COMPOSITIONS AND METHODS IDENTIFYING AND USING STEM CELL DIFFERENTIATION MARKERS

Provided herein are compositions and methods for identifying and using stem cell regulation factors. For example, in some embodiments, provided herein are compositions and methods for identifying stem cell regulation factors using marker gene expression libraries. Also provided herein are compositions and methods for generating differentiated cells lines and uses of such cell lines.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/863,005, filed Jan. 5, 2018, which claims the benefit of U.S. Provisional Application No. 62/443,401, filed Jan. 6, 2017, both of which are incorporated herein by reference in their entireties.

STATEMENT REGARDING FEDERALLY-SPONSORED RESEARCH

The invention was made with Government support under contract OD017887 awarded by the National Institutes of Health. The Government has certain rights in the invention.

SEQUENCE LISTING

The instant application contains a Sequence Listing which has been filed electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created Oct. 6, 2021, is named 079445-1273450-006220US_SL.txt and is 1.47 MB (1,547,157) bytes in size.

FIELD

Provided herein are compositions and methods for identifying and using stem cell differentiation regulation factors. For example, in some embodiments, provided herein are compositions and methods for identifying stem cell differentiation regulation factors using marker gene expression libraries. Also provided herein are compositions and methods for generating differentiated and induced cells lines and uses of such cell lines.

BACKGROUND

Stem cells are cells that are capable of differentiating into many cell types. Embryonic stem cells are derived from embryos and are potentially capable of differentiation into all of the differentiated cell types of a mature body. Certain types of stem cells are “pluripotent,” which refers to their capability of differentiating into many cell types. One type of pluripotent stem cell is the human embryonic stem cell (hESC), which is derived from a human embryonic source. Human embryonic stem cells are capable of indefinite proliferation in culture, and therefore, are an invaluable resource for supplying cells and tissues to repair failing or defective human tissues in vivo.

Similarly, induced pluripotent stem (iPS) cells, which may be derived from non-embryonic sources, can proliferate without limit and differentiate into each of the three embryonic germ layers. It is understood that iPS cells behave in culture essentially the same as ESCs. Human iPS cells and ES cells express one or more pluripotent cell-specific markers, such as Oct-4, SSEA-3, SSEA-4, Tra 1-60, Tra 1-81, and Nanog (Yu et al. Science, Vol. 318. No. 5858, pp. 1917-1920 (2007); herein incorporated by reference in its entirety). Also, recent findings of Chan, indicate that expression of Tra 1-60, DNMT3B, and REX1 can be used to positively identify fully reprogrammed human iPS cells, whereas alkaline phosphatase, SSEA-4, GDF3, hTERT, and NANOG are insufficient as markers of fully reprogrammed human iPS cells. (Chan et al., Nat. Biotech. 27:1033-1037 (2009); herein incorporated by reference in its entirety).

The cell fate decision making of stem cells is governed by multistep dynamic processes, in which transcriptional networks play a critical role (Chambers and Tomlinson, 2009 Development 136, 2311-2322; Filipczyk et al., 2015 Nat. Cell Biol. 17, 1235-1246; Kim et al., 2008 Cell 132, 1049-1061; MacArthur et al., 2009 Nat. Rev. Mol. Cell Biol. 10, 672-681). Expression of different transcription factors coordinate to activate or suppress sets of genes specific to different lineages, serving as major regulators that maintain cell identities or drive cell fate transitions (Iwafuchi-Doi and Zaret, 2014 Genes Dev. 28, 2679-2692; Zaret and Carroll, 2011 Genes Dev. 25, 2227-2241). The successes of somatic cell reprogramming and directed lineage differentiation using transcription factors highlight their central role in cell fate determination (Davis et al., 1987 Cell 51, 987-1000; Takahashi and Yamanaka, 2006 Cell 126, 663-676; Vierbuchen et al., 2010 Nature 463, 1035-1041; Xu et al., 2015 Cell Stem Cell 16, 119-134). Over the past few decades, although individual or combinatorial transcription factors have been identified for cell differentiation, there is a dearth of systematically unbiased studies of how specific genetic programs determine cell fate maintenance and transitions. Because of this, the available tools to control stem cell differentiation are limited and the full promise of stem cells as therapeutic, drug screening, and research tools have gone unmet.

A systematic screening approach to profile and characterize all transcription factors is needed to offer new insights into their contributions to cell fate decisions, which greatly enhances the ability to manipulate cell fate for both basic research and therapeutic purposes.

SUMMARY

Provided herein are compositions and methods for identifying and using stem cell differentiation regulation factors. For example, in some embodiments, provided herein are compositions and methods for identifying stem cell differentiation regulation factors using marker gene expression libraries. Also provided herein are compositions and methods for generating differentiated and induced cells lines and uses of such cell lines.

The compositions, systems, kits, and methods of the present disclosure overcome limitations of existing technologies to identify transcription factors and nucleic that drive differentiation of pluripotent cells. The transcription factors identified using the described methods find use in research, screening, and therapeutic applications.

In some embodiments, provided herein are systems and methods for identifying factors involved in (e.g., that regulate or control) the differentiation of stem cells by employing a CRISPR activation (CRISPRa)-mediated gain-of-function screening platform. In some such embodiments, a reporter stem cell line is generated that comprises components of a CRSIPR activation system. In some embodiments, the cell line is exposed to an sgRNA library targeting all putative transcription factors or other candidate factors that may be involved in a cellular differentiation process.

In some embodiments, the CRISPR activation system comprises a dCas9 construct under the transcriptional control of a first promoter. In some embodiments, the dCas9 is fused to a peptide epitope. In some embodiments, the activation system further comprises a VP64 transactivation domain under the transcriptional control of a second promoter. In some embodiments, the VP64 transactivation domain is fused to a peptide that specifically binds to the peptide epitope. In some embodiments, the activation system further comprises a selection marker under the transcriptional control of a third promoter. In some embodiments, each of the first, second, and third promoters are different than each other.

For example, in some embodiments, provided herein is a method of identifying pluripotent cell differentiation markers, comprising: a) generating a pluripotent cell line that expresses i) nuclease dead Cas9 fused to a plurality of peptide epitopes; ii) a single chain variable chain antibody fragment specific for the peptide epitope fused to a VP64 tranactivator domain; and iii) a transactivator polypeptide; b) contacting the cell line with a plurality of single guide RNAs (sgRNAs) specific for activation of pluripotent cell differentiation factors to generate a gene activation library; c) sorting the library to identify pluripotent cells that retain pluripotency or differentiate; and d) identifying cell differentiation factors that induce or prevent differentiation of the pluripotent cells. In some embodiments, the differentiation factors are transcription factors or non-coding (e.g., lincRNAs). In some embodiments, the cells are further contacted with a plurality of non-targeting sgRNAs (e.g., to serve as a negative control). In some embodiments, the cells further overexpress endogenous POU domain, class 3, transcription factor 2 (Brn2). In some embodiments, each cell differentiation factors is targeted with a plurality (e.g., at least 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100) distinct sgRNAs. In some embodiments, the cells that retain pluripotency are identified by screening for expression of SSEA1 after culture in media lacking inhibitors of GSK3 and ERK pathways. In some embodiments, cells that differentiate are identified by expression of a differentiation marker. For example, in some embodiments, cells that differentiate into neuronal cells express Tuj1. In some embodiments, the identifying comprises sequencing of sgRNAs after selection for cells that retain pluripotency or differentiate. In some embodiments, the sequencing further comprises comparing the level of the sgRNAs to the level of non-targeting sgRNAs. In some embodiments, cell differentiation factors that retain pluripotency are one or more of the regulation factors shown in FIG. 3 or Table 3. In some embodiments, cell differentiation factors that are associated with differentiation into neuronal cells are one or more of the regulation factors shown in FIG. 6 or Tables 4 and 10. In some embodiments, the sgRNAs are dual-sgRNA-constructs comprising two sgRNAs. In some embodiments, the method further comprises contacting the cell differentiation factors with a fibroblast cell line and identifying cell differentiation factors that promote transdifferentiation of the fibroblast cell line. In some embodiments, the fibroblast cell line is contacted with combinations of two or more cell differentiation factors. In some embodiments, the cell differentiation factors that promote transdifferentiation are a combination of Ezh2 or Ngn1 and one or more additional markers (e.g., Ngn1+Brn2, Brn2+Ezh2, Mecom+Ezh2, Ngn1+Ezh2 or Ngn1+Foxo1).

In some embodiments, the pluripotent cells are induced pluripotent stem cells, adult stem cells, or embryonic stem cells. In some embodiments, the method further comprises the step of activating pairs or groups of pluripotent cell differentiation factors.

In some embodiments, the method comprises or further comprises the step of performing a CRISPR gene repression screen. For example, in some embodiments, the CRISP repression screen comprises: a) contacting a pluripotent cell that expresses dCas9 fused to a transcription repressor domain with a plurality of sgRNAs specific for repression of a plurality of cell differentiation factors; b) sorting the library to identify cells that retain pluripotency or differentiate; and c) identifying cell differentiation factors that induce or prevent differentiation of said pluripotent cells. In some embodiments, the CRISPR repression screen and the CRISPR activation screen are performed in the same or different pluripotent cells. In some embodiments, the CRISPR repression screen and the CRISPR activation screen are performed simultaneously using vectors comprising a first sgRNA specific for activation of a first cell differentiation factor and a second sgRNA specific for repression of a second cell differentiation factor.

Further embodiments provide a library of pluripotent cells generated by the methods descried herein.

Additional embodiments provide a kit or system, comprising: a) a pluripotent cell line that expresses i) nuclease dead Cas9 fused to a plurality of peptide epitopes; ii) a single chain variable chain antibody fragment specific for the peptide epitope fused to a VP64 tranactivator domain; and iii) a transactivator polypeptide; and b) a plurality of single guide RN As (sgRNAs) specific for activation of pluripotent cell differentiation factors. In some embodiments, the kit or system further comprises reagents for analysis of one or more properties (e.g., pluripotency or differentiation) of the cell lines. In some embodiments, the kit or system further comprises reagents for sequencing the cells to identify the presence of said sgRNAs. In some embodiments, the system comprises or further comprises a CRISPR repression system as described herein. In some embodiments, the system comprises one or more sgRNAs (e.g., 10 or more, 100 or more, 1000 or more, or 5000 or more) described in Table 13 (e.g., SEQ ID NOs:586-8317).

Yet other embodiments provide a method of determining the differentiation status of pluripotent or somatic cells, comprising: a) assaying the cells for the expression of one or more transcription factors or lincRNAs selected from those in FIGS. 3 and 6 and Tables 3 and 4; and b) determining the differentiation status of the cells based on the expression. In some embodiments, the presence or increased level of the cell transcription factors in FIG. 3 or Table 3 are indicative of cells that retain pluripotency. In some embodiments, the cell transcription factors are not Nanog, Sox2, Klf4, or Oct4. In some embodiments, the cell transcription factors selected from, for example, Mixip, Etv2, Zc3h11a, Zfp36, Isl2, Tfeb, Fig1a, Hsf2, or Hoxc11 are indicative of cells that retain pluiripotency. In some embodiments, the presence or increased level of the cell transcription factors shown in FIG. 6 or Table 4 is indicative of cells that have differentiated into neuronal cells. In some embodiments, the cell differentiation factors are not Neurog1, Brn2, or KIlf12. In some embodiments, the cell differentiation factors are selected from, for example, Ezh2, Suz12, or Jun.

Still further embodiments provide a method of differentiating pluripotent or somatic (e.g., fibroblast) cells into neuronal cells, comprising: inducing expression of one or more cell regulation factors shown in FIG. 6 or Table 4 in the pluripotent cells. In some embodiments, the cell differentiation factors are selected from, for example, Ezb2, Ngn1, Suz12, or Jun. In some embodiments, the inducing expression comprises contacting the pluripotent cells with a nucleic acid encoding one or more of the cell differentiation factors, contacting the pluripotent cells with an sgRNA that induces expression of one or more of the cell differentiation factors, or contacting the pluripotent cells with a small molecule that induces expression of the cell differentiation factors. In some embodiments, the method further comprises the step of determining the presence of increased level of expression of the cell differentiation factors shown in FIG. 6 or Table 4. In some embodiments, the presence or increased level of the cell differentiation factors shown in FIG. 6 or Table 4 is indicative of cells that have differentiated into neuronal cells.

Certain embodiments provide differentiated cells generated by the methods described herein.

Embodiments of the present disclosure provide a plurality of neuronal cells that express one or more cell differentiation regulation factors shown in FIG. 6 or Table 4 (e.g., one or more of Ezh2, Suz12 or Jun).

Further embodiments provide a method of inducing pluripotency or maintaining pluripotency of a cell line (e.g., a somatic or pluripotent cell line), comprising: inducing expression of one or more cell regulation factors shown in FIG. 3 or Table 3 in said cells (e.g., one or more of Mlxip, Etv2, Zinc Zc3h11a, Zfp36, Isl2, Tfeb, Fig1a, Hsf2, or Hoxc11).

Still other embodiments provide a plurality of pluripotent cells generated or maintained by the methods described herein.

In other embodiments, the present disclosure provides a plurality of pluripotent or iPSCs cells that express one or more cell regulation factors shown in FIG. 3 or Table 3 (e.g., one or more of Mlxip, Etv2, Zinc Zc3h11a, Zfp36, is12, Tfeb, Fig1a, Hsf2, or Hoxc11).

Some embodiments provide a method of transplanting cells, comprising: transplanting differentiated cells generated by the methods described herein into a subject in need thereof (e.g., a subject diagnosed with a disease or condition).

Further embodiments are described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A-D shows that enhanced CRISPR activation mouse ES (CamES) cells allow efficient single sgRNA-directed gene activation and stem cell fate control. (A) Engineered eCRISPRa system in mouse ES cells for single sgRNA-mediated self-renewal and differentiation control. (B) A panel of sgRNAs tiling along the upstream regulatory region of Asc11 relative to transcription start site (TSS) in CamES cells show a gradient of efficient gene activation. (C) Effective neural (day 8) and muscle (day 12) differentiation of CamES cells using a single sgRNA to activate endogenous genes. (D) Time-course measurement of endogenous gene expression (Asc11, Brn2, Tuj1, and Map2) during differentiation for CamES cells −sgRNA, +negative control sgRNA, or +sgAsc11, and E14 mouse ES cells +Asc11 cDNA.

FIG. 2A-E shows the use of an sgRNA library to screen genes that maintain pluripotency and self-renewal in mouse ES cells. (A) Schematic representation of CRISPRa-mediated gain-of-function screening (dropout) of genes that maintain pluripotency and self-renewal in CamES cells using a sgRNA library. (B) Flow cytometry data of library-transduced CamES cells during serial passages and after SSEA1 sorting. Negative control, isotype antibody control. (C) Microscopic images showing bright Feld (BF), Oct4 staining, and DAPI of library-transduced CamES cells in −2i medium at passage 2, passage 10 before SSEA1 sorting and passage 10 after sorting. Scale bar, 100 μm. (D) Boxplot of normalized sgRNA counts for the plasmid library, library-transduced CamES cells at D0, and library-transduced CamES cells after SSEA1 sorting. (E) Detected sgRNA counts (sgRNAs with at least one count) in the plasmid library, library-transduced CamES cells at D0, and library-transduced CamES cells after SSEA1 sorting.

FIG. 3A-C shows validation of top hits from the CRISPRa self-renewal screen. (A) A scatter plot showing enrichment of sgRNAs for ranked top hit genes. (B) Fold change of mRNA expression measure by quantitative PCR for each gene using their individual sgRNA in CamES cells. (C) Microscopic images and flow cytometry analysis of pluripotency markers Oct4, Nanog, and SSEA1 in CamES cells transduced with 18 individual sgRNAs in −2i medium after 10 passages.

FIG. 4A-D shows functional characterization and deep sequencing analysis of sgMlxip-transduced CamES cells confirm maintenance of pluripotency in −2i medium. (A) Spontaneous differentiation of sgMlxip- or sgKlf2-transduced CamES cells after 10 passages shows generation of three germ layers. (B) RNA-seq paired scatter plot analysis of the Wnt pathway gene expression comparing CamES +sgMlxip in −2i medium with CamES +2i medium (left, R2=0.81), and comparing CamES −sgMlxip in −2i medium and CamES −2i medium at day 7 (right, R2=0.35). (C) RNA-seq scatter plot analysis of the MAPK pathway gene expression comparing CamES +sgMlxip in −2i medium with CamES +2i medium (left, R2=0.90), and comparing CamES +sgMlxip in −2i medium and CamES −2i medium at day 7 (right, R2=0.59). (D) Normalized mRNA expression for genes in the PI3K pathway for CamES +sgMlxip in −2i medium, CamES +2i medium, and CamES −2i medium at day 7.

FIG. 5A-D shows the use of sgRNA library to screen genes that promote neural differentiation of mouse ES cells. (A) Schematic representation of CRISPRa-mediated gain-of-function screening (non-dropout) of genes that promote neural differentiation in CamES cells using an sgRNA library. (B) Quantification by qPCR for neural marker Tuj1 and Map2 expression before and after MACS sorting. (C) Boxplot of normalized sgRNA counts for the plasmid library, sorted Tuj1-hCD8+ cells, and sorted Tuj1-hCD8− cells. (D) Detected sgRNA counts (sgRNAs with at least one count) in the plasmid library, sorted Tuj1-hCD8+ cells, and sorted Tuj1-hCD8− cells.

FIG. 6A-F shows validation of top hits from CRISPRa neural differentiation screen. (A) Scatter plot of sgRNA enrichment for ranked top hit genes. Only sgRNAs enriched in both replicates are shown. 20 genes and their most enriched sgRNAs (orange) are chosen for validation. (B) Fold change of mRNA expression measure by quantitative PCR for each gene using their individual sgRNA in Tuj1-hCD8 CamES cells. (C) Quantification of hCD8+ cells measured by flow cytometry in Tuj1-hCD8 CamES cells transduced without sgRNA, with 6 individual non-targeting sgRNAs, and with 20 individual sgRNA hits after 12-day differentiation. (D) Quantification of NCAM+ cells measured by flow cytometry in CamES cells transduced without sgRNA, with 6 individual non-targeting sgRNAs, and with 20 individual sgRNA hits after 12-day differentiation. (E) Microscopic images ofMap2 staining in Tuj1-hCD8 CamES cells transduced with individual sgRNAs after 12-day differentiation. Scale bar, 100 μm. (F) Characterization of staining various neural lineage markers (Tuj1, Map2, NeuN, Olig2, GFAP, and vGluT1) in Tuj1-hCD8 CamES cells transduced with individual sgRNAs after 12-day differentiation.

FIG. 7A-G shows functional characterization and deep sequencing analysis of sgJun-mediated CamES neural differentiation. (A) Representative traces of membrane potentials of differentiated neurons from Tuj1-hCD8 CamES cells transduced with sgJun in response to step-voltage (left) and step-current injections (right). (B) Principle component analysis of RNA-seq samples from D0, D2, D5, and D12 of sgJun-transduced CamES cells. (C) RNA-seq analysis showing time-course expression of 6 pluripotency genes and 6 neural lineage genes during differentiation of sgJun-transduced CamES cells. Error bars, s.d.±the mean of four biological replicates. (D) Gene ontology analysis of genes that are enriched in D5 and D12 differentiated neural cells (left, D5 versus D0; right, D12 versus D0). (E) Western blot showing protein expression of Jun and phosphorylated Jun at different time points during differentiation. P-Jun: phosphorylated Jun. (F) RNA-seq paired scatter plot analysis of the downstream genes targeted by the AP-1 complex formed between Jun and c-Fos. Left, D2 versus D0 (p=0.2); middle, D5 versus D0 (p=0.002); and right, D12 versus D0 (p=0.004). (G) Gaussian kernel density plot of expression of the Wnt pathway genes in sgJun-directed differentiated cells at different time points during the neural differentiation.

FIG. 8A-H shows generation of eCRISPRa by systematic optimization of the CRISPRa-SunTag system. (A) A multiple lentiviral eCRISPRa system. (B) Comparison of endogenous Brn2 activation efficiency using 12 individual sgRNAs targeting Brn2 or their mixture for the SFFV-driven scFv-stGFP-VP64 CRISPRa system. (C) Comparison of endogenous Brn2 activation efficiency for different promoters driving scFv-sfGFP-VP64. Data is normalized to the −sgRNA sample. (D) Comparison of endogenous Brn2 activation efficiency for 6 clonal cell lines each generated from EF1a- or PGK-driven scFv-sfGFP-VP64 systems. Data is normalized to the −sgRNA sample. (E) Comparison of endogenous Brn2 activation efficiency for 28 clonal cell lines generated from the PGK-driven scFv-sfGFP-VP64 system. (F) Characterization of CamES cells for the morphology, expression of pluripotency marker Oct4, and expression of eCRISPRa components. (G) Negative staining of Tuj1 (red) in CamES cells, CamES cells +sgControl, and E14 mouse ES cells +sgAsc11 after 12-day differentiation. DAPI is shown in blue. (H) Microscopic images showing cell morphology of CamES cells +sgAsc11 (top) and E14 mouse ES cells +Asc11 cDNA (bottom) at D0, D6, and D12 during differentiation.

FIG. 9A-B shows an experimental procedure and characterization of the CRISPRa self-renewal screen in mouse ES cells. (A) Time line scheme of the gain-of-function self-renewal screen using the sgRNA library. (B) Correlation of sequenced sgRNA counts in library-transduced CamES cells at D0 and after SSEA1 sorting.

FIG. 10 shows a ranked gene list based on the dropout self-renewal screen described in FIGS. 2 and 3.

FIG. 11A-C shows RNA sequencing and characterization of CamES cells +sgMlxip or +sgKlf2 cultured in −2i medium. (A) Heatmap illustrating mRNA expression of the pluripotency-associated genes and lineage specific genes for indicated samples. (B) Histogram plot showing distribution of ratios of the Wnt pathway gene expression for indicated samples. (C) mRNA expression of indicated MAPK pathway genes in CamES cells in −2i medium at D7, in +2i medium, and transduced with sgMlxip in −2i medium.

FIG. 12A-F shows an experimental procedure and characterization of CRISPRa gain-of-function neural differentiation screen. (A) Sequencing results of the Tuj1 locus in Tuj1-hCD8 CamES cells. (B) Flow cytometry data (right) showing the hCD8+ percentage of cells in sgAsc11-transduced Tuj1-hCD8 CamES cells after 8-day differentiation. (C) Comparison of Tuj1 and Map2 mRNA expression levels in differentiated cells with various initial seeding cell densities. (D) Quantification of Tuj1 and Map2 mRNA expression levels in CamES cells, CamES cells +sgControl, and CamES cells +sgLibrary during differentiation. (E) Staining of neural markers Tuj1 and Map2 in library-transduced Tuj1-hCD8 CamES cells. (F) Time line scheme of the gain-of-function neural differentiation screen using the sgRNA library in Tuj1-hCD8 CamES cells.

FIG. 13 shows a ranked gene list based on non-dropout neural differentiation screen shown in FIGS. 5 and 6.

FIG. 14A-F shows characterization of sgJun-directed neural differentiated cells and analysis of dropout and non-dropout screens. (A) Heatmap illustrating mRNA expression of representative pluripotency-associated, progenitor neural lineage, terminal neural lineage, endoderm lineage, and mesoderm lineage genes. (B) Time-course of normalized RNA-seq mRNA counts of 12 genes in the MAPK and Wnt pathways during sgJun-direct CamES cells differentiation. (C) A hypothesized model for endogenous Jun activation-induced neural differentiation by sgJun. (D) Toy example of dropout (left) and non-dropout screens (right). In dropout screens, negative cells drop out of the population and have little noticeable effect. (E) The percentage of screen hits in common with Tuj1-hCD8+/D0 for the Tuj1-hCD8−/D0. SSEA1+/D0, and Tuj1-hCD8+/Tuj1-hCD8− gene ranks at a given hit cutoff. (F) The top ten enriched genes as calculated for Tuj1-hCD8+ relative to day 0, Tuj1-hCD8− relative to day 0, and Tuj1-hCD8+ relative to Tuj1-hCD8-.

FIG. 15A-G shows a CRISPRi experimental screening platform for studying genetic interactions. (A) The experimental setup of the single and double CRISPRi screening platform for GI studies. (B-E) Characterization of biological replicates for single and double sgRNA libraries (R1—biological replicate 1; R2, biological replicate 2): (B) single library without Dox at day 20; (C) single library with Dox at day 20; (D) double library without Dox at day 16; (E) double library with Dox at day 16. (F) Comparison of single library with and without Dox at day 20. (G) Comparison of double library with and without Dox at day 16.

FIG. 16A-F shows a time-course comparison of sgRNA enrichment for single and double libraries and validation of sgRNA pairs for epistatic interactions. (A) Comparing day 0 sample to other time points (grey—day 3; red—day 7; blue—day 13) in the presence of Dox for the single library. (B) The 20 genes among 112 epigenetic factor genes that showed consistent depletion over time due to CRISPRi inhibition. (C) Comparing day 0 sample to other time points (grey—day 8; blue—day 16) in the presence of Dox for the double library. For the comparison without Dox, refer to Fig. S4B. (D) A selected combinations that showed consistent depletion over time due to multiplexed CRISPRi inhibition. (E-F) Validation of two pairwise sgRNAs (MRGBP & MED6; BRD7 & LEO1) for their combinatorial effects in suppressing cell growth and endogenous gene expression.

FIG. 17 shows a module map of chromatin-related genes based on a curated set of protein complexes.

FIG. 18A-E shows (A) Schematic representation of CRISPRa-mediated gain-of-function screenings that promote neuronal differentiation in CamES cells using an sgRNA library. (B) Frequency histograms of the top 3 enriched sgRNAs targeting genes indicated. (C) Quantification of PSA-NCAM+ cells were measured by flow cytometry in CamES cells transduced with three individual sgRNAs of each gene after 12-day differentiation. (D) Microscopic images of Map2 staining in CamES cells transduced with individual sgRNAs after 12-day differentiation. Scale bar, 100 μm. (E) Staining of various neuronal lineage markers (NeuN, Olig2, GFAP, GABA, and vGluT1) in CamES cells transduced with individual sgRNAs after 12-day differentiation.

FIG. 19A-F shows (A) Schematic representation of CRISPRa-mediated gain-of-function double screenings that promote neuronal differentiation in CamES cells using a double sgRNA library. (B) Schematic of the two-guide vector. (C) Reproducibility between the two replicates of the paired CRISPR screen of gene-targeting and negative control (or vice versa) guide pairs, mean±s.e.m. (standard error of the mean). (D) Interaction scores for a pair were computed by subtracting off the maximum of the guide-level effect sizes. (E) Interaction forming capacities of the two sgRNAs inducing different gene activation levels. (F) Quantification of PSA-NCAM+ cells measured by flow cytometry in CamES cells transduced with one single sgRNA or double sgRNAs after 12-day differentiation. Error bars represent standard deviation of three independent experiments.

FIG. 20A-E shows (A) Quantification of MAP2+ cells from MEFs infected with different gene combinations. Averages from 20 randomly selected visual fields are shown. Error bars indicate±s.d. (B) Representative images of Tuj1 staining of MEFs infected with different genes or gene combinations. Scale bar, 100 μm. (C) Ngn1 and Ezh2 induced MEF neuron cells express MAP2, Tuj1 and NeuN, synapsin, and GABA 14 days after infection. Scale bar, 100 μm. (D) Bar graph showing the percentage of Tbr1-positive neurons (Tbr1+) and GABA-positive neurons (GABA+) out of total neurons. (E) Ngn1 and Ezh2 induced perinatal TTF neuron cells express MAP2, Tuj1 and NeuN, synapsin, and GABA 26 days after infection. Scale bar, 100 μm.

FIG. 21A-I shows that MEF-derived induced neurons show functional synaptic properties. (A) Recording electrode patched onto a sfGFP-positive cell with a stimulation electrode (middle panel). The right panel is a merged picture of BF and fluorescence images showing that the recorded cell is sfGFP-positive. (B) Representative traces of whole-cell currents in voltage-clamp mode; cells were held at −80 mV. Step depolarization from 70 mV to +40 mV at 10-mV intervals was delivered (lower panel). (C) Representative trace of evoked membrane potential by +40 pA current injection (lower panel) in current-clamp mode held at −75 mV. Application of 100 nM tetrodotoxin (TTX), a selective blocker of voltage-gated sodium channels, inhibited the action potential. (D) Inward sodium currents were evoked from an induced neurons, and application of 500 nM TTX inhibited these currents. Step depolarization from −70 mV to +60 mV at 10-mV intervals was delivered; cells were held at −80 mV (right panel); a presentative trace of whole-cell current with and without TTX at −10 mV membrane potential in voltage-clamp mode is shown (left panel). (E) Outward potassium currents were evoked from an induced neurons, and application of 5 mM tetraethylammonium (TEA) inhibited these currents. Step depolarization from −70 mV to +60 mV at 10-mV intervals was delivered; cells were held at −80 mV (right panel); a presentative trace of whole-cell current with and without TEA at +60 mV membrane potential in voltage-clamp mode is shown (left panel). (F) Spontaneous EPSCs were recorded from induced neurons. (G) Spontaneous action potentials recorded from an induced neuron (left panel). Application of 100 nM TTX blocked the action potentials (middle panel). Washout of TTX reversed the blockade (right panel). (1-) Representative traces of evoked excitatory spontaneous postsynaptic currents (EPSCs) recorded from an induced neuron (left panel). Application of 30 μM DNQX (6,7-dinitroquinoxaline-2,3-dione), an AMPA/kainate glutamate receptor antagonist, blocked the response of EPSCs (middle panel). Washout of DNQX reversed the blockade (right panel). (1) Representative traces of evoked EPSCs recorded from an induced neuron (left panel). Application of 30 μM BIC (Bicuculline), a GABA receptor antagonist, slightly increased the frequency and amplitude of EPSCs (middle panel). Washout of BIC reversed the increase (right panel). F, and H-I, Cells were recorded at a holding potential (Vh) of −60 mV. Error bars indicate±s.d. of cell counts. Scale bar, 10 μm.

FIG. 22A-E shows generation of the CRISPRa and CRISPRa knock-in cell lines. (A) A multiple lentiviral CRISPRa system. (B) Characterization of CamES cells for the morphology, expression of pluripotency marker Oct4, and expression of CRISPRa components. Scale bars, 100 μm. (C) Schematic of the clonal CamES cell line carrying a biallelic IRES-hCD8 insertion at the Tuj1 locus. (D) Sequencing results of the Tuj1 locus in Tuj1-hCD8 CamES cells. (E) Quantification by qPCR for neuronal markers Tuj1 and Map2 expression before and after MACS sorting.

FIG. 23A-G shows (A) Time line scheme of the neural differentiation screens using the sgRNA library in Tuj1-hCDS CamES cells. (B) Quantification of Tuj1 and Map2 mRNA expression levels in CamES cells, CamES cells +sgControl, and CamES cells +sgLibrary during differentiation. Error bars, s.d.±the mean of three independent experiments. (C) Staining of neural markers Tuj1 and Map2 in library-transduced Tuj1-hCD8 CamES cells. Scale bar, 100 μm. (D) Boxplot. of normalized sgRNA counts for the plasmid library, sorted Tuj1-hCD8+ cells, and sorted Tuj1-hCD8− cells. (E) The top ten enriched genes as calculated for Tuj1-hCD8+ relative to day 0, Tuj1-hCD8− relative to day 0, and Tuj1-hCD8+ relative to Tuj1-hCD8−. (F) Toy example of sgRNA stochastic representation in the screening system. (G) The percentage of screen hits in common with Tuj1-hCDS+/D0 for the Tuj1-hCD8−/D0, SSEA1+/D0, and Tuj1-hCD8+/Tuj1-hCD8− gene ranks at a given hit cutoff.

FIG. 24A-D shows (A) Quantification of PSA-NCAM+ cells were measured by flow cytometry in CamES cells transduced with three individual sgRNAs of each gene after 12-day differentiation. (B) Quantification of hCD8+ cells measured by flow cytometry in Tuj1-hCD8 CamES cells transduced without sgRNA, with 6 individual non-targeting sgRNAs, and with 19 individual sgRNAs after 12-day differentiation. Error bars represent standard deviation of three independent experiments. (C) Quantification of PSA-NCAM+ cells were measured at day 10 by flow cytometry in E14 cells after induction of different transgenes or negative control transgene BFP. Error bars represent standard deviation of three independent experiments. (D) Staining of various neuronal lineage markers (Tuj1, NeuN, Olig2, GFAP, GABA, and vGluT1) in CamES cells transduced with individual sgRNAs after 12-day differentiation. Scale bar, 100 μm.

FIG. 25 shows quantification of MAP2+ cells from MEFs infected with different genes.

FIG. 26A-E shows (A) The distribution of guides for the top 19 hits in green against an equal number of randomly selected negative control guides. (B) Variable gene effects and mixing proportions. (C) The estimated gene effect sizes plotted versus the estimated gene specific mixing proportions. (D) The estimated feature coefficients and their 80% credible interval from the model described in Example 4. (E) The distribution of average log 2 fold change of guides in the corresponding feature (top).

FIG. 27A-D shows (A) Cloning strategy for final two-guides vector. (B) Sequencing strategy to analyze the sgRNA sequences for the double sgRNA library. (C) Empirical Bayes fit of the null distribution of the constructed test statistic using the R package locfdr. (D) Correlation of sequenced sgRNA counts in library-transduced CamES cells at D0, Tuj1-hCD8+ cells and Tuj1-hCD8− cells after hCD8 sorting.

FIG. 28A-1H shows (A) Ngn1 and Foxo1 induced MEF neuron cells express MAP2, Tuj1 and NeuN, synapsin, and GABA 14 days after infection. Scale bar, 100 μm. (B) Bar graph showing the percentage of Tbr1-positive neurons (Tbr1+) and GABA-positive neurons (GABA+) out of total neurons. (C) Ngn1 and Foxo1 induced perinatal TTF neuron cells express MAP2, Tuj1, and NeuN, synapsin, and GABA 26 days after infection. Scale bar, 100 μm. (D) Inward sodium currents were evoked from induced neurons, and application of 500 nM TTX inhibited these currents. (E) Outward potassium currents were evoked from an induced neurons, and application of 5 mM tetraethylammonium (TEA) inhibited these currents. (F) Spontaneous action potentials recorded from an induced neuron (left panel). Application of 100 nM TTX blocked the action potentials (middle panel). Washout of TTX reversed the blockade (right panel). ((G) Representative traces of evoked excitatory spontaneous postsynaptic currents (EPSCs) recorded from an induced neuron (left panel). Application of 30 μM DNQX (6,7-dinitroquinoxaline-2,3-dione), an AMPA/kainate glutamate receptor antagonist, blocked the response of EPSCs (middle panel). Washout of DNQX reversed the blockade (right panel). (H) Representative traces of evoked EPSCs recorded from an induced neuron (left panel). Application of 30 μM BIC (Bicuculline), a GABA receptor antagonist, slightly increased the frequency and amplitude of EPSCs (middle panel). Washout of BIC reversed the increase (right panel). G and H, Cells were recorded at a holding potential (Vh) of −60 mV. Error bars indicate±s.d. of cell counts.

FIG. 29 shows representative images of Tuj1 staining of MEFs infected with different gene combinations. Scale bar, 100 μm.

DEFINITIONS

As used herein the term “stem cell” (“SC”) refers to cells that can self-renew and differentiate into multiple lineages. A stem cell is a developmentally pluripotent or multipotent cell. A stem cell can divide to produce two daughter stem cells, or one daughter stem cell and one progenitor (“transit”) cell, which then proliferates into the tissue's mature, fully formed cells. Stem cells may be derived, for example, from embryonic sources (“embryonic stem cells”) or derived from adult sources. For example, U.S. Pat. No. 5,843,780 to Thompson describes the production of stem cell lines from human embryos. PCT publications WO 00/52145 and WO 01/00650 (herein incorporated by reference in their entireties) describe the use of cells from adult humans in a nuclear transfer procedure to produce stem cell lines.

Examples of adult stem cells include, but are not limited to, hematopoietic stem cells, neural stem cells, mesenchymal stem cells, and bone marrow stromal cells. These stem cells have demonstrated the ability to differentiate into a variety of cell types including adipocytes, chondrocytes, osteocytes, myocytes, bone marrow stromal cells, and thymic stroma (mesenchymal stem cells); hepatocytes, vascular cells, and muscle cells (hematopoietic stem cells); myocytes, hepatocytes, and glial cells (bone marrow stromal cells) and, indeed, cells from all three germ layers (adult neural stem cells).

As used herein, the term “totipotent cell” refers to a cell that is able to form a complete embryo (e.g., a blastocyst).

As used herein, the term “pluripotent cell” or “pluripotent stem cell” refers to a cell that has complete differentiation versatility, e.g., the capacity to grow into any of the mammalian body's approximately 260 cell types. A pluripotent cell can be self-renewing, and can remain dormant or quiescent within a tissue. Unlike a totipotent cell (e.g., a fertilized, diploid egg cell), a pluripotent cell, even a pluripotent embryonic stem cell, cannot usually form a new blastocyst.

As used herein, the term “induced pluripotent stem cells” (“iPSCs”) refers to a stem cell induced from a somatic cell, e.g., a differentiated somatic cell, and that has a higher potency than said somatic cell. iPS cells are capable of self-renewal and differentiation into mature cells.

As used herein, the term “multipotent cell” refers to a cell that has the capacity to grow into a subset of the mammalian body's approximately 260 cell types. Unlike a pluripotent cell, a multipotent cell does not have the capacity to form all of the cell types.

As used herein, the term “progenitor cell” refers to a cell that is committed to differentiate into a specific type of cell or to form a specific type of tissue.

As used herein, the term “embryonic stem cell” (“ES cell” or ESC”) refers to a pluripotent cell that is derived from the inner cell mass of a blastocyst (e.g., a 4- to 5-day-old human embryo), and has the ability to yield many or all of the cell types present in a mature animal.

As used herein the term “feeder cells” refers to cells used as a growth support in some tissue culture systems. Feeder cells may, for example, embryonic striatum cells or stromal cells.

As used herein, the term “chemically defined media” refers to culture media of known or essentially-known chemical composition, both quantitatively and qualitatively. Chemically defined media is free of all animal products, including serum or serum-derived components (e.g., albumin).

DETAILED DESCRIPTION

Provided herein are compositions and methods for identifying and using stem cell differentiation regulation factors. For example, in some embodiments, provided herein are compositions and methods for identifying stem cell differentiation regulation factors using marker gene expression libraries. Also provided herein are compositions and methods for generating differentiated and induced cells lines and uses of such cell lines.

