THERMAL MANAGEMENT SYSTEM
A thermal management system includes a compressor, a first heat exchanger, a first throttling device, a second heat exchanger, a third heat exchanger, a fourth heat exchanger and an air-conditioning box. The third heat exchanger includes a first heat exchange portion for circulating a refrigerant and a second heat exchange portion for circulating a coolant. The thermal management system includes a cooling mode. In the cooling mode, an outlet of the compressor, the first heat exchange portion, the first heat exchanger, the first throttling device, the second heat exchanger and an inlet of the compressor are in communication to form a first refrigerant loop; the second heat exchange portion and the fourth heat exchanger are in communication to form a coolant loop; and the coolant in the second heat exchange portion is capable of absorbing heat of the refrigerant in the first heat exchange portion.
This application claims priority of a Chinese Patent Application No. 201910945514.7, filed on Sep. 30, 2019 and titled “THERMAL MANAGEMENT SYSTEM”, the entire content of which is incorporated herein by reference in the present disclosure.
TECHNICAL FIELDThe present disclosure relates to a field of air conditioning, and in particular to a thermal management system.
BACKGROUNDA thermal management system can realize cooling, heating, ventilation and air purification of indoor air, and provide a comfortable environment for indoor personnel. How to optimize the thermal management system to improve the performance thereof is a current focus.
In the related thermal management system, in a cooling mode, a high-temperature and high-pressure refrigerant flows out of an outlet of the compressor and directly enters an outdoor heat exchanger. The temperature of the refrigerant flowing out of the outlet of the compressor is relatively high. When the outdoor environment temperature is high, after the refrigerant exchanges heat with the external environment in the outdoor heat exchanger, the temperature of the refrigerant flowing out of the outdoor heat exchanger is still high, which results in poor cooling effect of the thermal management system.
SUMMARYThe present disclosure provides a thermal management system to improve the cooling effect of the thermal management system in a high-temperature environment.
Specifically, the present disclosure is achieved through the following technical solutions:
a thermal management system, including: a compressor, a first heat exchanger, a first throttling device, a second heat exchanger, a third heat exchanger, a fourth heat exchanger and an air-conditioning box, the third heat exchanger including a first heat exchange portion for circulating a refrigerant and a second heat exchange portion for circulating a coolant;
wherein the thermal management system includes a cooling mode; in the cooling mode, an outlet of the compressor, the first heat exchange portion, the first heat exchanger, the first throttling device, the second heat exchanger and an inlet of the compressor are in communication to form a first refrigerant loop; the second heat exchange portion and the fourth heat exchanger are in communication to form a coolant loop; and the coolant in the second heat exchange portion is capable of absorbing heat of the refrigerant in the first heat exchange portion; and
wherein the fourth heat exchanger is located outside the air-conditioning box.
The present disclosure further provides a thermal management system, including: an air-conditioning box, a compressor, a first heat exchanger, a first throttling device, a second heat exchanger, a third heat exchanger, a fourth heat exchanger, and a power device to make a coolant flow; the first heat exchanger being located outside the air-conditioning box, the second heat exchanger being located in the air-conditioning box, the third heat exchanger including a first heat exchange portion for circulating a refrigerant and a second heat exchange portion for circulating the coolant;
wherein the thermal management system includes a cooling mode; in the cooling mode, an outlet of the compressor, the first heat exchange portion, the first heat exchanger, the first throttling device, the second heat exchanger and an inlet of the compressor are in communication to form a first refrigerant loop; and
wherein the power device, the second heat exchange portion and the fourth heat exchanger are in communication to form a coolant loop; and the coolant in the second heat exchange portion is capable of exchanging heat with the refrigerant in the first heat exchange portion in order to cool down the refrigerant in the first heat exchange portion.
It can be seen from the above technical solutions that by providing the third heat exchanger at the outlet of the compressor, in the cooling mode, the refrigerant flowing out of the outlet of the compressor will firstly pass through the third heat exchanger. After cooling by the third heat exchanger, the refrigerant flows into the first heat exchanger (that is, the outdoor heat exchanger), the heat of the refrigerant loop is brought to the outside environment through the coolant loop, thereby bearing part of the heat exchange pressure of the outdoor heat exchanger. This effectively solves the problem of insufficient heat exchange capacity of the outdoor heat exchanger in a high temperature environment, and improves the cooling effect of the thermal management system.
