RH8 RH23 G22 LA1611 RH4 RH23 G22 LA1612 RH6 RH24 G22 LA1613 RH8 RH24 G22 LA1614 RH4 RH24 G22 LA1615 RH6 RH25 G22 LA1616 RH8 RH25 G22 LA1617 RH4 RH25 G22 LA1618 RH6 RH26 G22 LA1619 RH8 RH26 G22 LA1620 RH4 RH26 G22 LA1621 RH6 RH27 G22 LA1622 RH8 RH27 G22 LA1623 RH4 RH27 G22 LA1624 RH6 RH28 G22 LA1625 RH8 RH28 G22 LA1626 RH4 RH28 G22 LA1627 RH6 RH29 G22 LA1628 RH8 RH29 G22 LA1629 RH4 RH29 G22 LA1630 RH6 RH30 G22 LA1631 RH8 RH30 G22 LA1632 RH4 RH30 G22 LA1633 RH6 RH31 G22 LA1634 RH8 RH31 G22 LA1635 RH4 RH31 G22 LA1636 RH6 RH32 G22 LA1637 RH8 RH32 G22 LA1638 RH4 RH32 G22 LA1639 RH6 RH33 G22 LA1640 RH8 RH33 G22 LA1641 RH4 RH33 G22 LA1642 RH6 RH34 G22 LA1643 RH8 RH34 G22 LA1644 RH4 RH34 G22 LA1645 RH6 RH35 G22 LA1646 RH8 RH35 G22 LA1647 RH4 RH35 G22 LA1648 RH6 RH36 G22 LA1649 RH8 RH36 G22 LA1650 RH4 RH36 G22 LA1651 RH6 RH37 G22 LA1652 RH8 RH37 G22 LA1653 RH4 RH37 G22 LA1654 RH6 RH38 G22 LA1655 RH8 RH38 G22 LA1656 RH4 RH38 G22 LA1657 RH6 RH39 G22 LA1658 RH8 RH39 G22 LA1659 RH4 RH39 G22 LA1660 RH6 RH40 G22 LA1661 RH8 RH40 G22 LA1662 RH4 RH40 G22 LA1663 RH6 RH41 G22 LA1664 RH8 RH41 G22 LA1665 RH4 RH41 G22 LA1666 RH6 RH42 G22 LA1667 RH8 RH42 G22 LA1668 RH4 RH42 G22 LA1669 RH6 RH43 G22 LA1670 RH8 RH43 G22 LA1671 RH4 RH43 G22 LA1672 RH6 RH44 G22 LA1673 RH8 RH44 G22 LA1674 RH4 RH44 G22 LA1675 RH6 RH45 G22 LA1676 RH8 RH45 G22 LA1677 RH4 RH45 G22 LA1678 RH6 RH46 G22 LA1679 RH8 RH46 G22 LA1680 RH4 RH46 G22 LA1681 RH6 RH47 G22 LA1682 RH8 RH47 G22 LA1683 RH4 RH47 G22 LA1684 RH6 RH48 G22 LA1685 RH8 RH48 G22 LA1686 RH4 RH48 G22 LA1687 RH6 RH49 G22 LA1688 RH8 RH49 G22 LA1689 RH4 RH49 G22 LA1690 RH6 RH50 G22 LA1691 RH8 RH50 G22 LA1692 RH4 RH50 G22 LA1693 RH6 RH51 G22 LA1694 RH8 RH51 G22 LA1695 RH4 RH51 G22 LA1696 RH6 RH52 G22 LA1697 RH8 RH52 G22 LA1698 RH4 RH52 G22 LA1699 RH6 RH53 G22 LA1700 RH8 RH55 G22 LA1701 RH4 RH55 G22 LA1702 RH6 RH54 G22 LA1703 RH8 RH54 G22 LA1704 RH4 RH54 G22 LA1705 RH6 RH55 G22 LA1706 RH8 RH55 G22 LA1707 RH4 RH55 G22 LA1708 RH6 RH56 G22 LA1709 RH8 RH56 G22 LA1710 RH4 RH56 G22 LA1711 H H G36 LA1712 RH1 H G36 LA1713 RH2 H G36 LA1714 H RH1 G36 LA1715 RH1 RH1 G36 LA1716 RH2 RH1 G36 LA1717 H RH2 G36 LA1718 RH1 RH2 G36 LA1719 RH2 RH2 G36 LA1720 H RH3 G36 LA1721 RH1 RH3 G36 LA1722 RH2 RH3 G36 LA1723 H RH4 G36 LA1724 RH1 RH4 G36 LA1725 RH2 RH4 G36 LA1726 H RH5 G36 LA1727 RH1 RH5 G36 LA1728 RH2 RH5 G36 LA1729 H RH6 G36 LA1730 