The RNA-guided microbial endonuclease CRISPR (clustered regularly interspaced short palindromic repeat)/Cas9 (CRISPR associated protein 9) system was recently repurposed as a tool for sequence-specific gene editing and transcriptional regulation (Cho et al., 2013 Nat. Biotechnol. 31, 230-232; Cong et al., 2013 Science 339, 819-823; Fu et al., 2014 Nat. Biotechnol. 32, 279-284; Jinek et al. Science 337, 816-821, 2012; Mali et al., 2013b Science 339, 823-826; Qi et al., 2013 Cell 152, 1173-1183; Ran et al., 2015 Nature 520, 186-191; Yu et al., 2015 Cell Stem Cell 16, 142-147). The nuclease-dead Cas9 (dCas9) fused with transcription activator domains allows endogenous genes activation, leading to CRISPR activation (CRISPRa) methods (Chavez et al., 2015 Nat. Method. 12, 326-328; Cheng et al., 2013 Cell Res. 23, 1163-1171; Gilbert et al., 2013 Cell 154, 442-451; Hilton et al., 2015 Nat. Biotechnol. 33, 510-517; Konermann et al., 2015 Nature 517, 583-588; Maeder et al., 2013 Nat. Method. 10, 977-979; Mali et al., 2013a Nat. Biotechnol. 31, 833-838; Perez-Pinera et al., 2013 Nat. Method. 10, 973-976; Tanenbaum et al., 2014 Cell 159, 635-646; Zalatan et al., 2015 Cell 160, 339-350). Previous work demonstrated that CRISPR activation of endogenous genes allowed, in principle, somatic cell reprogramming and directed cell differentiation (Black et al., 2016 Cell Stem Cell 19, 406-414; Chakraborty et al., 2014 Stem Cell Reports 3, 940-947; Chavez et al., 2015 Nat. Method. 12, 326-328; Wei et al., 2016 Sci. Rep. 6, 19648). However, since these studies relied on using a mixture of multiple sgRNAs for activating a single gene and inducing differentiation, applying these methods for large-scale activation screening has been a major challenge.

Unlike cell growth phenotypes that entail a dropout live-or-dead process, cell fate determination is a dynamic, stochastic process that often generates a heterogeneous cell population with diverse phenotypes (e.g., non-dropout) (Hanna et al., 2009 Nature 462, 595-601; Johnston and Desplan, 2010 Annu. Rev. Cell Dev. Biol. 26, 689-719). This imposes another challenge to simply perform dropout screens that distinguish lineage specification processes from spontaneous differentiation events. Furthermore, because developmental programs are highly dependent on the expression level of endogenous genes (Niwa et al., 2000 Nat. Genet. 24, 372-376; Papapetrou et al., 2009 Proc. Natl. Acad. Sci. USA 106, 12759-12764), gain-of-function screens that allow very efficient gene activation (comparable to cDNA overexpression) while covering a broad range of expression offer more promise for identifying candidate genes driving cell lineages. To date, two reports used CRISPRa for cell growth-based dropout screens (Gilbert et al., 2014 Cell 159, 647-661; Konermann et al., 2015 Nature 517, 583-588). However, the application of CRISPRa screens for the systematic inference of cell fate determination has not yet been established.

Experiments described herein overcame these challenges by developing a CRISPR activation (CRISPRa)-mediated gain-of-function screening approach to identify transcription factors (TFs) important for stem cell fate determination. An enhanced CRISPRa system was developed in mouse embryonic stem (ES) cells that efficiently activates endogenous genes and drives cell lineage differentiation. A single sgRNA was sufficient to induce neuron or muscle differentiation. Based on the system, a large-scale sgRNA library (>50,000 sgRNA) was used to target all putative endogenous TF genes (˜800) and a small set of noncoding RNA genes (50). Targeting a single gene using multiple sgRNAs (>60 sgRNA per gene) allowed activating each gene to a broad range of expression levels. A CRISPRa dropout screen was used to identify genes that promote stem cell self-renewal, as well as a non-dropout screen for inducing neural differentiation. The top gene hits were validated using individual sgRNAs, and it was observed that all hits could maintain self-renewal. For neural differentiation, it was confirmed that 19 out of top 20 gene hits could induce efficient neural differentiation. For both screens, the lists of gene hits include known TF factors and those TFs and noncoding RNAs that are not previously related to self-renewal maintenance or neural differentiation. Different identified TFs preferentially induced different types of neurons. Deep sequencing and functional analysis of a few gene hits (Mlxip for self-renewal and Jun for neural differentiation) confirmed their functions for driving desired cellular processes.

Thus, the compositions and methods provide herein allow for the identification of the relevant factors necessary, sufficient, and/or useful for controlling differentiation of stem cells into any desired fat. The transcription factors identified herein and identifiable using the compositions and methods described herein provide target and reagents for differentiation of cells an provide the cells made therefrom that find use as research tools, drug screening targets, and therapeutics (e.g., via cell transplantation into a host).

The CRISPRa gain-of-function screens and stem cell libraries described herein find use in research, therapeutic, and screening applications to determine differentiation factors for a variety of stem cells. The differentiation factors identified further find use in stem cell differentiation for research, screening, and clinical applications.

1. Identification of Differentiation Factors

As described herein, embodiments of the present disclosure provide compositions and methods for identifying stem cell differentiation regulation factors. In some embodiments, the methods utilize a modified pluripotent or multipotent (e.g., stem cell) line. The present disclosure is not limited to particular cell lines. Examples include, but are not limited iPSC, embryonic stem cells, adult stem cells, and the like.

In some embodiments, the CRISPR activation system comprises a dCas9 construct under the transcriptional control of a first promoter. In some embodiments, the dCas9 is fused to a peptide epitope. In some embodiments, the activation system further comprises a VP64 transactivation domain under the transcriptional control of a second promoter. In some embodiments, the VP64 transactivation domain is fused to a peptide that specifically binds to the peptide epitope. In some embodiments, the activation system further comprises a selection marker under the transcriptional control of a third promoter. In some embodiments, each of the first, second, and third promoters are different than each other.

In some embodiments, cell lines for determination of differentiation regulation factors are pluripotent cells modified with a dead Cas9/transactivator activation system. For example in some embodiments, cells comprise a nuclease dead Cas9 (dCas9). In some embodiments, the dCas9 is fused to a signal activation component (e.g., a plurality of peptide epitopes as described in Tanenbaum et al., (2014). Cell 159, 635-646; herein incorporated by reference in its entirety). In some embodiments, the cell lines further comprise a single chain variable chain antibody fragment specific for the peptide epitope fused to a tranactivator domain (e.g., VP64; See e.g., Beerli et al., Proc Natl Acad Sci USA. 1998 Dec 8; 95(25): 14628-14633; herein incorporated by reference in its entirety) and a transactivator polypeptide. In some embodiments, the activation components are provided on a vector (e.g., retroviral vector, adenoviral viral vector, adeno-associated vector, lentiviral vector, etc.). In some embodiments, cells further overexpress endogenous Brn2 (e.g., via an sgRNA that targets activation of Brn2).

In some embodiments, the cells lines are next contacted with a plurality of sgRNAs (e.g., targeting cell differentiation regulation factors). In some embodiments, sgRNAs target transcription factors or non-coding RNAs (e.g., lincRNAs). In some embodiments, more than one (e.g., at least 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100) sgRNAs specific for each differentiation factor are utilized. In some embodiments, sgRNAs are provided on vectors (e.g., retroviral vector, adenoviral viral vector, adeno-associated vector, lentiviral vector, etc.). In some embodiments, cells are further contacted with a plurality of non-targeting sgRNAs (e.g., to serve as negative controls). In some embodiments, a double CRISPR screen is performed using dual-sgRNA-constructs comprising two (or more) sgRNAs to screen for interactions between multiple cell differentiation factors in combination.

In some embodiments, the method further comprises contacting the cell differentiation factors with a fibroblast or other cell line and identifying cell differentiation factors that promote transdifferentiation of the fibroblast cell line. In some embodiments, the fibroblast cell line is contacted with combinations of two or more cell differentiation factors. In some embodiments, the cell differentiation factors that promote differentiation are combinations of Ngn1+Brn2, Ezh2+Brn2, Mecom+Ezh2, Ngn1+Ezh2, or Ngn1+Foxo1.

In some embodiments, the method comprises or further comprises the step of performing a CRISPR gene repression screen. For example, in some embodiments, the CRISPR repression screen comprises: a) contacting a pluripotent cell that expresses dCas9 fused to a transcription repressor domain (e.g., KRAB) with a plurality of sgRNAs specific for repression of a plurality of cell differentiation factors; b) sorting the library to identify cells that retain pluripotency or differentiate; and c) identifying cell differentiation factors that induce or prevent differentiation of said pluripotent cells. In some embodiments, the CRISPR repression screen and the CRISPR activation screen are performed in the same or different pluripotent cells. In some embodiments, the CRISPR repression screen and the CRISPR activation screen are performed simultaneously using vectors comprising a first sgRNA specific for activation of a first cell differentiation factor and a second sgRNA specific for repression of a second cell differentiation factor.

The resulting gene activation library from CRISPR activation and/or repressor cells are then further analyzed as described below. For example, in some embodiments, following delivery of sgRNAs, cells are cultured and cells that retain pluripotency or differentiate are identified. In some embodiments, cells are sorted based on the presence or absence of differentiation or pluiptency markers.

In some embodiments, in order to identify regulation factors for pluipotency, cells are cultured under conditions that do not inhibit differentiation (e.g., in media lacking inhibitors of GSK3 and ERK pathways). In some embodiments, pluripotent cells are sorted by identifying and selecting (e.g., using flow cytometry) cells that express SSEA1 after culture.

In some embodiments, cells that differentiate are identified by sorting for cells that express differentiation markers specific to the final cell type. For example, in some embodiments, cells that differentiate into neuronal cells are identified by sorting for cells that express Tuj1.

In some embodiments, cell differentiation factors are activated and analyzed in pairs or groups (e.g., as described in Example 2 below) in order to identify combined effects of between different factors.

In some embodiments, after selection, cell differentiation regulation factors are identified by identifying sgRNAs that persist in the sorted cells. In some embodiments, sequencing (e.g., deep sequencing) is used to identify sgRNAs. In some embodiments, sequencing methods further comprises comparing the level of said sgRNAs to the level of non-targeting sgRNAs.

In deep sequencing, a high number of replicates of each sequencing read (e.g., at least 10, 20, 30, 40, 50, or 100) are used to improve accuracy. The present disclosure is not limited to a particular sequencing technique. Exemplary sequencing techniques are described below. A variety of nucleic acid sequencing methods are contemplated for use in the methods of the present disclosure including, for example, chain terminator (Sanger) sequencing, dye terminator sequencing, and high-throughput sequencing methods. Many of these sequencing methods are well known in the art. See, e.g., Sanger et al., Proc. Natl. Acad. Sci. USA 74:5463-5467 (1997); Maxam et al., Proc. Natl. Acad. Sci. USA 74:560-564 (1977); Drmanac, et al., Nat. Biotechnol. 16:54-58 (1998); Kato, Int. J. Clin. Exp. Med. 2:193-202 (2009); Ronaghi et al., Anal. Biochem. 242:84-89 (1996); Margulies et al., Nature 437:376-380 (2005); Ruparel et al., Proc. Natl. Acad. Sci. USA 102:5932-5937 (2005), and Harris et al., Science 320:106-109 (2008); Levene et al., Science 299:682-686 (2003); Korlach et al., Proc. Natl. Acad. Sci. USA 105:1176-1181 (2008); Branton et al., Nat. Biotechnol. 26(10):1146-53 (2008); Eid et al., Science 323:133-138 (2009); each of which is herein incorporated by reference in its entirety.

Next-generation sequencing (NGS) methods share the common feature of massively parallel, high-throughput strategies, with the goal of lower costs in comparison to older sequencing methods (see, e.g., Voelkerding et al., Clinical Chem., 55: 641-658, 2009; MacLean et al., Nature Rev. Microbiol., 7: 287-296; each herein incorporated by reference in their entirety). NGS methods can be broadly divided into those that typically use template amplification and those that do not. Amplification-requiring methods include pyrosequencing commercialized by Roche as the 454 technology platforms (e.g., GS 20 and GS FLX), the Solexa platform commercialized by illumina, and the Supported Oligonucleotide Ligation and Detection (SOLiD) platform commercialized by Applied Biosystems. Non-amplification approaches, also known as single-molecule sequencing, are exemplified by the HeliScope platform commercialized by Helicos BioSciences, and emerging platforms commercialized by VisiGen, Oxford Nanopore Technologies Ltd., Life Technologies/Ion Torrent, and Pacific Biosciences, respectively.

Other emerging single molecule sequencing methods include real-time sequencing by synthesis using a VisiGen platform (Voelkerding et al., Clinical Chem., 55: 641-58, 2009; U.S. Pat. No. 7,329,492; U.S. patent application Ser. No. 11/671,956; U.S. patent application Ser. No. 11/781,166; each herein incorporated by reference in their entirety) in which immobilized, primed DNA template is subjected to strand extension using a fluorescently-modified polymerase and florescent acceptor molecules, resulting in detectible fluorescence resonance energy transfer (FRET) upon nucleotide addition.

Exemplary cell regulation factors indicative of cells that retain pluripotency or differentiate are described in the Figures and Tables herein. For example, in some embodiments, cell transcription factors that retain pluripotency are one or more of the regulation factors shown in FIG. 3 or Table 3 and cell differentiation factors that are associated with differentiation into neuronal cells are one or more of the regulation factors shown in FIG. 6 or Table 4.

The cell differentiation factors identified using the described methods find use in a variety of applications. Exemplary uses are described herein.

II. Cell Lines and Libraries and Uses Thereof

In some embodiments, the present disclosure provides cells lines, kits, and systems for use in the described methods. For example, in some embodiments, provided herein are libraries of modified pluripotent cells as described above. For example, in some embodiments, the cells comprise a dCas9 construct under the transcriptional control of a first promoter. In some embodiments, the dCas9 is fused to a peptide epitope. In some embodiments, the cells comprise a VP64 transactivation domain under the transcriptional control of a second promoter. In some embodiments, the VP64 transactivation domain is fused to a peptide that specifically binds to the peptide epitope. In some embodiments, the cells comprise a selection marker under the transcriptional control of a third promoter. In some embodiments, each of the first, second, and third promoters are different than each other.

In some embodiments, cells express i) nuclease dead Cas9 fused to a plurality of peptide epitopes; ii) a single chain variable chain antibody fragment specific for said peptide epitope fused to a VP64 tranactivator domain; and iii) a transactivator polypeptide.

In some embodiments, the cell lines described herein find use in screening (e.g., drug screening) and research applications as described below.

In some embodiments, provided herein are kits and systems comprising the cell lines described herein. In some embodiments, kits and systems further comprise a plurality of sgRNAs specific for activation of pluripotent cell differentiation factors. In some embodiments, the kit or system comprises one or more sgRNAs (e.g., 10 or more, 100 or more, 1000 or more, or 5000 or more) described in Table 13 (e.g., SEQ ID NOs:586-8317).

In some embodiments, kits and systems further comprise reagents for analysis of one or more properties of the cell lines (e.g., pluripotency or differentiation), reagents for sequencing the cells to identify the presence of sgRNAs, reagents for further downstream analysis (e.g., molecular analysis, toxicity screening, drug screening, or cellular activity assays), or computer software and computer systems for analyzing data.

III. Differentiation Methods

In some embodiments, the present disclosure provides compositions and methods for differentiating cells into multipotent or specific cell types. The present disclosure is not limited to particular target cell types. Examples include, but are not limited to, epithelial cells (e.g., exocrine secretory epithelial cells, hormone secreting cells (e.g., islet cells), keratinizing epithelial cells (e.g., skin cells), central nervous system cells (e.g., neuronal cells), blood cells, and organ cells.

In some embodiments, differentiation is induced by increasing expression of cellular regulation factors identified using the methods described herein. In some embodiments, expression is induced by exogenously introduced differentiation genes. In one embodiment, the exogenously introduced gene may be expressed from a chromosomal locus different from the endogenous chromosomal locus of the gene. Such chromosomal locus may be a locus with open chromatin structure, and contain gene(s) dispensible for a somatic cell. In other words, the desirable chromosomal locus contains gene(s) whose disruption will not cause cells to die. Exemplary chromosomal loci include, for example, the mouse ROSA 26 locus and type II collagen (Col2a1) locus (See Zambrowicz et al., 1997) The exogenously introduced pluripotency gene may be expressed from an inducible promoter such that their expression can be regulated as desired.

In some embodiments, the exogenously introduced gene is transiently transfected into cells, either individually or as part of a cDNA expression library. The cDNA library is prepared by conventional techniques. Briefly, mRNA is isolated from an organism of interest. An RNA-directed DNA polymerase is employed for first strand synthesis using the mRNA as template. Second strand synthesis is carried out using a DNA-directed DNA polymerase which results in the cDNA product. Following conventional processing to facilitate cloning of the cDNA, the cDNA is inserted into an expression vector such that the cDNA is operably linked to at least one regulatory sequence. The choice of expression vectors for use in connection with the cDNA library is not limited to a particular vector. Any expression vector suitable for use in mammalian cells is appropriate. In one embodiment, the promoter which drives expression from the cDNA expression construct is an inducible promoter. The term regulatory sequence includes promoters, enhancers and other expression control elements. Exemplary regulatory sequences are described in Goeddel: Gene Expression Technology: Methods in Enzymology, Academic Press, San Diego, Calif. (1990). For instance, any of a wide variety of expression control sequences that control the expression of a DNA sequence when operatively linked to it may be used in these vectors to express cDNAs. It should be understood that the design of the expression vector may depend on such factors as the choice of the host cell to be transformed and/or the type of protein desired to be expressed. Moreover, the vector's copy number, the ability to control that copy number and the expression of any other protein encoded by the vector, such as antibiotic markers, should also be considered.

In some embodiments, the CRISPR activation and/or repression system is expressed from an inducible promoter. The term “inducible promoter”, as used herein, refers to a promoter that, in the absence of an inducer (such as a chemical and/or biological agent), does not direct expression, or directs low levels of expression of an operably linked gene (including cDNA), and, in response to an inducer, its ability to direct expression is enhanced, Exemplary inducible promoters include, for example, promoters that respond to heavy metals (CRC Boca Raton, Fla. (1991), 167-220; Brinster et al. Nature (1982), 296, 39-42), to thermal shocks, to hormones (Lee et al. P.N.A.S. USA (1988), 85, 1204-1208; (1981), 294, 228-232; Klock et al. Nature (1987), 329, 734-736; Israel and Kaufman, Nucleic Acids Res. (1989), 17, 2589-2604), promoters that respond to chemical agents, such as glucose, lactose, galactose or antibiotic.

A tetracycline-inducible promoter is an example of an inducible promoter that responds to an antibiotics. See Gossen et al., 2003. The tetracycline-inducible promoter comprises a minimal promoter linked operably to one or more tetracycline operator(s). The presence of tetracycline or one of its analogues leads to the binding of a transcription activator to the tetracycline operator sequences, which activates the minimal promoter and hence the transcription of the associated cDNA and the expression of CRISPR activation and/or repression system. Tetracycline analogue includes any compound that displays structural homologies with tetracycline and is capable of activating a tetracycline-inducible promoter. Exemplary tetracycline analogues includes, for example, doxycycline, chlorotetracycline and anhydrotetracycline.

In some embodiments, expression of cell differentiation factors is induced via activating sgRNAs as described herein (e.g., Example 1). One or more sgRNAs are introduced into a pluripotent cell that expresses a CRISPR activation system (e.g., those described herein or other suitable system).

In some embodiments, differentiation is induced via small molecules that active expression or activity of cell differentiation genes or downstream signaling partners.

In some embodiments, cells are cultured under conditions that promote differentiation. In some embodiments, cultures are adherent cultures, e.g., the cells are attached to a substrate. The substrate is typically a surface in a culture vessel or another physical support, e.g. a culture dish, a flask, a bead or other carrier. In some embodiments, the substrate is coated to improve adhesion of the cells and suitable coatings include laminin, poly-lysine, poly-ornithine and gelatin. In some embodiments, the cells are grown in a monolayer culture or in suspension or as balls or clusters of cells. At higher densities, cells may begin to pile up on each other, but the cultures are essentially monolayers or begin as monolayers, attached to the substrate.

Cells differentiated using the methods described herein find use in a variety of research, screening, and clinical applications. In some embodiments, cells are used to prepare antibodies and cDNA libraries that am specific for the differentiated phenotype. General techniques used in raising, purifying and modifying antibodies, and their use in immunoassays and immunoisolation methods are described in Handbook of Experimental Immunology (Weir & Blackwell, eds.), Current Protocols in Immunology (Coligan et al., eds.); and Methods of Immunological Analysis (Masseyeff et al., eds., Weinheim: VCH Verlags GmbH). General techniques involved in preparation of mRNA and cDNA libraries are described in RNA Methodologies: A Laboratory Guide for Isolation and Characterization (R. E. Farrell, Academic Press, 1998); cDNA Library Protocols (Cowell & Austin, eds., Humana Press); and Functional Genomics (Hunt & Livesey, eds., 2000). Relatively homogeneous cell populations are particularly suited for use in drug screening and therapeutic applications.

In some embodiments, the cells generated by methods provided herein or the above-described cell lines are used to screen for agents (e.g., small molecule drugs, peptides, polynucleotides, and the like) or environmental conditions (such as culture conditions or manipulation) that affect the cells. Particular screening applications relate to the testing of pharmaceutical compounds in drug research. Assessment of the activity of candidate pharmaceutical compounds generally involves combining the cells with the candidate compound, determining any change in the morphology, marker phenotype, or metabolic activity of the cells that is attributable to the compound (compared with untreated cells or cells treated with an inert compound), and then correlating the effect of the compound with the observed change. Any suitable assays for detecting changes associated with test agents may find use in such embodiments. The screening may be done, for example, either because the compound is designed to have a pharmacological effect on specific cell types, because a compound designed to have effects elsewhere may have unintended side effects, or because the compound is part of a library screen for a desired effect. Two or more drugs can be tested in combination (by combining with the cells either simultaneously or sequentially), to detect possible drug-drug interaction effects. In some applications, compounds are screened for cytotoxicity.

In some embodiments, methods and systems are provided for assessing the safety and efficacy of drugs that act upon the differentiated cells, or drugs that might be used for another purpose but may have unintended effects upon the cells. In some embodiments, cells described herein find use in high throughput screening (ITS) applications. In some embodiments, a HTS screening platform is provided (e.g., cells and plates) that allows for the rapid testing of large number (e.g., 1×103, 1×104, 1×105, 1×106 (or more) of agents (e.g., small molecule compounds, peptides, etc.).

In some embodiments cells generated using methods and reagents described herein are utilized for therapeutic delivery to a subject (e.g., a subject with a disease or other condition). Cells may be placed directly in contact with subject tissue or may be otherwise sealed or encapsulated (e.g., to avoid direct contact). In embodiments in which cells are encapsulated, exchange of factors, nutrients, gases, etc. between the encapsulated cells and the subject tissue is allowed. In some embodiments, cells are implanted/transplanted on a matrix or other delivery platform.

If appropriate, cells are co-administered with one or more pharmaceutical agents or bioactives that facilitate the survival and function of the transplanted cells.

Support materials suitable for use for purposes of the present disclosure include tissue templates, conduits, barriers, and reservoirs useful for tissue repair. In particular, synthetic and natural materials in the form of foams, sponges, gels, hydrogels, textiles, and nonwoven structures, which have been used in vitro and in vivo to reconstruct or regenerate biological tissue, as well as to deliver chemotactic agents for inducing tissue growth, are suitable for use in practicing the methods of the present disclosure. See, for example, the materials disclosed in U.S. Pat. Nos. 5,770,417, 6,022,743, 5,567,612, 5,759,830, 6,626,950, 6,534,084, 6,306,424, 6,365,149, 6,599,323, 6,656,488, U.S. Published Application 2004/0062753 A1, U.S. Pat. Nos. 4,557,264 and 6,333,029.

Cells generated with methods and reagents herein may be implanted as dispersed cells or formed into implantable clusters. In some embodiments, cells are provided in biocompatible degradable polymeric supports; porous, permeable, or semi-permeable non-degradable devices; or encapsulated (e.g., to protect implanted cells from host immune response, etc.). Cells may be implanted into an appropriate site in a recipient. Suitable implantation sites depend on the cell type and may include, for example, the brain, spinal cord, skin, liver, natural pancreas, renal subcapsular space, omentum, peritoneum, subserosal space, intestine, stomach, or a subcutaneous pocket.

In some embodiments, cells or cell clusters are encapsulated for transplantation into a subject. Encapsulation techniques are generally classified as microencapsulation, involving small spherical vehicles, and macroencapsulation, involving larger flat-sheet and hollow-fiber membranes (Uludag, H. et al. Technology of mammalian cell encapsulation. Adv Drug Deliv Rev. 2000; 42: 29-64, herein incorporated by reference in its entirety).

Methods of preparing microcapsules include those disclosed by Lu M Z, et al. Biotechnol Bioeng. 2000, 70: 479-83; Chang T M and Prakash S, Mol Biotechnol. 2001, 17: 249-60; and Lu M Z, et al., J. Microencapsul. 2000, 17: 245-51; herein incorporated by reference in their entireties. For example, microcapsules may be prepared by complexing modified collagen with a ter-polymer shell of 2-hydroxyethyl methylacrylate (HEMA), methacrylic acid (MAA) and methyl methacrylate (MMA), resulting in a capsule thickness of 2-5 μm. Such microcapsules can be further encapsulated with additional 2-5 μm ter-polymer shells in order to impart a negatively charged smooth surface and to minimize plasma protein absorption (Chia, S. M. et al. Multi-layered microcapsules for cell encapsulation Biomaterials. 2002 23: 849-56; herein incorporated by reference in its entirety). In some embodiments, microcapsules are based on alginate, a marine polysaccharide (Sambanis. Diabetes Technol. Ther. 2003, 5: 665-8; herein incorporated by reference in its entirety) or its derivatives. For example, microcapsules can be prepared by the polyelectrolyte complexation between the polyanions sodium alginate and sodium cellulose sulphate with the polycation poly(methylene-co-guanidine) hydrochloride in the presence of calcium chloride.

In some embodiments, cells generated using methods and reagents described herein are microencapsulated for transplantation into a subject (e.g., to prevent immune destruction of the cells). Microencapsulation of cells provides local protection of implanted/transplanted cells from immune attack (e.g., along with or without the use of systemic immune suppressive drugs). In some embodiments, cells and/or cell clusters are microencapsulated in a polymeric, hydrogel, or other suitable material, including but not limited to: poly(orthoesters), poly(anhydrides), poly(phosphoesters), poly(phosphazenes), polysaccharides, polyesters, poly(lactic acid), poly(L-lysine), poly(glycolic acid), poly(lactic-co-glycolic acid), poly(lactic acid-co-lysine), poly(lactic acid-graft-lysine), polyanhydrides, poly(fatty acid dimer), poly(fumaric acid), poly(sebacic acid), poly(carboxyphenoxy propane), poly(carboxyphenoxy hexane), poly(anhydride-co-imides), poly(amides), poly(ortho esters), poly(iminocarbonates), poly(urethanes), poly(organophasphazenes), poly(phosphates), poly(ethylene vinyl acetate), poly(caprolactone), poly(carbonates), poly(amino acids), poly(acrylates), polyacetals, poly(cyanoacrylates), poly(styrenes), poly(vinyl chloride), poly(vinyl fluoride), poly(vinyl imidazole), chlorosulfonated polyolefins, polyethylene oxide, polystyrene, polysaccharides, alginate, hydroxypropyl cellulose (HPC), N-isopropylacrylamide (NIPA), polyethylene glycol, polyvinyl alcohol (PVA), polyethylenimine, chitosan (CS), chitin, dextran sulfate, heparin, chondroitin sulfate, gelatin, etc., and their derivatives, co-polymers, and mixtures thereof. In some embodiments, cells are microencapsulated in an encapsulant comprising or consisting of alginate. Cells may be embedded in a material or within a particle (e.g., nanoparticle, microparticle, etc.) or other structure (e.g., matrix, nanotube, vesicle, globule, etc.). In some embodiments, microencapsulating structures are modified with immune-modulating or immunosuppressive compounds to reduce or prevent immune response to encapsulated cells. For example, in some embodiments, cells are encapsulated within an encapsulant material (e.g., alginate hydrogel) that has been modified by attachment of an immune-modulating agent (e.g., the immune modulating chemokine, CXCL12 (also known as SDF-1). In some embodiments, such an immune modulating agent is a T-cell chemorepellent and/or a pro-survival factor.

In some embodiments, cells generated using methods and reagents described herein are macroencapsulated for transplantation into a subject. Macroencapsulation of cells, for example, within a permeable or semi-permeable chamber, provides local protection of implanted/transplanted cells from immune attack (e.g., along with or without the use of systemic immune suppressive drugs), prevents spread of cells to other tissues or areas of the body, and/or allows for efficient removal of cells. Suitable devices for macroencapsulation include those described in, for example, U.S. Pat. No. 5,914,262; Uludag, et al., Advanced Drug Delivery Reviews, 2000, pp. 29-64, vol. 42, herein incorporated by reference in their entireties.

Other encapsulation (micro or macro) devices and methods may find use in embodiments described herein. For example, methods and devices described in U.S. Pub No. 20130209421, U.S. Pat. No. 8,785,185, each of which are herein incorporated by reference in their entireties, are within the scope of embodiments described herein.

IV. Differentiation Factors

As described above and in the examples below, a number of new transcription factor and other regulatory factors involved in the regulating the differentiation processes have been discover using the screening methods described herein. These factors find use in generating stem cells or differentiated cells have desired properties for use in research, drug screening, and therapeutic applications.

In some embodiments, individual or combinations of these factors are used to induce differentiation in a stem cell to obtain differentiated cells or multipotent cells of a particular lineage (e.g., neural stem cells). In some embodiments, such factor are introduced exogenously to stem cells in vitro or in vivo (e.g., via expression vector, etc). In some embodiments, endogenous factors are up or down regulated by providing activators or inhibitors of endogenous expression.

In some embodiments, individual or combinations of these factors are used to induce differentiation in a somatic cell (e.g., fibroblast, neuronal cell, etc).

In some embodiments, individual or combinations of these factors are used to maintain or induce pluripotency in a cell line. In some embodiments, such factor are introduced exogenously to stem cells or somatic cells in vitro or in vivo (e.g., via expression vector, etc). In some embodiments, endogenous factors are up or down regulated by providing activators or inhibitors of endogenous expression.

In some embodiments, one or more of the markers described in Tables 3 and 4 are targeted. In some embodiments, provided herein are one or more sgRNAs (e.g., 10 or more, 100 or more, 1000 or more, or 5000 or more) described in Table 13 (e.g., SEQ ID NOs:586-8317) for use in targeting the described markers.

In some embodiments, provided herein are cell generated by such methods and the use of such cells, for example, in drug screening, diagnostic, and therapeutic indications.

Where transcription factors are introduced as peptides, in some embodiments they are complexed with cell membrane permeable peptides (e.g., Tat protein, penetratin, etc.) to facilitate entry into target cells.

EXPERIMENTAL Example 1 CRISPR Activation Screens Identify Genes Promoting Self-Renewal and Neuronal Differentiation of Stem Cells Methods

sgRNA Library Construction

The oligo library was PCR amplified, gel purified and ligated to the linearized backbone vector (pSLQ1373) digested with BstXI and BlpI using In-Fusion cloning (Clontech).

Cell Culture

E14 mouse ES cells and CamES cells were maintained on gelatin coated tissue culture plates with basal medium (50% Neurobasal, 50% Dulbecco modified Eagle medium (DMEM) Ham's nutrient mixture F12, 0.5% NEAA, 0.5% Sodium Pyruvate, 0.5% GlutaMax, 0.5% N2, 1% B27, 0.1 mM β-mercaptoethanol and 0.05 g/L bovine albumin fraction V; all from Thermo Fisher Scientific) supplemented with LIF (Millipore) and 2i (Stemgent), Human embryonic kidney (HEK293T) cells (ATCC) were cultured in 10% fetal bovine serum (Thermo Fisher Scientific) in DMEM (Thermo Fisher Scientific).

Lentiviral Production

HEK293T cells were seeded at ˜30% confluence one day before transfection. Lentivirus were produced by cotransfecting with pHR plasmids and encoding packaging protein vectors (pMD2.G and pCMV-dR8.91) using TransIT-LT1 transfection reagents (Mirus). Viral supernatants were collected 3 days after transfection and filtered through 0.45 μm strainer. Supernatant was used for transduction immediately or kept at −80° C. for long-term storage.

High-Throughput Pooled Screening

Screens were performed in two independent replicates for both self-renewal and neural differentiation. For both screens, 108 CamES cells were transduced with the pooled lentiviral library with an MOI of 0.3, treated with puromycin, and cultured in specified medium. After a period of time indicated for each screen, cells were harvested and FACS/MACS sorted. Deep sequencing was performed to profile the sgRNA counts in each sample, and computationally analyzed to infer top sgRNA and gene hits.

Plasmid Design and Construction

To clone sgRNA vectors, the optimized sgRNA expression vector (pSLQ1373) was linearized and gel purified (Chen et al., 2013 Cell 155, 1479-1491). New sgRNA sequences were PCR amplified from pSLQ1373 using different forward primers and a common reverse primer, gel purified and ligated to the linearized pSLQ1373 vector using In-Fusion cloning (Clontech). Primers used to construct individual sgRNAs are shown in Table 1. To change the promoter of scFv-sfGFP-VP64, the EF1α and PGK promoters were PCR amplified, gel purified, and ligated to linearized pSLQ1504 using In-Fusion cloning (Clontech).

sgRNA Library Design

Putative transcription factor (TF) genes were selected according to the TRANSFAC database, and TSS (transcription start site) for each gene was determined using the Gencode and refFlat databases. All possible transcripts were selected if multiple TSSs existed for a gene. All sgRNAs targeting was −3 kb to 0 relative to TSS. Using the CRISPR-era algorithm (Liu et al., 2015 Bioinformatics 31, 3676-3678), the targeting sequences of sgRNAs adjacent to an NGG PAM (protospacer adjacent motif) were computed, starting with a G (for more efficient U6 promoter activity) with a length of 20 bp. The sgRNAs containing homopolymers spanning greater than 3 nucleotides (nt) were discarded. To avoid off-target effects, sgRNA sequences alignment to the mouse genome was computed using the short read aligner Bowtie, and those with less than 2 mismatches with another genomic region were excluded. Furthermore, sgRNA sequences that contained certain restriction sites (BstXI and XhoI) were also removed. sgRNAs with a GC content between 30% and 70% were used. An average of about 60 sgRNAs were selected for each target gene. Sequences for non-targeting negative control sgRNAs were generated using a randomized mouse gene TSS region and selected using the same rules as described above.

sgRNA Library Construction

The oligonucleotide pool was synthesized by Custom Array. The oligo library was PCR amplified, gel purified and ligated to the linearized pSLQ1373 digested with BstXI and BlpI using in-Fusion cloning.

Construction of the CamES Cell Line

Mouse ES cells were co-transduced with multiple lentiviral constructs that expressed dCas9-SunTag from a TRE3G promoter, scFV-sfGFP-VP64 from the EF1a or PGK promoter, and rtTA from the EF1a promoter. After adding Doxycycline, polyclonal cells were sorted by flow cytometry using a BD FACS Aria2 for GFP+ and mCherry+ cells. After verification of gene activation using a sgBrn2, monoclonal cells were further sorted, and one efficient cell line was selected as CamES cells.

Construction of the Tuj-1-hCD8 CamES Cell Line

Construction of CRISPR/Cas9 vector for Tuj1 knockin. The pX330-derived pSLQ1654 encoding the nuclease Cas9 and an optimized sgRNA sequence was first linearized by a BbsI digest and gel purified. Two primers sgTuj-1 F and sgTuj-1 R were phosphorylated, annealed, and ligated to the linearized vector pSLQ1654 to generate pSLQ1654-sgTuj1. sgTuj-1 F: caccgcccaagtgaagttgctcgcagc (SEQ ID NO:378). sgTuj-1 R: aaacgctgcgagcaacttcacttgggc (SEQ ID NO:379).

Construction of DNA template. The Tuj1-IRES-hCD8 vector (pSLQ1760) was assembled with three fragments (5′ homologous arm of Tuj1, IRES-hCD8 and 3′ homologous arm of Tuj1) and a modified pUC19 backbone vector by using Gibson Assembly Master Mix (New England Biolabs). Both 5′ and 3′ homology arms were PCR amplified from the genomic DNA extracted from mouse ES cells with Herculase 11 Fusion DNA polymerase (Agilent). The IRES-hCD8 was PCR amplified from pSLQ1729 (gift from Wendell Lim). The backbone vector was linearized by digestion with PmeI and Zra1. All DNA fragments and the backbone vector were gel purified followed by a Gibson assembly reaction. Primers: 5′ homologous arm F: aaagtgccacctgacactcagtccLagatgtcgtgcgg. 5′ (SEQ ID NO:380) homologous arm R: tcacttgggcccctgggct (SEQ ID NO:381). IRES-human CD8 F: caggggcccaagtgaactagtaaaattcgcccctctccctc (SEQ ID NO:382). IRES-human CD8 R: cagctgcgagcaactttaacctgcaaaaagggagcagtuaaagg (SEQ ID NO:383). 3′ homologous arm F: agttgctcgcagctggggt (SEQ ID NO:384). 3′ homologous arm R: agctggagaccgttttttctgactgactggatacagggcat (SEQ ID NO:385).

Electroporation and clonal Tuj1-hCD8 CamES cells: 2.5 μg pSLQ1654-sgTuj1, 12.5 μg Tuj1-1RES-hCD8 template DNA in 100 μL. Nucleofector solution (Amaxa) were electroporated into 1×106 CamES cells using program A-030. Both plasmids were maxiprepped using the Endofree Maxiprep Kit (Qiagen). After 3 days of culture, sorted single cells were seeded in a 96-well plate with one cell per well. All clonal cell lines were analyzed using PCR and sequencing (Yu et al., 2015 Cell 16, 142-147).

Quantitative RT-PCR

Cells were harvested using Accutase (STEMCELL), and total RNA was isolated using the RNeasy Plus Mini Kit (QIAGEN), according to manufacturer's instructions. Reverse transcription was performed using iScript cDNA Synthesis kit (Bio-Rad). Quantitative PCR reactions were prepared with iTaq Universal SYBR Green Supermix (Bio-Rad). Reactions were run on a LightCycler thermal cycler (Bio-Rad). Primers used are summarized in Table 2.