It should be understood that the above general description and the following detailed description are only exemplary and explanatory, and cannot limit the present disclosure.
Drawings here are incorporated into the specification and constitute a part of the specification, show embodiments that comply with the present disclosure, and are used together with the specification to explain the principle of the present disclosure.
- 1: compressor; 2: first heat exchanger; 21: first connection port; 22: second connection port; 3: first throttling device; 4: second heat exchanger; 41: third connection port; 42: fourth connection port; 5: coolant loop; 51: motor; 52: pump device; 6: third heat exchanger; 61: first heat exchange portion; 611: first inlet; 612: first outlet; 62: second heat exchange portion; 7: fourth heat exchanger; 8: gas-liquid separator; 9: first fan; 10: fifth heat exchanger; 11: third heat exchange portion; 111: seventh connection port; 112: eighth connection port; 12: fourth heat exchange portion; 13 air-conditioning box; 14: damper; 15: first collecting member; 16: second collecting member; 17: heat exchange tube; 18: heat sink; 19: casing 190: heat exchange cavity; 20: second throttling device; 30: sixth heat exchanger; 301: fifth connection port; 302: sixth connection port; 40: four-way valve; 401: first port; 402: second port; 403: third port; 404: fourth port; 50: shut-off valve; 60: check valve; 70: second fan; 80: control valve.
The exemplary embodiments will be described in detail here, and examples thereof are shown in the drawings. When the following description refers to the drawings, unless otherwise indicated, the same numbers in different drawings indicate the same or similar elements. The implementation embodiments described in the following exemplary embodiments do not represent all implementation embodiments consistent with the present disclosure. On the contrary, they are merely examples of devices and methods consistent with some aspects of the present disclosure as detailed in the appended claims.
The terms used in the present disclosure are only for the purpose of describing specific embodiments, and are not intended to limit the present disclosure. The singular forms of “a”, “said” and “the” used in the present disclosure and appended claims are also intended to include plural forms, unless the context clearly indicates otherwise. It should also be understood that the term “and/or” as used herein refers to and includes any or all possible combinations of one or more associated listed items.
It should be understood that although the terms “first”, “second”, “third”, etc., may be used in the present disclosure to describe various information, the information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other. For example, without departing from the scope of the present disclosure, a first information may also be referred to as a second information. Similarly, the second information may also be referred to as the first information. Depending on the context, the word “if” as used herein can be interpreted as “when” or “during” or “depending on”.
The term “communicated” used in the present disclosure is intended to indicate that a certain medium can circulate from one element to another element. The term “connected” used in the present disclosure is intended to indicate a physical relationship, and does not necessarily mean that the components are communicated.
The thermal management system of the present disclosure will be described in detail below with reference to the accompanying drawings. In the case of no conflict, the following embodiments and features in the embodiments can be combined with each other.
Referring to
The thermal management system of this embodiment includes a cooling mode. Referring to
The second heat exchange portion 62 and the fourth heat exchanger 7 are in communication to form a coolant loop 5. Optionally, the second heat exchange portion 62 and the fourth heat exchanger 7 are sequentially communicated to form the coolant loop 5. Of course, the above-mentioned structures in the coolant loop 5 can also be communicated in other arrangement sequences.
It should be noted that, in the embodiment of the present disclosure, the sequential communication only describes the sequence relationship between the various components, and the various components may also include other components, such as a shut-off valve. In addition, the type of the coolant disclosed in the present disclosure can be selected according to needs. For example, the coolant can be a heat exchange substance such as water and oil, or a mixture of water and ethylene glycol or other mixtures that can exchange heat.
In this embodiment, the coolant in the second heat exchange portion 62 can cool down the temperature of the refrigerant in the first heat exchange portion 61.