RH1 RH6 G36 LA1731 RH2 RH6 G36 LA1732 H RH7 G36 LA1733 RH1 RH7 G36 LA1734 RH2 RH7 G36 LA1735 H RH8 G36 LA1736 RH1 RH8 G36 LA1737 RH2 RH8 G36 LA1738 H RH9 G36 LA1739 RH1 RH9 G36 LA1740 RH2 RH9 G36 LA1741 H RH10 G36 LA1742 RH1 RH10 G36 LA1743 RH2 RH10 G36 LA1744 H RH11 G36 LA1745 RH1 RH11 G36 LA1746 RH2 RH11 G36 LA1747 H RH12 G36 LA1748 RH1 RH12 G36 LA1749 RH2 RH12 G36 LA1750 H RH13 G36 LA1751 RH1 RH13 G36 LA1752 RH2 RH13 G36 LA1753 H RH14 G36 LA1754 RH1 RH14 G36 LA1755 RH2 RH14 G36 LA1756 H RH15 G36 LA1757 RH1 RH15 G36 LA1758 RH2 RH15 G36 LA1759 H RH16 G36 LA1760 RH1 RH16 G36 LA1761 RH2 RH16 G36 LA1762 H RH17 G36 LA1763 RH1 RH17 G36 LA1764 RH2 RH17 G36 LA1765 H RH18 G36 LA1766 RH1 RH18 G36 LA1767 RH2 RH18 G36 LA1768 H RH19 G36 LA1769 RH1 RH19 G36 LA1770 RH2 RH19 G36 LA1771 H RH20 G36 LA1772 RH1 RH20 G36 LA1773 RH2 RH20 G36 LA1774 H RH21 G36 LA1775 RH1 RH21 G36 LA1776 RH2 RH21 G36 LA1777 H RH22 G36 LA1778 RH1 RH22 G36 LA1779 RH2 RH22 G36 LA1780 H RH23 G36 LA1781 RH1 RH25 G36 LA1782 RH2 RH25 G36 LA1783 H RH24 G36 LA1784 RH1 RH24 G36 LA1785 RH2 RH24 G36 LA1786 H RH25 G36 LA1787 RH1 RH25 G36 LA1788 RH2 RH25 G36 LA1789 H RH26 G36 LA1790 RH1 RH26 G36 LA1791 RH2 RH26 G36 LA1792 H RH27 G36 LA1793 RH1 RH27 G36 LA1794 RH2 RH27 G36 LA1795 H RH28 G36 LA1796 RH1 RH28 G36 LA1797 RH2 RH28 G36 LA1798 H RH29 G36 LA1799 RH1 RH29 G36 LA1800 RH2 RH29 G36 LA1801 H RH30 G36 LA1802 RH1 RH30 G36 LA1803 RH2 RH30 G36 LA1804 H RH31 G36 LA1805 RH1 RH31 G36 LA1806 RH2 RH31 G36 LA1807 H RH32 G36 LA1808 RH1 RH32 G36 LA1809 RH2 RH32 G36 LA1810 H RH33 G36 LA1811 RH1 RH33 G36 LA1812 RH2 RH33 G36 LA1813 H RH34 G36 LA1814 RH1 RH34 G36 LA1815 RH2 RH34 G36 LA1816 H RH35 G36 LA1817 RH1 RH35 G36 LA1818 RH2 RH35 G36 LA1819 H RH36 G36 LA1820 RH1 RH36 G36 LA1821 RH2 RH36 G36 LA1822 H RH37 G36 LA1823 RH1 RH37 G36 LA1824 RH2 RH37 G36 LA1825 H RH38 G36 LA1826 RH1 RH38 G36 LA1827 RH2 RH38 G36 LA1828 H RH39 G36 LA1829 RH1 RH39 G36 LA1830 RH2 RH39 G36 LA1831 H RH40 G36 LA1832 RH1 RH40 G36 LA1833 RH2 RH40 G36 LA1834 H RH41 G36 LA1835 RH1 RH41 G36 LA1836 RH2 RH41 G36 LA1837 H RH42 G36 LA1838 RH1 RH42 G36 LA1839 RH2 RH42 G36 LA1840 H RH43 G36 LA1841 RH1 RH45 G36 LA1842 RH2 RH45 G36 LA1843 H RH44 G36 LA1844 RH1 RH44 G36 LA1845 RH2 RH44 G36 LA1846 H RH45 G36 LA1847 RH1 RH45 G36 LA1848 RH2 RH45 G36 LA1849 H RH46 G36 LA1850 RH1 RH46 G36 LA1851 RH2 RH46 G36 LA1852 H RH47 G36 