High-Throughput Pooled Self-Renewal Screening

Screens were performed in two independent replicates. For both screens. 108 CamES cells were transduced with the pooled lentiviral library with an MOI of 0.3 on day −3. On day −2, CamES cells were treated with puromycin (Invitrogen, 1 μg/mL) in basal medium supplemented with LIF and 2i. After 48 hours of puromycin selection, cells were harvested as the day 0 sample. Another 108 CamES cells with the same treatment were passaged for 10 times under the basal medium supplemented with LIF and Doxycycline (Invitrogen, 100 ng/mL), without 2i. Cells were passaged every 3 days. After 30 days, cells were harvested, stained with mouse anti-SSEA1 (BD, 1:50), and FACS sorted using BD FACS Aria2 as SSEA1+ sample (FIG. 9A). For the individual sgRNA validation experiments, a similar protocol was used, except that the CamES cells were infected with a high MOL. Top 100 hits are summarized in Table 3.

High-Throughput Pooled Neural Differentiation Screening

The neural differentiation screens were performed as two independent replicates. For both screens, 108 CamES cells were seeded at 40,000 cells/cm2 density at day −1. Cells were transduced with pooled lentiviral sgRNA library with an MOI of 0.3 at day 0 in basal medium supplemented with LIF and 2i. At day 1, puromycin was added at 1 μg/mL in ES2N medium (Millipore) with Doxycycline for another 24 hours. Fresh ES2N medium was changed with Doxycycline every day starting day 2. On day 12, cells were harvested and sorted for hCD8+ and hCD8− cells using EasySep human CD8 isolation kit (STEMCELL Technologies) (FIG. 20F). For the individual sgRNA validation experiments, a similar protocol except that CamES cells were cultured in basal medium seeded at 5,500 cells/cm2 after puromycin selection and transduced with a high MOI was used. Top 100 hits are summarized in Table 4.

Flow Cytometry Analysis

Cells were harvested, washed, and adjusted to a concentration of 106 cells/mL, in ice cold PBS with 2% FBS. Cells were stained and incubated with diluted primary antibodies at 4° C. for 30 mins in Eppendorf tubes. After staining, cells were washed three times by centrifugation at 400 g for 5 mins and resuspended in 500 μL to 1 mL in ice cold PBS. Cells were kept in dark on ice and analyzed using BD Accuri C6 Cytometer.

Immunocytochemistry

Experiments were performed on cells seeded on plate (IBIDI) that had been coated with gelatin (0.1%) overnight at 37° C. Cells were washed twice with PBS, fixed in 4% Paraformaldehyde (Wako) for 15 mins at room temperature, permeabilized and blocked with 0.1% Triton X-100, 5% donkey serum in PBS (blocking buffer) for 1 h at room temperature. After three times wash with PBS, cells were incubated with primary antibodies. The following primary antibodies with indicated dilution in blocking buffer were used: Rabbit anti-Oct4 (Santa Cruz, 1:200), Rabbit anti-Nanog (Abcam, 1:500), Mouse anti-Tuj1 (Covance, 1:1000), Rabbit anti-Map2 (Cell Signaling Technology, 1:200), Rabbit anti-NeuN (Abcam, 1:1000), Rabbit anti-vGluT1 (Synaptic Systems, 1:200). Rabbit anti-GFAP (Dako, 1:500), Rabbit anti-Olig-2 (Millipore, 1:500) Cells were incubated with primary antibodies at 4° C. for overnight, then washed three times with PBS. After staining with corresponding secondary antibodies in blocking buffer for 1 hour at room temperature, cells were washed three times with PBS and stained with DAPI (Vector Labs) for 5 mins. Washed cells were examined using a Nikon Spinning Disk Confocal microscope with TIRF.

Electrophysiology

External bath solution for whole cell patch clamp recordings contains (in mM) 140 NaCl, 5 KCl, 2 cacl2, 2 MgC2, 20 HEPES, and glucose 10, pH 7.4. Action potentials were recorded current-clamp while sodium and potassium currents were recorded under voltage clamp. The internal pipette solution contained (in mM): 123 K-gluconate, 10 KCl, 1 MgCl2, HEPES, 1 EGTA, 0.1 CaCl2, 1 MgATP, 0.3 Na4GTP and glucose 4, pH 7.2. For current clamp experiments, currents were injected to keep membrane potentials around −65 mV, and action potentials were elicited by stepwise current injections.

Western Blot

Samples were collected with NP40 buffer with protease inhibitor and phosphatase inhibitor, and boiled in 1×SDS loading buffer, separated by SDS-PAGE gels, and transferred onto a nitrocellulose (NC) membrane, which was blocked with 5% non-fat dry milk and incubated with primary antibodies at 4° C. overnight. Rabbit anti-Jun antibody (Cell Signaling Technology, 1:1000), rabbit anti-β-actin antibody (Cell Signaling Technology, 1:5000), rabbit anti-phospho-Jun antibody (Cell Signaling Technology. 1:1000) were used as primary antibodies. HRP-conjugated donkey anti-rabbit IgG (Jackson ImmunoResearch, 1:5000) were used as secondary antibodies. Signals were detected using SuperSignal West Femto Maximum Sensitivity Substrate (Thermo Scientific). β-actin was used as a loading control.

Differentiation of Mouse ES Cells Through Embryoid Body Formation

The sgKlf2- and sgMlxip-transduced CamES cells were trypsinized, plated on ultralow attachment plates, and cultured in Knockout DMEM supplemented with 10% FBS, without Doxcycline. After 6 days, aggregated cells were collected and seeded onto gelatin-coated plates. Four days later, cells were fixed and stained with markers for three germ layers.

RNA-Seq

CamES cells were transduced with individual sgRNAs, expanded, and differentiated after 2 days of puromycin selection in 6 well plates. Total RNA was purified using RNeasy Plus Mini Kit (Qiagen). Libraries were prepared using TruSeq Stranded mRNA LT Sample Prep kit (Illumina) according to the manufacturer's instructions. Samples were combined and purified using Ampure XP Agencourt beads (Beckman Coulter) and sequenced on a Hi-Seq 4000 (Illumina), to generate paired-end 150 bp reads. Each sample was sequenced to an average depth of 40 million reads.

Reads were mapped with kallisto (Bray et al., 2016 Nature biotechnology 34, 525-527) to the provided GRCm38 downloaded from bio math at Berkley. Normalized gene expression and differentially expressed genes were estimated using sleuth (Pimentel et al., 2016 bioRxiv) and DESeq2 (Love et al., 2014 Genome Biol 15, 550) for the self-renewal and neural data, respectively. Gene ontology analysis was performed using the Bioconductor package gage (Luo et al., 2009 BMC Bioinformatics 10, 161). AP-1 targets were defined as genes that have an AP-1 consensus binding motif (Biddie et al., 2011 Mol Cell 43, 145-155; Rauscher et al., 1988 Genes & Development 2, 1687-1699; Shaulian and Karin, 2002 Nat Cell Biol 4, E131-E136; Zhou et al., 2005 DNA Research 12, 139-150) within 500 bases upstream of the TSS.

Bioinformatic Analysis of sgRNA and Gene Hits

Data processing was conducted with custom scripts. Reads were mapped allowing for a mismatch for the first and last base pair of the spacer, which uniquely identified sgRNA.

Each sample was normalized by the total read count. This gave a frequency for each sgRNA:

f sgRNA = sgRNA counts sgRNA counts

For the self-renewal screen, in each condition (CamES cells and SSEA+ cells), frequency for each sgRNA was averaged across replicates. sgRNA with less than 20 counts at time 0 were discarded. The sgRNA enrichment (Esg) was calculated as the log 2 fold change from the average time 0 frequency to the average SSEA+ frequency.

For the neuronal differentiation screen, the paired Tuj1-hCD8+ and Tuj1-hCD8− were used to compute the enrichment scores. Specifically, frequencies were computed as above, sgRNA with less than 1 count in the Tuj1-hCD8− library was discarded. Enrichment for each sgRNA in each replicate was calculated as the log 2 fold-change from the Tuj1-hCD8− sample to the Tuj1-hCD8− libraries. Enrichment was averaged across replicates and used as Esg in subsequent analysis.

For each gene, an enrichment score (ESgene) was calculated from the sgRNA enrichment above, as follows. An unnormalized enrichment score (Egene.top3) was calculated by averaging Fsg for the 3 sgRNA with highest Esg. Egene.top3 was normalized by the distribution of nontargeting sgRNA as follows (Gilbert et al., 2014 Cell 159, 647-661).

Suppose a gene had N targeting sgRNA. Then, 10000 bootstrap samples of size N were drawn from the nontargeting sgRNA. For each sample of size N, Esample.top3 was computed as above. This gave an empirical estimate of the distribution of Egene.top3 if the all the sgRNA targeting that gene had been negative control sgRNA. For the final, normalized gene enrichment score (ESgene), the unnormalized enrichment score was divided by the 0.9 quantile of thie smpirical distribution:

ES gene = E gene , top 3 quantile samples ( E sample , top 3 , 0.9 )

After ranking genes by ES, the most enriched sgRNA for each gene was selected to subsequently validate.

Results

Generation of CRISPRa Mouse Embryonic Stem Cells for Single sgRNA-Mediated Gene Activation and Cell Fate Control

Single sgRNA-mediated efficient endogenous gene activation is useful for large-scale pooled screens of sophisticated cell differentiation phenotypes (FIG. 1A). To establish such a highly efficient CRISPRa system, a reported CRISPRa system based on a polypeptide array, SunTag, was used (Tanenbaum et al., (2014). Cell 159, 635-646). A panel of individual or mixed sgRNAs was used to activate endogenous Brn2 (FIGS. 8A and 8B), a gene driving neuron formation in mouse ES cells (Sokolik et al., 2015 Cell Systems 1, 117-129). Mixed sgRNAs showed better activation compared to individual sgRNAs, whereas none of them induced neural differentiation.

The dCas9-SunTag system contains two components, a SunTag polypeptide domain fused to dCas9 and a VP64 transactivator domain fused to a single chain fragment variable (scFv). It was investigated whether their expression ratio was a key factor determining the activation efficiency. To facilitate fine-tuning their ratio, each component was cloned onto a lentiviral vector (FIG. 8A). The dCas9-Suntag fusion was expressed using a Doxycycline (Dox)-inducible promoter pTRE3G, and the SFFV promoter was replaced with an EF1a promoter for Tet-On 3G transactivator expression, as silenced SFFV activity was observed during ES cell differentiation. It was tested if promoters (PGK, EF1a, and SFFV) with different strengths driving scFv-VP64 fusion could lead to various activation efficiencies. It was observed the PGK promoter exhibited best endogenous Brn2 expression using both bulk and clonal cells (FIGS. 8C and 8D). By tuning the stoichiometry ratio between the two components, an enhanced CRISPRa (eCRISPRa) system with better activation of endogenous genes was obtained.

Twenty eight clonal cell lines with the PGK promoter were sorted, and one cell line (#5) showing best Brn2 activation was obtained, which was named CamES (CRISPR-activating mouse ES) cells (FIG. 8E). It was confirmed that this cell line could be stably cultured in ES cell conditions, while maintaining stem cell morphology and pluripotency and expressing eCRISPRa components over a long-term passage (FIG. 8F). It was determined if CamES cells allowed efficient activation of another gene, Asc11, using a single sgRNA. All 5 Asc11 sgRNAs showed strong activation (>10,000 fold) compared to using a control sgRNA (FIG. 1B). In addition, the activation efficiency varied among 5 sgRNAs, showing that a broad range of gene activation can be achieved.

It was next tested if this promoted neural differentiation (Chanda et al., 2014 Stem Cell Reports 3, 282-296). Using a single sgAsc11, robust differentiation of CamES cells into a neuronal phenotype was observed at day 8, which stained positively for the neuronal markers Tuj1 (class III beta-tubulin) and Map2 (Microtubule-associated protein 2) (FIG. 1C). All negative controls (CamES cells without sgRNA, CamES cells with non-target control sgRNA, and E14 mouse ES cells with sgAsc11) showed no neural differentiation morphology or neural marker expression, confirming neurons were indeed induced by eCRISPRa-mediated target gene activation. Another neural transcription factor, Neurog1 (Velkey and O'Shea, 2013 Dev Dyn. 242, 230-253), was tested with a single sgRNA, and similarly observed neuron formation (FIG. 1C). The cell line also showed efficient skeletal muscle differentiation using a single sgRNA activating MyoD1 (FIG. 1C) (Shani et al., 1992 Symp. Soc. Exp. Biol. 46, 19-36). These experiments together demonstrate that CamES cells allow single sgRNA-mediated endogenous gene activation and cell differentiation.

The CamES cells activating endogenous Asc11 were compared with overexpression of exogenous Asc11 cDNA for neural differentiation. A similar neuronal phenotype was observed using the two approaches (FIG. 1C). It was found that cells using two systems showed similar morphogenetic features characterized by the formation of neural rosettes after 6 days of differentiation and extensive neurite outgrowth between days 8-12 (FIG. 9H). Though overexpression of exogenous cDNA showed higher total Asc11 expression, CRISPRa-mediated endogenous Asc11 activation exhibited comparable or even better neural differentiation as seen by the fold change of other neural markers Brn2, Tuj1, and Map2 over a 10-day differentiation process (FIG. 1D). The data demonstrated that modulating endogenous genes is a better strategy for directed cell differentiation compared to cDNA expression. Taken together, these results showed that the CamES cells were able to induce high-level endogenous gene expression using only a single sgRNA for controlling cell fate.

CamES Cells Allow an eCRISPRa-Mediated Dropout Screen to Identify Transcription Factors that Maintain Self-Renewal

CamES cells were used as an unbiased screening platform to identify key factors among the set of all putative transcription factors that direct cell fate determination. Initial studies focused on factor contributing to the maintenance of ES cell self-renewal. An sgRNA library targeting all putative TFs (˜800) and a small set of lincRNAs (long intergenic noncoding RNAs) (˜50) was generated. Multiple sgRNA (60 sgRNAs per gene on average) were designed to target each gene to cover a broad range of gene activation. An additional 9,296 non-targeting negative control sgRNAs were included. Altogether, a library with a total of 55,336 sgRNAs was generated (FIG. 2A).

The sgRNA library was introduced into CamES cells as a gain-of-function screen to study stem cell self-renewal. Self-renewal of mouse ES cells in serum-free conditions requires simultaneous inhibition of the GSK3 and ERK pathways, which is typically achieved by using two small molecule inhibitors (2i) (Ying et al., 2008 Nature 453, 519-523). It was determined whether activating transcription factors could functionally rescue the loss of 2i to support self-renewal over a long period of time. To do this, the lentiviral sgRNA library was transduced into CamES cells, cultured the transduced cells in −2i medium, and passaged every three days (FIGS. 2A and 9A). For library transduction, MOI (multiplicity of Infection) was kept below 0.3 such that the majority of cells were transduced only with a single sgRNA. Over half of cells quickly lost pluripotency markers (SSEA1 and Oct4) and initiated spontaneous differentiation within two passages post library transduction (FIGS. 28 and 2C). Repeated passaging of cells removed most differentiated cells, while the SSEA1+ population gradually increased over time, providing a dropout screen. After 10 passages, SSEA1+ cells were sorted using FACS (flow cytometry activated sorting), which further increased SSEA1+ cell percentage to 96.9% (FIG. 2B). The sorted cells showed mouse ES cell morphology and were Oct4+, confirming maintenance of pluripotency (FIG. 2C).

To identify genes whose gain-of-function maintains self-renewal of ES cells, deep sequencing was used to read out the sgRNA representation (FIG. 2A). The overall distribution of sgRNAs from samples collected from the original plasmid library, CamES cells with sgRNA library at day 0, and sorted SSEA1+ cells after passage 10 were compared (FIG. 9A). Only a small fraction of sgRNAs were detected after sorting compared to the plasmid library and day 0 samples (FIGS. 2D and 2E), indicating an efficient selection process.

Gene-level enrichment scores were obtained by considering the enrichment of the top three sgRNAs targeting each gene and normalizing by the empirical distribution of the non-targeting sgRNA. A good correlation was obtained between both sgRNA enrichment and gene-level scores across independent library transductions (FIG. 9B).

Validation of Top Enriched sgRNAs Promoting Long-Term Maintenance of Self-Renewal in ES Cells

Using the non-targeting sgRNA normalized gene scoring method, all detected sgRNAs and their targeting genes were ranked (FIG. 10). For each gene, the majority of designed sgRNAs were depleted, implying either most genes had no function in self-renewal or the depleted sgRNAs were unable to sufficiently activate gene expression for functional genes. Major pluripotency factors such as Nanog, Sox2, Klf4, and Oct4 appeared as top enriched hits, consistent with previous works showing their critical roles in maintaining stem cell self-renewal (Chambers et al., 2003 Cell 113, 643-655; Masui et al., 2007 Nat. Cell Biol. 9, 625-635; Mitsui et al., 2003 Cell 113, 631-642; Niwa et al., 2000 Nat. Genet. 24, 372-376; Zhang et al., 2010 J. Biol. Chem. 285, 9180-9189).

The most enriched sgRNAs of the top 18 genes were selected for validation (FIG. 3A). The 18-gene list contained pluripotency genes (Klf2 and Id1) (Jiang et al., 2008 Nat. Cell Biol. 10, 353-360; Yeo et al., 2014 Cell Stem Cell 14, 864-872; Ying et al., 2003a Cell 115, 281-292), lineage specific genes (Etv2 and Isl2) (Koyano-Nakagawa et al., 2012 Stem Cells 30, 1611-1623; Thaler et al., 2004 Neuron 41, 337-350), and one lincRNA gene (4930555M17Rik). For validation, 18 individual sgRNAs were constructed and transduced into CamES cells. Six individual non-targeting sgRNAs were included as negative controls. None of the negative control sgRNAs was able to maintain stem cell self-renewal in −2i medium condition beyond passage 2.

Quantitative PCR results confirmed activation of target genes by each sgRNA (FIG. 3B). All 18 sgRNAs maintained stem cell morphology and expressed pluripotency markers Oct4, Nanog, and SSEA1 after culturing in −2i condition over 30 days (FIG. 3C). Notably, 9 out of 18 validated genes (Mlxip, Etv2, Zc3h11a, Zfp36, Isl2, Tfeb, Fig1a, Hsf2, and Hoxc11) are not previously annotated for maintenance of pluripotency and self-renewal. The high rate of validated true hits indicates that the screening method provides an effective dropout screen of genes promoting self-renewal and maintaining pluripotency.

Deep Sequencing and Functional Validation Confirmed the Function of Positive Hits for Self-Renewal Maintenance

sgMlxip was chosen to explore its role in promoting self-renewal. The MLXIP protein forms a heterodimer with MLX (Max-like protein X) and modulates transcriptional regulation in response to cellular glucose levels (Stoltzman et al., 2008 Proc. Natl. Acad. Sci. USA 105, 6912-6917), and its function related to ES cell self-renewal is unknown.

The developmental potential of CamES +sgMlxip cells cultured in −2i conditions for generating the three germ layers was evaluated using CamES +sgKlf2 as a comparison. After removal of Dox to switch of eCRISPRa activity, spontaneous differentiation of both samples in serum-based medium via embryoid body formation generated cells representative of ecdoderm (Tuj1+), mesoderm (SMA+), and endoderm (Sox17+) lineages (FIG. 4A). This confirmed the differentiation potential of these cells cultured in −2i medium.

RNA-seq analysis was performed on CamES +sgMlxip and CamES +sgKlf2 cells cultured in −2i conditions, and compared to CamES cells cultured with or without 2i. Both samples exhibited high mRNA expression for most pluripotency genes and low expression for most lineage specific genes, with a pattern similar to ES cells cultured in 2i medium and distinct from cells without 2i (FIG. 11A), indicating that the CamES +sgMlxip and CamES +sgKlf2 cells maintained a similar gene expression profile as the undifferentiated stem cells in 2i medium.

The 2i cocktail contains two small molecules that maintain pluripotency by inhibiting GSK3 (CHIR99021) and MEK1/2 (PD0325901) (Ying et al., 2008 Nature 453, 519-523). Via activation of the Wnt pathway and inhibition of the MAPK pathway, the 2i molecules inhibit differentiation while promoting proliferation of ES cells. The RNA-seq gene expression profiles for the Wnt and MAPK pathways were compared among the samples. For the Wnt pathway genes, CamES-sgMlxip cells correlated well with CamES cells in +2i medium (R2=0.81), while poorly with CamES cells in −2i medium (R2=0.35) (FIG. 4B). A different ratio distribution of corresponding gene expression between +sgMlxip/+2i and +sgMlxip/−2i was found (FIG. 11B) (Zhang et al., 2013 Stem Cells 31, 2667-2679).

Similar results were observed for the MAPK pathway: there was a good correlation between CamES +sgMlxip and CamES +2i samples (R2=0.91), compared to a poor correlation between CamES-sgMlxip and CamES-2i (R2=0.59). Gene expression related to the MAPK pathway showed a similar pattern at the transcript level in both CamES +sgMlxip and CamES +2i cells. For example, inhibition of Jun, a major transcription factor of the MAPK pathway, was observed in both CamES +sgMlxip and CamES +2i cells, as well as inhibition of other MAPK related genes (EGF, FAS, FGF, PDGF and TGFb) (FIG. 11C). These results together indicate that CamES +sgMlxip cells possess similar Wnt and MAPK pathway activities as CamES +2i cells.

The PI3K pathway, which is important in the regulation of ES cell pluripotency and proliferation (Yu and Cui, 2016 Development 143, 3050-3060), was also investigated. The CamES +sgMlxip cells also showed a similar expression pattern as CamES +2i cells (FIG. 4D). For example, PI3K-related genes such as Fos, Mapkapk2, Gadd45b, and Gadd45g were downregulated in both CamES +sgMlxip and CamES +2i cells, while Ccnd1, Cdk2, Cdk9, and Sod2 were similarly upregulated (FIG. 4D). The PI3K gene expression further confirms the similarity between CamES +sgMlxip cells and ES cells cultured in 2i medium.

In summary, both functional tests and gene expression indicate that true positive hits identified using the CRISPRa screening method maintain self-renewal of stem cells.

Engineered CamES Cells Allow an eCRISPRa-Mediated Non-Dropout Screen to Identify Key Factors Promoting Neural Differentiation

A eCRISPRa gain-of-function screen was performed to identify TFs that promote the dynamic, complex neural differentiation process. Transcription factor-mediated lineage specification is heterogeneous and stochastic: unlike in the dropout screen, a desired differentiated cell type may only represent a small subset of the total population; and spontaneous differentiation may generate the desired cell type even when a non-functional factor is present.

To address these challenges, a clonal reporter CamES (Tuj1-hCD8 CamES) cell line carrying a biallelic human CD8 (hCD8) gene cassette appended downstream to endogenous Tuj1 via an IRES (internal ribosome entry site) was established (FIGS. 5A and 12A). Upon transduction with sgAsc11 and Dox induction, differentiated Tuj1-hCD8 CamES cells expressed both Tuj1 and hCD8 (Figure S5B). MACS (magnetic-activated cell sorting) was used to isolate hCD8+ and hCD8− cells, and observed hCD8+ cells expressed a higher level of neural markers (Tuj1 and Map2) compared to hCD8− cells and unsorted cells (FIG. 5B). This demonstrates that sorted hCD8+ cells are positively correlated with differentiated neuron cells.

The parameters of cell density and differentiation time for screening, which affected neural differentiation efficiency, were determined. 40,000 cells/cm2 was chosen as the seeding density, as Tuj1-hCD8 CamES cells transduced the sgRNA library maximized the seeding cell number and showed detectable neural marker expression Tuj1 and Map2 (FIG. 12C). Day 12 was chosen as the sample collection time point, when differentiated cells showed neuronal morphology and expression of neural markers (FIGS. 12D and 12E). With these conditions, MACS was performed to sort and isolate Tuj1-hCD8 positive and negative populations (FIGS. 5A and 12F).

Deep sequencing was used to identify sgRNAs for transcription factors that enhance neural differentiation. The overall distributions of sgRNA from samples collected from plasmid library, sorted Tuj1-hCD8+ and Tuj1-hCD8− cells was compared (FIGS. 5A and 12F). In contrast to the self-renewal screen, a larger fraction of sgRNAs were detected after sorting compared to the plasmid library (FIGS. 5C and 5D). In addition, Tuj1-hCD8+ and Tuj1-hCD8− cells exhibited similar sgRNA depletion.

Stem cell differentiation is affected by stochastic factors. In these experiments, activation of Asc11, a powerful neural inducer, led to only 47.6% of cells being Tuj1-hCD8+(FIG. 12B). In addition, the effects of spontaneous differentiation and less proliferative capacity of desired differentiated cells may affect the overall screening outcome. Thus, most sgRNAs in the non-dropout neural differentiation screen cannot be depleted as strongly as in the dropout screen (FIGS. 5C and 5D). It was contemplated that normalizing positive population against the negative population would more accurately identify the TFs that drive neural differentiation. Thus, paired comparative analysis of Tuj1-hCD8+ and Tuj1-hCD8-cell populations was used to rank the most enriched genes and their sgRNAs.

Validation of Top Enriched sgRNAs Promoting Neural Differentiation

Among the ranked gene hits, the top 20 most effective sgRNAs were chosen for validation (FIGS. 13 and 6A). The 20-gene list contained known neuron-driving transcription factors (Neurog1, Brn2, and Klf12) (Theodorou et al., 2009 Genes Dev. 23, 575-588), and genes that were not previously linked to neural early development including epigenetic regulators (Ezh2, Suz12) and signaling proteins (Jun).

Twenty individual sgRNAs for the top gene hits, as well as 6 non-targeting negative control sgRNAs were tested, Quantitative PCR results showed activation (10 to 10,000 fold) of 19 genes out of 20 tested by their cognate sgRNA (FIG. 6B). Using Tuj1-hCDg CamES cells, Tuj1-hCD8 expression was measured after 12 days of differentiation in basal medium by FACS. All 20 sgRNAs transduced-cells showed expression of hCD8 in a significant percentage of cells (10-50%), while all 6 negative control sgRNAs or cells without a transduced sgRNA showed no hCD8+ cells (FIG. 6C).

Another neuronal marker, NCAM, was used to test differentiation of CamES cells. Similarly, all 20 sgRNAs generated NCAM+ cells (20-60%) after 12 days of differentiation in basal medium, and all negative control sgRNAs showed much less NCAM+ cells (below 10%) (FIG. 6D). Positive immunostaining of neural marker Map2 in all 20 sgRNAs differentiated cells was observed (FIG. 6E). One sgRNA targeting Arnt failed to activate target expression at the time it was assayed for activation. However, this sgRNA was able to induce neural differentiation, which may be due to a longer latency of activation, activation of nearby regulatory elements (e.g., a cis-acting lincRNA), or off-target effects.

Activation of different endogenous genes induced different neural subtypes (FIG. 6F). Most genes induced a high percentage cells expressing neuron markers (Tuj14+, Map2+, and NeuN+). Some hits such as Nr2f1, Nr3c1, and Tcf15 induced more cells with a positive astrocyte marker GFAP. The oligodendrocyte marker Olig2 and the Glutamatergic neuron marker vGluT1 were assayed, and varying levels of expression across the top 20 sgRNAs was observed.

Functional Test and Transcriptome Profiling Confirmed sgJun-Induced Neural Differentiation

The role of Jun for promoting neural differentiation was examined. Jun has not previously been tied to early neural development. It was observed that sgJun could induce functional neurons that were able to generate action potentials upon current injection (FIG. 7A). RNA-seq was performed to profile the transcriptome of CamES +sgJun cells at various time points (day 0, 2, 5, and 12) (FIG. 14A). Cells were analyzed at different time points using PCA (Principal component analysis), and four distinct clusters that correlated with a dynamic process of neural differentiation were identified (FIG. 7B). It was found that the pluripotency genes were consistently downregulated starting at day 2 after sgJun transduction, and neural marker genes were upregulated throughout the process (FIG. 7C). Meanwhile, day 12 cells were highly enriched for Gene Ontology (GO) terms associated with neural fate and functions, such as axonogenesis and neuron projection guidance (FIG. 7D).

Jun regulates downstream target genes through its phosphorylation and the AP-1 complex formation with c-Fos (Rauscher et al., 1988 Genes Dev. 2, 1687-1699). It was confirmed that endogenous Jun induced by sgJun also was phosphorylated (FIG. 7E). Analysis of AP-1 target genes showed that they were activated at days 5 and 12 (FIG. 7F). It was also found that expression of both FGF ligands and receptors (Fgf5, Fgf8, Egf9, Fgfr1, Fgfr2, and Fgfr3) were rapidly increased at day 2 (FIG. 14B). Meanwhile, key genes of the Wnt pathway (Wnt3a, Wnt6, Wnt10b, and β-catenin) were also upregulated in sgJun-induced cells at days 5 and 12 (FIGS. 7G and 14B).

Previous work reported that overexpression of β-catenin in mouse ES cells induce neurogenesis (Otero et al., 2004: Development 131, 3545-3557). The excessive expression of Wnt genes in the cells indicates that the Wnt pathway plays an important role in sgJun-induced neurogenesis (FIG. 14C). Furthermore, since MAPK, the downstream pathway of FGF, activates Jun via phosphorylation, sgJun-activated endogenous Jun likely maintains its stable expression and sustained activity via a FGF/MAPK positive feedback loop (FIG. 14C), which is consistent with works showing the important role of FGF/MAPK pathway in neural fate commitment of ES cells (Chen et al., 2010 Journal of Biomedical Science 17, 1-11; Ying et al., 2003b Nat. Biotechnol. 21, 183-186). Together, modulation of these pathways through endogenous Jun activation indicates a functional role of Jun for induced neural differentiation of mouse ES cells.

Paired-Analysis is Useful in the Non-Dropout Cell Differentiation Screen

In dropout screens, cells that are negative for the phenotype of interest are almost completely removed from the selected population. Therefore, one can calculate enrichment of the selected population relative to initial pool of sgRNAs to infer functional genes (FIG. 14D). In non-dropout screens, the phenotype of interest may arise stochastically (FIG. 14D). If activation of a gene confers a proliferative advantage, then even if the probability of the phenotype of interest is small (spontaneous differentiation), with more cells it would appear that the gene is enriched in the selected population when compared to the initial population. In fact, a high correlation of enriched genes between the positive and negative Tuj1-hCD8 populations was found (FIG. 14E). The top hits relative to initial sgRNA pool in both populations contain many proliferative genes, but few are related to neural phenotype (FIG. 14F). Those proliferative genes disappear, and several known neural genes are identified when the Tuj1-hCD8+ population was normalized against Tuj1-hCD8− population. The final rankings show little correlation with the enrichment in the positive population (FIGS. 14E and 14F), indicating that these proliferative genes were mostly false positives.

TABLE 1  Primers used to construct individual sgRNAs. Primers sgRNA sequence SEQ ID NO Forward gtatcccttggagaaccaccttgttgnnnn 386 primer nnnnnnnnnnnnnnnngtttaagagctaag ctggaaacagca Reverse gatcctagtactcgagaaaaaaagcaccga 387 primer ctcggtgccac sgBrn2-1 gggagagagcttgagagcgc 388 sgBrn2-2 gcccaggcgcgtgccgctgcgag 389 sgBrn2-3 gcggtatccacgtaaatcaaa 390 sgBrn2-4 gctccggtctgggaggttgctag 391 sgBrn2-5 gcaccaatcactggctccggtc 392 sgBrn2-6 gactgagaagactgggcgcccg 393 sgBrn2-7 gaatctgaatcgctgagcta 394 sgBrn2-8 gaggccggggacagaagaga 395 sgBrn2-9 gagcgcctggaccgaccgcc 396 sgBrn2-10 gaaatcgtagtcctgctggctgact 397 sgBrn2-11 gtgtgtgtgttcctaggagaa 398 sgBrn2-12 gtctagctttggctctcgttct 399 sgAscl1-1 ggctgggtgtcccattgaaa 400 sgAscl1-2 gaatggagagtttgcaaggag 401 sgAscl1-3 gtctggagggaaaagtgtctt 402 sgAscl1-4 gagttactgcggagagaagaaa 403 sgAscl1-5 gagggaaaggctgctcagaca 404 Neurog1 ggctgctgggagttgtgcaa 405 Myod1 ggtctccagagtggagtccg 406 Nanog ggaagtttcaggtcaagtgg 407 Mlxip ggcactccacgtggtgggta 408 Sox2 gcctttgcaccctttggatg 409 Klf2 gagggtaatagagagaggga 410 Etv2 gttcgtggctcacctctggc 411 Klf4 gtgcgtatgcgagagagggc 412 Zc3h11a gcattatcccttagatgcca 413 Hsf2 ggattcgcatggaaagggtt 414 Hey2 ggtgtgtctagacaggagac 415 ZFP36 ggttgtgtacgaccaactgg 416 Isl2 gagaggagaaaggagagggt 417 Tfeb gacatgggcaataacagggt 418 Nobox gcctgcttgatggaaaggta 419 Figla ggcatctgaaaccaggagga 420 Bcl6 ggtgggaagagagagagaga 421 Id1 ggctcaagaactgaaagggt 422 Hoxc11 ggaggagagagagagagggt 423 M17Rik gctgataaggtagaaaggta 424 Foxo1 ggttcaggatgagtggaggc 425 Nr2f1 ggagccaagagaagggctgc 426 Rb1 ggctacatacagtctaggtt 427 Pou3f2 gaggaaggactgagaagact 428 Ezh2 ggttcctttcggcaccttgg 429 Maz ggaaggcatctctgggaagc 430 Nr4a1 gctaacgtgtagtctcgttg 431 Arnt gtttgaaactccaggttaat 432 Dmrt3 gaggagttgatagttgttcc 433 Sin3b gtgcaagaattcagtccaca 434 Jun gagaataaagtgttgtgccg 435 Suz12 gaagctctcaaggcgagaaa 436 Klf12 gatttgaccatctcttgccg 437 Nr3c1 gtcactgctctttaccaaga 438 Tcf15 gggatatgctcactttggga 439 Zeb1 gaaggaactaagtttcttct 440 Nr6a1 gatgacggtcggccgtagtt 441 Mecom gattctcaggcagggctcta 442 Hoxc8 gctctttcctctaacagccc 443

TABLE 2 Primers used for quantitative PCR. SEQ Gene name Primer sequence ID NO RiboL7 F accgcactgagattcggatg 444 RiboL7 R gaaccttacgaacctttgggc 445 Ascl1 F aagaagatgagcaaggtggagacg 446 Ascl1 R gagatggtgggcgacagga 447 Brn2 F tttcctcaaatgccctaagc 448 Brn2 R ggaggggtcatccttttctc 449 Tuj1 F agtcagcatgagggagatcg 450 Tuj1 R agtcccctacatagttgccg 451 Map2 F agcactgattgggaagcact 452 Map2 R caattcaaggaagttgtaaagtagtgaag 453 tttg Nanog F aaccaaaggatgaagtgcaagcgg 454 Nanog R tccaagttgggttggtccaagtct 455 Mlxip F aagctcttcgagtgcatgac 456 Mlxip R ttgttgagccggatcttgtc 457 Sox2 F acaagagaattgggaggggt 458 Sox2 F ttttctagtcggcatcaccg 459 Klf2 F ccttcggtcttttcgagga 460 Klf2 R cttggcctccagcagctc 461 Etv2 F acgtagaaggctgctggaa 462 Etv2 R tgtccagtctcgcgacca 463 Klf4 F aaaagaacagccacccacac 464 Klf4 R cgtcccagtcacagtggtaa 465 Zc3h11a F catcggttcggtaaagtttctgt 466 Zc3h11a R ccactcagccacagaaatcg 467 Hsf2 F tgaagcagagttccaacgtg 468 Hsf2 R ttgctcatccaagaccagaa 469 Hey2 F tgaagatgctccaggctaca 470 Hey2 F tctgtcaagcactctcggaa 471 Zfp36 F tctcttcaccaaggccattc 472 Zfp36 R tatgttccaaagtcctccga 473 Isl2 F agtcgaggtgcagacgtac 474 Isl2 R ttgcctagggagcctgact 475 Tfeb F caacagtgctcccaacagtc 476 Tfeb R ttgatgtagcccagcacgc 477 Nobox F acggagaagctctgcaagaa 478 Nobox R ttgtcttgatcatcctggatgg 479 Figla F actcggctgtgttctggaag 480 Figla R tgggtagcatttcccaagag 481 Bcl6 F ttggactgtgaagcaaggca 482 Bcl6 R actccggaggcgattaagg 483 Id1 F ctgaacggcgagatcagtg 484 Id1 R tttcctcttgcctcctgaag 485 Hoxc11 F aacacgaatcccagctcgt 486 Hoxc11 R ggatctggaatttcgaataagggc 487 M17Rik F cctgagactaatactgtatgatttggaaa 488 M17Rik R cacaggtttagagataaccaaagtgg 489 Foxo1 F gagtggatggtgaagagcgt 490 Foxo1 R tgctgtgaagggacagattg 491 Nr2f1 F ccaacaggaactgtcccatc 492 Nr2f1 R attcttcctcgctgaaccg 493 Neurog1 F cggcttcagaagacttcacc 494 Neurog1 R ggcctagtggtatgggatga 495 Rb1 F gcagcatcttgattctggaac 496 Rb1 R tgtcaagttggcttccacttt 497 Pou3f2 F tttcctcaaatgccctaagc 498 Pou3f2 R ggaggggtcatccttttctc 499 Ezh2 F acttctgtgagctcattgcg 500 Ezh2 R cgactgcattcagggtcttt 501 Maz F gtggcaagatgctgagctc 502 Maz R cattggacaaacctcaccagtac 503 Nr4a1 F gctagaaggactgcggagc 504 Nr4a1 R attgagcttgaatacagggca 505 Arnt F ggcgactacagctaacccag 506 Arnt R gccctctgtacaacagctcc 507 Dmrt3 F agcgcagcttgctaaacc 508 Dmrt3 R gcttttgacaacatctgggg 509 Sin3b F agagttcggacagttcctgc 510 Sin3b R tcctcattcttctgcccact 511 Jun F gaaaagtagcccccaacctc 512 Jun R aatcagacaggggacacagc 513 Suz12 F tcgaaattccagaacaagca 514 Suz12 R tgtggaagaaaccggtaaatg 515 Klf12 F ccataaagaatctcagcgcc 516 Klf12 R ccatatcggggtagttgtgg 517 Nr3c1 F ggacaacctgacttccttgg 518 Nr3c1 R ctggacggaggagaactcac 519 Tcf15 F tctgcaccttctgtctcagc 520 Tcf15 R aaccagggatccaggttcat 521 Zeb1 F acagagaatggaatgtatgcatgtg 522 Zeb1 R agattccacactcgtgaggc 523 Nr6a1 F gcaacggtttctgtcaggat 524 Nr6a1 R ggttcgttgttcagctcgat 525 Mecom F acagcatgagatccaaaggc 526 Mecom R ttatcccatctgcatcagca 527 Hoxc8 F aaatcctccgccaacactaa 528 Hoxc8 R tgtaagtttgtcgaccgctg 529