Specifically, in the cooling mode, the first heat exchanger 2 is used as a condenser, and the second heat exchanger 4 is used as an evaporator. Referring to
A third heat exchanger 6 is provided at the outlet of the compressor 1. In the cooling mode, the refrigerant in the first heat exchange portion 61 is cooled down by the coolant in the second heat exchange portion 62, which can reduce the temperature of the refrigerant in the outlet pipe of the compressor 1, for example, the temperature of the refrigerant decreases from 150° C. to 80° C. This reduces the temperature of the refrigerant flowing into the first heat exchanger 2 and reduces the heat exchange pressure of the first heat exchanger 2. The cooled refrigerant then passes through the first heat exchanger 2 to exchange heat with the external environment so as to further reduce the temperature of the refrigerant, for example, the temperature of the refrigerant decreases from 80° C. to 47° C. The refrigerant flowing out of the first heat exchanger 2 sequentially flows through the first throttling device 3 to reduce pressure, flows through the second heat exchanger 4 to absorb heat and evaporate, and then flows back into the compressor 1 to realize the recycling of the refrigerant.
In the thermal management system of the embodiment of the present disclosure, the third heat exchanger 6 is provided at the outlet of the compressor 1. In the cooling mode, the refrigerant flowing out of the outlet of the compressor 1 will firstly pass through the third heat exchanger 6. After the temperature is lowered by the third heat exchanger 6, the refrigerant flows into the first heat exchanger 2 (i.e., the outdoor heat exchanger), takes the heat to the outside environment through the coolant loop 5, and undertakes part of the heat exchange of the outdoor heat exchanger pressure. This effectively solves the problem of insufficient outdoor heat exchanger capacity in high temperature environments (for example, between 35° C. and 50° C.), and improves the cooling capacity of the system.
Those of ordinary skill in the art can select the types of the first heat exchanger 2, the second heat exchanger 4, the third heat exchanger 6, and the fourth heat exchanger 7 according to specific scenarios. For example, the first heat exchanger 2, the second heat exchanger 4, and the fourth heat exchanger 7 may be air-cooled heat exchangers. The third heat exchanger 6 is a water-cooled heat exchanger. Referring to
In this embodiment, the thermal management system also includes a functional component. The functional component can generate heat and needs to dissipate heat when the temperature exceeds a set value. The coolant loop includes the above-mentioned functional component. The coolant loop is used to dissipate heat from the functional component. Therefore, the coolant loop 5 in this embodiment can also undertake the heat dissipation of the functional component in the thermal management system to ensure the normal operation of the functional component, thereby effectively ensuring the stable operation of the thermal management system in the cooling mode. Referring to
Referring to
In addition, referring to
In the following, taking the gas-liquid separator 8 provided at the inlet of the compressor 1 as an example, the structure of the thermal management system is further explained.
Referring to
Referring to
The thermal management system also includes a damper 14 located in the air-conditioning box 13. The damper 14 is located between the second heat exchanger 4 and the sixth heat exchanger 30. The damper 14 is used to control whether the air passes through the sixth heat exchanger 30 or not. For example, in the cooling mode, the damper 14 is closed so that the air does not pass through the sixth heat exchanger 30. In the heating mode, the damper 14 is opened to allow air to pass through the sixth heat exchanger 30.
Specifically, in the heating mode, the first heat exchanger 2 is used as an evaporator, and the sixth heat exchanger 30 is used as a condenser or an air cooler. In the heating mode, the damper 14 is opened so that air can flow through the sixth heat exchanger 30. It should be noted that in the cooling mode, the damper 14 at the sixth heat exchanger 30 is closed, which reduces the influence of the sixth heat exchanger 30. Referring to
The thermal management system of the present disclosure also includes a first branch. The first branch is disposed in parallel with the third heat exchanger 6. A control valve 80 is provided on the first branch. The control valve 80 may be a water valve or other types of valves. Referring to
In the heating mode, when the motor generates excess heat, the control valve 80 is opened, and the pump device 52 is turned on. Since the flow resistance of the coolant at the third heat exchanger 6 is greater than the flow resistance at the control valve 80, only a small amount of coolant flows to the third heat exchanger 6. The coolant flow path of the coolant loop 5 includes: the pump device 52-> the motor 51 (or other functional component) -> the control valve 80-> the fourth heat exchanger 7. The waste heat generated by the motor is released to the external environment through the fourth heat exchanger 7. When the fourth heat exchanger 7 is located between the first fan 9 and the first heat exchanger 2 (positions of the fourth heat exchanger 7, the first fan 9 and the first heat exchanger 2 are not limited, which is disposed roughly along the air flow direction), the air flow generated by the first fan 9 can take away the heat of the coolant of the fourth heat exchanger 7 more quickly, and the air temperature rises at the same time. Correspondingly, the temperature of the surrounding environment of the first heat exchanger 2 rises, and the low-temperature refrigerant in the first heat exchanger 2 can absorb this part of the heat. As a result, when the external environment temperature is low in winter, the excess heat generated by the motor will be absorbed by the refrigerant in the first heat exchanger 2, which can increase the heating capacity of the thermal management system. Besides, in the heating mode in winter, the first heat exchanger 2 is prone to frost in a low temperature environment, and the control valve 80 can be opened to defrost the first heat exchanger 2.