LA1853 RH1 RH47 G36 LA1854 RH2 RH47 G36 LA1855 H RH48 G36 LA1856 RH1 RH48 G36 LA1857 RH2 RH48 G36 LA1858 H RH49 G36 LA1859 RH1 RH49 G36 LA1860 RH2 RH49 G36 LA1861 H RH50 G36 LA1862 RH1 RH50 G36 LA1863 RH2 RH50 G36 LA1864 H RH51 G36 LA1865 RH1 RH51 G36 LA1866 RH2 RH51 G36 LA1867 H RH52 G36 LA1868 RH1 RH52 G36 LA1869 RH2 RH52 G36 LA1870 H RH53 G36 LA1871 RH1 RH55 G36 LA1872 RH2 RH55 G36 LA1873 H RH54 G36 LA1874 RH1 RH54 G36 LA1875 RH2 RH54 G36 LA1876 H RH55 G36 LA1877 RH1 RH55 G36 LA1878 RH2 RH55 G36 LA1879 H RH56 G36 LA1880 RH1 RH56 G36 LA1881 RH2 RH56 G36 LA1882 RH6 H G36 LA1883 RH8 H G36 LA1884 RH4 H G36 LA1885 RH6 RH1 G36 LA1886 RH8 RH1 G36 LA1887 RH4 RH1 G36 LA1888 RH6 RH2 G36 LA1889 RH8 RH2 G36 LA1890 RH4 RH2 G36 LA1891 RH6 RH3 G36 LA1892 RH8 RH3 G36 LA1893 RH4 RH3 G36 LA1894 RH6 RH4 G36 LA1895 RH8 RH4 G36 LA1896 RH4 RH4 G36 LA1897 RH6 RH5 G36 LA1898 RH8 RH5 G36 LA1899 RH4 RH5 G36 LA1900 RH6 RH6 G36 LA1901 RH8 RH6 G36 LA1902 RH4 RH6 G36 LA1903 RH6 RH7 G36 LA1904 RH8 RH7 G36 LA1905 RH4 RH7 G36 LA1906 RH6 RH8 G36 LA1907 RH8 RH8 G36 LA1908 RH4 RH8 G36 LA1909 RH6 RH9 G36 LA1910 RH8 RH9 G36 LA1911 RH4 RH9 G36 LA1912 RH6 RH10 G36 LA1913 RH8 RH10 G36 LA1914 RH4 RH10 G36 LA1915 RH6 RH11 G36 LA1916 RH8 RH11 G36 LA1917 RH4 RH11 G36 LA1918 RH6 RH12 G36 LA1919 RH8 RH12 G36 LA1920 RH4 RH12 G36 LA1921 RH6 RH13 G36 LA1922 RH8 RH13 G36 LA1923 RH4 RH13 G36 LA1924 RH6 RH14 G36 LA1925 RH8 RH14 G36 LA1926 RH4 RH14 G36 LA1927 RH6 RH15 G36 LA1928 RH8 RH15 G36 LA1929 RH4 RH15 G36 LA1930 RH6 RH16 G36 LA1931 RH8 RH16 G36 LA1932 RH4 RH16 G36 LA1933 RH6 RH17 G36 LA1934 RH8 RH17 G36 LA1935 RH4 RH17 G36 LA1936 RH6 RH18 G36 LA1937 RH8 RH18 G36 LA1938 RH4 RH18 G36 LA1939 RH6 RH19 G36 LA1940 RH8 RH19 G36 LA1941 RH4 RH19 G36 LA1942 RH6 RH20 G36 LA1943 RH8 RH20 G36 LA1944 RH4 RH20 G36 LA1945 RH6 RH21 G36 LA1946 RH8 RH21 G36 LA1947 RH4 RH21 G36 LA1948 RH6 RH22 G36 LA1949 RH8 RH22 G36 LA1950 RH4 RH22 G36 LA1951 RH6 RH23 G36 LA1952 RH8 RH23 G36 LA1953 RH4 RH23 G36 LA1954 RH6 RH24 G36 LA1955 RH8 RH24 G36 LA1956 RH4 RH24 G36 LA1957 RH6 RH25 G36 LA1958 RH8 RH25 G36 LA1959 RH4 RH25 G36 LA1960 RH6 RH26 G36 LA1961 RH8 RH26 G36 LA1962 RH4 RH26 G36 LA1963 RH6 RH27 G36 LA1964 RH8 RH27 G36 LA1965 RH4 RH27 G36 LA1966 RH6 RH28 G36 LA1967 RH8 RH28 G36 LA1968 RH4 RH28 G36 LA1969 RH6 RH29 G36 LA1970 RH8 RH29 G36 LA1971 RH4 RH29 G36 LA1972 RH6 RH30 G36 LA1973 RH8 RH30 