TABLE 3 Top 100 gene hits from CRISPRa self-renewal screen. Rank Gene name Enrichment score 1 Nanog 6.436538099 2 Sox2 5.110480488 3 Klf4 4.679609611 4 Bc16 4.250485879 5 Tfeb 4.160094948 6 Mlxip 3.992616854 7 Klf2 3.911099626 8 Etv2 3.644806172 9 Isl2 3.468873873 10 Hey2 3.189713541 11 Zfp36 2.929649816 12 Zc3h11a 2.83067826 13 Sox18 2.813521887 14 Nobox 2.627399442 15 Figla 2.607875769 16 4921504A21Rik 2.594074135 17 Hsf2 2.552027639 18 Hoxc11 2.518020583 19 Tfcp211 2.460616651 20 Spi1 2.383834061 21 Id1 2.277631872 22 Tlx2 2.237444329 23 4930555M17Rik 1.890123174 24 Nov 1.874188087 25 Klf5 1.852149928 26 Crygf 1.829064836 27 Sox11 1.807058979 28 Atf5 1.774675631 29 Esrrg 1.746829472 30 Tsn 1.744364085 31 Thrb 1.602037631 32 Nfe212 1.593264465 33 Lhx1 1.548863185 34 Pou5fl 1.518892786 35 Ebfl 1.452433199 36 Dlx5 1.403820123 37 Mycl 1.371065103 38 Atfl 1.36137151 39 Tftdp1 1.326446848 40 Irx6 1.194061551 41 Zfp2 1.191847857 42 Nfatc1 1.188011066 43 Crem 1.049272101 44 Nr3c1 1.042323412 45 Pax5 1.024334324 46 Foxfl 1.00419091 47 Snai1 0.960150521 48 Zfp423 0.947760908 49 Esrrb 0.904004441 50 Pbx2 0.899430618 51 Foxd4 0.895608808 52 Sox1 0.878521398 53 Lbx1 0.841046411 54 Mecom 0.820757135 55 Ncor2 0.780231219 56 Nr0b2 0.752404477 57 Trp53 0.743632306 58 Lmo3 0.732198452 59 En1 0.731989985 60 Rfx1 0.725576385 61 Maz 0.700348134 62 Alx4 0.686172162 63 Nr1d2 0.679722158 64 Tcf15 0.620553011 65 Egr3 0.617223131 66 Nr5a1 0.614144289 67 Tfe3 0.60710143 68 Spdef 0.593267507 69 Tcfl2 0.564881228 70 Dlx2 0.541542994 71 Vezfl 0.534712227 72 Gata1 0.504194994 73 Arf6 0.491842327 74 Sox21 0.477561748 75 Lmx1a 0.447377739 76 Pou4f2 0.410773196 77 Nr1b2 0.406668822 78 Fox11 0.394295617 79 Stat5b 0.369982068 80 Evx2 0.360115239 81 Sox5 0.348850095 82 Hivep3 0.324844194 83 Tfap2a 0.303852954 84 Glis3 0.277004435 85 Mafk 0.265635614 86 Hoxb5 0.256534563 87 Myf5 0.252944449 88 Nkx2-5 0.251102596 89 Lhx6 0.244502182 90 Foxs1 0.242003106 91 Rnps1 0.2417908 92 Mitf 0.229103445 93 Drd1a 0.21477535 94 Lmx1b 0.191984237 95 Vax2 0.183188363 96 Hoxa11 0.1661187439 97 Otp 0.163494265 98 Mxd4 0.160929842 99 Plag11 0.137545433 100 Smad5 0.128584689

TABLE 4 Top 100 gene hits from CRISPRa neural differentiation screen. Rank Gene name Enrichment score 1 Foxo1 2.49122811 2 Nr2fl 2.448600182 3 Neurog1 2.43849068 4 Rb1 2.435300527 5 Pou3f2 2.385360453 6 Ezh2 2.380072461 7 Maz 2.361103604 8 Nr4a1 2.351837703 9 Arnt 2.317336958 10 Dmrt3 2.304207908 11 Sin3b 2.280599668 12 Jun 2.277732884 13 Suz12 2.276236754 14 KIfl2 2.269476929 15 Nr3cl 2.249983644 16 Tcfl5 2.229200027 17 Zeb1 2.221200461 18 Nr6a1 2.208496165 19 Mecom 2.207944981 20 Trim24 2.206262504 21 Hoxc8 2.184103377 22 Foxk1 2.171388615 23 2410080102RiK 2.171161939 24 Nr4a3 2.168779599 25 Trp73 2.16579857 26 Foxs1 2.162897697 27 Ikzf3 2.15938851 28 Nkx2-6 2.15063949 29 Sox11 2.140964961 30 1110054M08Rik 2.139005342 31 Crem 2.133968618 32 Meis3 2.131453549 33 Bmyc 2.130409666 34 Epas1 2.129339686 35 Nr2f6 2.128397081 36 Nacc1 2.120269011 37 Bsx 2.120136772 38 Foxd3 2.114601186 39 Myog 2.107435864 40 Smad3 2.105254748 41 Wt1 2.091731056 42 Taz 2.091306567 43 Smad7 2.071136269 44 Stra13 2.06971649 45 Hoxc4 2.062634453 46 Pou3f3 2.058607569 47 Zbtb12 2.051837502 48 Atf5 2.042025795 49 Gtf2a2 2.041587014 50 Pura 2.040735147 51 Snai1 2.040229657 52 Ncor1 2.038396405 53 Pcbp2 2.036271048 54 E2f2 2.028758908 55 Nfkbib 2.023153101 56 Gli2 2.021010016 57 Nr0b1 2.020715359 58 B230110C06Rik 2.016733057 59 T 2.014396786 60 Runx3 2.011724145 61 Rxra 2.011600497 62 Mafk 2.009964981 63 Foxnl 2.006315586 64 Smad4 1.999197443 65 Meis2 1.998728368 66 Hoxa1 1.996287157 67 Zic1 1.992579239 68 Sebox 1.99248237 69 Nfyc 1.983084664 70 Lmx1b 1.980716237 71 Lhx3 1.979175342 72 Hmx2 1.978886945 73 Arf6 1.977331424 74 Nfatc3 1.975872129 75 Neurod6 1.973516686 76 Smarca4 1.972359038 77 Twist1 1.971479015 78 Gzfl 1.963483117 79 Hoxcl0 1.962998475 80 Tbx4 1.962626034 81 Npas2 1.962608209 82 Ctbp1 1.960624385 83 Gcm2 1.960206991 84 Is12 1.957324105 85 Arid5a 1.956887379 86 Lef1 1.955552772 87 RP24-399L6.2 1.953337042 88 Smad5 1.949029539 89 Lbx1 1.948838891 90 Pax3 1.945680745 91 Foxj1 1.944149198 92 Tbx5 1.943975816 93 Barh11 1.943598679 94 Hoxd11 1.9410811 95 Pou1fl 1.939557398 96 Klf3 1.938997548 97 Pcbp1 1.937292841 98 Evx2 1.935442174 99 Irx5 1.934100096 100 Nkx6-3 1.928635054

Example 2

Quantitative Genetic Interaction Mapping Using CRISPRI

A. Methods

The vectors used in this study were constructed by using standard molecular cloning techniques, including PCR, restriction enzyme digestion and ligation. Custom oligonucleotides were from Integrated DNA Technologies. E. coli strain D1H5a was used for the transformation and selected by 100 μg/ml of carbenicillin, or 50 μg/ml of Kanamycin. DNA was extracted and purified using Plasmid Mini or Midi Kits (Macherey-Nagel). Sequences of the vector constructs were verified with Quintarabio's DNA sequencing service.

Construct Design

The dCas9-KRAB plasmid and sgRNA expressing plasmid are previously described vectors (Du, D. & Qi, L S. Cold Spring Harbor Protocols 2016, (2016)). The SpeI and Sail sites were mutated in the sgRNA expression plasmid. The single sgRNA expression plasmids were cloned as described previously with minor modifications. Briefly, the plasmids were cloned by PCR from an existing sgRNA template using a unique 50 primer containing the desired protospacer (N is the protospacer) and a common primer with (SpeI and SalI sites). The PCR products and the lentiviral mice 16 (mU6) based sgRNA expression vector were digested with BstXI and XhoI and the two pieces of DNA were ligated together. The single vector was introduced unique SpeI and SalI sites to enable the insertion of the mU6-sgRNA expression cassettes.

To construct a lentiviral vector for mU6-driven expression of combinatorial gRNAs, mU6-sgRNA expression cassettes were prepared from digestion of the storage vector with XbaI and XhoI enzymes, and inserted into the target single sgRNA expression vector backbone, using ligation via the compatible sticky ends generated by digestion of the target single sgRNA expression vector with SpeI and SalI enzymes.

The Single Library Cloning

A library of 336 sgRNAs targeting a set of 112 genes encoding epigenetic regulators (3 sgRNAs/gene) was constructed using top prediction hits from the CRISPR-ERA algorithm (Liu, H, et al Bioinformatics 31, 3676-3678 (2015)). The library also included 30 non-targeting negative control sgRNAs. sgRNAs containing XbaI, XhoI, SpeI, and SalI restriction sites, which were used for double sgRNA library construction, were excluded. Individual oligos encoding sgRNAs were synthesized in a 384-well format, pooled, and the single sgRNA expression vectors were constructed individually by ligating the oligos into a common sgRNA lentiviral vector with SpeI and SalI sites. After sequencing validation, 336 sgRNA constructs were manually mixed with equal amount for the single sgRNA screens and double sgRNA library construction. The sgRNA sequence and corresponding genes are listed in Table 5.

Combinatorial sgRNA Library Pool

To generate the pooled storage vector library, the 336 single sgRNA expression vectors were mixed equally. Pooled lentiviral vector libraries harboring combinatorial gRNA(s) were constructed with the same strategy as for the generation of combinatorial sgRNA constructs described above, except that the assembly was performed with pooled inserts and vectors, instead of individual ones. Briefly, the pooled mU6-sgRNA inserts were generated by a single-pot digestion of the pooled storage vector library with XbaI and XhoI. The destination lentiviral vectors were digested with SpeI and SalI. The digested inserts and vectors were ligated via their compatible ends (i.e., XbaI+SalI & XhoI+SpeI) to create the pooled double sgRNA library (336×336=112,896 total combinations) in the lentiviral vector. The lentiviral sgRNA library pools were prepared in DHS ultra-competent cells (Agilent Technologies) and purified by Plasmid Midi Kit (Macherey-Nagel). The sequences of the deep sequencing is listed in Table 6.

Cell Culture

1HEK293T and HEK293 cells were cultured in DMEM supplemented with 10%/6 fetal bovine serum, 100 units/ml streptomycin and 100 mg/ml penicillin at 3TC, with 5% CO2. To generate inducible CRISPRi HEK293 (TetOn-dCas9-KRAB) cell line, the cells were lentivirally transduced with constructs that express dCas9-KRAB from the TRE3G promoter and rtTA. Pure polyclonal populations of CRISPRi cell line were treated with doxycycline, and sorted by flow cytometry using a BD FACS Aria2 for mCherry expression. These cells were then grown in the absence of doxycycline until mCherry fluorescence reduced to uninduced levels.

Lentivirus Production and Transduction

Lentiviruses were produced and packaged in HEK293T cells as described previously with minor modification (Du et al., 2016, supra). Briefly, HEK 293′T were transfected with standard packaging vectors using Mirus TransIT-LT1 transfection reagent (Mirus MIR 2300) according to the manufacturer's instructions. Viral supernatant was harvested 48-72 h following transfection and either filtered through a 0.45 μm syringe filter or snap-frozen.

Growth Competition Assay

Cells were grown at minimum library coverage of 1,000 for the screens. The target cells were infected in the presence of 8 μg/ml polybrene (Sigma) at a multiplicity of infection of about 0.3 to ensure single copy integration in most cells, which is corresponded to an infection efficiency of 30-40%. For single library screens, cells were grown in the flasks and harvested at 0, 12 and 20 days after puromycin selection; for double library screens, cells were grown in the flasks and harvested at 0, 8 and 16 days after puromycin selection. Cells were maintained at least 1,000 cells per sgRNA for each screen.

After the cell samples were collected, the genomic DNA was isolated using QIAamp DNA Blood Maxi Kit (Qiagen) according to the manufacturer's protocol, the cassette encoding the sgRNA was amplified by PCR, and relative sgRNA abundance was determined by next generation sequencing on an Illumina Miseq for single screens or an lllumina HiSeq-2500 for double screens using custom primers with previously described protocols at high coverage (Bassik, M. C. et al. Cell 152, 909-922(2013); Roguev, A. et al. Nat. Methods 10, 432-437 (2013)). Two biological replicates of each screen were performed.

For the cell growth validation experiments, the viruses with single sgRNAs or double sgRNA were transduced into HEK293 (TetOn-dCas9-KRAB) cells, followed by the selection with 2 μg/ml puromycin to remove the uninfected cells. Three days after the cells were treated with or without Dox (0.5 ug/ml), the cell viability was measured by XTT assay (Biotium) according to the manufacturer's experimental protocol. 2,000 to 10,000 cells were plated into 96-well tissue culture plates for the growth assay. For each 96 well, 30 μl of XTT solution was added to the 100 ul cell cultures at the time points indicated. Cells were incubated for 6 hours at 37 C with 5% CO2. Measure the absorbance signal of the samples with a spectrophotometer at a wavelength of 450-500 nm. Measure background absorbance at a wavelength between 630-690 nm. The normalized absorbance values were obtained by subtracting background absorbance from signal absorbance.

Validation of Gene Hits

Cells were harvested and total RNA was isolated using the RNAeasy Kit (Qiagen), according to manufacturer's instructions. RNA was converted to cDNA using iScript™ cDNA Synthesis Kit according to manufacturer's instructions (Bio-rad). Quantitative PCR reactions were prepared with a 2× master mix according to the manufacturer's instructions (Bio-rad). Reactions were run on CFX96 Touch™ Real-Time PCR Detection System (Bio-rad). Primer sequences for qPCR are listed in Table 3.

Results

To develop a CRISPRi combinatorial screening approach, a single library consisting of 336 sgRNAs using was constructed using a computational algorithm (Liu, H. et al. Bioinformatics 31, 3676-3678 (2015)), which sequence-specifically targeted 112 genes (3 sgRNA/gene) involved in chromatin regulation (for the gene list and their sgRNAs, see Table 5). The library also included 30 negative control sgRNAs without target sites in the human genome. Pooled cloning of 336 sgRNAs onto itself generated a mixed double sgRNA library containing 112,896 (336×336) combinations. Both libraries were prepared as lentivirus pools ready for large-scale mammalian cell transduction at a low multiplicity of infection (MOI=0.3).

The repressive dCas9-KRAB protein was conditionally expressed under the control of the Doxycycline (Dox)-inducible promoter TetON-3G in the human embryonic kidney 293 (HEK293) cells. Transducing both libraries into clonal HEK293-dCas9-KRAB cells generated two pooled cell populations (FIG. 16A): one with 336 single perturbations and the other with 112,896 double perturbations. Adding Dox to cells could induce expression of dCas9-KRAB to repress target gene(s) guided by co-expressed sgRNA(s) and monitored the growth phenotype from single or double gene perturbations. Pair-ended deep sequencing of sgRNA library distribution for each library (Mi-seq for single library and Hi-seq for double library) was performed with and without Dox, as well as at different time points.

It was first investigated if sgRNA distribution remained consistent between biological replicates before and after library screening. Sequencing single and double libraries with or without Dox at different time points exhibited consistently high coefficient of determination (R2) (FIG. 15B-E). For example, R2 was 0.980 without Dox induction and 0.971 with Dox for the single library (day 20) (FIG. 15B-C); and for the double library (day 16), 0.934 without Dox and 0.906 with Dox (FIG. 15D-E). sgRNA distribution from biological replicates was assayed at other time points and similarly high correlation was observed. Together these data demonstrate that the experimental platform produces data of very high reproducibility.

It was next determined if inducible expression of dCas9-KRAB allowed one to identify single and double gene perturbations that influenced cell growth (FIGS. 15F & G). It was observed that repression of a set of individual genes dramatically slowed down cell growth in the presence of Dox compared to without (FIG. 15F). This list of genes included gene components of the mediator complex (MED14 and MED15), components of the histone H3-Lys4 methyltransferase complex (WDR82 and WDR5), and RNA polymerase II associated factors (PAF1 and RTF1). Double library culture showed a large number of combinatorial perturbations significantly reduced cell growth with Dox, with an overall bifurcation pattern, wherein the negative controls fell along the diagonal line and the positive controls were biased from the diagonal line (FIG. 15G).

The above inducible experiments were performed at end time points. sgRNA distribution was further compared for both single and double libraries with and without Dox induction at intermediate time points (day 12 for single library and day 8 for double library). Consistent phenotypes at these time points compared to end time points were observed. For example, a similar list of genes whose repression slowed down cell growth, including ME14, MED15, WDR82, PAF1, and RIF1. The absence of WDR5 at day 12 indicates that WDR5 has a moderate role for growth compared to other gene hits. For the double library, a similar bifurcation pattern was observed, with a difference that the bifurcation degree (measured by the angle between the two populations) is smaller at earlier time points.

The consistent gene hits and dropout pattern for both libraries between different time points propelled a comparison of datasets across a broad time course. It was investigated if the trend of dropout effects could provide another layer of identification of true positive hits (FIG. 16). For the single library in the presence of Dox, sgRNA enrichment was compared at days 0, 3, 7, and 13 (FIG. 16A). While some genes showed consistent depletion (e.g., RTF1, MED14, SAP30), many other genes showed inconsistent enrichment (e.g., MRGBP). Among 112 epigenetic factors, 20 genes were observed to exhibit consistent depletion over time, showing inhibition of these genes constantly slowed down cell growth (FIG. 168). The double library similarly showed temporal dropout of pairwise sgRNAs assayed at days 0, 8 and 16 (FIG. 16C). Over time, a large number of combinations were consistently depleted as a selection of these was plotted as in FIG. 16D.

The time-course sgRNA enrichment was compared in the absence of Dox for both single and double libraries. No significant changes of sgRNA distribution were observed over time for both libraries without Dox. For the single library, comparing the day 0 sample with day 12 or day 20 samples (+/− Dox) showed only dropout of gene hits with Dox (FIGS. 17A-B), and for the double library comparing day 0 with day 8 or day 16 (+/− Dox) confirmed similar conclusions. Altogether, these experiments confirmed that the system enables inducible, temporal screens of genetic interactions.

Two negative interactions were validated, demonstrating their ability to suppress cell proliferation and causing repression of target endogenous genes. Two pairs were chosen for testing: MGBRP/MED6, and BRD7/LEO1. MRGBP is a component of the NuA4 histone acetyltransferase complex involved in gene activation by acetylation of histones; BRD7 is a member of the bromodomain-containing protein family; and LEO1 is a component of the PAF1 complex (PAF1C) involved in transcription of RNA Pol II. The results confirmed the validity of the double repression and synthetic lethality-based growth effects. As shown in FIGS. 16E & 16F, repression of two genes simultaneously (MGBRP & MED6 for FIG. 16E; and BRD7 & LEO1 for FIG. 16F) suppressed cell growth over time, while repression of individual genes did not cause significant growth inhibition. Quantitative PCR results further confirmed the repressive effects of the sgRNAs on the corresponding genes either individually or combinatorically delivered into cells. Notable, the moderate repression effects of the tested sgRNAs supported the strong growth effects of the genetic interacting pairs. Future optimization of CRISPRi repression efficacy allow one to perform screens at different strengths (weak, medium, strong) of gene repression.

Based on the curated set of protein complexes and pathways, a GI map depicting the genetic cross-talk between different functional modules involved in chromatin was created (FIG. 17). Using a scoring system similar to the S-score (Collins, et al., J. Meth. Enzymol. 470, 205-231 (2010)), 68 negative and 47 positive genetic interactions were identified. Contained within this map are modules corresponding to the INO80 chromatin remodeling complex; the mediator complex (MED); the NuA4 histone acetyltransferase (HAT) complexes; the Nucleosome Remodeling Deacetylase NURD complex; the histone methyltransferase (HMT) complex SET1A/B; the Polycomb complex PRC1; the histone 3 lysine-4 methyltransferases MLL3/4; the SIN3 transcription repressor; Host Cell Factor C (HCFC)-glycosyltransferase (OGT) complex; and nuclear THO transcription elongation complex. Notably, the mediator complex occupies a large set of interactions on the map, interacting strongly, both positively and negatively, with many other functional modules. For example, strong positive GIs were observed between the MED complex and modules corresponding to PRC1 and the SET1A/B complex. Furthermore, strong negative interactions were observed between components of the SIN3 complex and many other modules of mediator components and SWI/SNF family of protein SMARCC2.

The nuclease Cas9 for gene editing-mediated knockout allows complete loss of function, yet knockout can be heterogeneous among alleles due to existence of in-frame indels. On the contrary, CRISPRi-based dCas9 transcription knockdown leads to partial, homogeneous loss of function (Mandegar, M. A. et al. Cell Stem Cell 18, 541-553 (2016)). Applying the two methods to higher-order genetic screening needs to consider these important differences. For example, as epistatic genetic screens require simultaneous perturbation of multiple genes (usually 2 genes, 4 alleles), the heterogeneity of gene knockout in pooled CRISPR screens may result in a significant portion of cells without proper epistatic perturbation. Among the cells that are properly perturbed, complete knockout of function offers a highly sensitive way to discover novel gene combinations whose perturbation leads to measurable phenotypes (e.g., growth). Yet, combinatorial multiple gene knockouts may easily cause lethal effects by itself, precluding testing other phenotypes (e.g., differentiation or host-pathogen interaction).

On the contrary, partial knockdown by CRISPRi, while being less sensitive than CRISPR knockout, likely avoids major dominating lethal effects. The homogeneous transcriptional repression could generate cell populations with consistent multi-gene perturbation. Furthermore, sgRNAs binding at various loci along the promoter lead to varying levels of CRISPRi repression, which is contemplated to provide dosage-dependent combinatorial screening distinct from binary perturbation from CRISPR. The demonstration of the inducible and titratable features of CRISPRi combinatorial screening showed the method allows assaying genetic interactions temporally and potentially in a dose-dependent manner.

Compared to RNAi-based methods, the major approach for genetic interaction mapping, CRISPRi presents a few advantages as well. CRISPRi knockdown is specific (Gilbert, L. A. et al., Cell 159, 647-661 (2014)), with less concerns about multiple sgRNAs in the same cells causing unexpected off-target perturbation. As CRISPR activation (CRISPRa) is based on somewhat similar setup as CRISPRi, by changing a repressive effector into an activating effector, the same approach can be expanded into gain-of-function screening of pairwise of genes. Furthermore, combining CRISPRi and CRISPRa into the some cells is contemplated to allow simultaneous activating a gene while repressing another gene. These dramatically expand the modes of epistatic screens that can be performed.

Development of high-throughput epistasis-mapping technologies has made it possible to interrogate complex biological phenomena. Mapping the PPI networks and GI networks have become major methodologies to study epistasis. The PPI networks report on gene products that interact physically; (GIs, in contrast, illustrate functional relationships between genes including, but not limited to, physical interactions of their gene products. They often reveal how groups of proteins and complexes work together to carry out biological functions and can describe the cross-talk between pathways and processes. Therefore, the method for mapping GI networks in mammalian cells provides a useful, natural complement to PPI mapping methods and other existing GI mapping methods. Integrating the two types of information is extremely powerful in understanding complex biology in broader contexts of basic and translational research.

TABLE 5 Gene list and sgRNA sequences Gene name sgRNA sequence SEQ ID NO ACTL6A_1 GTGGGTGGCGGTGGAAGTTA   1 ACTL6A_2 GGCCGCGACTGCGAGTCTCG   2 ACTL6A_3 GCGCCGGCAGCAGCCATGAG   3 ACTR8_1 GCGCTGCAGCCACGACTGCC   4 ACTR8_2 GTCTCCGGCCATAATGACCC   5 ACTR8_3 GCGGCCCATCGTGCCCGCGC   6 ARID1A_1 GGCTCTGTAGGCTCGGGACC   7 ARID1A_2 GGAGAAGACGAAGACAGGGC   8 ARID1A_3 GCCCCCCTCATTCCCAGGCA   9 ARID1B_1 GCATCCTCTTCCTCCTCGTC  10 ARID1B_2 GGGGAGCAGCCCCGTCTCCA  11 ARID1B_3 GAGGCGGCTCTCAAGGAGGG  12 ARID2_1 GGAACTGCCGCAGCTCGTCC  13 ARID2_2 GAACCGGGGGGGCAGCGCCG  14 ARID2_3 GGGGTCCCGGCTGACAAGTG  15 ASH2L_1 GGAGCGGTCGCAAATGCAAC  16 ASH2L_2 GCAGCCGCTCCTCCTGGAGA  17 ASH2L_3 GTGGCCGTGATGGCGGCGGC  18 BRD7_1 GTCGGACAAACACCTCTACG  19 BRD7_2 GGGCTTCCGCTCTTTCCCAG  20 BRD7_3 GCAGGCCCAGGCCGGCGAAG  21 BRD9_1 GCTGGCACCCGGTCGGACCT  22 BRD9_2 GAGTGGCGCTCGTCCTACGA  23 BRD9_3 GCGAGCGCGGGCGGCCAGCC  24 CBX2_1 GTACTCCAGCTTGCCCTGCG  25 CBX2_2 GCTGAGCAGCGTGGGCGAGC  26 CBX6_1 GTGGGTGCCGCTGAGCAAGA  27 CBX6_2 GCTGTCTGCAGTGGGCGAGC  28 CBX6_3 GCATCGAGTACCTGGTGAAA  29 CBX7_1 GCTGTCAGCCATCGGCGAGC  30 CBX7_2 GTGCGGAAGGTGAGGCTGCC  31 CBX7_3 GCACCGCTCCCTCCACGCTG  32 CBX8_1 GCTCCTGGAAGCGGCCAAGG  33 CBX8_2 GGTGGGGGAGCGGGTGTTCG  34 CBX8_3 GCACGGAGGCCCTAGGCCCG  35 CHD3_1 GCTCCCACTCGGGCTTGGGG  36 CHD3_2 GTCTGCCGCCTTCATCACAC  37 CHD3_3 GAGGAAAAGAAATCCTCAGC  38 CHD3_4 GTTTTAGGCTACTTGGGAGG  39 CHD4_1 GCTCCGGCTCCTCCTCGCCG  40 CHD4_2 GCGCGACCTGCGGCGGCTCC  41 CHD4_3 GGCCGTGAGGGGCGTCTCTT  42 CNOT1_1 GTCGAGGAGAGCCGGAGTCG  43 CNOT1_2 GGAGCCGCCTGAGGTGAGGC  44 CNOT1_3 GTTTCTCTACAAAATGGCGC  45 CNOT2_1 GAGCCTAGGGGAGTGGAGTC  46 CNOT2_2 GCCGCCTTCTCTTCTCCCCC  47 CNOT2_3 GCAGCTCCAGATCCTAGGCC  48 CNOT3_1 GTCAGCTTCCGCGGAGCCAT  49 CNOT3_2 GTTGTTCTGACGACGGGGGT  50 CNOT3_3 GCCGCTATCGCGATAGCGCC  51 CTR9_1 GTGAGTGACGGCTCCGGCTC  52 CTR9_2 GGAGACTACCGGCTGCGGAG  53 CTR9_3 GATGGAGCCCCGCGACATGA  54 CXXC1_1 GAATGAATACAACTTGATCC  55 CXXC1_2 GAACCTCTCTGCCTGACAAA  56 CXXC1_3 GGACGGCTGTGTGCCTTGCG  57 DMAP1_2 GGCCGTTAGGAACATCCAAG  58 DMAP1_2 GCGGGCCAAGAGGAGAAGGG  59 DMAP1_3 GACCCAGGTGCGGAAGTGCG  60 DPY30_1 GAGTGGGACAGTCCACGACT  61 DPY30_2 GTGCTCCCGCGCCCAGGTGG  62 DPY30_3 GATTTCAACACGAAGACTCC  63 EED_1 GAGAAGAGGCGAAACTCAAA  64 EED_2 GCTGAAACGTCTTTGGAAGG  65 EED_3 GTAAGGTCCGTTGGATTAAG  66 ELP2_1 GGACTCCCCGCACCCGGTTT  67 ELP2_2 GTCATAGAGCACCACGGAGC  68 ELP2_3 GGTGCCACCATGTCGCCAAC  69 ELP3_1 GAAGCGGAAAGGTGCGAAAG  70 ELP3_2 GCCTGGGCGTTCGCCCCTTT  71 ELP3_3 GCAGCCACAAACTCAGACCA  72 ELP4_1 GCCAGCGTGACCAACGACAG  73 ELP4_2 GGTAGTGTTGCCGCGAGTAC  74 ELP4_3 GCAACGTCACCAGTTTCCAG  75 EP400_1 GCGTCAGGAGGGCGGGAGGA  76 EP400_2 GGTAAGTGAGGGCGGAGGCG  77 EP400_3 GGCTACGCGACCCCGGACCC  78 EPC1_1 GGCACTAACACCAGCCGGGA  79 EPC1_2 GCTGCCGGGGACTTGAGGGG  80 EPC1_3 GTTGGCTGAAGAGCGCACAG  81 EZH1_1 GTGAGTAAACAAGCCTGGGC  82 EZH1_2 GGAAATTGGAAGGAATCCGA  83 EZH1_3 GGCGCCCCTCCTCATTCCGA  84 EZH2_1 GGATTTCGGGGTGCGTCGTG  85 EZH2_2 GCTGCCCTCGCCGCCTGGTC  86 EZH2_3 GGGGATGTACACAATGAAGT  87 HCFC1_1 GAAAGGAGCAACAAGCGCCG  88 HCFC1_2 GGGCTACGACTGAGGAAGGG  89 HDAC1_1 GGGACGGGAGGCGAGCAAGA  90 HDAC1_2 GGCTGAGGCTGGAGCGCCGA  91 HDAC1_3 GCTCGGAGAGGAGGCTGCGA  92 HDAC2_1 GGCTCGGTACCACCCGGCAG  93 HDAC2_2 GGCGATAGTCCCGCGGGGAA  94 HDAC2_3 GGCACCAACTCGCGAGGAGG  95 IKBKAP_1 GTTTGGGCAGATGGGCAAGA  96 IKBKAP_2 GCCTGGCACCGTAGAGGTAG  97 IKBKAP_3 GGCGAGGCCGGGCCCGCTTC  98 ING3_1 GAGGGAACAAGGGGGTCCAG  99 ING3_2 GGAAAGTGAGTGCGCGGCGC 100 ING3_3 GAGTTTTGTCCCCTCCAATA 101 INO80_1 GGGGTCCCAGGAGCCGCGGA 102 INO80_2 GGTTCGCTCTCTGAGGCCGT 103 INO80B_1 GAAAGGGGACTAGAAATGGT 104 INO80B_2 GCGGCGTGGGAGCACCTCTG 105 INO80B_3 GCGAATAGATCAAGCAATTT 106 INO80C_1 GAAGACTCGGAGTGCGATGG 107 INO80C_2 GTTCCGGACTATTCCGGGAG 108 INO80C_3 GGAAGTTCCAAGGCCCGCGC 109 INO80D_1 GGCTGACAGATCAGAGTGAG 110 INO80D_2 GGAGCCCGGGGATGTGGGCC 111 INO80E_1 GGTAGCGGGAGGGCAGACTC 112 INO80E_2 GTCATGAACGGGCCGGCGGA 113 INO80E_3 GTGCTGCCGCGGGAAGGCTG 114 JARID2_1 GACTCGGCGAGCCCTCGCTG 115 JARID2_2 GTTACATCTTGGAAAAGAAA 116 JARID2_3 GGGGGGGGAGTGAAGGGCGT 117 KAT5_1 GCAAGACTGCCCCTGTGACT 118 KAT5_2 GCCTCACGAAGCCCCTGTAG 119 KAT5_3 GCCACTGGCTGTGCACGTTA 120 KDM1A_1 GACAGAGCGAGCGGCCCCTA 121 KDM1A_2 GGCGGCCCGAGATGTTATCT 122 KDM1A_3 GCGTGAAGCGAGGCGAGGCA 123 KDM2B_1 GCTCGGCTTCCATACCTATA 124 KDM2B_2 GCGGACCCGCCATGTGGAGG 125 KDM2B_3 GTCGGCCACACAGGTAATGT 126 KDM6A_1 GCAGCCACAGGCGGGGACGG 127 KDM6A_2 GAAAGCCGCCGCTGCCGACC 128 KDM6A_3 GGAGCACTGAGGGGATTCGT 129 KMT2A_1 GAGGCGGCGGCCGCTCCCCC 130 KMT2A_2 GGCCGGCCCTGAAGAGGCTG 131 KMT2A_3 GGCGCTTCCCCGCCCGACCC 132 KMT2D_1 GATAAAGATTCAGAACCGGC 133 KMT2D_2 GTGCCAGGACCAGAAATGTA 134 KMT2D_3 GAGATTATCCAAAACCTGAG 135 LEO1_1 GTGAGCGATAATGGCGGATA 136 LEO1_2 GCGAAGCTGAGCGTAAAGGT 137 LEO1_3 GCGTGGCAGGCCTTCCGCTG 138 MBD2_1 GGATTCCAAGGGCTCGGTTA 139 MBD2_2 GGGCTGGATGCGCGCGCACC 140 MBD2_3 GGACCTAAGAGGCGGTGGCC 141 MBD3_1 GGAAGAAGTGCCCAGAAGGT 142 MBD3_2 GAGCCCGTTGAGGCCCTGCG 143 MBD3_3 GCGCAATGGAGCGGAAGAGG 144 MED1_1 GATCAATCTGAAGTCCCCGG 145 MED1_2 GGCTCGGGATCCCGGGACGC 146 MED1_3 GAAGCTAGATCCGCCACAAA 147 MED10_1 GGAGAAGTTTGACCACCTAG 148 MED10_2 GTTGAGCCCGGCCTGGCTGC 149 MED10_3 GGTCTCCCCAGGGCCTGGCC 150 MED12_1 GCGGCCGAGAGACAACAAGG 151 MED12_2 GAGGGAGCCGAAAAGGGGGG 152 MED12_3 GTAGCGCCGGAGGCACCAGC 153 MED13_1 GCCGGCGGCGGCTGCTGTGA 154 MED13_2 GGTTACAGTGACAATCTTCC 155 MED13_3 GGTGCGCCCTTGGGCCGTGG 156 MED14_1 GACTCTGCCCGCTCCCGTTT 157 MED14_2 GTGTGCCGTTGCGCCAAGCC 158 MED14_3 GTGGTTCTCCAGCTGCACTG 159 MED15_1 GATACGGGCGGCGGGAGCTG 160 MED15_2 GGTCAGTCAAATGTGAGTAG 161 MED15_3 GCCGCCTCAGTCACAGAGCC 162 MED17_1 GGGAGCTTGCGGTGCGTTCT 163 MED17_2 GCGTTGCGTTCGGTTTCCCG 164 MED17_3 GAGGCTTCCCTGCGGAGAGC 165 MED23_1 GGAATATAGGGGCAGAGGGG 166 MED23_2 GGCGGGGGTGATAGTACAGA 167 MED26_1 GGCGGCTCCTCCTCCTCCTT 168 MED26_2 GTCACTCACTCGCCGGCCTC 169 MED26_3 GGCGTCTCCGCAGCAGATCA 170 MED4_1 GCGGCTGCTGTCTGCGCTTG 171 MED4_2 GGCGAGCCTGAGAGCCGGGC 172 MED4_3 GGAGCGGCTGGGAGGCGGTT 173 MED6_1 GTTTCGCTAGATCACAGCCT 174 MED6_2 GATTGTCTGTGGACCAGTTT 175 MED6_3 GCGTTTACAGGTTCTCTTTC 176 MED7_1 GAAAGACGAAAGACCGCCTT 177 MED7_2 GTGCGGTCTCTCCGAGAGCG 178 MED7_3 GGCTCTAAGCGTGGCAGTCT 179 MED8_1 GACCGAGAGTGGGCTGGCTA 180 MED8_2 GGCAGAACCCACGGCTGATA 181 MED8_3 GCGTTGGGCGTACTAGCGGC 182 MEN1_1 GTGGGATGTAAGCGCGGAGG 183 MEN1_2 GACAGACTTTACAGCCCCGG 184 MEN1_3 GGACTCTCCTTGGGGTTTGG 185 MRGBP_1 GCTCGGCCGGGCCGCGGCCA 186 MRGBP_2 GCCGCAGGCGACAAGGGCCC 187 MRGBP_3 GACAGTGGTGTGGAGCCCCG 188 MTA1_1 GCCGCCAACATGTACAGGGT 189 MTA2_1 GTTGGGCTCTGCCGGCCGCA 190 MTA2_2 GAACGAGCTCGGCTCCTGCC 191 MTA2_3 GCCTCAGCGTCCCGGAGTG 192 MTA3_1 GCCCCAGAACGTGGGGGCCG 193 MTA3_2 GTCCAGGCGCGCTACACGTT 194 MTA3_3 GGGGAGGAACGCCTTGTCAC 195 NCOA6_1 GTCGGGCTGGCTTCGCGGGG 196 NCOA6_2 GACCGTGCCACTCGGTCGCC 197 NCOA6_3 GACGGCGGCGCGGGCCCGTA 198 OGT_1 GCTCTGGAGGGCTTGAGCGG 199 OGT_2 GCTCCAGATGGCGTCTTCCG 200 OGT_3 GATGGTCAATTAGAGTTCCC 201 PAF1_1 GTGAACGCGCAGGCAGCACC 202 PAF1_2 GCGGAAAGTGGGTTGAGATG 203 PAF1_3 GCGGCCTGAGGAGACCCGTT 204 PBRM1_1 GGGTAAGGCCGGGCCCAGGG 205 PBRM1_2 GGCCCGGCAGCTGACCAAGG 206 PBRM1_3 GCAGGTGCGACAAGGCTACT 207 PCGF1_1 GCCTCATCGCGATCGCAATC 208 PCGF1_2 GATGGACCCGCTACGGAACG 209 PCGF1_3 GTCGGCCAGCGGTGCGAATT 210 PCGF2_1 GCTTACCTGGGTTCGGGGTC 211 PCGF2_2 GCCTGTAACCCTCTGGGGAT 212 PCGF2_3 GGGGGGTGCGAAGGCAGGAT 213 PCGF6_1 GTAGGCGCTGCCAAAACCGA 214 PCGF6_2 GGCGCCTCTGTCTGAGACGG 215 PCGF6_3 GGTGTCTCTCCCGACCATGG 216 PHC1_1 GAAGGTAACCGGGCGACCGA 217 PHC1_2 GGGCGTTACACAGATGGAGG 218 PHC2_3 GCTCAGCGCCGGAGGTAGGC 219 PHC2_1 GACTGGCAGCTCATTCTCCA 220 PHC2_2 GTACACAGAAATCTGGGGCC 221 PHC2_3 GGTAAGAGTCTAATTGATCT 222 PHC3_1 GTGACTGATGTCGTAACTAG 223 PHF10_1 GGGCCCACGCCCCGGCACCC 224 PHF10_2 GTCGCTGTCGCACGGCCGCG 225 RBBP4_1 GGCACCCTCACCTTCCTTGT 226 RBBP4_2 GCTGAGCCGCGGCCTCGACA 227 RBBP4_3 GGGGGCGCAGGAAACAATAG 228 RBBP5_1 GTTGTTGCCGGAGCTGAGAC 229 RBBP5_2 GCTGCGTTTTAGAGAAGCGT 230 RBBP5_3 GGTGGACGCCGCGAAGAGAC 231 RBBP7_1 GGAGCGCAGCCGCTGGAGGA 232 RBBP7_2 GCGCGCGCGTTGACCGCCTC 233 RBBP7_3 GCCCTTGTCCGGGGGTTGCT 234 RTF1_1 GGCGGGCAAGAGGGGAGTCC 235 RTF1_2 GGACCACCATGGTAAAGAAG 236 RTF1_3 GCGCGGGCCGGCGGAGCCAG 237 RUVBL1_1 GGGCGCACTGTCCTAGCTGC 238 RUVBL1_2 GCCTCCCACAGCCACGTGAA 239 RUVBL1_3 GCAGGCGGCCTCAGGGCTTG 240 SAP18_1 GGTCAGGGCGAGCGTCTCGC 241 SAP18_2 GGAGTCGCGCGTTACCCAGG 242 SAP18_3 GATCGACCGCGAGAAGGTGA 243 SAP30_1 GTGAGCGGGGTCCCCGCTCC 244 SAP30_2 GGCCCGGGACAGTTGGTGTT 245 SAP30_3 GCAGAGTGAATTGCCGCTGC 246 SETD1A_1 GAATAGCCCGCTTCTGTCCC 247 SETD1A_2 GCCAGCAGGGATTGGCTAAC 248 SETD1A_3 GACTCCACCAAGGCGGATGA 249 SETD1B_1 GGTTCCTCCTCTCGCCCGAA 250 SETD1B_2 GATTGACCCGGCTCTGAAAA 251 SETD1B_3 GCACGGCTGGGGGGGCGCGC 252 SIN3A_1 GGGCTAGTCCGCCGGCCGCT 253 SIN3A_2 GCTCGGTCCCAGGGCCCGCA 254 SIN3A_3 GGCCTGTCCCTCGCCTACCT 255 SIN3A_4 GCGGCCGCTTCTCTGTTACC 256 SIN3A_5 GCCTGTGACCGCTTCGTTAG 257 SIN3B_1 GGGACGCCACTCACGTGCAC 258 SIN3B_2 GAGGGCCGAGGTGAGAGGTG 259 SMARCA4_1 GGGCGGTTTGAATGGAGCCG 260 SMARCA4_2 GGCGCGCCCTGTGCGGGGCC 261 SMARCA4_3 GGGAAGGCCACAGTGTCGCG 262 SMARCB1_1 GGCCTGGTCGTCGTCTGCGG 263 SMARCB1_2 GGGCCGAGGGAAACCGAAGC 264 SMARCB1_3 GCGAGGGATCAGGAGGGCTG 265 SMARCC1_1 GCTGTTTATCGACGGAAGGA 266 SMARCC1_2 GACGGTGTCCCAGCTGGATT 267 SMARCC1_3 GGTGGGTTCGCGCGCCCGTG 268 SMARCC2_1 GACAACGTGCGGCTGTGGCT 269 SMARCC2_2 GACCGCGGCCCTGCAGCCCC 270 SMARCC2_3 GCCTCGTAGTACTTCACGTT 271 SMARCD1_1 GTGGCTCCAAGCGGCGGCGC 272 SMARCD1_2 GCCGCACAAAGAACCGGAAC 273 SMARCD2_1 GACTCGGGCGGCCAAACCTC 274 SMARCD2_2 GCCCGGGAGATTCCGGATCC 275 SMARCD2_3 GGAACTCGCGAACTTGGATT 276 SMARCD3_1 GAATGGGAGTCTGCCAGTCA 277 SMARCD3_2 GCCAGGCAGCGATGGGGAGG 278 SMARCD3_3 GAAAGTGCTCGGCAGGGGGG 279 SMARCE1_1 GCGGGTGAGTGTTTCCAAGT 280 SMARCE1_2 GAACTCGGGGTCTAGCCAAG 281 SMARCE1_3 GGCCTCAAGGAGGCCTCAAC 282 SRCAP_1 GTCAGTCCGTCGGGAGGGCT 283 SRCAP_2 GCTCGGGTCTTGGGAACGTG 284 SRCAP_3 GTGTGAACCCGCAGGAGGCC 285 SUZ12_1 GGGCGAGCGGTTGGTATTGC 286 SUZ12_2 GGCGGGTAGCTGGCGGGGGG 287 SUZ12_3 GCCTCAGAAGCACGGCGGTG 288 THAP1_1 GTGATGGTGGCCTCCCTCGG 289 THAP1_2 GTTCTCAGTGTCGCTGCGCT 290 THAP1_3 GCTAATGCAAACAACAAAAC 291 THAP3_1 GCTGCCCCCAACAAAGATGG 292 THAP3_2 GGGTCCCCGCCTCTTACCGG 293 THAP3_3 GGGCCCGCGGACCGACTCCG 294 THOC1_1 GCTTCGGGCAAACTGAAGAG 295 THOC1_2 GGCAAAATTCGAGTAATTTC 296 THOC1_3 GTCCGCCTCAGCGTCCGCTC 297 THOC2_1 GAGGCGAATTGTGAGTGTTC 298 THOC2_2 GCTGCACTCTCACCTGTAGT 299 THOC2_3 GACCATCCACGCCCGCCGCC 300 THOC3_1 GCTGCTGCAGTGTTGTGAGT 301 THOC3_2 GGCGGTCCCCGCTGCAGCCA 302 THOC3_3 GCCCCGGCTCGATGGCCCCG 303 TRRAP_1 GGGTCGCGGGCCGGGCCTGC 304 TRRAP_2 GGCGGGCGTCCGAACGGCCC 305 TRRAP_3 GCGGCCGAGCGGTTGCGACG 306 WDR5_1 GGCCGCACAGGAGACAAGGG 307 WDR5_2 GCTCTGGCGGCCTCGGTCTC 308 WDR5_3 GGCACGCACCTTGCTCTGAG 309 WDR82_1 GAGGTGGCTGTGAGGACGAA 310 WDR82_2 GGAGGAGGCGGCCCAACTGT 311 WDR82_3 GCGGAGCTTCCGCGTCGCTA 312 DC13_1 GGGCTGAACGCGTATTCGCG 313 DC14_1 GGCGATTCGGCGACCTTAGT 314 DC14_2 GGCGCGAGTACGAAATTAAT 315 DC14_3 GATTATCAGACGCGCTGCGT 316 DC15_1 GCGCGGCTAGAATAGACTTG 317 DC15_2 GGTTCGTGCGGTAGTGTGCG 318 DC15_3 GTATCGTCTTCCGTCCTCGT 319 DC15_4 GGCTACTCTATGCGTCGATT 320 DC15_5 GCTTAACAAAGCGAGCGACC 321 DC15_6 GGCACTGGACGATATCCGAC 322 DC15_7 GTTCATCTCAACGGTAATCG 323 DC1617_1 GGTTATATTGACGTCCTGCC 324 LC_1 GCTAGTCTGCGTGACGCGTCT 325 LC_2 GAAGTAACTGAAGGATCAATAT 326 LC_3 GCGGGAAAACCGCGCCCCGGA 327 LC_4 GCTCAGGGCCGTGACGCGTGGG 328 LC_5 GTAGGAGCGCGTGCTGATTGT 329 LC_6 GGACGAACTAATGTATTGTGGC 330 LC_7 GGTTTATGGACCTTCAGGGAG 331 LC_8 GGCGTACCCGTGGTTTCACCGT 332 LC_9 GCTTGGGAGCAAGCCGGCGGTA 333 LC_10 GTGTGGCGACCCTGGTCTCAT 334 LC_11 GGGCCTCTGTGAGGTCGTGGT 335 LC_12 GTATGATACTCGTGCTTAGT 336 LC_13 GCGAAGTCGAATGTTGGTCG 337 LC_14 GGCCCAACATCCTCGTGTCCA 338 LC_15 GTGGCGGAGCCTAGCCGAGAGT 339 LC_16 GGCGCGAACTTTAAGGTGGAC 340 LC_17 GATTAGTTCGCGTATGGCAGCA 341 LC_18 GCCGTAAGGACGGGTAGAGGT 342 LC_19 GGGGGCGGAAATCGAGCCCT 343 LC_20 GAAGTGAGAGGAGGGAGCAGCC 344 LC_21 GTAAATCCCGGAGTCAGA 345 LC_22 GTGAGCGGCGACCCCCCCTG 346 LC_23 GGTGCGGACCCCCGCCGGGGG 347 LC_24 GGTGAGCCGGTTTGTGAGAAG 348 LC_25 GAGAGTGCGCTGCAATGGATAT 349 LC_26 GGATGTGCCATGGTGAGGGCTG 350 LC_27 GGATGCGCCTAGGCGAAAGAAA 351 LC_28 GAGCCGATGCAGGGCGTAGGG 352 LC_29 GCCATTCTCTATGTTCGATAAG 353 MCM2_PC GGATCGTGGTACTGCTATGG 354 INTS9_PC GGCAGGTGGCGGAGATTGCAC 355 GEMIN5_PC GGCGTGAGGCTACGAGCGGT 356 CENPA_PC GCCAAGCACCGGCTCATGTG 357 POLR1D_PC GGAAGCAAGGACCGACCGA 358