Referring to
Among them, the second refrigerant loop is the second refrigerant loop in the heating mode in the above embodiment. The third refrigerant loop is used to cool down the cabin. The working process of the third refrigerant loop is as follows: the compressor 1 compresses a low-temperature and low-pressure gaseous refrigerant into a high-temperature and high-pressure gaseous refrigerant; the high-temperature and high-pressure gaseous refrigerant flows out of the outlet of the compressor 1, enters the sixth heat exchanger 30 through the first heat exchange portion 61, and exchanges heat in the sixth heat exchanger 30; the refrigerant releases heat, the released heat is carried into the cabin by the air flow, and the refrigerant undergoes a phase change and condenses into a liquid or gas-liquid two-phase refrigerant. One path of the refrigerant flows out of the sixth heat exchanger 30 and enters the second throttling device 20 to realize the heating function of the second refrigerant loop. The other path of the refrigerant enters the first throttling device 3 for expansion. The refrigerant is throttled and depressurized to become a low-temperature and low-pressure refrigerant. The low-temperature and low-pressure refrigerant enters the second heat exchanger 4. At this time, the air circulation mode is an inner circulation, and the air with higher humidity flows through the second heat exchanger 4 with relatively lower temperature. The moisture in the air flow condenses into water droplets to reduce the humidity of the air around the second heat exchanger 4. The dehumidified air then flows through the sixth heat exchanger 30 for heating, so as to achieve the purpose of heating and dehumidifying. The refrigerant undergoes a phase change and most of it evaporates into a low-temperature and low-pressure gas refrigerant, which flows into the gas-liquid separator 8. The gas-liquid separator 8 separates the refluxed refrigerant, and stores the liquid part of it in the gas-liquid separator 8, while the low-temperature and low-pressure gaseous refrigerant enters the compressor 1 to be compressed again so as to realize the recycling of the refrigerant.
Referring to
Referring to
Referring to
It should be noted that in the embodiment of the present disclosure, the first throttling device 3 and the second throttling device 20 can play the role of throttling and depressurizing, and blocking in the thermal management system, and may include a throttling valve, an ordinary thermal expansion valve or an electronic expansion valve etc.
In addition, referring to
It is noted that the thermal management system of the present embodiments can be applied to houses, vehicles or other equipment.
The above descriptions are only preferred embodiments of the present disclosure, and are not intended to limit the present disclosure. Any modification, equivalent replacement, improvement, etc., made within the spirit and principle of the present disclosure shall be included in the protection scope of the present disclosure.
Claims
1. A thermal management system, comprising: a compressor, a first heat exchanger, a first throttling device, a second heat exchanger, a third heat exchanger, a fourth heat exchanger and an air-conditioning box, the third heat exchanger comprising a first heat exchange portion for circulating a refrigerant and a second heat exchange portion for circulating a coolant;
- wherein the thermal management system comprises a cooling mode; in the cooling mode, an outlet of the compressor, the first heat exchange portion, the first heat exchanger, the first throttling device, the second heat exchanger and an inlet of the compressor are in communication to form a first refrigerant loop; the second heat exchange portion and the fourth heat exchanger are in communication to form a coolant loop; and the coolant in the second heat exchange portion is capable of absorbing heat of the refrigerant in the first heat exchange portion; and
- wherein the fourth heat exchanger is located outside the air-conditioning box.