G36 LA1974 RH4 RH30 G36 LA1975 RH6 RH31 G36 LA1976 RH8 RH31 G36 LA1977 RH4 RH31 G36 LA1978 RH6 RH32 G36 LA1979 RH8 RH32 G36 LA1980 RH4 RH32 G36 LA1981 RH6 RH33 G36 LA1982 RH8 RH33 G36 LA1983 RH4 RH33 G36 LA1984 RH6 RH34 G36 LA1985 RH8 RH34 G36 LA1986 RH4 RH34 G36 LA1987 RH6 RH35 G36 LA1988 RH8 RH35 G36 LA1989 RH4 RH35 G36 LA1990 RH6 RH36 G36 LA1991 RH8 RH36 G36 LA1992 RH4 RH36 G36 LA1993 RH6 RH37 G36 LA1994 RH8 RH37 G36 LA1995 RH4 RH37 G36 LA1996 RH6 RH38 G36 LA1997 RH8 RH38 G36 LA1998 RH4 RH38 G36 LA1999 RH6 RH39 G36 LA2000 RH8 RH39 G36 LA2001 RH4 RH39 G36 LA2002 RH6 RH40 G36 LA2003 RH8 RH40 G36 LA2004 RH4 RH40 G36 LA2005 RH6 RH41 G36 LA2006 RH8 RH41 G36 LA2007 RH4 RH41 G36 LA2008 RH6 RH42 G36 LA2009 RH8 RH42 G36 LA2010 RH4 RH42 G36 LA2011 RH6 RH43 G36 LA2012 RH8 RH45 G36 LA2013 RH4 RH45 G36 LA2014 RH6 RH44 G36 LA2015 RH8 RH44 G36 LA2016 RH4 RH44 G36 LA2017 RH6 RH45 G36 LA2018 RH8 RH45 G36 LA2019 RH4 RH45 G36 LA2020 RH6 RH46 G36 LA2021 RH8 RH46 G36 LA2022 RH4 RH46 G36 LA2023 RH6 RH47 G36 LA2024 RH8 RH47 G36 LA2025 RH4 RH47 G36 LA2026 RH6 RH48 G36 LA2027 RH8 RH48 G36 LA2028 RH4 RH48 G36 LA2029 RH6 RH49 G36 LA2030 RH8 RH49 G36 LA2031 RH4 RH49 G36 LA2032 RH6 RH50 G36 LA2033 RH8 RH50 G36 LA2034 RH4 RH50 G36 LA2035 RH6 RH51 G36 LA2036 RH8 RH51 G36 LA2037 RH4 RH51 G36 LA2038 RH6 RH52 G36 LA2039 RH8 RH52 G36 LA2040 RH4 RH52 G36 LA2041 RH6 RH53 G36 LA2042 RH8 RH55 G36 LA2043 RH4 RH55 G36 LA2044 RH6 RH54 G36 LA2045 RH8 RH54 G36 LA2046 RH4 RH54 G36 LA2047 RH6 RH55 G36 LA2048 RH8 RH55 G36 LA2049 RH4 RH55 G36 LA2050 RH6 RH56 G36 LA2051 RH8 RH56 G36 LA2052 RH4 RH56 G36 LA2053 RH1 RH1 G1 LA2054 RH1 RH1 G2 LA2055 RH1 RH1 G3 LA2056 RH1 RH1 G4 LA2057 RH1 RH1 G5 LA2058 RH1 RH1 G6 LA2059 RH1 RH1 G7 LA2060 RH1 RH1 G8 LA2061 RH1 RH1 G9 LA2062 RH1 RH1 G10 LA2063 RH1 RH1 G11 LA2064 RH1 RH1 G12 LA2065 RH1 RH1 G13 LA2066 RH1 RH1 G14 LA2067 RH1 RH1 G15 LA2068 RH1 RH1 G16 LA2069 RH1 RH1 G17 LA2070 RH1 RH1 G18 LA2071 RH1 RH1 G19 LA2072 RH1 RH1 G20 LA2073 RH1 RH1 G21 LA2074 RH1 RH1 G22 LA2075 RH1 RH1 G23 LA2076 RH1 RH1 G24 LA2077 RH1 RH1 G25 LA2078 RH1 RH1 G26 LA2079 RH1 RH1 G27 LA2080 RH1 RH1 G28 LA2081 RH1 RH1 G29 LA2082 RH1 RH1 G30 LA2083 RH1 RH1 G31 LA2084 RH1 RH1 G32 LA2085 RH1 RH1 G33 LA2086 RH1 RH1 G34 LA2087 RH1 RH1 G35 LA2088 RH1 RH1 G36 wherein RH1 to RH56 have the following structures wherein G1 to G36 have the following structures:

9. The compound of claim 1, wherein the compound has a formula of Os(LA)(LB)(LC) or Os(LA)2(LB).

10. The compound of claim 1, wherein the compound has a formula of Os(LA)(LB)(LC).

11. The compound of claim 9, wherein LB is selected from the group consisting of LBk, wherein k is an integer from 1 to 324, and each LBk is defined as follows:

12. The compound of claim 9, wherein LC is a neutral compound selected from the group consisting of:

wherein RE and RF are each independently a hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, germyl, boryl, selenyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof; and each X is independently C or N.

13. The compound of claim 12, wherein LC is selected from the group consisting of:

14. The compound of claim 9, wherein LC is selected from the group consisting of LCj-n wherein j is an integer from 1 to 184, n is an integer from 1 to 10, and each LCj-1 to LCj-10 is defined below: wherein for each LCj RE and RF are as defined below: LCj RE RF LCj RE RF LCj RE RF LCj RE RF LC1 H H LC2 H RH1 LC3 H RH2 LC4 H RH3 LC5 RH1 RH1 LC6 RH1 RH1 LC7 RH1 RH2 LC8 RH1 RH3 LC9 RH2 RH2 LC10 RH2 RH1 LC11 RH2 RH2 LC12 RH2 RH3 LC13 RH3 RH3 LC14 RH3 RH1 LC15 RH3 RH2 LC16 RH3 RH3 LC17 RH4 RH4 LC18 RH4 RH1 LC19 RH4 RH2 LC20 RH4 RH3 LC21 RH5 RH5 LC22 RH5 RH1 LC23 RH5 RH2 LC24 RH5 RH3 LC25 RH6 RH6 LC26 RH6 RH1 LC27 RH6 RH2 LC28 RH6 RH3 LC29 RH7 RH7 LC30 RH7 RH1 LC31 RH7 RH2 LC32 RH7 RH3 LC33 RH8 RH8 LC34 RH8 RH1 LC35 RH8 RH2 LC36 RH8 RH3 LC37 RH9 RH9 LC38 RH9 RH1 LC39 RH9 RH2 LC40 RH9 RH3 LC41 RH10 RH10 LC42 RH10 RH1 LC43 RH10 RH2 LC44 RH10 RH3 LC45 RH11 RH11 LC46 RH11 RH1 LC47 RH11 RH2 LC48 RH11 RH3 LC49 RH12 RH12 LC50 RH12 RH1 LC51 RH12 RH2 LC52 RH12 RH3 LC53 RH13 RH13 LC54 RH13 RH1 LC55 RH13 RH2 LC56 RH13 RH3 LC57 RH14 RH14 LC58 RH14 RH1 LC59 RH14 RH2 LC60 RH14 RH3 LC61 RH15 RH15 LC62 RH15 RH1 