TABLE 6 Regular primers for cloning and sequencing primers to clone single sgRNA: Forward  GGAGAACCACCTTGTTGGN19GTTTAAGAGCTATG primer CTGGAAACAGCA (SEQ ID NO: 359) (N19 is the targeting sequence): Reverse  CTAGTACTCGAGNNNNNNNNNNGCGTCGACCCTAG primer  GGCTAGCACTAGTAAAAAAAGCACCGACTCGGTGC  (N10 is the CAC (SEQ IDNO: 360) barcode sequence): PRIMERS TO AMPLIFY GENOMIC DNA FOR SINGLE  SCREENS: Forward  AATGATACGGCGACCACCGAGATCTACACGGTAAT primer: ACGGTTATCCACGCGG (SEQ ID NO: 361) Reverse  CAAGCAGAAGACGGCATACGAGATNNNNNNNNGCA primer  CAAAAGGAAACTCACCCT (SEQ ID NO: 362) (NNNNNNNN is the index): CUSTOM PRIMERS FOR M1SEQ: Read2  GTGTGTTTTGAGACTATAAGTATCCCTTGGAGAAC primer: CACCTTGTTGG (SEQ ID NO: 363) Index read  GTCTCAAAACACACAATTACTTTACAGTTAGGGTG primer: AGTTTCCTTTTGTGC (SEQ ID NO: 364) PRIMERS TO AMPLIFY GENOMIC DNA FOR DOUBLE  SCREENS: Forward  AATGATACGGCGACCACCGAGATCTACACTGAGAC primer: TATAAGTATCCCTTGGAGA  (SEQ ID NO: 365) Reverse  CAAGCAGAAGACGGCATACGAGATNNNNNNCTGGC primer GAACTACTTACTCTAGCTTCCCGGCAACGCCTTAT (NNNNNN  TTAAACTTGCTATGCTGT is the (SEQ ID NO: 366) index): CUSTOM PRIMERS FOR H1SEQ-2500: Read1  CGAAGTTATAAACAGCACAAAAGGAAACTCACCCT primer: AACTGTAAAGTAATTGTGTG  (SEQ ID NO: 367) Index read  GTTTAAATAAGGCGTTGCCGGGAAGCTAGAGTAAG primer: TAGTTCGCCAG (SEQ ID NO: 368) Read2  GCACCGACTCGGTGCCACTTTTTCAAGTTGATAAC primer: GGAC (SEQ ID NO: 369)

TABLE 7 qPCR primer sequences Gene name Forward primer Reverse primer SIN3B TTACTGCATGTCCAAGTTCAAGA CCAGGTGTCGTTCAGTA (SEQ ID NO: 370) CCC (SEQ ID NO: 371) MED4 GGTGGTAACAGCACACGAGA TTGCCAGCATTTCTATA (SEQ ID NO: 372) AGTTCC (SEQ ID NO: 373) MED6 TGCAGAGGCTAACATTAGAACAC GCTGTTGCTTCCGAATG (SEQ ID NO: 374) ATGA (SEQ ID NO: 375) MRGBP TGAACCGACACTTCCACATGA TGGTCCCAGATGACCTT (SEQ ID NO: 376) GGAT (SEQ ID NO: 377)

Example 3 Repression Screening Platform

Besides gene activation, gene repression also can facilitate cell fate conversion. For example, knockdown of many epigenetic modulators increases the efficiency of reprogramming or transdifferentiation processes. This example describes, a repression screen platform to identify cell fate conversion barriers genes.

To perform gene repression screens, a clonal mouse ES cell line carrying Staphylococcus aureus (SaCas91-KRAB is co-transfected with Cas9, sgRNA targeting mouse Rosa 26 loci, and a vector containing dCas9-KRAB with a Zeocin-resistance gene. Zeocin-resistant cells are sorted into a 96-well plate. After a week of culture, the genome is purified and the correct integration of SadCas9-KRAB into Rosa 26 loci is confirmed. This clonal cell is used as a platform to identify gene barriers of differentiation processes.

To perform single gene repression screens, a genome-wide gene repression SadCas9 sgRNA library is generated. The library includes sgRNAs targeting −50 bp to +300 bp region relative to all putative genes in the mouse genome. All the available sgRNAs are blasted through mouse genome and excluded if there is predicted off-target binding. Other design criteria and construction method are similar to the design of activation sgRNA library described in Example 1. This repression library is transduced into the SadCas9 repression mouse ES cells, and neural differentiation is performed as in the single screen. On day 12, cells are harvested and sorted for hCD8+ and hCD8−. The sgRNAs are sequenced, paired-analyzed for enriched genes in hCD8+ and hCD8− populations, and a list of top hits for neural differentiation barrier genes is identified.

Over the past years, the literature has shown that the activation of combinatorial transcription factors can control a cell fate. For example, the transcription factors Oct4, Klf4, Sox2, and c-Myc are used to reprogram somatic cells to induced pluripotent stem (iPS) cells. Moreover, activation of combinatorial transcription factors also induces the generation of many cell types, such as cardiomyocytes, neurons, and hepatocytes, directly from somatic cells. These works indicate that single TFs are not sufficient to achieve a cell fate conversion process in most cases. Thus, a platform that allows combinatorial screen is in urgent need to facilitate cell fate determination studies.

To perform a second-round combinatorial activation screen, an sgRNA library that achieves double gene activation is generated. In this library, two different sgRNA cassettes are constructed into one vector. The first cassette contains sgRNAs targeting top hit genes from the single activation screen, which are driven by a human U6 promoter. Meanwhile, each vector contains the second cassette, which is a sgRNA with a different stemloop sequence driven by a mouse U6 promoter. The sgRNAs of the second cassettes also target top hit genes from the first round activation single screen. This construct expresses sgRNAs targeting two different genes, as well as avoids recombination of repeated sgRNA sequences. Two different sgRNAs bind to dCas9 and achieve the activation of two different top hit genes simultaneously in the dCas9-activation system. This allows the combinatorial double activation screen.

In some embodiments, this double activation library is transduced into CamES cells, and neural differentiation is performed as in the single screen. On day 12, cells are harvested and sorted for hCD8+ and hCD8−. The sgRNAs are sequenced and paired-analyze enriched genes in hCD8+ and hCD8− populations are identified. The screen identifies optimal TF combinations that drive neural differentiation of mouse ES cells.

Additionally, the combination of gain-of-function and loss-of-function techniques accelerates cell fate conversion, and sheds light on the fully revelation of cellular reprogramming mechanisms. However, a platform to perform gain-of-function and loss-of-function screen simultaneously is not available at present.

To perform a simultaneous activation/repression screen, a clonal ES cell line carrying gene activation/repression cassettes is generated. Vectors containing two cassettes separately are constructed. One vector contains the activation cassette, which is a dead Streptococcus pyogenes Cas9 (SpCas9)-activation system, with a eGFP gene cassette. The other vector comprises SadCas9-KRAB, with a zeocin-resistance gene cassette following. The two vectors, together with Cas9 and sgRNA targeting mouse Rosa26 loci are co-transfected into mouse ES cells. To select mouse ES cells carrying these two system, transfected ES cells are selected with zeocin. After seven days, remaining zeocin-resistant cells are analyzed with flow cytometry and single GFP+ cells are sorted into 96-well plates. One week later, the genome of clonal cells is analyzed to confirm the correct integration of both activation and repression cassettes. This clonal cell line allows the activation and repression of different genes simultaneously.

An sgRNA library that achieves gene turning-on and -off simultaneously is constructed. In this library, two different sgRNA cassettes are constructed into one vector. The first cassette contains sgRNAs of SpCas9 targeting top hit genes from the single activation screen, which are driven by a human U6 promoter. Meanwhile, each vector contains the second cassette, which is a sgRNA of SaCas9 driven by a mouse U6 promoter. The sgRNAs of SaCas9 in the second cassettes target top hit genes from the first round repression screen. This construct expresses sgRNAs of SpCas9 and SaCa9, and thus allows simultaneous gene activation and repression.

This activation/repression library is applied to clonal turning-on/off mouse ES cells, and neural differentiation is performed as in the single screen. On day 12, cells are harvested and sorted for hCD8+ and hCD8−. The sgRNAs and paired-analyze enriched genes in hCD8+ and hCD8− populations are sequenced. A series of gene combinations having both TF determinants and neural differentiation barriers is identified. The simultaneous turning-on of IT determinants and turning-off of neural differentiation barriers generates very high efficiency of neural cells of mouse ES cells.

Example 4 Experimental Procedures Plasmid Design and Construction

To clone sgRNA vectors, the optimized sgRNA expression vector (pSLQ1373) was linearized and gel purified (Chen et al., 2013). New sgRNA sequences were PCR amplified from pSLQ1373 using different forward primers and a common reverse primer, gel purified and ligated to the linearized pSLQ1373 vector using In-Fusion cloning (Clontech). Primers used to construct individual sgRNAs are shown in Table 8. To change the promoter of scFv-sfGFP-VP64, the EF1α and PGK promoters were PCR amplified, gel purified, and ligated to linearized pSLQ504 using In-Fusion cloning (Clontech).

Two-guide expression vectors were assembled by a two-step cloning procedure. First, new sgRNA sequence (integrated DNA Technologieds) were PCR amplified from pSLQ5004 and ligated into BstXI and XhoI-digested pSLQ5004 parental vector, which contained a modified human 136 promoter (hU6). The same single sgRNA expression constructs were cloned into pSLQ1373 as previously described, which contained a modified mouse U6 promoter (mU6) and an optimized stem loop sequence of sgRNA. Second, the two-guide expression cassettes were then assembled from PCR amplified single cassettes using two sgRNA forward and reverse primers from pSLQ5004-based single sgRNA constructs and inserted into NsiI-digested pSLQ1373 single sgRNA constructs. Primers used to construct individual sgRNAs are shown in Table 11.

sgRNA Library Design

Putative transcription factor (TF) genes were selected according to the TRANSFAC database, and TSS (transcription start site) for each gene was determined using the Gencode and refFlat databases. All possible transcripts were selected if multiple TSSs exist for a gene. All sgRNAs targeting −3 kb to 0 relative to TSS were kept. Using the CRISPR-era algorithm (Liu et al., 2015), the targeting sequences of sgRNAs adjacent to an NGG PAM (protospacer adjacent motif) were computed, starting with a G (for more efficient U6 promoter activity) with a length of 20 bp. The sgRNAs containing homopolymers spanning greater than 3 nucleotides (nt) were discarded. To avoid off-target effects, sgRNA sequences alignment to the mouse genome was computed using the short read aligner Bowtie, and those with less than 2 mismatches with another genomic region were excluded. Furthermore, sgRNA sequences that contained certain restriction sites (BstXI and BlpI) were also removed. sgRNAs with a GC content between 30% and 70% were kept. An average of about 60 sgRNAs were selected for each target gene. Sequences for non-targeting negative control sgRNAs were generated using a randomized mouse gene TSS region and selected using the same rules as described above.

sgRNA Library Construction

The oligonucleotide pool was synthesized by Custom Array. The oligo library was PCR amplified, gel purified and ligated to the linearized backbone vector (pSLQ1373) digested with BstXI and BlpI using In-Fusion cloning. Libraries and parental vector will be made available on addgene.org.

Cell Culture

E14 mouse ES cells and CamES cells were maintained on gelatin coated tissue culture plates with basal medium (50% Neurobasal, 50% Dulbecco modified Eagle medium (DMEM)/Ham's nutrient mixture F12, 0.5% NEAA, 0.5% Sodium Pyruvate, 0.5% GlutaMax, 0.5% N2, 1% B27, 0.1 mM β-mercaptoethanol and 0.05 g/L bovine albumin fraction V; all from Thermo Fisher Scientific) supplemented with LIF (Millipore) and 2i (Stemgent). Human embryonic kidney (HEK293T) cells (ATCC) were cultured in 10% fetal bovine serum (Thermo Fisher Scientific) in DMEM (Thermo Fisher Scientific).

Construction of the CamES Cell Line

Mouse ES cells were co-transduced with multiple lentiviral constructs that expressed dCas9-SunTag from a TRE3G promoter, scFV-sfGFP-VP64 from the EF1a or PGK promoter, and reverse tetracycline-controlled transactivator (rtTA) from the EF1a promoter. After adding Doxycycline, polyclonal cells were sorted by flow cytometry using a BD FACS Aria2 for GFP+ and mCherry+ cells. After verification of gene activation using a sgBrn2, monoclonal cells were further sorted, and one efficient cell line was chosen as CamES cells.

Construction of the Tuj-1-hCD8 CamES Cell Line

Construction of CRISPR/Cas9 vector for Tuj1 knockin. The pX330-derived pSLQ1654 encoding the nuclease Cas9 and an optimized sgRNA sequence was first linearized by a BbsI digest and gel purified. Two primers sgTuj-1 F and sgTuj-1 R were phosphorylated, annealed, and ligated to the linearized vector pSLQ1654 to generate pSLQ1654-sgTuj1. sgTuj-1 F: caccgcccaagtgaagttgctcgcagc. sgTuj-1 R: aaacgctgegagcaacttcacttgggc.

Construction of DNA template. The Tuj1-IRES-hCD8 vector (pSLQ1760) was assembled with three fragments (5′ homologous arm of Tuj1, IRES-hCD8 and 3′ homologous arm of Tuj1) and a modified pUC19 backbone vector by using Gibson Assembly Master Mix (New England Biolabs). Both 5′ and 3′ homology arms were PCR amplified from the genomic DNA extracted from mouse ES cells with Herculase 11 Fusion DNA polymerase (Agilent). The IRES-hCD8 was PCR amplified from pSLQ1729. The backbone vector was linearized by digestion with PmeI and ZraI. All DNA fragments and the backbone vector were gel purified followed by a Gibson assembly reaction. Primers: 5′ homologous arm F: aaagtgccacctgacactcagtcctagatgtcgtgegg (SEQ ID NO:380). 5′ homologous arm R: tcacttgggcccctgggct (SEQ ID NO:381). IRES-human CD8 F: caggggcccaagtgaactagtaaaattcgcccctctccctc (SEQ ID NO:382). IRES-human CD8 R: cagctgcgagcaactttaacctgcaaaaagggagcagtaaagg (SEQ ID NO:383). 3′ homologous arm F: agttgctcgcagctggggt (SEQ ID NO:384). 3′ homologous arm R: agctggagaccgttttttctgactgactggalacagggcat (SEQ ID NO:385).

Electroporation and clonal Tuj1-hCD8 CamES cells: 2.5 μg pSLQ1654-sgTuj1, 12.5 μg Tuj1-IRES-hCD8 template DNA in 100 μL Nucleofector solution (Amaxa) were electroporated into 1×106 CamES cells using program A-030. Both plasmids were maxiprepped using the Endofree Maxiprep Kit (Qiagen). After 3 days of culture, sorted single cells were seeded in a 96-well plate with one cell per well. All clonal cell lines were analyzed using PCR and sequencing (Yu et al., 2015).

Lentiviral Production

HEK293T cells were seeded at ˜30% confluence one day before transfection. Lentivirus were produced by cotransfecting with pHR plasmids and encoding packaging protein vectors (pMD2.G and pCMV-dR8.91) using TransIT-LT1 transfection reagents (Mirus). Viral supernatants were collected 3 days after transfection and filtered through 0.45 μm strainer. Supernatant was used for transduction immediately or kept at −80° C. for long-term storage.

Quantitative RT-PCR

Cells were harvested using Accutase (STEMCELL), and total RNA was isolated using the RNeasy Plus Mini Kit (QIAGEN), according to manufacturer's instructions. Reverse transcription was performed using iScript cDNA Synthesis kit (Bio-Rad). Quantitative PCR reactions were prepared with iTaq Universal SYBR Green Supermix (Bio-Rad). Reactions were run on a LightCycler thermal cycler (Bio-Rad). Primers used are summarized in Table 9.

High-Throughput Pooled Neural Differentiation Screens

The neural differentiation screens were performed as two independent replicates. For both screens, 108 CamES cells were seeded at 40,000 cells/cm2 density at day −2. Cells were transduced with pooled lentiviral sgRNA library with an MOI of 0.3 at day −1 in basal medium supplemented with LIF and 2i. At day 0, puromycin was added at 1 μg/mL in ES2N medium (Millipore) with Doxycycline for another 24 hours. Fresh ES2N medium was changed with Doxycycline every day starting day 2. On day 12, cells were harvested and sorted for hCD8+ and hCD8− cells using EasySep human CD8 isolation kit (STEMCELL Technologies). Populations of cells expressing this library of sgRNAs were either harvested at the outset of the experiment (the day 0 time point: after 24 hours puromycin selection), hCD8+, or hCD8− cells. Genomic DNA was harvested from all samples; the sgRNA-encoding regions were then amplified by PCR using HiSeq forward and reverse primers and sequenced on an lllumina HiSeq-4000 using HiSeq custom primer with previously described protocols at high coverage (Bassik et al., 2013; Kampmann et al., 2014). Primers used are summarized in Table 12.

For the individual sgRNA validation experiments, a similar protocol was used, except that CamES cells were cultured in basal medium seeded at 5,500 cells/cm7 after puromycin selection and transduced with a high MOI. Top 100 hits are summarized in Table 10.

Combinatorial sgRNA Library Construction

A library of 44 sgRNAs including a set of 19 genes was designed by using the top prediction hits from the single screens and six nontargeting negative-control sgRNAs. Any sgRNAs containing NsiI restriction sites, which were used for combinatorial sgRNA library construction, were excluded. Individual oligonuclotides encoding sgRNAs were synthesized in a 96-well format (Integrated DNA Technologieds), and cloned into pSLQ1373 individually as previously described. At the same time, the same sgRNA sequence was synthesized (Integrated DNA Technologies) using different forward sequence. These sgRNAs were cloned into pSLQ5004 individually as previously described. After sequencing validation, all pSLQ1373-sgRNA constructs were manually mixed and all pSLQ5004-sgRNA constructs separately mixed in equal amounts for combinatorial sgRNA library construction. To generate the pooled combinatorial sgRNA library, the sgRNA sequence were PCR amplified using two sgRNA forward and reverse primers from pooled pSLQ5004-sgRNA constructs, gel purified and ligated into the NsiO-digested pooled pSLQ1373-sgRNA constructs using In-Fusion cloning (Clontech). The combinatorial sgRNA-library pools were prepared in Stellar competent cells (TaKaRa) and purified with a Plasmid Maxi Kit (Qiagen). The representation of each of the double-sgRNA constructs was then quantified by NGS with the oligonucleotides listed in Table 11.

High-Throughput Pooled Combinatorial Screens

The double neural differentiation screens were performed as two independent replicates. For both screens, 6 millions CamES cells were seeded at 40,000 cells/cm2 density at day −1. Cells were transduced with pooled lentiviral double sgRNA library with an MOI of 0.3 at day 0 in basal medium supplemented with LIF and 2i. At day 1, puromycin was added at 1 μg/mL in basal medium with Doxycycline for another 24 hours. Fresh basal medium was changed with Doxycycline every day starting day 2. On day 12, cells were harvested and sorted for CD8+ and CD8− cells using Aria II cell sorter (BD Biosciences). Genomic DNA was harvested from all samples; the double sgRNA-encoding regions were then amplified by PCR using MiSeq forward and reverse primers and sequenced on an Illumina Miseq using HiSeq custom primer, which for the first sgRNA, and MiSeq custom primer, which for the second sgRNA. Primers used are summarized in Table 12.

For the individual double sgRNA validation experiments, a similar protocol was used, except that CamES cells were transduced with a high MOI.

Primary Neurons Culture, Primary Astrocytes Culture and Induced Neurons Replating

Primary cultures of cortex neurons were prepared from postnatal day 1 wild-type black rat. Rats were decapitated, and their brains were removed in pre-cooled physiological saline. The cortex was dissected. Tissues were slightly minced and placed into a Papain Dissociation solution (Worthington Biochemical Corporation) containing 20 units/ml papain and 0.005% DNase in Earle's Balanced Salt Solution (Thermo Fisher Scientific). The solution was equilibrated in 95% O2, 5% CO2 before the tissue was incubated at 37° C. for 1 hour. After incubation, the tissue and solution mixture was triturated. Undissociated tissue was allowed to settle and the cloudy suspension was removed and centrifuged at 300×g for 5 minutes. The supernatant was then discarded and the cell pellet was resuspended in a DNase/albumin-inhibitor solution. A discontinuous density gradient was prepared by gently layering the cell suspension on top of an albumin-inhibitor solution in a centrifuged tube. The mixture was centrifuged at 145×g for 5 minutes. The supernatant was discarded and the neurons were resuspended in Neurobasal (Invitrogen) medium containing 2% B27 supplement, 2 mM glutamine and 0.5% penicillin/streptomycin. A total of 250,000 cells were plated onto a well of 24-well plates that had been pre-treated with 12.5 μg/ml poly-D-lysine (Sigma). The plates were incubated at 37° C. in a 5% CO2/95% air incubator and half of the medium was changed every three days.

Rat Primary Cortical Astrocytes (Thermo Fisher Scientific) were cultured and plated according to manufacturer's instructions. The astrocytes were fed every three days with fresh medium.

One week after culturing primary neurons and astrocytes, the induced neurons were gently removed from the dishes by trypsin dissociation and were replated onto primary neurons or astrocytes. Electrophysiological recordings were performed between day 14 and day 21 after replating.

Generation of Induced Neurons

Preparation Before Induction

    • 1. Embryonic skin-derived fibroblasts were isolated from E13.5 embryos of C57BL/6 mice as previously described (2010 nature, Vierbuchen et al.). Isolated fibroblasts were cultured and expanded in MEF media (Dulbecco's Modified Eagle Medium, Life Technologies) containing 10% Fetal Bovine Serum (Life Technologies), non-essential amino acids (Life Technologies), and sodium pyruvate (Life Technologies)) for 2 passages before use. Tail tip fibroblasts were isolated from the bottom third of tails from 4-day-old pups as previously described. Tail tip cells were expanded for 2 passages in MEF media before use.
    • 2. Matrigel (growth factors reduced; BD Biosciences) was thawed on ice according to the manufacturer's instruction and dilute it in pre-cold PBS with a ratio of 1:30.
    • 3. Diluted matrigel was added to 24-well plates. It was ensured that the quantity used was sufficient to cover the entire growth surface of the plates and keep the plates in 37° C. for 30 minutes to be ready to use.
    • 4. Passage 1-2 MEFs were thawed and seeded into the matrigel-coated plates at a preferentially density of 25,000 cells per well of a 24-well plates. Cells were grown in the MEF medium for 4-5 days until confluent.

Induction of Induced Neurons

    • 1. When MEFs were grown confluent, cells were infected with lentiviruses containing expression constructs of rtTA (driven by ubiquitin promoter) and additional lentiviruses overexpressing Asc11-Neurog1/Ezh2-Foxo1/Brn2/Nr4a1/Dmrt3/Jun/Suz12/Nr3c1/Tcf15/Zeb1/Mecom/Hoxc 8/Nr2f1 (driven by Tet-on promoter) in the presence of polybrene (8 mg/ml).
    • 2. The next day, media was exchanged with basal medium (50% Neurobasal, 50% Dulbecco modified Eagle medium (DMEM)/Ham's nutrient mixture F12, 0.5% NEAA, 0.5% Sodium Pyruvate, 0.5% GlutaMax, 0.5% N2. 1% B27, 0.1 mM β-mercaptoethanol and 0.05 g/L bovine albumin fraction V; all from Thermo Fisher Scientific) containing doxycycline (2 mg/ml).
    • 3. Culture medium was refreshed every 3-4 days during the induction period.

Maturation of Induced Neurons

After lentiviruses infection for about 14 days (extensive neurites outgrowth should be observed in this stage), the induced cells were progressed for further maturation: Re-plate and co-culture directly with primary neurons/astrocytes.

    • 1. Mouse primary postnatal cortical neurons or astrocytes were isolated and cultured for about 6 days before re-plating the induced cells.
    • 2. The induced cells were dissociated by using 0.05% trypsin from the culture plate.
    • 3. Cells were centrifuged for 3 min at 1000 rpm at room temperature.
    • 4. The supernatant was discarded, fresh differentiation medium (basal media with addition of 200 μM ascorbic acid, 2 μM db-cAMP, 25 ng/ml BDNF, 25 ng/ml NT3, and 50 ng/ml GDNF) was added to gently re-suspend the cells and cells were re-plated to co-culture with pre-existing primary neurons/primary astrocytes.
    • 5. Re-plated cells were co-cultured for about 14 days or longer (depending on the maturation process of the induced cells, which can be observed based on the development of the extensive neuritis outgrowth) to become functional mature. Half of the maturation medium was changed every 2-3 days.

Flow Cytometry, Cell Surface Staining and Cell Sorting

The antibody CD8-APC was purchased from BD Biosciences. and Anti-PSA-NCAM-APC was from Miltenyi Biotec. Cells were harvested, washed, and adjusted to a concentration of 106 cells/mL in ice cold PBS with 2% FBS. Cells were stained and incubated with diluted primary antibodies at 4° C. for 30 mins in Eppendorf tubes. After staining, cells were washed three times by centrifugation at 400 g for 5 mins and resuspended in 500 μL to 1 mL in ice cold PBS. Cells were kept in dark on ice and analyzed using BD Accuri C6 Cytometer. Cell sorting was performed by using Aria II cell sorter (BD Biosciences).

Immunocytochemistry

Experiments were performed on cells seeded on plate (IBIDI) that had been coated with gelatin (0.1%) overnight at 37° C. Cells were washed twice with PBS, fixed in 4% Paraformaldehyde (Wako) for 15 mins at room temperature, permeabilized and blocked with 0.1% Triton X-100, 5% donkey serum in PBS (blocking buffer) for 1 h at room temperature. After three times wash with PBS, cells were incubated with primary antibodies. The following primary antibodies with indicated dilution in blocking buffer were used: Rabbit anti-Oct4 (Santa Cruz, 1:200), Mouse anti-Tuj1 (Covance, 1:1000), Rabbit anti-Map2 (Cell Signaling Technology, 1:200), Rabbit anti-NeuN (Abcam, 1:1000), Rabbit anti-vGluT1 (Synaptic Systems, 1:200), Rabbit anti-GFAP (Dako, 1:500), Rabbit anti-Olig-2 (Millipore, 1:500), Rabbit anti-Tbr1 (Abcam, 1:100), Rabbit anti-Synapsin I (Abcam, 1:200), Rabbit anti-GABA (Sigma, 1:250). Cells were incubated with primary antibodies at 4° C. for overnight, then washed three times with PBS. After staining with corresponding secondary antibodies in blocking buffer for 1 hour at room temperature, cells were washed three times with PBS and stained with DAPI (Vector Labs) for 5 mins. Washed cells were examined using a Nikon Spinning Disk Confocal microscope with TIRF.

Efficiency Calculation

The following method was used to calculate the efficiency of neuronal induction. The total number of Map2+ cells with a neuronal morphology, defined as cells having a circular, three-dimensional appearance that extend a thin process at least three times longer than their cell body, were quantified 14 days after infection. The Map2+ and DAPI+ cells were counted from at least 20 randomly selected images at 20× magnification for each condition. The Map2+ cell number was divided by the number of DAPI+ cells to get a percentage of neuron-like cells.

Electrophysiology

Lentivirus infections (with an additional sfGFP-expression virus) and transgene induction were performed similarly to as described for the fibroblast-induced neurons production, using basal medium. Patch-clamp electrophysiological recordings were performed on sfGFP positive fibroblast-induced neurons. GFP positive neurons located using a Lambda DG-4 illumination system and Q Imaging Fast 1394 Rolera-Mgi Plus camera controlled by Micro-Manager (Version 1.4) mounted on an Olympus BX51WI fluorescence microscope. Whole-cell responses were recorded using an MultiClamp 7008 (Molecular Devices) amplifier and headstage and low-pass filtered at 10 KHz before digitization using a DigiData 1440 data acquisition system (Molecular Devices). Data was stored on a PC running pClamp software (Version 10.4, Molecular Devices). Patch-pipettes were fabricated from 1.5 mm OD borosilicate capillary glass (Warner Instruments) using a microipette puller (Sutter Instrument, Model P-87) to give tip resistances of 2-4 MO. The series resistance for all recordings was under 10MΩ (Mean: 5.62MΩ, SEM: 0.38, n=12). Capacitance transients and series resistance errors were compensated for (70%) using the amplifier circuitry. The sodium and potassium currents currents were recorded in the voltage-clamp configuration at a holding potential of −80 mV. Spontaneous postsynaptic currents were recorded in the voltage-clamp configuration at a holding potential of −60 mV or −70 mV. Spontaneous action potentials were recorded in neurons held at −60 mV to −80 mV. Action potentials were also evoked by applying depolarizing current.