2. The thermal management system according to claim 1, further comprising a first fan located outside the air-conditioning box, the first heat exchanger and the fourth heat exchanger sharing the first fan for heat dissipation.
3. The thermal management system according to claim 1, further comprising a fifth heat exchanger, the fifth heat exchanger comprising a third heat exchange portion and a fourth heat exchange portion capable of exchanging heat with the third heat exchange portion; wherein
- in the cooling mode, the outlet of the compressor, the first heat exchange portion, the first heat exchanger, the third heat exchange portion, the first throttling device, the second heat exchanger, the fourth heat exchange portion and the inlet of the compressor are in communication to form the first refrigerant loop.
4. The thermal management system according to claim 1, further comprising a second throttling device and a sixth heat exchanger, the sixth heat exchanger being located in the air-conditioning box;
- wherein the thermal management system further comprises a heating mode; in the heating mode, the outlet of the compressor, the first heat exchange portion, the sixth heat exchanger, the second throttling device, the first heat exchanger and the inlet of the compressor are in communication to form a second refrigerant loop.
5. The thermal management system according to claim 1, further comprising a fifth heat exchanger, a second throttling device and a sixth heat exchanger, the fifth heat exchanger comprising a third heat exchange portion and a fourth heat exchange portion capable of exchanging heat with the third heat exchange portion, the sixth heat exchanger being located in the air-conditioning box;
- wherein the thermal management system further comprises a heating and dehumidifying mode; and
- wherein in the heating and dehumidifying mode, the outlet of the compressor, the first heat exchange portion, the sixth heat exchanger, the second throttling device, the third heat exchange portion, the first heat exchanger, the fourth heat exchange portion and the inlet of the compressor are in communication to form the second refrigerant loop; and the outlet of the compressor, the first heat exchange portion, the sixth heat exchanger, the first throttling device, the second heat exchanger, the fourth heat exchange portion and the inlet of the compressor are in communication to form a third refrigerant loop.
6. The thermal management system according to claim 5, further comprising a four-way valve, the four-way valve having a first port, a second port, a third port and a fourth port;
- wherein the first heat exchange portion comprises a first inlet and a first outlet; the first heat exchanger comprises a first connection port and a second connection port; the second heat exchanger comprises a third connection port and a fourth connection port; the sixth heat exchanger comprises a fifth connection port and a sixth connection port; the third heat exchange portion comprises a seventh connection port and an eighth connection port; and
- wherein the first inlet is in communication with the outlet of the compressor; the first outlet is in communication with the fifth connection port; the first port is in communication with the sixth connection port; the second port is in communication with the first connection port; the second connection port is in communication with the seventh connection port; the eighth connection port is in communication with one end of the second throttling device; the third port is in communication with the other end of the second throttling device and in communication with one end of the first throttling device; the third connection port is in communication with the other end of the first throttling device; and the fourth connection port and the fourth port are in communication with the inlet of the compressor through the fourth heat exchange portion.
7. The thermal management system according to claim 6, further comprising a shut-off valve, one end of the shut-off valve being in communication with the first outlet and being in communication with the fifth connection port, the other end of the shut-off valve being in communication with the first port and being in communication with the sixth connection port.
8. The thermal management system according to claim 7, wherein in the cooling mode, the shut-off valve is opened; and in the heating and dehumidifying mode, the shut-off valve is closed.
9. The thermal management system according to claim 6, further comprising a gas-liquid separator, the fourth connection port and the fourth port being in communication with an inlet of the gas-liquid separator, an outlet of the gas-liquid separator being in communication with the fourth heat exchange portion.
10. The thermal management system according to claim 4, further comprising a check valve, the check valve being disposed in parallel with the second throttling device.
11. The thermal management system according to claim 10, wherein in the cooling mode, the check valve is opened and the second throttling device is closed; and in the heating mode, the check valve is closed and the second throttling device is opened.
12. The thermal management system according to claim 1, further comprising a first branch which is disposed in parallel with the third heat exchanger, the first branch being provided with a control valve.