LC63 RH15 RH2 LC64 RH15 RH3 LC65 RH16 RH16 LC66 RH16 RH1 LC67 RH16 RH2 LC68 RH16 RH3 LC69 RH17 RH17 LC70 RH17 RH1 LC71 RH17 RH2 LC72 RH17 RH3 LC73 RH18 RH18 LC74 RH18 RH1 LC75 RH18 RH2 LC76 RH18 RH3 LC77 RH19 RH19 LC78 RH19 RH1 LC79 RH19 RH2 LC80 RH19 RH3 LC81 RH20 RH20 LC82 RH20 RH1 LC83 RH20 RH2 LC84 RH20 RH3 LC85 RH21 RH21 LC86 RH21 RH1 LC87 RH21 RH2 LC88 RH21 RH3 LC89 RH22 RH22 LC90 RH22 RH1 LC91 RH22 RH2 LC92 RH22 RH3 LC93 H RH8 LC94 H RH9 LC95 H RH16 LC96 H RH19 LC97 RH1 RH8 LC98 RH1 RH9 LC99 RH1 RH16 LC100 RH1 RH19 LC101 RH2 RH8 LC102 RH2 RH9 LC103 RH2 RH16 LC104 RH2 RH19 LC105 RH3 RH8 LC106 RH3 RH9 LC107 RH3 RH16 LC108 RH3 RH19 LC109 RH4 RH8 LC110 RH4 RH9 LC111 RH4 RH16 LC112 RH4 RH19 LC113 RH5 RH8 LC114 RH5 RH9 LC115 RH5 RH16 LC116 RH5 RH19 LC117 RH6 RH8 LC118 RH6 RH9 LC119 RH6 RH16 LC120 RH6 RH19 LC121 RH7 RH8 LC122 RH7 RH9 LC123 RH7 RH16 LC124 RH7 RH19 LC125 RH8 RH8 LC126 RH8 RH9 LC127 RH8 RH16 LC128 RH8 RH19 LC129 RH9 RH8 LC130 RH9 RH9 LC131 RH9 RH16 LC132 RH9 RH19 LC133 RH10 RH8 LC134 RH10 RH9 LC135 RH10 RH16 LC136 RH10 RH19 LC137 RH11 RH8 LC138 RH11 RH9 LC139 RH11 RH16 LC140 RH11 RH19 LC141 RH12 RH8 LC142 RH12 RH9 LC143 RH12 RH16 LC144 RH12 RH19 LC145 RH13 RH8 LC146 RH13 RH9 LC147 RH13 RH16 LC148 RH13 RH19 LC149 RH14 RH8 LC150 RH14 RH9 LC151 RH14 RH16 LC152 RH14 RH19 LC153 RH15 RH8 LC154 RH15 RH9 LC155 RH15 RH16 LC156 RH15 RH19 LC157 RH16 RH8 LC158 RH16 RH9 LC159 RH16 RH16 LC160 RH16 RH19 LC161 RH17 RH8 LC162 RH17 RH9 LC163 RH17 RH16 LC164 RH17 RH19 LC165 RH18 RH8 LC166 RH18 RH9 LC167 RH18 RH16 LC168 RH18 RH19 LC169 RH19 RH8 LC170 RH19 RH9 LC171 RH19 RH16 LC172 RH19 RH19 LC173 RH20 RH8 LC174 RH20 RH9 LC175 RH20 RH16 LC176 RH20 RH19 LC177 RH21 RH8 LC178 RH21 RH9 LC179 RH21 RH16 LC180 RH21 RH19 LC181 RH22 RH8 LC182 RH22 RH9 LC183 RH22 RH16 LC184 RH22 RH19 wherein RH1 to RH22 have the following structures:

15. The compound of claim 9, wherein when the compound has the formula Os(LAi-m)(LBk)(LCj-n), wherein i is an integer from 1 to 2088; m is an integer from 1 to 28; k is an integer from 1 to 264; j is an integer from 1 to 184; and n is an integer from 1 to 10; the compound is selected from the group consisting of Os(LA1-1)(LB1)(LC1-1) to Os Ir(LA2088-28)(LB264)(LC184-10); and

when the compound has the formula Os(LAi-m)2(LCj-n), wherein i is an integer from 1 to 2088; m is an integer from 1 to 28; J is an integer from 1 to 184; and n is an integer from 1 to 10; the compound is selected from the group consisting of Os(LA1-1)2(LC1-1) to Os Ir(LA-2088-28)2(LC184-10).

16. The compound of claim 9, wherein the compound is selected from the group consisting of:

17. An organic light emitting device (OLED) comprising:

an anode;
a cathode; and
an organic layer disposed between the anode and the cathode,
wherein the organic layer comprises a compound of formula Os(LA)x(LB)y(LC)z,
wherein:
LA has a structure of Formula I with the two indicated dashed lines for coordination to Os:
wherein:
each of moiety A and moiety B is independently a monocyclic or multicyclic fused ring structure comprising 5-membered and/or 6-membered carbocyclic or heterocyclic rings;
one of Z1-Z2 is C, and the other is N;
Z3 and Z4 are each independently C or N, with at least one of them being C;
each of RA and RB independently represents zero, mono, or up to the maximum allowed number of substitutions to its associated ring;
each of RA and RB is independently a hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, germyl, boryl, selenyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof;
any two RA or RB can be joined or fused to form a ring;
each of x, y and z is independently 0, 1, or 2, with x+y+z=3;
each of LB, and LC is a bidentate ligand; and
LA, LB, and LC are different from each other.

18. The OLED of claim 17, wherein the organic layer further comprises a host, wherein host comprises at least one chemical moiety selected from the group consisting of triphenylene, carbazole, indolocarbazole, dibenzothiphene, dibenzofuran, dibenzoselenophene, 5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene, aza-triphenylene, aza-carbazole, aza-indolocarbazole, aza-dibenzothiophene, aza-dibenzofuran, aza-dibenzoselenophene, and aza-(5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene).

19. The OLED of claim 18, wherein the host is selected from the group consisting of: and combinations thereof.

20. A consumer product comprising an organic light-emitting device (OLED) comprising:

an anode;
a cathode; and
an organic layer disposed between the anode and the cathode,
wherein the organic layer comprises a compound of formula Os(LA)x(LB)y(LC)z,
wherein:
LA has a structure of Formula I with the two indicated dashed lines for coordination to Os:
wherein:
each of moiety A and moiety B is independently a monocyclic or multicyclic fused ring structure comprising 5-membered and/or 6-membered carbocyclic or heterocyclic rings;
one of Z1-Z2 is C, and the other is N;
Z3 and Z4 are each independently C or N, with at least one of them being C;
each of RA and RB independently represents zero, mono, or up to the maximum allowed number of substitutions to its associated ring;
each of RA and RB is independently a hydrogen or a substituent selected from the group consisting of deuterium, halogen, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, germyl, boryl, selenyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carboxylic acid, ether, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof;
any two RA or RB can be joined or fused to form a ring;
each of x, y and z is independently 0, 1, or 2, with x+y+z=3;
each of LB, and LC is a bidentate ligand; and
LA, LB, and LC are different from each other.
Patent History
Publication number: 20220119432
Type: Application
Filed: Sep 29, 2021
Publication Date: Apr 21, 2022
Applicant: UNIVERSAL DISPLAY CORPORATION (Ewing, NJ)
Inventors: Zhiqiang JI (Chalfont, PA), Wei-Chun SHIH (Lawrenceville, NJ), Pierre-Luc T. BOUDREAULT (Pennington, NJ), Jui-Yi TSAI (Newtown, PA)
Application Number: 17/488,651
Classifications
International Classification: C07F 15/00 (20060101); H01L 51/00 (20060101);