All experiments were performed at ambient room temperature (25° C.). The external solution contained (in mM): NaCl (130), HEPES-Na (10), KCl (5), CaCl2(2), Glucose (10). For voltage-gated sodium currents, tetraethylammonium (TEA, 5 mM) was added to the external solution and the internal solution contained (in mM): CsF (120), HEPES (10), EGTA (11), CaCl2 (1), MgCl2 (1), TEA-Cl (10), KOH (11). For voltage-gated potassium currents, tetrodotoxin (TTX, 500 nM) was added to the external solution and the internal solution contained (in mM): KF (120), HEPES (10), EGTA (11), CaCl2) (1), MgCl2 (1), KCl (10), KOH (11). For current clamp recordings of action potentials, 2 mM MgATP was added to the internal solution. All recording solutions had pH values of 7.3-7.4 with osmolality of 290-300 mOsm/kg. Drug applications were administered via local perfusion approximately 200 μm from the recorded cells at a flow rate of 0.2 ml/min and solutions were continually withdrawn from the recording chamber by vacuum aspiration. Drugs were applied until responses reached a steady-state level. Electrophysiological data were analyzed offline using Clampfit 10.4 and data was plotted using Graphpad Prism software.

Bloinformatic Analysis of sgRNA and Gene Hits

Data processing was conducted with custom scripts. Reads were mapped allowing for a mismatch for the first and last base pair of the spacer, which uniquely identified sgRNA. Each sample was normalized by the total read count. This gave a frequency for each sgRNA:

f sgRNA = sgRNA counts sgRNA counts

The paired Tuj1-hCD8+ and Tuj1-hCD8− were used to compute the enrichment scores. Specifically, frequencies as above were computed as above, and sgRNA with less than 1 count in the Tuj1-hCD8− library were discarded. Enrichment was computed for each sgRNA in each replicate as the log 2 fold-change from the Tuj1-hCD8− sample to the Tuj1-hCD8+ libraries. Enrichment was averaged across replicates and used as Esg in subsequent analysis. For each gene, an enrichment score (ESgene) was computed from the sgRNA enrichment above, as follows. An unnormalized enrichment score (Egene.top3) was computed by averaging Esg for the 3 sgRNA with highest Esg. Egene.top3 was normalized by the distribution of nontargeting sgRNA as follows (Gilbert et al., 2014, supra).

Suppose a gene had N targeting sgRNA. 10000 bootstrap samples of size N were drawn from the nontargeting sgRNA. For each sample of size N, Esample.top3 was computed as above. This gave an empirical estimate of the distribution of Egene.top3 if the all the sgRNA targeting that gene had been negative control sgRNA. For the final, normalized gene enrichment score (ESgene), the unnormalized enrichment score was divided by the 0.9 quantile of this empirical distribution:

ES gene = E gene , top 3 quantile samples ( E sample , top 3 , 0.9 )

After ranking genes by ES, the most enriched sgRNA was selected for each gene to subsequently validate.

Bioinformatic Analysis of Double Screen

The count matrix was calculated by exact match for both ends, throwing all other reads out. The correlation of counts between replicates of the same condition was high (0.942-0.992), indicating high reproducibility of the double screen. Effect sizes for each gene pair was calculated using MAGeCK MLE (Li et al Genome Biology 2015, 16:281).

Suppose the null hypothesis that the guide pair of genes i and j have an effect size equal to the maximum of the individual effect size. This will be the case if one gene is the primary driver of neuronal differentiation. Note that the coefficients estimated by MACeCK (βij for genes i and j, in that order) arise from a generalized linear regression and should, if the model posited by MACeCK is correct, be normally distributed.

Consider the null hypothesis H0: the effect of guide targeting two genes is less than the maximal effect of guides targeting either gene. The order of the guide is taken into account. A consistent but smaller effect is predicted with the order of the guides reversed. Let signm(x, y) be the function that returns the sign of the larger of the absolute values of the inputs. Under the null hypothesis βij=signm(βi0, β0j) max(|βi0|, |β0j|).

To this end, note that the standard deviation of βij is bounded above by


√{square root over (8βi02+8β0j2)}.

Therefore the difference βij−signm(βi0, β0j) max(|βi0|, |β0j|) has standard error bounded above by

s β ij 2 + s β i 0 2 + s β 0 j 2

One can construct a test statistic to test H0 as

t i , j = 1 2 β i , j - signm ( β i 0 , β 0 j ) max ( "\[LeftBracketingBar]" β i 0 "\[RightBracketingBar]" , "\[LeftBracketingBar]" β 0 j "\[RightBracketingBar]" ) s β i , j 2 + s β i 0 2 + s β 0 j 2 + 1 2 β j , i - signm ( β i 0 , β 0 j ) max ( "\[LeftBracketingBar]" β j 0 , "\[LeftBracketingBar]" β 0 i "\[RightBracketingBar]" ) s β ji 2 + s β j 0 2 + s β 0 i 2 .

The test statistic constructed does not have an exactly normal distribution due to the high correlation between estimates (since all gene-gene pairs are tested) and therefore an empirical Bayes approach is used to determine significant genes while appropriately controlling the false discovery rate (Efron Large-scale inference: empirical Bayes methods for estimation, testing, and prediction, volume 1. Cambridge University Press. 2012; Efron et al R package 2011).

Determinants of CRiSPRa Guide Activity

Since large variation gene effect size was observed (FIG. 27C) and an apparent mixture distribution in the top hits, a Bayesian hierarchical logistic regression mixture model was fit using stan (Carpenter et al 2017 J. of Stat. Software, Volume 76, Issue 1). Specifically, the following model was fit.

    • xi=log2 fold change of guide i;
    • gi=gene associated with guide i;
    • xi˜ZiN(μgi, σ2)+(1−Zi)N(0, 1.42);
    • μg˜ N(3, 1.52);
    • Zi˜ Bernoulli(qi);
    • yij=Indicator variable if guide i is in feature j;
    • gci=GC content of guide i;
    • di=distance from the TSS for guide i;

q i = logistic ( β 0 + j = 1 J β j Y ij + β J + 1 gc i + β J + 2 d i )

    • βj˜Laplace(0.2);
    • β0˜N(0, 5).
      In this mixture model, features have a linear effect on the log-odds that the guides belong to the second component. In this way one can separate out gene-specific effects and compare guides targeting the same genes, but pooling the information across all genes. To shrink the feature effects towards zero, a Laplace prior is used. Eight chains were fit and good mixing in all chains and Rhat values near 1 was observed, indicating a good fit of the model.

TABLE 8 Primers sgRNA sequence pSLQ1373- gtatcccttggagaaccaccttgttgnnnnnnn Forward nnnnnnnnnnnnngttaagagctaagctggaaa primer cagca (SED ID NO: 386) pSLQ1373- gatcctagtactcgagaaaaaaagcaccgactc Reverse ggtgccac primer (SEQ ID NO: 387) sgAscl1 gaatggagagtttgcaaggag (SEQ ID NO: 401) sgNeurog1-1 ggctgctgggagttgtgcaa (SEQ ID NO: 405) sgNeurog1-2 gtgcactactgaatccaaga (SEQ ID NO: 530) sgNeurog1-3 gtcaatcagtagcaggcaaa (SEQ ID NO: 531) sgMyod1 ggtctccagagtggagtccg (SEQ ID NO: 406) sgFoxo1-1 ggttcaggatgagtggaggc (SEQ ID NO: 425) sgFoxo1-2 gaagacttcactcatcttgg (SEQ ID NO: 532) sgFoxo1-3 gtctcagcgatcggattgct (SEQ ID NO: 533) sgNr2f1-1 ggagccaagagaagggctgc (SEQ ID NO: 426) sgNr2f1-2 gaagtatatcatagtttcgg (SEQ ID NO: 534) sgNr2f1-3 gtttggagtttgagcatcct (SEQ ID NO: 535) sgBrn2-1 gaggaaggactgagaagact (SEQ ID NO: 428) sgBrn2-2 gtgtaagggatctttgttac (SEQ ID NO: 536) sgBrn2-3 gtgtttatgaaagtgtatgg (SEQ ID NO: 537) sgEzh2-1 ggttcctttcggcaccttgg (SEQ ID NO: 429) sgEzh2-2 gataactgaacagggagtgg (SEQ ID NO: 538) sgEzh2-3 gttcggccctctgattggac (SEQ ID NO: 539) sgNr4a1-1 gctaacgtgtagtctcgttg (SEQ ID NO: 431) sgNr4a1-2 gccacctaggagaagaagtg (SEQ ID NO: 540) sgNr4a1-3 ggtttcctttagcttagact (SEQ ID NO: 541) sgDmrt3-1 gaggagttgatagttgttcc (SEQ ID NO: 433) sgDmrt3-2 gttacaatagactttgaggc (SEQ ID NO: 542) sgDmrt3-3 ggcaggtattaatactcaag (SEQ ID NO: 543) sgJun-1 gagaataaagtgttgtgccg (SEQ ID NO: 435) sgJun-2 gtttacatccaggctttgag (SEQ ID NO: 544) sgJun-3 gtttggctgtctagtgacgg (SEQ ID NO: 545) sgSuz12-1 gaagctctcaaggcgagaaa (SEQ ID NO: 436) sgSuz12-2 gattctgtggaattgggttg (SEQ ID NO: 546) sgSuz12-3 gctcagtctcatctccactg (SEQ ID NO: 547) sgNr3c1-1 gtcactgctctttaccaaga (SEQ ID NO: 438) sgNr3c1-2 gttatggtttcaggctggaa (SEQ ID NO: 548) sgNr3c2-3 gactcttctgctcagtttgc (SEQ ID NO: 549) sgTcf15-1 gggatatgctcactttggga (SEQ ID NO: 439) sgTcf15-2 ggtcgtcgccttatagccgg (SEQ ID NO: 550) sgTcf15-3 gaagtgacaggatcagctat (SEQ ID NO: 551) sgZeb1-1 gaaggaactaagtttcttct (SEQ ID NO: 440) sgZeb1-2 gtgacaggtgatctaggcgc (SEQ ID NO: 552) sgZeb1-3 ggaaccttgttgctagggcc (SEQ ID NO: 553) sgMecom-1 gattctcaggcagggctcta (SEQ ID NO: 442) sgMecom-2 gaccagttcactgaaagatg (SEQ ID NO: 554) sgMecom-3 ggcagttctcttgcctagtg (SEQ ID NO: 555) sgHoxc8-1 gctctttcctctaacagccc (SEQ ID NO: 443) sgHoxc8-2 gaggtgagagttagtaagtc (SEQ ID NO: 556) sgHoxc8-3 gtcatcaaagaaagaatggc (SEQ ID NO: 557)

TABLE 9 SEQ Gene ID name Primer sequence NO: RiboL7 F accgcactgagattcggatg 444 RiboL7 R gaaccttacgaacctttgggc 445 Ascl1 F aagaagatgagcaaggtggagacg 446 Ascl1 R gagatggtgggcgacagga 447 Brn2 F tttcctcaaatgccctaagc 448 Brn2 R ggaggggtcatccttttctc 449 Tuj1 F agtcagcatgagggagatcg 450 Tuj1 R agtcccctacatagttgccg 451 Map2 F agcactgattgggaagcact 452 Map2 R caattcaaggaagttgtaaagtagt 453 gaagtttg Foxo1 F gagtggatggtgaagagcgt 490 Foxo1 R tgctgtgaagggacagattg 491 Nr2f1 F ccaacaggaactgtcccatc 492 Nr2f1 R attcttcctcgctgaaccg 493 Neurog1 F cggcttcagaagacttcacc 494 Neurog1 R ggcctagtggtatgggatga 495 Pou3f2 F tttcctcaaatgccctaagc 498 Pou3f2 R ggaggggtcatccttttctc 499 Ezh2 F acttctgtgagctcattgcg 500 Ezh2 R cgactgcattcagggtcttt 501 Nr4a1 F gctagaaggactgcggagc 504 Nr4a1 R attgagcttgaatacagggca 505 Dmrt3 F agcgcagcttgctaaacc 508 Dmrt3 R gcttttgacaacatctgggg 509 Jun F gaaaagtagcccccaacctc 512 Jun R aatcagacaggggacacagc 513 Suz12 F tcgaaattccagaacaagca 514 Suz12 R tgtggaagaaaccggtaaatg 515 Nr3c1 F ggacaacctgacttccttgg 518 Nr3c1 R ctggacggaggagaactcac 519 Tcf15 F tctgcaccttctgtctcagc 520 Tcf15 R aaccagggatccaggttcat 521 Zeb1 F acagagaatggaatgtatgcatgtg 522 Zeb1 R agattccacactcgtgaggc 523 Mecom F acagcatgagatccaaaggc 526 Mecom R ttatcccatctgcatcagca 527 Hoxc8 F aaatcctccgccaacactaa 528 Hoxc8 R tgtaagtttgtcgaccgctg 529

TABLE 10 Enrichment Rank Gene name score   1 Foxo1 2.49122811   2 Nr2f1 2.448600182   3 Neurog1 2.43849068   4 Rb1 2.435300527   5 Pou3f2 2.385360453   6 Ezh2 2.380072461   7 Maz 2.361103604   8 Nr4a1 2.351837703   9 Arnt 2.317336958  10 Dmrt3 2.304207908  11 Sin3b 2.280599668  12 Jun 2.277732884  13 Suz12 2.276236754  14 Klf12 2.269476929  15 Nr3c1 2.249983644  16 Tcf15 2.229200027  17 Zeb1 2.221200461  18 Nr6a1 2.208496165  19 Mecom 2.207944981  20 Trim24 2.206262504  21 Hoxc8 2.184103377  22 Foxk1 2.171388615  23 2410080102Rik 2.171161939  24 Nr4a3 2.168779599  25 Trp73 2.16579857  26 Foxs1 2.162897697  27 Ikzf3 2.15938851  28 Nkx2-6 2.15063949  29 Sox11 2.140964961  30 1110054M08.Rik 2.139005342  31 Crem 2.133968618  32 Meis3 2.131453549  33 Bmyc 2.130409666  34 Epas1 2.129339686  35 Nr2f6 2.128397081  36 Nacc1 2.120269011  37 Bsx 2.120136772  38 Foxd3 2.114601186  39 Myog 2.107435864  40 Smad3 2.105254748  41 Wt1 2.091731056  42 Taz 2.091306567  43 Smad7 2.071136269  44 Stra13 2.06971649  45 Hoxc4 2.062634453  46 Pou3f3 2.058607569  47 Zbtb12 2.051837502  48 Atf5 2.042025795  49 Gtf2a2 2.041587014  50 Pura 2.040735147  51 Snai1 2.040229657  52 Ncor1 2.038396405  53 Pcbp2 2.036271048  54 E2f2 2.028758908  55 Nfkbib 2.023153101  56 Gli2 2.021010016  57 Nr0b1 2.020715359  58 B230110C06Rik 2.016733057  59 T 2.014396786  60 Runx3 2.011724145  61 Rxra 2.011600497  62 Mafk 2.009964981  63 Foxn1 2.006315586  64 Smad4 1.999197443  65 Meis2 1.998728368  66 Hoxa1 1.996287157  67 Zic1 1.992579239  68 Sebox 1.99248237  69 Nfyc 1.983084664  70 Lmx1b 1.980716237  71 Lhx3 1.979175342  72 Hmx2 1.978886945  73 Arf6 1.977331424  74 Nfatc3 1.975872129  75 Neurod6 1.973516686  76 Smarca4 1.972359038  77 Twist1 1.971479015  78 Gzf1 1.963483117  79 Hoxc10 1.962998475  80 Tbx4 1.962626034  81 Npas2 1.962608209  82 Ctbp1 1.960624385  83 Gem2 1.960206991  84 Is12 1.957324105  85 Arid5a 1.956887379  86 Lef1 1.955552772  87 RP24-399L6.2 1.953337042  88 Smad5 1.949029539  89 Lbx1 1.948838891  90 Pax3 1.945680745  91 Foxj1 1.944149198  92 Tbx5 1.943975816  93 Barh11 1.943598679  94 Hoxd11 1.9410811  95 Poulf1 1.939557398  96 Klf3 1.938997548  97 Pebp1 1.937292841  98 Evx2 1.935442174  99 Irx5 1.934100096 100 Nkx6-3 1.928635054

TABLE 11 pSLQ5004- tggaaagccagaaacatgnnnnnnnnnnnnnnn Forward nnnnngttttagagctagaaatagcaagttaaa primer ataaggctagtcc (SEQ ID NO: 558) pSLQ5004- gatcctagtactcgaggtacctctaggc Reverse (SEQ ID NO: 559) primer Two accgtattaccgccagccttttgctcattaat sgRNA taaggtaccgagg  forward (SEQ ID NO: 560) primer Two TGACGGGCACatgcatggtacctctaggctag sgRNA cgaattcAAAAAAAg  reverse (SEQ ID NO: 561) primer Scramble GAACGACTAGTTAGGCGTGTA sgRNA-1 (SEQ ID NO: 562) Scramble GTTTAGTAGTTCGTCACACC sgRNA-2 (SEQ ID NO: 563) Scramble GCGACATGTCTGTTGGGCGA sgRNA-3 (SEQ ID NO: 564) Scramble GTATATAAGCCGGGCGCACG sgRNA-4 (SEQ ID NO: 565) Scramble GTCGAACCACGCGTTGATCG sgRNA-5 (SEQ ID NO: 566) Scramble GACCCATGACGGTCGACGGA sgRNA-6 (SEQ ID NO: 567) sgFoxo1-1 GGTTCAGGATGAGTGGAGGC (SEQ ID NO: 568) sgFoxo1-2 GAAGACTTCACTCATCTTGG (SEQ ID NO: 532) sgNr2f1-1 GGAGCCAAGAGAAGGGCTGC (SEQ ID NO: 426) sgNr2f1-2 GAAGTATATCATAGTTTCGG (SEQ ID NO: 534) sgNeurog1-1 GTGCACTACTGAATCCAAGA (SEQ ID NO: 405) sgNeurog1-2 GTGCACTACTGAATCCAAGA (SEQ ID NO: 530) sgRb1-1 GGCTACATACAGTCTAGGTT (SEQ ID NO: 427) sgRb1-2 GAGGAATCGAGAACTTAATT (SEQ ID NO: 569) sgPou3f2-1 GAGGAAGGACTGAGAAGACT (SEQ ID NO: 428) sgPou3f2-2 GTGTAAGGGATCTTTGTTAC (SEQ ID NO: 536) sgEzh2-1 GGTTCCTTTCGGCACCTTGG (SEQ ID NO: 429) sgEzh2-2 GATAACTGAACAGGGAGTGG (SEQ ID NO: 538) sgMaz-1 GGAAGGCATCTCTGGGAAGC (SEQ ID NO: 430) sgMaz-2 GCTCTGCAGGACACCCATGT (SEQ ID NO: 570) sgNr4a1-1 GCTAACGTGTAGTCTCGTTG (SEQ ID NO: 431) sgNr4a1-2 GCCACCTAGGAGAAGAAGTG (SEQ ID NO: 540) sgDmrt3-1 GAGGAGTTGATAGTTGTTCC (SEQ ID NO; 433) sgDmrt3-2 GTTACAATAGACTTTGAGGC (SEQ ID NO: 542) sgSin3b-1 GTGCAAGAATTCAGTCCACA (SEQ ID NO: 434) sgSin3b-2 GTGGTCAAGGTACACACCTA (SEQ ID NO: 571) sgJun-1 GAGAATAAAGTGTTGTGCCG (SEQ ID NO: 435) sgJun-2 GTTTACATCCAGGCTTTGAG (SEQ ID NO: 544) sgSuz12-1 GAAGCTCTCAAGGCGAGAAA (SEQ ID NO: 436) sgSuz12-2 GATTCTGTGGAATTGGGTTG (SEQ ID NO: 546) sgKlf12-1 GATTTGACCATCTCTTGCCG (SEQ ID NO: 437) sgKlf12-2 GAGTCACATTGATCCTGCAA (SEQ ID NO: 572) sgNr3c1-1 GTCACTGCTCTTTACCAAGA (SEQ ID NO: 438) sgNr3c1-2 GTTATGGTTTCAGGCTGGAA (SEQ ID NO: 548) sgTcf15-1 GGGATATGCTCACTTTGGGA (SEQ ID NO: 439) sgTcf15-2 GGTCGTCGCCTTATAGCCGG (SEQ ID NO: 550) sgZeb1-1 GAAGGAACTAAGTTTCTTCT (SEQ ID NO: 440) sgZeb1-2 GTGACAGGTGATCTAGGCGC (SEQ ID NO: 552) sgNr6a1-1 GATGACGGTCGGCCGTAGTT (SEQ ID NO: 441) sgNr6a1-2 GAATCAGGAAGGCTGTAGCA (SEQ ID NO: 573) sgMecom-1 GATTCTCAGGCAGGGCTCTA (SEQ ID NO: 442) sgMecom-2 GACCAGTTCACTGAAAGATG (SEQ ID NO: 554) sgHoxc8-1 GCTCTTTCCTCTAACAGCCC (SEQ ID NO: 443) sgHoxc8-2 GAGGTGAGAGTTAGTAAGTC (SEQ ID NO: 556) sgOct4-1 GTCTGGACAGGACAACCCTT (SEQ ID NO: 574) sgOct4-2 GAGTGCCTGTCTGCAAGGGA (SEQ ID NO: 575) sgNanog-1 GGAAGTTTCAGGTCAAGTGG (SEQ ID NO: 407) sgNanog-2 GCTGTAAGGTGACCCAGACT (SEQ ID NO: 576) sgEsrrb-1 GGTTAGTGGGCTCCAAGTGT (SEQ ID NO: 577) sgEsrrb-2 GGTGAGTGAGTGACACCCTC (SEQ ID NO: 578) sgKlf2-1 GAAAGGACCTGTGGACAGTT (SEQ ID NO: 579) sgKlf2-2 GCAAGAGGGTAATAGAGAGA (SEQ ID NO: 580)

TABLE 12 HiSeq aatgatacggcgaccaccgagatctacacagat forward cggaagagcacacgtctgaactccagtcacnnn primer nnngcacaaaaggaaactcaccct (SEQ ID NO: 581) HSeq caagcagaagacggcatacgagatcgactcggt reverse gccactttttc primer (SEQ ID NO: 582) HiSeq gtgtgttttgagactataagtatcccttggaga custom accaccttgttg primer (SEQ ID NO: 583) (the first sgRNA) MiSeq aatgatacggcgaccaccgagatctacacagat forward cggaagagcacacgtctgaactccagtcacnnn primer nnngcacaaaaggaaactcaccct (SEQ ID NO: 581) MiSeq caagcagaagacggcatacgagatggtacctct reverse aggctagcgaattc primer (SEQ ID NO: 584) MiSeq ccactttttcaagttgataacggactagcctta custom ttttaacttgctatttctagctctaa primer (SEQ ID NO: 585) (the second sgRNA)

Results CRISPRa Screening Strategy for Neuronal-Fate-Inducers

This example describes the identification of novel TFs driving direct neuronal reprogramming from fibroblasts. Using primary fibroblasts as a screening platform is technically challenging. Firstly, as primary cells have limited expansion capacities, it is difficult to modify them to generate a homogenous population, which achieves consistent CRISPR activation activities. Secondly, the neuronal transdifferentiation of fibroblasts is inefficient and not well suited for the enrichment of the desired cell population for the subsequent sgRNA sequencing.

Thus, mouse ES cells were chosen as a screening platform for the generation of candidate TFs driving neuronal-fate. The ectopic expression of individual key TFs that are critical for neuronal transdifferentiation can also drive neuronal differentiation of mouse ES cells, which supports the use of mouse ES cell differentiation as a discovery tool for neuronal-inducing TFs. Besides, as a model of developmental biology, ES cells have been successfully used to elucidate roles of many master transdifferentiation TFs of other lineages. Finally, mouse ES cells are technically easy to be equipped with CRISRP activation tools and suitable for single sgRNA screens.

A polypeptide-based SunTag CRISPRa system in mouse ES cells (Tanenbaum et al., 2014, supra) was modified (FIG. 22A). After several rounds of optimization and clonal cell selection based on endogenous gene activation efficiency, a CRISPR-activating mouse ES (CamES) cell line containing lentivirus-transduced CRISPRa elements was generated (FIG. 22B). Next, the CamES cell line was modified with a neuronal reporter. The reporter CamES cell line carrying a biallelic human CD8 (hCD8) gene cassette appended downstream to endogenous Tuj1 via an IRES (internal ribosome entry site) (Tuj1-hCD8 CamES) (FIGS. 22C and 22D). The magnetic-activated cell sorting (MACS)-enriched differentiated hCDS+ cells expressed much higher neuronal markers (Tuj1 and Map2) than hCD8− cells (FIG. 22E), demonstrating that hCD8 expression is positively correlated with differentiated neuronal cells.

An Unbiased Screen for Key Factors Promoting Neuronal Differentiation

An sgRNA library targeting all putative TFs (˜800), with an average of 60 sgRNAs per gene was constructed. This sgRNA library also contained 9,296 non-targeting negative control sgRNAs, leading to a total of 55,336 sgRNAs (FIG. 18A). The sgRNA library was transduced into Tuj1-hCD8 CamES cells and 2i+Lif was removed from ES medium to allow neuronal differentiation (FIG. 23A). The Tuj1-hCD8 CamES cells showed highest neuronal marker expression between day 10 and 11 post-transduction (FIG. 23B). MACS were used to sort Tuj1-hCD8+ and Tuj1-hCD8− populations on day 12 (FIG. 23C), and the sgRNA distributions of these two samples were compared, as well as the plasmid library (FIG. 18A). The Tuj1-hCD8+ and Tuj1-hCD8− cell populations exhibited similar sgRNA depletion when compared to plasmid library (Figure S2D). A high correlation of enriched genes between the positive and negative Tuj1-hCD8 populations was found (FIG. 23E). The top hits relative to the plasmid pool in both populations contain many proliferation and self-renewal genes, but few are related to neuronal phenotypes (FIG. 23E). It was contemplated that this is because the predominant factors that determine sgRNA representation in both the Tuj1-hCD8+ and Tuj1-hCD8− populations are in common, such as the growth advantage of cells expressing proliferation and self-renewal genes, less proliferative capacity of desired neuronal cells, and the spontaneous differentiation (FIG. 23F). To control this bias and generate gene-level enrichment scores, sgRNA representation was normalized in Tuj1-hCD8+ samples to Tuj1-hCD8− samples, the enrichment of the top three guides for each gene was examined, and the empirical distribution of the non-targeting guides was used to normalize enrichment scores (FIGS. 18B, 25G, Table 10 and Experimental Procedures). Top-ranked genes (Table 10) were used to transduce individual sgRNAs to CamES cells and look for signs of neuronal differentiation. Among 20 sgRNAs tested, 19 efficiently induced neuronal differentiation, as measured by the expression of neuronal markers, NCAM, Tuj1 and Map2 (FIGS. 18C, 18D, 24A and 24B). A large fraction of validated genes has been previously characterized to act in early neural development. Examples included neuronal fate-inducing TFs such as Ngn1, Brn2, Klf12, Tcf15, and Mecom. These results were consistent with previous studies showing that the forced expression of these genes induce neuronal phenotypes of pluripotent cells. On the other hand, the function of the remaining hits varied considerably. Major categories included neuronal survival (Jun and Maz), cellular senescence (Sin3b and Rb1), homeostasis/metabolism (Foxo1, Nr4a1 and Nr3c1), and epigenetic regulations (Ezh2 and Suz12). In addition, the neuronal-inducing effects of the majority of hit genes were confirmed via the overexpression of their cDNA in unmodified mouse ES cells (FIG. 24C).

Cells expressing varied neuronal lineage markers resulted from the activation of different endogenous genes were detected (FIGS. 18E and 24D). For example, NeuN and GA BA expressing cells were found for all identified neuronal-fate-inducers. In addition, most hits also induced GFAP and Olig2 positive cells, which indicates the presence of astrocytes and oligodendrocytes. The Glutamatergic neuron marker vGluT1 expressed at varied levels across several hits, such as Zeb1, Brn2, and Nr6a1 (FIGS. 18E and 24D).

It was next tested if these neuronal factors induce transdifferentiation. As reported, Asc11 alone can induce neuronal transition from mouse fibroblasts. cDNAs of individual genes was transduced into mouse embryonic fibroblasts, cultured cells under transdifferentiation condition, and stained them with neuronal marker Map2. Among the 19 genes tested, only Ngn1 induced neuronal marker expression (FIG. 25). However, compared to Asc11, the transdifferentiation driven by Ngn1 was inefficient (7% vs 1% Map2+ cells). All of the other tested genes failed to induced Map2− cells.

Neuronal-Fate-Inducing Activity of CRISPRa

To generate a deep view of how sgRNA design and gene activation level affects neuronal differentiation, other high-ranking sgRNAs of the 19 hit genes were investigated. Quantitative PCR results showed that effective endogenous gene activation (10 to 10,000 fold) was achieved by most of their cognate sgRNAs (FIGS. 18C and 24A). It was observed that, for the majority of hit genes, a higher gene expression level generally induced more efficient neuronal differentiation. Outliers of this trend included Jun, Brn2, Suz12, Tcf12, Zeb1, and Hoxc8. Cognate sgRNAs that induced higher expression levels of these genes generated similar amount of neuronal cells.

To investigate the determinants of CRISPRa activation in more depth, the targeting locations of top-ranked sgRNAs of the 19 hit genes was investigated. The observed signal followed a mixture distribution (FIG. 26A) (Horlbeck et al 2016 eLife 2016; 5:e19760). To determine what factors contribute to high neuronal signal, a hierarchical logistic regression mixture model was fit to estimate what genomic features can contribute to or prevent efficient activation (FIGS. 26B and 26C). It was found that KDM2B binding sites, H3K27ac peaks, and H3K4me1 peaks contribute to efficient activation (the top feature CXXC1 was primarily associated with a single gene, FIG. 26D). H3K27ac and H3K4me1 are known marks for areas of primed activation (Calo and Wysocka 2013 Mol Cell. 2013 Mar. 7:49(5):825-37), while KDM2B helps to maintain the stem cell state by recruitment of the polycomb repressive complex 1 (He et al. 2013 Nature Cell Biology 15, 373-384). Indeed, when controlling for other factors, being in a KDM2B increases the average observed log 2 fold change by nearly 1 (0.93, p=0.077, FIG. 26E). On the other hand, it was found that hotspots of open chromatin had little effect of guide efficiency (two-sided t-test, p=0.54, FIG. 26E). These indicated that the epigenetic features of sgRNA binding sites are important for CRISPRa activities.

A Double-sgRNA Screen for Genetic Interactions Driving Neuronal-Fate

The strategy to use ES cells differentiation as a tool to discover lineage reprogramming factors was justified by the fact that Ngn1, a hit of the primary screen, is able to convert fibroblasts to neurons. However, as most hits failed to achieve transdifferentiation, the difference between the two processes was highlighted. Compared to ES cell differentiation, a direct lineage programming process utilizes profound transcriptional, epigenetic, and metabolic changes of target cells. These complex mechanisms tend to be initiated by synergistic genetic interactions, instead of a single factor. In most cases, direct lineage reprogramming can only be mediated by the ectopic expression of a gene cocktail. Thus, it was hypothesized that novel gene interactions greatly facilitate direct neuronal reprogramming.

Current gain-of-function techniques, such as cDNA overexpression, are difficult to apply in a pairwise manner, even for a moderate number of genes. In addition, optimal gene expression levels are important for cell fate determinations. Overexpression libraries have limitations owing to dosage and functional issues, and thus may fail to cover genes' optimal expression level. To address these problems, a strategy to determine the gene interactions between the primary hits based on double sgRNA screen was developed. A library of dual-sgRNA-constructs targeting the top neuronal inducers was generated (FIG. 27A). For each hit gene, two sgRNAs were included. These sgRNA-High (H) and sgRNA-Low (L) were validated individually to drive different target gene activation levels (FIGS. 18C and 24A). The double sgRNA construction contains two sgRNAs driven by either human or mouse U6 promoter (FIG. 19B). Thus, two sgRNAs express independently. The library was generated through the ligation of two sgRNA elements, which can be easily scaled up (FIG. 27A). The library also included negative-control sgRNAs, i.e. non-targeting sgRNAs.

With the same strategy as in single CRISPRa screening, double CRISPRa screening was performed (FIGS. 19A and 27B). Pairwise interactions of sgRNAs were enriched relative to individual sgRNAs, and interaction scores were generated for each sgRNA pair (FIGS. 19D, 27B and 27D). It is noted that the correlations between two independent screening replicates are very high (FIGS. 19C and 27C), which indicates high reproducibility.

Hierarchical clustering of sgRNAs based on the correlation of their interactions shows that a fraction of sgRNAs tended to form a high number of interactions (FIG. 19D). These interaction-prone sgRNAs included many that drove low levels of neuronal differentiation compared to their counterparts. For example, Ngn1-H and Ezh2-H, which drove high gene activation and mediated efficient neuronal differentiation when applied individually, did not form strong interactions with other sgRNAs (FIG. 19E). On the contrary, their second top counterparts, Ngn1-1, and Ezh2-L, had synergistic effects with almost all other sgRNAs. A hypothesis to explain this is that in the screening system, some top sgRNAs already trigger saturated readout (neuronal differentiation), thus their interactions with other sgRNAs (even those synergistic) failed to be scored higher than themselves.

On the other hand, for genes whose higher activation lead to similar neuronal differentiation, such as Brn2 and Jun, a targeting sgRNA achieving highest activation tend to form stronger interactions then their counterparts (FIG. 19E). Foxo1-L and Foxo1-H, which mediated quite similar activation activities and differentiation efficiencies, both appeared as interaction-tendency hits (FIG. 19D). All together, these results showed that a library that covers a broad range of induced expression, including a “goldilocks” zone, is optimal for a gain-of-function double screen.

Gene Combinations Identified in Double CRISPRa Screen Convert Fibroblasts into Neurons

Based on false discovery rate, a list of gene pairs that showed strong synergistic effects was identified. Strong synergies included Ngn1+Ezh2, Ngn1+Foxo1, Tcf15+Zeb1, Tcf15+Foxo1, and Zeb1+Ezh2. To confirm these interactions, constructs expressing corresponding single and double sgRNAs were generated, and their effects in neuronal differentiation of CamES cells was tested. All of the identified sgRNA pairs showed additive effects in neuronal differentiation of mouse ES cells (FIG. 19F).

The synergistic links to Ngn1, the top hit in the single guide screen, that was identified have not been previously reported to drive neuronal transdifferentiation from fibroblasts. The ability of the above identified synergistic gene pairs to drive neuronal transdifferentiation from fibroblasts was investigated.

One gene pair, Ngn1+Ezh2, induced over 50% Map2+ cells, which is almost 50-fold more than Ngn1 alone (FIGS. 20A and 20B). Another double screening hit, Ngn1+Foxo1, induced nearly 45% neuronal cells. Zeb1+Ezh2, induced strong Map2 expression on neuronal cells (FIG. 20A). On the other hand, neither is able to mediate neuronal transdifferentiation alone. These results highlighted the power of double screen to discover strong synergies to mediate cell fate transitions.

Here, two new powerful neuronal inducing cocktails were identified: Ngn-1+Ezh2 and Ngn1+Foxo1. It was tested whether the induced cells possess neuron functions. The expression of other mature neuron markers in Ngn1+Ezb2 and Ngn1+Foxo1 induced cells, including Synapsin and NeuN was confirmed (FIGS. 20C and 28A). Furthermore, a large part of induced cells were Tbr1 positive, while a small part was GABA positive (FIGS. 20D and 28B). Moreover, these two combinations also induced neuronal transdifferentiation from tail tip fibroblasts with an extended culture time (FIGS. 20E and 28C).

It was next assessed whether the induced neurons using Ngn1+Ezh2 and Ngn1+Foxo1 were capable of synaptically integrating into pre-existing neural networks. After 7 days' co-infection of cDNAs and a superfold GFP (sfGFP) reporter, the induced neuron cells were re-plated onto rat neonatal cortical neurons that had been cultured for 7 days in vitro. One week after re-plating, patch-clamp recordings from sfGFP-positive induced neuron cells were performed (FIG. 21A), In voltage-clamp mode, it was observed a fast activating and inactivating inward current followed by a slow activating and inactivating current (FIG. 21B). The action potentials could also be elicited by depolarizing the membrane held at −75 mV in current-clamp mode, which could be inhibited by the application of 100 nM tetrodotoxin (TTX), a selective blocker of voltage-gated sodium (Na+) channels (FIG. 21C). Inward currents could be blocked by the application of 500 nM TTX (FIGS. 21D and 28D), and outward currents could be inhibited by the application of 5 mM tetraethylammonium (TEA), a selective blocker of voltage-gated potassium channels (FIGS. 20E and 28E). Together the voltage-clamp studies show that these induced neurons express functional voltage-gated Na+ and K+ channels, which are critical in the ability of neurons to fire action potentials.

For all the induced neuron cells analyzed (5/5), action potentials that fired spontaneously were observed (FIG. 20F). Application of 100 nM TTX blocked the spontaneous action potentials, and washout of TTX completely reversed the blockade (FIGS. 21G and 28F). Spontaneous postsynaptic currents were recorded in induced neuron cells held at −60 mV in the voltage-clamp configuration. These currents could be blocked by application of 30 μM 6,7-dinitroquinoxaline-2,3-dione (DNQX), an AMPA and kainate receptor antagonist (FIGS. 20H and 28G). The blockade is reversible upon removal of DNQZ. On the contrary, the presence of 30 μM Bicuculline (BIC), a GABAA receptor antagonist, slightly increased the observed frequency and amplitude of the spontaneous postsynaptic currents (FIGS. 20I and 28H). These experiments demonstrated the induced eurons were mostly glutamatergic excitatory neurons, which fired AMPA/kainate receptor-mediated spontaneous excitatory postsynaptic currents (EPSCs). The emergence of AMPA receptor mediated synaptic transmission is a key step in the development of mature glutamatergic synapses (Wu et al., Maturation of a central glutamatergic synapse. Science. 1996; 274:972), These data indicated that these induced neurons can form mature neurons as they form electrically active networks of cells in vitro. Overall these experiments demonstrate that functional synapses can be formed with induced neurons using Ngn1+Ezh2 or Ngn1+Foxo1.