13. The thermal management system according to claim 12, wherein in the cooling mode, the control valve is closed.
14. The thermal management system according to claim 1, further comprising a pump device and a functional component that requires heat dissipation, the pump device and the functional component being disposed in the coolant loop.
15. A thermal management system, comprising: an air-conditioning box, a compressor, a first heat exchanger, a first throttling device, a second heat exchanger, a third heat exchanger, a fourth heat exchanger, and a power device to make a coolant flow; the first heat exchanger and the fourth heat exchanger being located outside the air-conditioning box, the second heat exchanger being located in the air-conditioning box, the third heat exchanger comprising a first heat exchange portion for circulating a refrigerant and a second heat exchange portion for circulating the coolant;
- wherein the thermal management system comprises a cooling mode; in the cooling mode, an outlet of the compressor, the first heat exchange portion, the first heat exchanger, the first throttling device, the second heat exchanger and an inlet of the compressor are in communication to form a first refrigerant loop; and
- wherein the power device, the second heat exchange portion and the fourth heat exchanger are in communication to form a coolant loop; and the coolant in the second heat exchange portion is capable of exchanging heat with the refrigerant in the first heat exchange portion in order to cool down the refrigerant in the first heat exchange portion.
16. The thermal management system according to claim 15, further comprising a fifth heat exchanger, the fifth heat exchanger comprising a third heat exchange portion and a fourth heat exchange portion capable of exchanging heat with the third heat exchange portion;
- wherein in the cooling mode, the outlet of the compressor, the first heat exchange portion, the first heat exchanger, the third heat exchange portion, the first throttling device, the second heat exchanger, the fourth heat exchange portion and the inlet of the compressor are in communication to form the first refrigerant loop.
17. The thermal management system according to claim 15, further comprising a second throttling device and a sixth heat exchanger, the sixth heat exchanger being located in the air-conditioning box;
- wherein the thermal management system further comprises a heating mode; in the heating mode, the outlet of the compressor, the first heat exchange portion, the sixth heat exchanger, the second throttling device, the first heat exchanger and the inlet of the compressor are in communication to form a second refrigerant loop.
18. The thermal management system according to claim 15, further comprising a fifth heat exchanger, a second throttling device and a sixth heat exchanger, the fifth heat exchanger comprising a third heat exchange portion and a fourth heat exchange portion capable of exchanging heat with the third heat exchange portion, the sixth heat exchanger being located in the air-conditioning box;
- wherein the thermal management system further comprises a heating and dehumidifying mode; and
- wherein in the heating and dehumidifying mode, the outlet of the compressor, the first heat exchange portion, the sixth heat exchanger, the second throttling device, the third heat exchange portion, the first heat exchanger, the fourth heat exchange portion and the inlet of the compressor are in communication to form the second refrigerant loop; and the outlet of the compressor, the first heat exchange portion, the sixth heat exchanger, the first throttling device, the second heat exchanger, the fourth heat exchange portion and the inlet of the compressor are in communication to form a third refrigerant loop.
19. The thermal management system according to claim 15, wherein the coolant loop comprises a functional component that requires heat dissipation, and the functional component comprises a motor and/or a battery.
20. The thermal management system according to claim 15, wherein the third heat exchanger comprises a first collecting member, a second collecting member, a heat exchange tube and a casing; two ends of the heat exchange tube are fixedly connected to the first collecting member and the second collecting member, respectively; each of the first collecting member and the second collecting member defines a collecting cavity, the collecting cavity is in communication with a tube cavity of the heat exchange tube to circulate the refrigerant; the casing is hermetically connected to the first collecting member and the second collecting member to enclose a heat exchange cavity; the casing further comprises an inlet pipe and an outlet pipe, and the inlet pipe and the outlet pipe are in communication with the heat exchange cavity to circulate the coolant.
Type: Application
Filed: Sep 25, 2020
Publication Date: Aug 4, 2022
Inventors: JUNQI DONG (Hangzhou City, Zhejiang Province), SHIWEI JIA (Hangzhou City, Zhejiang Province), YIBIAO WANG (Hangzhou City, Zhejiang Province)
Application Number: 17/609,770