FIG. 29 shows three additional powerful neuronal inducing cocktails: Ngn1+Brn2, Brn2+Ezh2, and Mecom+Ezh2; which could drive neuronal transdifferentiation from fibroblasts.

Table 13 Shows Exemplary sgRNAs for Genes Targeted in Examples 1-4.

TABLE 13 SEQ gene guide ID 6430411K18Rik GTTGCTGGTTGATGAAGTTG  586 6430411K18Rik GCAGTTCCAAGTACCGGTGC  587 6430411K18Rik GGAAGGCAGCGCCATTCTGG  588 6430411K18Rik GACTCAGAGGACCCAAGAAA  589 6430411K18Rik GGGTCGAGTCCAGGATGAGT  590 6430411K18Rik GGTGGACTTGCTTGCAGGGT  591 6430411K18Rik GGATGATGAAGAAGAGGAGG  592 6430411K18Rik GCACACACTCCGACTCATCC  593 6430411K18Rik GGCTCCTTGGCACAGTACTC  594 Adipoq GAACCTGGTTTAATCCAGCT  595 Adipoq GGTAGAGAATGGCCAAAGCC  596 Adipoq GTCCCATATAGGAACACTGC  597 Adipoq GTTTCTAGAGAAATCACGTT  598 Adipoq GCTGGGTCTGGTAGACACCC  599 Adipoq GAAGCCAGAAGCCAGTAAGA  600 Adipoq GTGAAGACCACGAGGCATTG  601 Adipoq GTACAGGAAGGTTCCTGGTG  602 Adipoq GGAGTCTTAAGGCAGCTGCC  603 Aebp1 GATGTCACTTCCCTAGGCAT  604 Aebp1 GGCACAGCGGGTTAGAGCAC  605 Aebp1 GAGCACTCAAAGGGTCCAAG  606 Aebp1 GAGGGATCACACAACAGCAC  607 Aebp1 GTCATACTTGGACTGAATTT  608 Aebp1 GAGTGGAGAGCTCTCCTCAC  609 Aebp1 GGAATTCGAGCAGAGGAGCT  610 Aebp1 GACAGAGAGGGTGAGGGTGA  611 Aebp1 GGTGATCGCCAGTACCCTCG  612 Aebp1 GGATGTCACTTCCCTAGGCA  613 Aes GCCTGGACACCCAGGCTTCA  614 Aes GAGGAAGCCTTAGAGACTGC  615 Aes GATTCTGGTATCCCGGAGGC  616 Aes GGCCTCTGATTCTGGTATCC  617 Aes GAGTCTGTGGCCTTGGGACT  618 Aes GTCTCTGTCTGTCTCAGGTA  619 Aes GACACCTGTCCCACAGAGGT  620 Aes GGATGGGACACCACTGAGGG  621 Aes GACTCAGCAGCTTAAGAGGA  622 Ahr GATGAGAAGGAAAGAAGCAC  623 Ahr GCCCAAGCAGAAATGAGATC  624 Ahr GTTGAGTGCCATGTAAGTTA  625 Ahr GCCTTCCTTGTTGAAATAAC  626 Ahr GCAGAGATGATAAAGGAAGA  627 Ahr GGAAATGACAACAGGAAAGT  628 Ahr GATTTAATGGGAGTGATGAG  629 Ahr GTCATCACGTGCTGCGAAGA  630 Ahr GTCCTTTAATAAGGTCTTCC  631 Ahr GAATGTGTATGCCCTGTGAT  632 Ahrr GGGAAGCTCCTGCTACCCAG  633 Ahrr GTGTGAAATACCTTAAGAGT  634 Ahrr GTCAGAACCTTGCATAGATG  635 Ahrr GAGGCATCTGGAAGTGCAGA  636 Ahrr GGATTTGGTGCACAAACTGG  637 Ahrr GTGCCTAGGTGGAAGGTGGG  638 Ahrr GGTGGGAGGGACTGGATGAG  639 Ahrr GGGTAGCAGGAGCTTCCCAG  640 Aire GTACAATCTCACTTTGCTGG  641 Aire GCACCACGACACCCAAGGAA  642 Aire GGGCCCAGCTTTCGAAAGCT  643 Aire GAACAGGGAGCAAGGGACTG  644 Aire GCTTGGAGGCCCTGTCTTTC  645 Aire GAGATTCCTCACTGGCATGA  646 Aire GTTTAGCCTAGAGCCAATCA  647 Aire GGTCAGTCACTTCAGAGCCG  648 Aire GCTAGAGACTGCCCTGCCTT  649 Alx1 GCGGCTGTTAACCGGCTTGC  650 Alx1 GGGCACAAGGCCAAGCAGAA  651 Alx1 GCATCCGACAGCAAACGAGA  652 Alx1 GACAGCAAACGAGAAGGCCA  653 Alx1 GGGAGTCAGGGCTCTAAGAT  654 Alx1 GTCGAGGCGACTACGATTCT  655 Alx1 GCAGAACTGTTAAGTGAAGT  656 Alx1 GTTGCTTGCTCCAcCTTCTC  657 Alx1 GACAAATGCCAGGAGAGACA  658 Alx1 GAAGCTTGAAATAACAGGCT  659 Alx3 GAGAAGAGAGGCCTCTACTG  660 Alx3 GAATGGAGAGTCTTGTAGGG  661 Alx3 GCTGTAAATCAAGGCCAAAC  662 Alx3 GACTGCAGGCTAGGCAGAGA  663 Alx3 GGTTTCACAGTGGTCTGCCC  664 Alx3 GAATGTTGGAGGAGGGATGG  665 Alx3 GTCCTTGGTTGAGGGCAGTC  666 Alx3 GCCATAACACTGTTTCTGAT  667 Alx3 GCTTAAAGATCCCTTAGGTC  668 Alx4 GTGAGGAGAATTCCAAAGAA  669 Alx4 GTTAGCTTTGAGGTCTCCAT  670 Alx4 GTTGAAGCAAAGGTCACCAA  671 Alx4 GGATGAGAGGAGTGGGAAGA  672 Alx4 GAAACCTGTGTCTGTCTCTC  673 Alx4 GCTGGAGCAGATTGGAGGTA  674 Alx4 GAGATAGGTGAGATTGGAGG  675 Alx4 GATTCGACCCGGAGAAGCCT  676 Alx4 GGAATTTCAACAGTGTGGTG  677 Alx4 GTCAGCATCTGGATGCCTGA  678 Alyref GTTCCCTAATGTCTAATTAC  679 Alyref GACCAATCGCCGCTCGCTTC  680 Alyref GAACTGCGGCATCTGCAGGA  681 Alyref GAAGCGAGCGGCGATTGGTC  682 Alyref GCCCAGCAAGCATGACAATA  683 Alyref GGCACACGCCTCTAATCCCG  684 Alyref GTCTTACCTCTGTAGCATCC  685 Amer2 GTGTAGGGAAGGCTCCTTGC  686 Amer2 GCGTTCTAAATCAACCTGAG  687 Amer2 GACAAAGCAGCTTTCAGTGT  688 Amer2 GCATTGTTCTTTGTGGACAT  689 Amer2 GAAAGAGGAAGACTGAGCCC  690 Amer2 GTGAGAGAGAGCAGTTTCCA  691 Amer2 GTATTCTTTCTCCTCTGTGG  692 Amer2 GCTAATTGGTATTTGACTGA  693 Amer2 GAGAACAACCTGTGTGGGTA  694 Ap2b1 GTTTCCCTGTCTCAGGGATA  695 Ap2b1 GGGTGCGCGGGAGAACCAAA  696 Ap2b1 GATCTCCAAACCTGATGGTC  697 Ap2b1 GGCTACCTGGCAGTGAGGAA  698 Ap2b1 GGGCTGGAGAGATGGCTCAG  699 Ap2b1 GGTTTCCCTGTCTCAGGGAT  700 Ap2b1 GGAGAGATGGCTCAGTGGGC  701 4p2b1 GGTCAAGATTTCCTGATTAA  702 Ap2b1 GGCTGGAGAGGTGGCTCAGT  703 Ap2b1 GATCAATCATGGTTAGCCAG  704 Ar GCCTAGTCAGCTCCTGGAGA  705 Ar GGCTTTAGAGAACGTAGTGC  706 Ar GCACAGAGGTAAACTCCCTT  707 Ar GAAACTTCACCGAAGAGGAA  708 Ar GGGTCTACAACCTTTCTCTA  709 Ar GAGTTAACTGAAACCTCAAG  710 Ar GGAGTTAACTGAAACCTCAA  711 Ar GCCCACCAGGACAAGCAGAA  712 Ar GCGTCCCTTAAGCTTCTGTA  713 Arf2 GCTGGTATGTGGGAGGAGCC  714 Arf2 GACCAATGGAAATGGCAATA  715 Arf2 GGGCTCTGGTAGGAGATTAC  716 Arf2 GATTGGTCGTCTGTGGCTTC  717 Arf2 GCAATGGTATTGAAGAGGCA  718 Arf2 GCGCAAGAGTTCCCAGGAGG  719 Arf2 GAGGCTTTGGGAGACTGCTA  720 Arf2 GTAGGAGATTACTGGAACTC  721 Arf2 GAATCTGGGTATTTCTGACC  722 Arf6 GCTTCGTCGGCCCTTAGGAC  723 Arf6 GAAGTCAGTGAAAGGGAGCA  724 Arf6 GCTAGTTACTGAAGACGTTC  725 Arf6 GGAACATGGCACCTGACCAG  726 Arf6 GAGTTTAAACTTTCAAAGGC  727 Arf6 GTCTGTTTCTTAAGAAATGC  728 Arf6 GCAAGGGAAGGTGACAGAGG  729 Arf6 GAGAGGCAGGTTGTAAGTGG  730 Arid3a GCAGGGATATATTTAGCCAA  731 Arid3a GGACCTGAGCACCACCTATG  732 Arid3a GTCCTGGGAAAGCTTGGAAA  733 Arid3a GAGGTGGTGGGTGTCTCTCC  734 Arid3a GTCCCTTGTTAGACTGTTGT  735 Arid3a GAACCGTGACGACCGTACCT  736 Arid3a GCTCCTAGGTACGGTCGTCA  737 Arid3a GGGCTTCAACCCAGCAGTGG  738 Arid3a GGAGAAGAATGCTGGTGTGC  739 Arid3a GTGACTTTCCGCTCAGAGGT  740 Arid3b GCCTAGAGAACATTTATACT  741 Arid3b GAGGAGGGACAGGCAGTAAG  742 Arid3b GTTACATCTCTAGAGCAAGG  743 Arid3b GAGACGCGGGCTAGTGAAGC  744 Arid3b GTCCGTTGCTCTCGGTTTGG  745 Arid3b GGTAAGGGAAATGGTCACCA  746 Arid3b GCTTTCCTCAGCAAGGGAGA  747 Arid3b GTTTGCCATGGTAGCACTTA  748 Arid3b GAGGACCTGACCAGGGAAGT  749 Arid3b GGCAGCGGCTTTCAGCAGAT  750 Arid5a GTTCGCAGGTTGCCCGAGAC  751 Arid5a GCTAGAGTCTTGGATCTCTT  752 Arid5a GAACCGGCCAGGACCACTTC  753 Arid5a GAAGTATGGTCACTGTCTCC  754 Arid5a GAAATTGTCCCTTGGTGATC  755 Arid5a GGATTAGCTGTGGCTTTGAA  756 Arid5a GGCTGTGTCCCAGATCACCA  757 Arid5a GTAGCTTGCCAAAGACTGGG  758 Arid5a GCAGATCTCCATACCTAACC  759 Arid5a GGATGGAGAGTGATGGAGGG  760 Arid5b GTCTGCTCGGAATATGAATT  761 Arid5b GTGATGTGCAGGTCATAATT  762 Arid5b GTATATTATTCCTGTAGCGC  763 Arid5b GCAAACCGCGCAATGCTCCA  764 Arid5b GGCACCAATCTTTCCAGAGT  765 Arid5b GATTGCATCAGGTCCTGGCA  766 Arid5b GAGGTTTAATACACAATCCA  767 Arid5b GAAATATTCAGAGCTGGGTT  768 Arid5b GGCCTATCCGATACTGAGAA  769 Arnt GTTTGAAACTCCAGGTTAAT  770 Arnt GTGTAGTGGAGTCGTCTTTA  771 Arnt GAAACAGTAAGTCGCCATAG  772 Arnt GAGTTGGCTCTGAAGCTGGT  773 Arnt GTGAGCCGACCAACTGGAGT  774 Arnt GACTGACCGCGCCCATAGTT  775 Arnt GGATTAGGGAAACAGCTGGT  776 Arnt GCATTTCACTGACGTCAATT  777 Arnt GGCCGGATTAGGGAAACAGC  778 Arnt GCGTGTCTTCTGCCCAGGAT  779 Arntl GAGAGATTCCTTCACAGAAC  780 Arntl GACGAAGTGGCCTTGCTATC  781 Arntl GAGGAGGAGGGAGAGCTGAG  782 Arntl GGCTTCTCCTTGTGCAAACC  783 Arntl GTGCCAATTGGTCCACTCCT  784 Arntl GGTGCCAGTAGAAGATAAAC  785 Arntl GTGGAGCTGICATTCCCGAT  786 Arntl GGACCAATTGGCACGCTCTG  787 Arntl GATAAATTCATTGTTCTGGA  788 Arntl2 GGGAGCTTCATGTGCAGAGT  789 Arntl2 GCAGCCTCACTTCCTGGCTC  790 Arntl2 GCTGCTGGTGTCTGAGGAGT  791 Arntl2 GACAACACCATTCAGTTGTT  792 Arntl2 GGGTGTTCATTTATTTCTGG  793 Arntl2 GCAGTCTGGAAGCTCAGGGT  794 Arntl2 GGTCTGGAACCGGTTGGAGG  795 Arntl2 GGAGGATGCTATTGATGGGT  796 Arntl2 GGTGGGTGTTCATTTATTTC  797 Arntl2 GGGATCGGTGAGAGAGCAAT  798 Arx GAGGTCCATTGGTCCTAGAA  799 Arx GGGAATGAGGGTGTCCATTC  800 Arx GGCAGAGTGAATATTAAGTT  801 Arx GAGTATTCAGAGAGGTGAAA  802 Arx GGAGTCCTCAACGCAACTTG  803 Arx GACCCAACTTCACTCAGGGT  804 Arx GTCCTCAACGCAACTTGAGG  805 Arx GAGGGAGGTGGGTAAGAGGT  806 Arx GATGGTTGCCTCTGACACGT  807 Ascl1 GTTGTTGCAGTGCGTGCGCC  808 Ascl1 GTTCCCTAAGAAGCTGAGGC  809 Ascl1 GAGGCAGGAGAATAAGTTGG  810 Ascl1 GATGTTTGAGGATGACGTCA  811 Ascl1 GAGGGAAAGGCTGCTCAGAC  812 Ascl1 GGGCACAACTCGCTAAGGGT  813 Ascl1 GCCTGAGACAGGGAGGGACA  814 Ascl1 GCTAGACGCTATGGGAAAGG  815 Ascl1 GAAGCAGAGACTGTGGAATG  816 Ascl2 GCAGTGTGTATGGAGGTTGG  817 Ascl2 GAGCATGTACTGCCAGTGTG  818 Ascl2 GATTGTATTCTCTCAGGTCA  819 Ascl2 GGTGACAGTTCCCTAGGGAT  820 Ascl2 GGGAGGAAACAGGGCAGCAG  821 Ascl2 GGAGCATGTACTGCCAGTGT  822 Ascl2 GCTGGCTGTAAGGTGCAGAT  823 Ascl2 GCACCTACCTAGTCCTTTGA  824 Ascl2 GCCAGAAGGAAGCGTACGCC  825 Atf1 GCTGGCCTGTTGTTCAGGCC  826 Atf1 GTGGAAGTGCTGGATAAGAA  827 Atf1 GAACTATCTGAGAGGATCCC  828 Atf1 GTGACCTACAAAGTAAGGTC  829 Atf1 GCTTGGAGATAGGCTGGCTG  830 Atf1 GGACTTAGCATGTCCTTGTG  831 Atf1 GATAGCGACTCCAGAGAGGT  832 Atf1 GCCAAGGTCAGAGCATGGAT  833 Atf2 GGCAACACCCATATTATCTC  834 Atf2 GCTTCTCGGTACACGGAGAG  835 Atf2 GACCGTTGTTTCGGTAACCA  836 Atf2 GAAGAAAGCGGCAGGGATGC  837 Atf2 GAGAGAAGAAAGGTGAGGTC  838 Atf2 GGACCGTTGTTTCGGTAACC  839 Atf2 GAGGGAATAGACCTGGTGTT  840 Atf2 GTCAGCTGCTCATTACTGGT  841 Atf2 GCCGACAATATCTAACCCAA  842 Atf2 GGGAAGATCGGCTCCAGTTC  843 Atf3 GAAGGAAGAGCCCTAAGGTC  844 Atf3 GACAATCTCCCGCGTGAAGG  845 Atf3 GACCGGAGCTGATCTGCATA  846 Atf3 GGGATTACAGCAGCATCGCG  847 Atf3 GGGTTGTGGAGGTGTGGAGC  848 Atf3 GCGCAGGGATAAGAAAGGGC  849 Atf3 GCCTTGGACTTGAGGAACCC  850 Atf3 GGGTTTACCTGCCGGCAGGT  851 Atf3 GATCTGCATACGGGCTCCCG  852 Atf3 GGAGGGCAGAGGCCTGTGAA  853 Atf4 GTGAGTCACTTAAACAGAAG  854 4tf4 GGAACTGACCCTATACAAAC  855 Atf4 GGACTTGGCCTCAGAGACCA  856 Atf4 GTCCCTGTCCCAGGACTGAC  857 Atf4 GAGGCCTTGACCAGTACCTG  858 Atf4 GGCAGTGAGGGCCTCTATGA  859 Atf4 GCAGAGCCAATAGGAACTTG  860 Atf4 GGAGGAGCCACCAGAGGTTC  861 Atf4 GAGGAGCCACCAGAGGTTCC  862 Atf4 GGCATAGGAGGTTAGACCTG  863 Atf5 GGGCTTAACCCACGAGGTCT  864 Atf5 GGACACACAGAACGATCATA  865 Atf5 GACTTAACAAAGCCCATAGC  866 Atf5 GGCCTCTAGGGACTTGCTAG  867 Atf5 GCTACCTAGGAGCTGTTGCC  868 Atf5 GAGGCCTCACAGGACAGGGT  869 Atf5 GGAGTTGTGATCATCCCTGG  870 Atf5 GAGAGAACAGCCTTGTGTGA  871 Atf5 GTCCCTCTTGTCCTTCACCG  872 Atf5 GCGCATGCGCAACAGGTTGT  873 Atoh1 GCGGAACATTTCAACGGCAC  874 Atoh1 GAATTTCCAGAACTGACTAG  875 Atoh1 GACAACGTGAGAGCCTGGAA  876 Atoh1 GCTTGGAGGGATCCCAGGCC  877 Atoh1 GCTCAGATGAGACCCAGGGT  878 Atoh1 GCAATCCCATGGACACGCTC  879 Atoh1 GCCTGAGATCCCTCCAAGCC  880 Atoh1 GAGAGCACTAGGAGCAAGCT  881 Atoh1 GTTGAAATGTTCCGCTAGCA  882 Atox1 GAGTGGTATCAGTTCCCTTT  883 Atox1 GATGGCCAATTCCAGTTCAC  884 Atox1 GGACACCAAAGCTGCGCTTC  885 Atox1 GTCATTTCTGAAACAGGGCT  886 Atox1 GGATTCACATCAGCTCCTTC  887 Atox1 GTGGCTCTTGCATCAGCCTC  888 Atox1 GCTAGGTTCCTCCCTTGGGC  889 Atox1 GTTCTGGCTGGGAGGCTTCT  890 Atox1 GTGCAGATTAAAGTCATGGC  891 Bach1 GCGAGCTCCGTGTAACGTTG  892 Bach1 GTAGCCCTGGCAGGACTTGT  893 Bach1 GCCTTCAGCAGGTGAGGAAG  894 Bach1 GCACTGTCTGTGTGTGTTTA  895 Bach1 GCTTATTCCATGCTATTCTA  896 Bach1 GCACCAGGTCACCACTTACA  897 Bach1 GAAGCTAGTGATCATTCAGA  898 Bach1 GCTCTTACTAGCGGAGGGCG  899 Bach1 GTGGTTCTGACAGACATTCG  900 Bach1 GTGGTCTACCAGGCTGTGAG  901 Bach2 GAGGCAAAGACCGGAGCTCT  902 Bach2 GGTTGTGTTAGTTGCTGTGC  903 Bach2 GACTGAAATTGACCTCTACT  904 Bach2 GAAGGCCAGTGTGGCACGTG  905 Bach2 GTTTGTCCTTTGTTGCAATC  906 Bach2 GGCTGGAGCAACACTTTGGA  907 Bach2 GAGAAACACTAGAACCACTG  908 Bach2 GCATGTGGCATTGCTAGCTT  909 Bach2 GGGCCTGATTCAGCTTTCCA  910 Barhl1 GTTGCAGCTACTTGGAGACC  911 Barhl1 GGATCAGCCACTGCTAGTGC  912 Barhl1 GGAGCTGCTAGGAACCCTTG  913 Barhl1 GCCCTAGAGAGGCCACTGAC  914 Barhl1 GGGTCCTAAGAGGTTGGGTT  915 Barhl1 GGAAATTAGGAGGAAGAAAG  916 Barhl1 GTTGAGCCACACACTCACCC  917 Barhl1 GCACAGACCTAACTATTTAC  918 Barhl1 GTTGCGCATCTGGGCAGCAG  919 Barhl1 GAGAATTGTGGTGTTCTACA  920 Barhl2 GAGCAGACATTTATTTATCA  921 Barhl2 GTAGTCTTTGGCGCCAGAAC  922 Barhl2 GCTGACGGCACAGCTTGTGC  923 Barhl2 GAGTAGAGCTCAGACGTTGC  924 Barhl2 GAGTGCTATCTAGATGGTCT  925 Barhl2 GGATGACAAGCCAACGCGCG  926 Barhl2 GACCAAGGCCTAACCTGGGA  927 Barhl2 GTCGCGTTCCAGGTCCCAAA  928 Barhl2 GCGCGTTGGCTTGTCATCCG  929 Barhl2 GGGATGGAAGCATTGGAGGG  930 Barx1 GGCGCACCTGTGGAATGGAG  931 Barx1 GAAACTGGCCGCTCTGGGAG  932 Barx1 GCTCTGTGGAGAGCATTCGT  933 Barx1 GAGCTGTAGCAATGAGCTTT  934 Barx1 GGAATGCCTGAACCAGTCCT  935 Barx1 GCCTGATGTTGAGCCCTCCA  936 Barx1 GCGCATAGTGTTCAAATACA  937 Barx1 GCACCTGTGGAATGGAGTGG  938 Barx1 GGGATCCAGTGCAATACACC  939 Barx1 GTGAGTAGAAGCGGCTTTCT  940 Barx2 GGCGCTAAGGGAGGACAGAG  941 Barx2 GAAAGTTTGTAAGGCACCGA  942 Barx2 GCTGTGGGCTGGGTTGAGAG  943 Barx2 GGCAATCAAGTTTGCAACCT  944 Barx2 GCTTGCGCACACCACTTCAG  945 Barx2 GCATTTGTGAACCCGTACCC  946 Barx2 GCGAGTACCAACGAGGGAAA  947 Barx2 GCCATGAACACATGATTGTA  948 Barx2 GTATAACACACTTCTGGTAT  949 Barx2 GCTCCGAGCATGGTTAGCCG  950 Bbx GTGAAAGACACATGGCAAAG  951 Bbx GTCAGTGGGACCTGACCGTG  952 Bbx GTCCAATTAGTGTTAATGTC  953 Bbx GATCCCTTCTGCACTGAGTT  954 Bbx GCCCATATCCACGTGGACTA  955 Bbx GAGGCAGGGACAAACCAGGT  956 Bbx GACTGGGACGTGAGAGCACA  957 Bbx GAAAGGTAACAAATCAAACA  958 Bbx GCTACTTAGTCTTT3AACTA  959 Bbx GCTCAACACCTGGGAACTAA  960 Bcl6 GTGGGAAGAGAGAGAGAGAA  961 Bcl6 GTGGCTCGTTAAATCACAGA  962 Bcl6 GCTCTGTTGATTCTTAGAAC  963 Bcl6 GTCCTTTCTTCTCTCTTTAT  964 Bcl6 GGTGGGAAGAGAGAGAGAGA  965 Bcl6 GGTAGAGCCAGCCAGAGTGG  966 Bcl6b GGCCTCTCCCTTCTGTTCTT  967 Bcl6b GGTCGTATCGTGGATGGCTT  968 Bcl6b GTCTGCATCCTTCCACGAGA  969 Bcl6b GCGGAGGGTGGTAATATGGG  970 Bcl6b GCTGAGAGCTTGATTGATGG  971 Bcl6b GAGGTTAGTGGTGCGGAGGG  972 Bcl6b GAAGCTAGGAGAGGATCTGA  973 Bcl6b GCCGAAGAGAGCAGGGACCT  974 Bcl6b GAGAAGGAGGAGTGATTGAC  975 Bcl6b GCATGAGTACGCAACTAATT  976 Bhlhe41 GCATTTAGCAGGAAGAAACG  977 Bhlhe41 GGTTCCTCGAGTAGGACGAC  978 Bhlhe41 GATAAGCCACGCCGAGAGTG  979 Bhlhe41 GGCTTCCTCCAGTTCTTAAC  980 Bhlhe41 GAGCAATTTACACCTTGAGC  981 Bhlhe41 GGCGAGCCCACGTTTACTAC  982 Bhlhe41 GAGACTCAAGTTTAAGGCAG  983 Bhlhe41 GGAGGTGCCAGTAGTAAACG  984 Bhlhe41 GGCTTATCGCACGAGGGAGA  985 Bhlhe41 GGAGACAGGATTAAGGAGGG  986 Bmp7 GGCACTTCCTCCTAAAGTCT  987 Bmp7 GGCCAGGGACTCAGTACTGG  988 Bmp7 GTGCTTCTGTGGTGGGAAGA  989 Bmp7 GCGTGTTTGTTCTGTCACTT  990 Bmp7 GACTGGAGCAAATGGAGTGT  991 Bmp7 GTCCAGCACCCAAGGGATCC  992 Bmp7 GTCTCTCTGTGGAGACTCAG  993 Bmp7 GTTAGACAGTGAGGTACCAA  994 Bmp7 GCACCGAAGAAGGGAGAGAT  995 Bmp7 GGCAAGCATGGCAACCTCCA  996 Bmyc GAACTGGGTCCAGATAGGAA  997 Bmyc GGCATGATAGCCCAGGAGCT  998 Bmyc GTTGGTCTGCTCACATGTTA  999 Bmyc GTGCAAAGCCCAGTGGAGGC 1000 Bmyc GAGCAGAATTCCAGCAGGAC 1001 Bmyc GGTCCTGCCTCCAAGTGTCC 1002 Bmyc GGACACTTGGAGGCAGGACC 1003 Bmyc GATACTTTGAGCTTGGCGTC 1004 Bmyc GAGCCTGGTGAAGGGACTGT 1005 Bnc1 GGGTGCAGAAATATGTGGAG 1006 Bnc1 GAAGCAGGTGCAACAAATTG 1007 Bnc1 GCCTTCTGCCIGGTCCACAC 1008 Bnc1 GGGACTGGCTGTTTGGGTCT 1009 Bnc1 GGCTGTTTGGGTCTTGGGTC 1010 Bnc1 GACCCAGAACAGGCACCTGG 1011 Bnc1 GAGAGCAATGTGAAGGGCCA 1012 Bnc1 GGTGACTTCGCTCTCAGAGT 1013 Bnc1 GAAAGGACTCAGAGACAAGA 1014 Bnc1 GTGCCTGTTCTGGGTCTACC 1015 Bptf GCGAGAGGGAAGAAACAAGA 1016 Bptf GGTTTGGGAGACACGCATTG 1017 Bptf GAGGTGTGGAAGTTCGTAGC 1018 Bptf GGCTCAACACAGGGTCCTCG 1019 Bptf GTTGTTCCAGGAATGCACGC 1020 Bptf GTCAGGTAGACATTATTTCC 1021 Bptf GAGTGGTAAACTTACCCACA 1022 Bptf GAACTTAAGGATAGGAAGGA 1023 Bptf GCCTTTGGGAGCTCTCTATT 1024 Bsx GAAGAGACTGAATGTCACTT 1025 Bsx GTGGCTGGGAACCIAGACAT 1026 Bsx GTTATGGGTAAGGGTGGCGG 1027 Bsx GCGATTCCTCGAGCAATCTG 1028 Bsx GTGTTCCTCTTTGTCTGGAA 1029 Bsx GCCTGGCAGCAGCCAGTGAA 1030 Bsx GTGAGGATCTACACAGTGGC 1031 Bsx GAGGCAAGAAGACAAGCGCC 1032 Bsx GGGAGCCCGGCGAACCAATA 1033 Carf GGCCTACAAGATATCTCAGT 1034 Carf GTCACTCAGAATAAAGAAGC 1035 Carf GGTACTTGATGTGTGCGGGC 1036 Carf GAACGAGTCGGAAGGGAACT 1037 Carf GTAGTTGTAGATGAGGAATC 1038 Carf GGAAAGGAGAACGAGTCGGA 1039 Carf GCATAGTCCCATTTGTACCA 1040 Carf GAGCTGAAGTGCTTGTGTCC 1041 Carf GTCAACTGGACAATTAATGA 1042 Cav1 GGTGCAAGGAAGAAGCACGG 1043 Cav1 GGCACCTTGGAGGAATGGGC 1044 Cav1 GCTCTGGAATCATAAAGATT 1045 Cav1 GCCTCTTGGCTGTTCGCCAG 1046 Cav1 GGCTTTCCCTCTGCTGGTTT 1047 Cav1 GAGAAGGAATACAGAGGAGG 1048 Cav1 GCCTCCTTTGTCTTATTGTA 1049 Cav1 GGCGGTGGTACTTGTGAGGG 1050 Cav1 GAGAGTGATCTAAGTAAGGG 1051 Cbfb GGGAAAGGAGAAACAGAAGT 1052 Cbfb GTAAGCATCTAACCAAATCA 1053 Cbfb GCGCTAATTGTTTCTCATAT 1054 Cbfb GCTGATACAGACCACTCAGT 1055 Cbfb GGCTGATGCTAGCGTTTGCC 1056 Cbfb GAACAGATTAGGTGCATGAA 1057 Cbfb GAGGACTTTGCATACAGGGA 1058 Cbfb GTGGACTGTGCACTGAAAGG 1059 Cbfb GAAGTGCTGAGGAAGGAGCA 1060 Ccnt1 GAGCTTCGTTTGAGTGTTTG 1061 Ccnt1 GGATCTCCGGTAGAACGGAA 1062 Ccnt1 GAGATGCTGATACAAGACTA 1063 Ccnt1 GAACTACTGACCTGACGCGC 1064 Ccnt1 GGTGGAGGAGAAAGGATCTC 1065 Ccnt1 GACGTGACGAACTTCCTCCA 1066 Ccnt1 GGTTCCTGGGTTCTTAGCTC 1067 Ccnt1 GTAGACATTCTAAAGAGAAG 1068 Ccnt1 GTGTGGCAAGGCACTGAGCA 1069 Ccnt1 GTGTAGACATTCTAAAGAGA 1070 Cdkn1c GGGAGTCGAGAAGGTGACTC 1071 Cdkn1c GCTAACCAGGTCCAAGGTCG 1072 Cdkn1c GCACACTGCTTCCAGAAGCA 1073 Cdkn1c GAGGAACAGAATGAGGGCTG 1074 Cdkn1c GTCTGTTGCGAGGAGGAAAC 1075 Cdkn1c GAAGTACCCATTCTGCCCAA 1076 Cdkn1c GGTCCAAGGTCGAGGTCCCA 1077 Cdkn1c GGGCTCCTTTGTCTGCAGGC 1078 Cdkn1c GGAGTGTGGTCCTGTGACCA 1079 Cdkn1c GAGTTGGTTCGAAGAGCTGG 1080 Cdx1 GATCCTCGTTGGTAATGGAA 1081 Cdx1 GAGTTCTGCCCTTTCCTCTC 1082 Cdx1 GCCAAGCTAGAGAATTCTTT 1083 Cdx1 GGCGGTATGTCCACCCTTTG 1084 Cdx1 GGTAGTGGCTTAGAGATGGA 1085 Cdx1 GTAAGGTAGCGGGCGTCTCT 1086 Cdx1 GGTTCCGTCTGTAAGGTAGC 1087 Cdx1 GAAGGCCTAGCATGGAGGGC 1088 Cdx1 GCCTGCCTGCCTGTCTTCAA 1089 Cdx1 GACGCCCGCTACCTTACAGA 1090 Cdx2 GAAATGATACTGACAGGAAC 1091 Cdx2 GGGATGTGAAGGGTGGAAGG 1092 Cdx2 GCAGTAATGAATAGCGACAA 1093 Cdx2 GCATTCGGAAGACACAGGCT 1094 Cdx2 GAGAGCATTGTCAGCATCCT 1095 Cdx2 GAAGCTCGTAGCTAGCAAGA 1096 Cdx2 GTCTTTGAACCTGTGATTGG 1097 Cdx2 GGTGAGTACAGTAGCTCTGT 1098 Cdx2 GAGCTTCCTCCTTCCAACCT 1099 Cdx2 GCACTTTAACCTCCAATCAC 1100 Cdx4 GTACATAGATGAGCAAGAGA 1101 Cdx4 GGTCAATTACTCTTGAGTGT 1102 Cdx4 GAAATGAGCAAGTGTCATTG 1103 Cdx4 GAGCAGACTGCTCCTGCTCC 1104 Cdx4 GAGTATGCGGCTCAGAGCAA 1105 Cdx4 GAAAGGCAGGCCTCAGTGAA 1106 Cdx4 GGTAGCCAGGTCACAACACA 1107 Cdx4 GTCCCTGAAGTGGCGCTGAT 1108 Cdx4 GCTGATGGGCTAGGAGCTAG 1109 Cdx4 GTCATTGTGGTGGACCTGCA 1110 Cebpa GAGAGACGTGGGTGCTCACC 1111 Cebpa GCAGGTTTGTTTACCTGGGA 1112 Cebpa GCTGGGTAGCAACGTCTGCC 1113 Cebpa GTGAGCAGAGGATCGCTCTC 1114 Cebpa GGTCACGGAACACGGACAAA 1115 Cebpa GATCGAAGGCGCCAGTAGGA 1116 Cebpa GTGACTTAGAGGCTTAAAGG 1117 Cebpa GGAAAGTCACAGGAGAAGGC 1118 Cebpa GTGCTAGTGGAGAGAGATCG 1119 Cebpa GACTTRCCAAGGCGGTGAGT 1120 Cebpb GGTCCCTGAACTGGCCTCTC 1121 Cebpb GGAGAAAGTCTCCCAAGCCT 1122 Cebpb GAAATGTTGGCAGGAAGCTA 1123 Cebpb GCCTATTGAGCAAAGAACCT 1124 Cebpb GTGGCCAGACCAACCAAGAA 1125 Cebpb GCTCAGAGACAGCAGAGGGC 1126 Cebpb GTCATTTCTCCAGCTCTTGG 1127 Cebpb GGCTGCAAAGGTCTCTGGTG 1128 Cebpb GGGTTCTGCCACACTGTGTC 1129 Cebpb GATCTGTTTCCCAAGAGTTG 1130 Cebpd GTTGTGTTTACAAGACAGCG 1131 Cebpd GAACCACGGTTCACTAGTTC 1132 Cebpd GATGCTATGCTACCACCAGG 1133 Cebpd GAAACGCACCGCGGTTAGGG 1134 Cebpd GCTCCTACCTTCAGTTCCTG 1135 Cebpd GCCTTCAGACATAGCAAAGG 1136 Cebpd GACATAGCAAAGGCGGAACA 1137 Cebpd GTCCTGCTTTGCGCGTGTCG 1138 Cebpd GACGCCTTCAGACATAGCAA 1139 Cebpd GTTGCTGAACCTAACCTCGA 1140 Cebpe GTTTAGACCAAGTTGGCACT 1141 Cebpe GCAGCTACCAGCTTCTcCTT 1142 Cebpe GGTAGGTGGAGTTCAGGACT 1143 Cebpe GAAGCCTTCCCTAGCCCAGC 1144 Cebpe GGAAGCCTTCCCTAGCCCAG 1145 Cebpe GTAGATAGGGAAGCAGGAGA 1146 Cebpe GGGCTGCCAGGACATAGCTG 1147 Cebpe GATCCTTTCTGTTGGTTCTG 1148 Cebpe GAAACTGGTCCCGCTGGGCT 1149 Cebpe GGGTTAGTAGAAGATCAAGA 1150 Cebpg GAGCTATTCATATGAAGTAT 1151 Cebpg GAACTGTTCCCGGGAGACCC 1152 Cebpg GACTCCTGGGCATTGACTGC 1153 Cebpg GCCACCACCGACAGCCTAAG 1154 Cebpg GGATTCCTCGAAGTCTTATG 1155 Cebpg GCTTCTATTGGTCACGGCGG 1156 Cebpg GCATGATGCAGATCTGTGAA 1157 Cebpg GATAGAACTTTGCTTGCCAT 1158 Cebpg GGAGGACCACAGTGTGACTG 1159 Cebpg GAGGGTGTTCCTAGAATAGA 1160 Cebpz GTGACGCACTTCCTATTGCG 1161 Cebpz GTATGTCCAATGACCTATAT 1162 Cebpz GCTCCTCTGTGTACACACAC 1163 Cebpz GATTGCTTATTTGTGCCATG 1164 Cebpz GGTGGAACTTGGCCCTGGTC 1165 Cebpz GCCTTCCCTGTATTTGGAGA 1166 Cebpz GGCGGTGGCTCAACACCTGA 1167 Cebpz GTGTACACAGAGGAGCCCGA 1168 Cebpz GCCGCGCCATACGGTTTCCA 1169 Cebpz GAAGCTCACTCTCAGGGTGA 1170 Clock GAACCTAAGCGAGCAGCAGA 1171 Clock GCAGAAACTGTGCCTTTCGA 1172 Clock GGGTCGTCCAGGTCCATCTC 1173 Clock GGACAGAGTGGAGAATGGGT 1174 Clock GCACATGGTGTTTAAGGCCA 1175 C1ock GTGGTCCAGGCAGGACACTG 1176 Clock GACAATGAAACCATTAAAGG 1177 Clock GAGGACAATGAAACCATTAA 1178 Cnot3 GACTTAAGAAGGTGAAACCT 1179 Cnot3 GTACGTCGCTCTGCGCCGTT 1180 Cnot3 GAACTGCTTCTAGCTCTATC 1181 Cnot3 GAAGCTTATCTAGTGGGAGA 1182 Cnot3 GATCAGATAACAGCCTAGAC 1183 Cnot3 GAATTTCCATGGATCATTTC 1184 Cnot3 GCGTGGGACTGACGTTTCTC 1185 Cnot3 GTTTGCAACCTAGTCAGCAA 1186 Cnot3 GCATAGCGTGTGAGTGTTAA 1187 Cnot3 GACTGAGAAACACAAGGCGT 1188 Creb1 GAAACATGCTACAAGAAGAA 1189 Creb1 GCACGATCCGAGCCTCACTG 1190 Creb1 GCTAAGAACCGTGGGAGGAA 1191 Creb1 GCTATGGCACAGGTGGCATG 1192 Creb1 GAGCAGTTGCGGTAGCTTTG 1193 Creb1 GGCTCAGATGACTCCTGCAC 1194 Creb1 GGAACTTTGACGCGCCGCGA 1195 Creb1 GGTTTGTGTGTAGCCAGATT 1196 Creb3l2 GCCGGAGCTGGTTCTTTGCT 1197 Creb3l2 GAGCGTCGCAATGGACCAAT 1198 Creb3l2 GTCACTGGCCTGGAAGGAGG 1199 Creb3l2 GAAACATAGATCAATGAGCT 1200 Creb3l2 GGGCAGAGCTCAAGAGCCCA 1201 Creb3l2 GGTCAGGTCAATATAGAAGG 1202 Creb3l2 GAGGAGACTGAAGAAATCCA 1203 Creb312 GAGGGAACCCAGGTCACAGA 1204 Creb3l2 GAAGAGGCTAGTGTGGTCCA 1205 Creb3l2 GGGAGGGACATGGATGAGAA 1206 Crebbp GTGTGGCACACCCAAGTGAG 1207 Crebbp GGAAGTCCCTCTAACACTTT 1208 Crebbp GTTCAGAGGCCTCCGAATTG 1209 Crebbp GACCAGCATCACTGCATCTG 1210 Crebbp GCCATTACTAGCATAGGGCG 1211 Crebbp GTTGTCTACTAGTCTGTCCC 1212 Crebbp GTGAATGTAGGATGCTGGTG 1213 Crebbp GGGCCCATCTCAGATCCAGG 1214 Crebbp GTTTACCAACAGTATCCTTT 1215 Crem GTTAGCTACAGTACTACAGA 1216 Crem GAAAGAAAGATTGGAATTCA 1217 Crem GGACCAGACTCTCTTCAGGA 1218 Crem GCAAGTGAAGATTAAAGATG 1219 Crem GCAAATAGAACTTAGCATTG 1220 Crem GAACAACCATTTGTGAGTTT 1221 Crem GAAGGTTACAAATAGGCCAG 1222 Crem GCAGCCTCTTGGCTACTAAC 1223 Crem GACCTCAATCCCAAAGTGTG 1224 Crx GGTGTCACTGGGAAGCATGG 1225 Crx GTTCTGCTTCTCTAAACACC 1226 Crx GGGTGGTGGGATTAAGCAGA 1227 Crx GAAGGCTAAACTATGCAGAC 1228 Crx GAAACAATCCTTCAGGCCAG 1229 Crx GTCACTGGGAAGCATGGAGG 1230 Crx GATCTGGAAGGGTAATCCCA 1231 Crx GCTCTCTGAAGCTTGACAGG 1232 Crx GGCCCTAATCTCTCCTAGCA 1233 Crx GCCCTAATCTCTCCTAGCAG 1234 Crygf GGCAACAGAGGTGAATTGCC 1235 Crygf GTAGAGAGAAGAAACCTCCT 1236 Crygf GAAAGAATGGAAGGCAGGGA 1237 Crygf GGATAAGTCTGTCAGATTCA 1238 Crygf GAGATCATGATGAGTGTATG 1239 Crygf GCAGGAAGAGGTGGAAGGCA 1240 Crygf GAATCTGACAGACTTATCCC 1241 Ctbp1 GGTCTCTTTGGTTGGGTACA 1242 Ctbp1 GAAGGATGCTGAAGGCCATA 1243 Ctbp1 GTGTCCCAGAAGTTGAGGGA 1244 Ctbp1 GGAAAGTACAGCTTTGCCAG 1245 Ctbp1 GCAGGGACCATCCCTGGAGT 1246 Ctbp1 GTAGAGATGTGGAGATGCAC 1247 Ctbp1 GGTTTCCTGGGAGGCCCTAA 1248 Ctbp1 GCCTCAGCAGATATGTAGGT 1249 Ctbp1 GGTTTCCGAGGTTTCCTGGG 1250 Ctbp1 GGAATTTGGGCAGCCTGAGA 1251 Ctbp2 GTGAGAATAGAGGACCACGA 1252 Ctbp2 GGGATGTGATGTGTTGGACA 1253 Ctbp2 GGTCTTCAAAGTTGTGACCT 1254 Ctbp2 GCACACAGGACAGACCTTGC 1255 Ctbp2 GAGACACATTCATCTCCATG 1256 Ctbp2 GTGTCACACTCCTCCCTAAA 1257 Ctbp2 GAGTAGTGGGTTGGCCACCA 1258 Ctbp2 GCGCCTCCCTTGAGACTCTG 1259 Ctbp2 GAGCACAGCCACTGGAAAGG 1260 Ctbp2 GTGTGCTTCTAAGCCCAGGC 1261 Ctcf GAGTCACATTCCAAGGCTAT 1262 Ctcf GTCGGAGAAGTGAGAGAGTG 1263 Ctcf GGGATTAAGTACCACCGACT 1264 Ctcf GTAACCTTAGGACTGCTTTC 1265 Ctcf GGTATCAGAAGCCAGGAATA 1266 Ctcf GCAAATAAAGGCATTGTCTT 1267 Ctcf GATTAGAACACCTGCCAATA 1268 Ctcf GGGACAGAGTCACCTCAGTC 1269 Ctcf GGTGTGGTCTGCTATATCTC 1270 Ctcf GGCATTGTCTTTGGAAAGAA 1271 Ctnnb1 GTGAAGGAAGCGGGAGGTGA 1272 Ctnnb1 GAGTAAACTCTGCTGCTGGC 1273 Ctnnb1 GTTGATGACGTGTTTCTTTC 1274 Ctnnbl GTCTTCCTTCCCAGGGTTAT 1275 Ctnnb1 GGTCAGTAGAACCAGGCGTG 1276 Ctnnb1 GGAGGTGATGGGTACGGAGG 1277 Ctnnb1 GGATCCTATCCCAATAACCC 1278 Ctnnb1 GCTAGAGGAATATGAATACA 1279 Ctnnb1 GAAGCGGGAGGTGATGGGTA 1280 Ctnnbl GGTAACACACTTCACATAGA 1281 Cux1 GTGGCAGGGCTGCAAAGAAG 1282 Cux1 GACGCAATGTACGTCATATA 1283 Cux1 GGGTGGCAGGGCTGCAAAGA 1284 Cux1 GGCCATCTACGTTTGTGCGG 1285 Cux1 GTGCAATTGTGTCGTGGTAA 1286 Cux1 GAGGGCTCATATGATTACAA 1287 Cux1 GTCACCCTCCTTCCTGAGGG 1288 Cux1 GAAGTCTATGCAGCAAACCA 1289 Cux1 GTTGTCTTTGTGGGTGTCGA 1290 Cux1 GAACTCGCGCGCGCTAAAGA 1291 Cux2 GGTAAATATGCAGGCGACAA 1292 Cux2 GGATGCTTGCTGCGTTTCTA 1293 Cux2 GGACAATAGATCAATACCGT 1294 Cux2 GCAGGAATTTATTGCACCAC 1295 Cux2 GCCACTCGGAATTGCTAACT 1296 Cux2 GTCTTTCTGAGGCCCTGGGA 1297 Cux2 GCCTCTGTGGGACACACTGC 1298 Cux2 GAGATAGCGTCTGCTCCATC 1299 Cux2 GCGAATTTATGAGCCTTTAA 1300 Dbp GAAAGAAGTGGGCTTCGGGA 1301 Dbp GTGTTGGAGGGTCAGGTGAG 1302 Dbp GGCATATCCCTTCATCTCAT 1303 Dbp GGCGCAGTTCACTGAGTCGG 1304 Dbp GGCGGGCGTAATCCTCGTTG 1305 Dbp GTGAGGAAACTCAGAACAGG 1306 Dbp GCTGAGAATGGCCAGGCCGT 1307 Dbp GGTGTCAGTCACCTGGAGGG 1308 Dbp GGCCTTCTTCCCTCCCTACA 1309 Dbx1 GCGAAAGTGAGGGTTCGCGG 1310 Dbx1 GTGTACGTGCAAGATCTGTT 1311 Dbx1 GAGAAGTGTGCAGCCCTGCC 1312 Dbx1 GAACGCACTAAATTTATCTG 1313 Dbx1 GGACTCACTGTATAGCAGAG 1314 Dbx1 GGAGGGTAGCTAGCCTTCCA 1315 Dbx1 GTGGAATTCCCAGCCCGGTT 1316 Dbx1 GGAAGAACTAAGTTCACACA 1317 Dbx1 GACAGGTTTGCGCTAGCTAC 1318 Dbx1 GTGGCAAAGAGCGAAAGTGA 1319 Dbx2 GTTAACAGAAGGGAATAAAG 1320 Dbx2 GATCAGACAATTCTGTGCTG 1321 Dbx2 GGATGCTTCAAGACAAAGGA 1322 Dbx2 GGAGATAGGTGCACTGTGTC 1323 Dbx2 GAAAGGCAAAGTAAGGGTGG 1324 Dbx2 GCGACCAAGTACATGTACCC 1325 Dbx2 GATCTAGCTGAGAACCACAA 1326 Dbx2 GGACTCCAGCAGCAGGGTCA 1327 Dbx2 GTAACTATTGAGATGAGTGG 1328 Ddit3 GGATTGGCCACCAGTGGCCT 1329 Ddit3 GTTCAGGAAGGACAGCCGTT 1330 Ddit3 GCACAGCAGTGGCCAGACAC 1331 Ddit3 GTCAATCCAGGTGAACAAAT 1332 Ddit3 GGAGTCAGGAATGTCAGGTC 1333 Ddit3 GCAATTGCTTGGTGACCTGT 1334 Ddit3 GCCGTGAGACTCCTGAGTGG 1335 Ddit3 GAGAAGCGGGTGGACTATCA 1336 Ddit3 GACATGTTGACCTGGAGAGG 1337 Ddit3 GAACTCAGACAGCTAGAGGC 1338 Deaf1 GACAAAGGTAGACTATATGT 1339 Deaf1 GGTGTGATATGGTTGTATAC 1340 Deaf1 GGCTTCTAGAGCTGAAGTGG 1341 Deaf1 GTGTGCTCAGGATGAGCCAT 1342 Deaf1 GCTGAGAGCACCTGAGAGTG 1343 Deaf1 GATCACTGAGAGTCTAGGGT 1344 Deaf1 GAGTGTATTGTGGATATGCC 1345 Deaf1 GCATCTGAAGAGACCCAGGC 1346 Deaf1 GCAGGTGAGCACTTCAGCCA 1347 Deaf1 GTCTCCTCAGCAGCCAAGGA 1348 Dlx1 GTAGACCCATGGTCGCTCTC 1349 Dlx1 GTACAACAAATGGTCTAGTG 1350 Dlx1 GTCGGATGGCCGGATTGCCT 1351 Dlx1 GGGACAATTATTGCAGGTGA 1352 Dlx1 GACGCCTAACCCTGAACCGC 1353 Dlx1 GTTGAACCTACCTTCAGGGT 1354 Dlx1 GAGGAGGAGGTGGGAAGCTG 1355 Dlx1 GTGGTGTGTGGTAGTAGTGG 1356 Dlx1 GCTTCCCACCTCCTCCTCCA 1357 Dlx1 GCAATAATTGTCCCAGTGGT 1358 Dlx2 GATTCTGAGGTTCCCTCCTT 1359 Dlx2 GTAGGAGGTTGTTACAGGCC 1360 Dlx2 GCCTTCAAAGTCGTTTGCAT 1361 Dlx2 GTGGATCAAGCTACACTCTG 1362 Dlx2 GCATCCACTTCCCAGGCTAC 1363 Dlx2 GTCAGCCACTTTGCACCTGA 1364 Dlx2 GGAGCCTTATGTCCTGTTGC 1365 Dlx2 GAGATGTAAATCGTTAGACT 1366 Dlx2 GCCTTCAGGACAGGCTTGAT 1367 Dlx2 GGATGGACTCAGCGCAGTGA 1368 Dlx3 GCTGGCTTTCTGTGTTCTTC 1369 Dlx3 GTGTCTCTGTATGTAGTGTG 1370 Dlx3 GCTGAGGCACAGTTGATGGA 1371 Dlx3 GTTGATGGAAGGCCTGAAGC 1372 Dlx3 GGCTGCAAGTCTTGCCTTCG 1373 Dlx3 GGAGAAGCCTCCTTCCTCCA 1374 Dlx3 GCTCCCAAACCTATCCTTGG 1375 Dlx3 GTGGCTCTTCCATTCATGAA 1376 Dlx3 GGGCTTAGGTGAGATGAGGA 1377 Dlx3 GGTAAGCAGGCAGACAGGAA 1378 Dlx4 GCTGGAGGGAATCTGCTGTC 1379 Dlx4 GTAACGATGTTCAAGGTGCT 1380 Dlx4 GATGTGCTTTGAGGCAGGGC 1381 Dlx4 GTGATCCTGGAGCTCAGATT 1382 Dlx4 GACAGGTCCAACTTTCTTTC 1383 Dlx4 GCAACAGATGCTTGCATACA 1384 Dlx4 GAACAGAGACAGGCAAATCC 1385 Dlx4 GAATCTAGTTTGATGGCTCC 1386 Dlx4 GGAGATCCTCTTTGTCTGGT 1387 Dlx4 GATTCCCTCCAGCAGCCTCA 1388 Dlx5 GTTTCCAGTATCAGGGTCAT 1389 Dlx5 GCAAGGAACCAAGTCCGCTT 1390 Dlx5 GGCAAGGAACCAAGTCCGCT 1391 Dlx5 GGCCAGTCTTTCAGCACTTC 1392 Dlx5 GCTCCCTGCTGAGACATGTA 1393 Dlx5 GAGATTGGTGAATTTCAAAG 1394 Dlx5 GGAGAACAGCATTGTCTTAG 1395 Dlx5 GCAGCTCCAGATTCCAGAGA 1396 Dlx5 GCAGGAGGTCAGTCCCTCTC 1397 Dlx5 GAATCTTCTGGTTCCTCTTC 1398 Dlx6 GACTGGGTGGGAGAAATCTG 1399 Dlx6 GGTGTGTCTGGAGGTTGCGG 1400 Dlx6 GGTAAGCTCTAGGAGCTTGC 1401 Dlx6 GGTTCTCCTACCTGGTGGCT 1402 Dlx6 GTCCATCTTTGAAACAGAAG 1403 Dlx6 GCCTGTAATGATTATGGACT 1404 Dlx6 GCTCCCTTGGGAGTAGAGTT 1405 Dlx6 GAGTTACTGAACCGGCACCC 1406 Dlx6 GTCGAATGGTTTGTCTCCAA 1407 Dmbx1 GGAGCATGCATATGCAATTA 1408 Dmbx1 GATGAGCATAGGACCCAACC 1409 Dmbxl GACTGAACGGATGGAGGTCT 1410 Dmbx1 GTGTGTGTTCTATGCTTGTG 1411 Dmbx1 GCACACACCTCAGACACACA 1412 Dmbx1 GGAAGAGGTCGTTATGCAGG 1413 Dmbx1 GGGAAATGATGGACGCTGCC 1414 Dmbx1 GTAGCCAATCTTGCACTACA 1415 Dmbx1 GGGATCCTGGTGGGAGAGAA 1416 Dmbx1 GGCTCCCTGCCTCTAACTCT 1417 Dmrt1 GATAACAGATATTAGCTGCC 1418 Dmrt1 GAACCTTCCGAGGATTGCGT 1419 Dmrt1 GTACTGGTCCAAGCTGGAAG 1420 Dmrt1 GCCTCTTGGCTAACAGAGAC 1421 Dmrt1 GACACTGGCAGAGAGCAGGT 1422 Dmrt1 GTGGTCCTGAGATGGAAGCC 1423 Dmrt1 GAGGAGGCAGTGGTACACAT 1424 Dmrt1 GAGCGCCAATGGTTGCTTGG 1425 Dmrt1 GCAATTACATGTGTACCATC 1426 Dmrt1 GGTAGGTGAATGGTTGCATG 1427 Dmrt2 GTTCTCGAGAAGGTAACTAA 1428 Dmrt2 GGTGGTGGATAATACTAGGA 1429 Dmrt2 GTGTATGAACCAGTCAGATG 1430 Dmrt2 GCAGAGAGTAGAGCCGGGAG 1431 Dmrt2 GATAGGGAGCCCTAAGACAG 1432 Dmrt2 GAACTTAAACGCACCCACCC 1433 Dmrt2 GGCAAAGACCAGGCTCTCTA 1434 Dmrt2 GATCATGTGGATAACGGGCT 1435 Dmrt2 GACCACAAATGAGGAAACTA 1436 Dmrt2 GTGGGAAAGTGGTTCCCTGG 1437 Dmrt3 GAGGAGTTGATAGTTGTTCC 1438 Dmrt3 GTTACAATAGACTTTGAGGC 1439 Dmrt3 GATGTGCACTGGAGTGAAAC 1440 Dmrt3 GGGTGAAAGTTAACGTAAAC 1441 Dmrt3 GGGAATTGAGGGTACTCCGC 1442 Dmrt3 GAATGGCTGAGGCCAAGGGT 1443 Dmrt3 GCCAAGGGTGGGAAGGAAAG 1444 Dmrt3 GCTTTAACAACTCAGTGGGA 1445 Dmrt3 GAAGGGACCAGGGAAGGAAG 1446 Dmrt3 GAAGGAGCCAACGGAAGTCC 1447 Dmrta1 GTGCAGACTTCATCTAGGAA 1448 Dmrta1 GCGGTTTCTTGCTCTGGGAC 1449 Dmrta1 GCTCTCTGTTTCTACTAAGT 1450 Dmrta1 GGGCGGAGAGTGGGACTTTC 1451 Dmrta1 GTCTAGACTCAGAGGCTCAC 1452 Dmrta1 GACAGGTTAATTCAGAGTCA 1453 Dmrta1 GAGCACATGCAGATTATACA 1454 Dmrta1 GAGGACCTAGGGCGGAGAGT 1455 Dmrta2 GCTCCGAGGTAGTTGAGAGC 1456 Dmrta2 GCAGAAGCTAACATCAGGAA 1457 Dmrta2 GAGTGTGCATACTCGCGACC 1458 Dmrta2 GACTGTGTCACCCTCCATGC 1459 Dmrta2 GAAAGGCAAGGAGGGCACAG 1460 Dmrta2 GGCATTCACGTGAAGAATTA 1461 Dmrta2 GCTTGGACCCACGTTCCTCC 1462 Dmrta2 GCATTAAAGGTGATAGAGGG 1463 Dmrta2 GGAAAGGCAAGGAGGGCACA 1464 Dmrta2 GGGAGCACATATCCAACAGG 1465 Dmrtb1 GTCAGGGATGAAAGATTCGC 1466 Dmrtb1 GCCTCCTGACTGGAGAGTCT 1467 Dmrtb1 GCCCTGCTGTGAAATCTTTC 1468 Dmrtb1 GGAATAAAGGCCATCCTGGA 1469 Dmrtb1 GGGTGTCATCTGAAGTGGGT 1470 Dmrtb1 GGTGTCATCTGAAGTGGGTA 1471 DMrtb1 GCAAGTGAAGCAGGAATGAG 1472 Dmrtb1 GACAAAGCATGTGTTCCAGT 1473 Dmrtb1 GAAATCTTTCTGGTGATGCC 1474 Dmrtc2 GTCTGTATCTACTCTCTCCC 1475 Dmrtc2 GCAATCAGTGAGCTGGAAAG 1476 Dmrtc2 GATGTCTCCTCATGTATTGG 1477 Dmrtc2 GAGTGATGAGAGGTGTCCTT 1478 Dmrtc2 GGTGCTATAAGGCCACACAT 1479 Dmrtc2 GATTGTTGCCGCGGAGAAGC 1480 Dmrtc2 GCAAGATAATTGCATTTCCC 1481 Dmrtc2 GGATCAGCACCATGGCCAGG 1482 Dmrtc2 GGTGCTTTCTGCCCAGCCTG 1483 Dmrtc2 GAAGTGAACGCTTAAGCGGT 1484 Drd1a GATCACCAGTCTGTGGAACT 1485 Drd1a GCTCCAGCCTTGGCACACAG 1486 Drd1a GGACTGACTGAGTCCATATC 1487 Drd1a GGTGACCTGAGGGCAATTTG 1488 Drd1a GTGGCAGCAAGACTGCCAGT 1489 Drd1a GCCAGAATCTGGACGGTGAG 1490 Drd1a GAGGCTGCTGAGTTTATGCC 1491 Drd1a GGAGCACTTTCCCTCCCTGA 1492 Drd1a GCAACAATGTAGTAACACTT 1493 Drd1a GAATCTGGACGGTGAGAGGC 1494 E2f1 GCAATCAGAAATGCTGATGG 1495 E2f1 GATCAACACATTATCTGGGA 1496 E2f1 GGGAGCCAGGAAATGAGTAA 1497 E2f1 GTTAAGAATTGGAGAGGCCA 1498 E2f1 GAGTAATGTGGTCAGAGTTG 1499 E2f1 GAGCATTGGTTGCGGCGTGC 1500 E2f1 GGCCGTCTCCAGTTCTCATG 1501 E2f1 GCTACAGGGAGCTCTCAAGC 1502 E2f1 GCTGCTTCTCAGGCCCTTTC 1503 E2f2 GCGAATCTGTGAATGACCCG 1504 E2f2 GATTCAGGAAGGAAGAGTGC 1505 E2f2 GGTAAGACCAGGGAGTCGGA 1506 E2f2 GACAGGCACAGCGTGGGTGA 1507 E2f2 GTAAGACCAGGGAGTCGGAG 1508 E2f2 GGAATGGAGGTGGCAGGGAG 1509 E2f2 GGACCCTTCCATGGATTCCG 1510 E2f2 GGAGTTTCGCTGCCTGGGAA 1511 E2f2 GGAGTCACAGAGAAATCTCA 1512 E2f2 GAGAAAGCTGCTACTCGGCC 1513 E2f3 GGGATACGGTTTACGCGCCA 1514 E2f3 GGTAAGCAGGACAIAAACCT 1515 E2f3 GCTCTATGCAAATAGAGCCC 1516 E2f3 GCTTTCCTGCGGACGTTGGG 1517 E2f3 GGGCTAATCATGAAGCTGCC 1518 E2f3 GTCTGGAGAGAGGAGGGTCC 1519 E2f3 GGCAAAGTCCTACTCTCCCA 1520 E2f3 GGTTTGCAAAGACTGGAATC 1521 E2f3 GAGCAGGCTTCTTAGGAGGT 1522 E2f4 GCTGAGGCTCTACCACATAG 1523 E2f4 GTTAGACTGGGCTGGAGGGC 1524 E2f4 GCGCCATTTCCTGTTGGGTG 1525 E2f4 GGGCGTTACAGAGCAGGAAA 1526 E2f4 GGTTCTCGCTTCTCAACTGC 1527 E2f4 GGCTACAAGCAGGTGAGTGG 1528 E2f4 GCACTAGGAAAGGGATTACA 1529 E2f4 GTCAGTGGTGCAGTCCTACC 1530 E2f4 GAGCCTCGTTGGCTGGGCTT 1531 E2f4 GTCTCGGACCTCACAAACCC 1532 E2f5 GGCAGGTAAGGAAAGAGCTG 1533 E2f5 GCCTAGTAACGCACTCTCCG 1534 E2f5 GTCTACTTCCTTCACCGTCA 1535 E2f5 GCAGGTAAGGAAAGAGCTGG 1536 E2f5 GTAACGCACTCTCCGCGGAG 1537 E2f5 GAATGCCCAAATTAACAGTA 1538 E2f5 GATCAGGTGCAAGTATTGTA 1539 E2f5 GTAGAAGTAGAATACAACTG 1540 E2f5 GGACTTAGTGAGGGCGGAAG 1541 E2f5 GTCATACATCTTCATCAACC 1542 E2f6 GTGTGTGGTGGGATGGGTTG 1543 E2f6 GTTTGGCATTCAACAGAGGA 1544 E2f6 GAGAGTTTCTCAGAGCAACT 1545 E2f6 GACCTGGGACTTAGTGAGGG 1546 E2f6 GCGCTGCGCATGTGCAAACG 1547 E2f6 GAAGCTGCGGGAGTGAGACC 1548 E2f7 GTGAACCCTGGTTAGCACCT 1549 E2f7 GGACTTTGTTGCTTTAATTT 1550 E2f7 GGAACAGTCAAGAATATCTC 1551 E2f7 GTAATACACTCTGAAACCCA 1552 E2f7 GTTTCTAGTAAGGACTAGCT 1553 E2f7 GTGCTTTGTACTTACATAAG 1554 E2f7 GCCAGGTGACACGTGAACCC 1555 E2f7 GTCTTAGCCGTTCCGTGCAA 1556 E4f1 GTGGAGTTGACCTGAGCAAG 1557 E4f1 GGGCGTGGCTTGTGTTAAAT 1558 E4f1 GTTGCAATGTCAGAATTTCC 1559 E4f1 GCGAGCAGGGACTGAGCAAG 1560 E4f1 GCCAGACATCAGGGCGGAAG 1561 E4f1 GGAGTTGACCTGAGCAAGTG 1562 E4f1 GGTCCAAAGTGAACTATCCG 1563 E4f1 GCGGTCTAGCGCGTCAGTAG 1564 Ebf1 GATGACGTTATGCAAAGAAG 1565 Ebf1 GAAGAGCTGGACACCTGGGA 1566 Ebf1 GAAGCCCTAGCTTAAGACTT 1567 Ebf1 GGCTGCCAAGGACTCCTTGG 1568 Ebf1 GCGGTCTACTAAAGTCGTAT 1569 Ebf1 GTAGACAGATACACCGGAGG 1570 Ebf1 GGGCAGAGGGAAGGAGATGG 1571 Ebf1 GCCCAACAGCATTCGTGTCT 1572 Ebf1 GGTCTGTCCAGGGAGGAAAG 1573 Ebf1 GCTAAGGAGGAAATGAGTGG 1574 Ebf2 GTTTGTCAAGGTCTTAGGGA 1575 Ebf2 GTATGAGAGAAGCCGAGGAT 1576 Ebf2 GAGCTGATCAAAGTCTCCTT 1577 Ebf2 GATAACTGCCGAATGCAACT 1578 Ebf2 GAAGCAATCATTTCGTGCGA 1579 Ebf2 GCGGATTTGCCTCTAGATGC 1580 Ebf2 GAACTTGTCACTGGGAAGGA 1581 Ebf2 GACCCTACAGATTCATTCCC 1582 Ebf2 GGTTATTCTCACGTAGCTGG 1583 Ebf2 GCAGCTGATTGTCTGCTCCA 1584 Ebf3 GACCTCTCCTAAAGGTCAGA 1585 Ebf3 GCAGAGATGAAGTTGGGAAA 1586 Ebf3 GGGTGGAGACCCTTCCTGGA 1587 Ebf3 GGCTCCTCTGCAGCAGGCTA 1588 E3f3 GCTCACACTGGGTGAGCGAC 1589 Ebf3 GGCAAAGCCTGCTGAATACA 1590 Ebf3 GAGGAGATTCCAGGAGAGGG 1591 Ebf3 GGAATACTTCCCACCCTCCA 1592 Ebf3 GGAGGAACCTGTCTCCGACG 1593 Ebf3 GGGAGTGTGGATCCCTAGAA 1594 Egr1 GAGAGATCCCGCTGGTCTCC 1595 Egr1 GGTTGAGGATCCCACCTTTG 1596 Egr1 GGAGACTGGGCAAAGTCAAG 1597 Egr1 GAGAGCCTTAGACGCAGTGA 1598 Egr1 GCAAAGAGCCCAGGAGGGAC 1599 Egr1 GTGGGAAGGGTCTGTAGGTA 1600 Egr1 GGGAGGGCTTCACGTCACTC 1601 Egr1 GCCCTCCCATCCAAGAGTGG 1602 Egr1 GGATCTGTTGGTTCTTGTGA 1603 Egr1 GTCACTTTCCAGGTGTCACC 1604 Egr2 GGGCGTTTGAAGTAATGGCG 1605 Egr2 GAAGCTCTAAGCAAGGGCGT 1606 Egr2 GGTGTGTAGTGTGTAGCGTA 1607 Egr2 GATGAAGGCAGTGTCTTCCT 1608 Egr2 GAAGTGGTTCCATACCATCA 1609 Egr2 GTAGCGTAAGGTGTGTTGAG 1610 Egr2 GCTCCGGGATCTACGTAGCC 1611 Egr2 GCAAATAGAGGTCCCGGCGG 1612 Egr2 GTAACCTGAGTCCCACCGCC 1613 Egr2 GGCTCGGAGTATTTATGGGC 1614 Egr3 GCTACGTCACGGAGCTTTCC 1615 Egr3 GTTTGGAGGAGAACATTGGG 1616 Egr3 GAGTGGGAGTGTTGACAAGA 1617 Egr3 GTTGTCCTCATTGCTGCCTG 1618 Egr3 GGCTCAGATAAATAGACTGG 1619 Egr3 GGCTGGAGAGCCAGGCAATT 1620 Egr3 GCAAAGAGGGTAATCCTCTC 1621 Egr3 GGCACCCTCAGGCAGCAATG 1622 Egr3 GTGTTGACAAGAAGGAAGAG 1623 Egr3 GAATCACACCGGGTTGGCGG 1624 Elf1 GAGTAACATAATTAGATGGC 1625 Elf1 GTGGACCCAATTATTCTGCT 1626 Elf1 GGCTCAAGGCTTTCAGCATA 1627 Elf1 GCCATATATCCCTTCATATA 1628 Elf1 GGTCAAACATGCAAATGCAC 1629 Elf1 GACATCAGIGAGCGGGATCG 1630 Elf1 GGATGGCTGACTGAGCACTG 1631 Elf1 GCAAGAAGTCCACTGTTCAC 1632 Elf1 GGGTTAATGAGTAGCCAGGT 1633 Elf1 GCAGCTTGTTCCAAGGTGTA 1634 Elf2 GATTAAGCTACATATCCTTG 1635 Elf2 GGTGAAGGAGCGCGTGTGTG 1636 Elf2 GAGGATCGTTTATTAGCCAT 1637 Elf2 GACAGTAATATAACGCGATA 1638 Elf2 GAGGTAAGGTTAGGATTACT 1639 Elf2 GTCCCTGGAGGTCTTGGGAG 1640 Elf2 GTTGGGCGCTGAGAAGAGGG 1641 Elf2 GCTGCAAACGCAGGACATCC 1642 Elf2 GGTCCCTGGAGGTCTTGGGA 1643 Elf2 GGGAGTATAAATAGCCGGCC 1644 Elf3 GCAGCCCTGACCTAGAGGAA 1645 Elf3 GCAGATACTAATGGAGTGGG 1646 Elf3 GCAGGCAGATACTAATGGAG 1647 Elf3 GACGTACGCCGAAGACCTGG 1648 Elf3 GCTTCAGCAACCATCGCGTT 1649 Elf3 GAGTCATTACAAAGACAAAC 1650 Elf3 GGACGGAATCAATACTCAGG 1651 Elf3 GCTGGTTCTCCCACATTCCA 1652 Elf3 GAGAGCGCCACAGGCACCAA 1653 Elf5 GGAAAGCTTCACTATGCCTG 1654 Elf5 GCAAATCTCTAGCCATGGGT 1655 Elf5 GACGGCCTAGGCAGTCATCT 1656 Elf5 GAGGCCTTACTCAGGCTGCC 1657 Elf5 GAAAGCTTCACTATGCCTGT 1658 Elf5 GGAAAGGCCTAGGCTGGGTA 1659 Elf5 GTGTAGGCAGAGCAGAGGGC 1660 Elf5 GGTGTAGCAGGGTCCTGGAA 1661 Elf5 GGAACGGAACCCACGAAAGG 1662 Elf5 GCCTGAGATTGAGAGAGGAA 1663 Elk1 GTAGGACTCAACTCTGTGGA 1664 Elk1 GTGCTTTAATATTGGAGGCT 1665 Elk1 GAAACAGGACTTATTTAGAA 1666 Elk1 GCCAAGGATCCTAAGCACAG 1667 Elk1 GTGTACAGCACCACCTACTT 1668 Elk1 GCGTCCTCCTGCTTGCTGAT 1669 Elk1 GCAGTCCTCCTTGACCCAAT 1670 Eik1 GCTGGGAAGATGCAGTCAAT 1671 Elk1 GACAGGAGAAAGCCAAAGAA 1672 Elk1 GGACAACGTATACTGAACCG 1673 Elk3 GAGTTTAGGGACAGGAGGGA 1674 Elk3 GATCCTGGCCATTGTCCTCA 1675 Elk3 GTACCCTGTGGTTTCAAGAC 1676 Elk3 GAAGAGGCTTAAGTTATTTG 1677 Elk3 GTCGGATAGAGTTACTGTCG 1678 Elk3 GAGAGTTGGGCATTGCTCGG 1679 Elk3 GGCTGGAGGAACTGTATACA 1680 Elk3 GCGTACTTATCCCAGACCAA 1681 Elk3 GACACAAGGCTCCTAGTTTG 1682 Elk4 GTTGTCATCTTCTCTTTAAC 1683 Elk4 GATGGTACAAGGTAGACACT 1684 Elk4 GAAACAAGTCACACTTGGTC 1685 Elk4 GTGCACGGGACGGACTAACA 1686 Elk4 GGACCAAGCTAAGTTGGTAA 1687 Elk4 GAAATCAACACCCAATTCCA 1688 Elk4 GGTAGACACTTGGTAAATAG 1689 Elk4 GGACATTCGTACTTCCTCGC 1690 Elk4 GGCTTAGTTATCTTATGCTA 1691 Emx1 GGAGCCTGAGGATGACCTGT 1692 Emx1 GCAGAGATCCGGAGAAGGCA 1693 Emx1 GGTCTCCTTGGAGCAAGGTC 1694 Emx1 GGAGTGGCATCCTAGCTTCT 1695 Emx1 GTTCTCTGGAGAATCTAGGC 1696 Emx1 GTCGCATATGGCGGGAGAGG 1697 Emx1 GATGCAGAGTGGAGGGTAGG 1698 Emx1 GAGAGCCCTAACACCGAGTT 1699 Emx1 GCTTCTCCAGACCAAGGCTC 1700 Emx1 GCAGAGTGGAGGGTAGGAGG 1701 Emx2 GTCTCCTGTTTGGTTTCTTG 1702 Emx2 GCTAATGATGCTAATGCTGG 1703 Emx2 GGCCTCCAGTCTCTTGCATG 1704 Emx2 GAAGCGGGTTAGCCCTTGCC 1705 Emx2 GCTAGGCCATCTATGAGCTC 1706 Emx2 GGTGTGGGTGCAGTAGGAGG 1707 Emx2 GACATCTGTTGTCCCAGGGC 1708 Emx2 GAAGACTGGAGCCCAAAGAA 1709 Emx2 GACTGCAAACGCGTGGACCC 1710 Emx2 GGAAAGGAGTCTTGGGTCCT 1711 En1 GACTTTGCGGATAAATAATC 1712 En1 GTTCTGCCAGGATCTCCAAC 1713 En1 GTGGGTGAGAAGCTACAGCG 1714 En1 GAGAATCTCCCGACTTCTCT 1715 En1 GTGAGGGCAACTGGAGATTT 1716 En1 GCCAGGATGGCAGACAGGTA 1717 En1 GATCCGAGAAAGCTAGAATT 1718 En1 GTCAGAAACTATGACATTTG 1719 En1 GCTTGCCAGGACGTCAGCAC 1720 En1 GTGGAGAAGCCTCAGAAAGT 1721 En2 GTGCAGGAGACGCATGCATA 1722 En2 GAGGCACGTGTCCAGGAGAC 1723 En2 GAACTGCCAGGTCCTGGTGA 1724 En2 GAGCCTACAGAACCCAGGCA 1725 En2 GTGGCCTGGTGGCTCAACAT 1726 En2 GCAAGGGCAATAACTCCCAA 1727 En2 GGGCACGGCCACTTTAAAGG 1728 En2 GTGGCTCAACATAGGAAATG 1729 En2 GCCTCCTATAAGGAACTGCC 1730 En2 GGCCTGGTATGTAAGTGGGA 1731 Eomes GATGATACCATCTTGGCCTG 1732 Eomes GTGTTTCTTTAAGCGTCTTT 1733 Eomes GCTTGGAAACTTGTGAGCGG 1734 Eomes GGTGTTTCTTTAAGCGTCTT 1735 Eomes GACTGTTTGCGGAAACGCAG 1736 Eomes GGCACCGTTCAGACCCACTC 1737 Eomes GCCCGAGACCAAATCGGAGC 1738 Eomes GAGGGTGTGCGCAGAGACTT 1739 Eomes GCTCTATGGCGCCGGAGAAA 1740 Eomes GTCCTGCTGTTTGTGCACCC 1741 Ep300 GCTCCTAAGTCTAGTGTGTA 1742 Ep300 GTTTGGGATCCTCAAATATA 1743 Ep300 GGTACCTGGCTGGAGAGCAG 1744 Ep300 GAGTGAGGAGGGTACCTGGC 1745 Ep300 GTTCCAAAGATCAACCTGAG 1746 Ep300 GAACCTGCCTGAAACTTCCA 1747 Ep300 GCCGCTACCGCTATCCTGTA 1748 Ep300 GCTACCGCTATCCTGTAAGG 1749 Ep300 GAATCCTCCTTACAGGATAG 1750 Epas1 GAAAGCACGGTCCCTCAAAT 1751 Epas1 GACTTGCATAGAGCAGAGCC 1752 Epas1 GGGAGCCCACGGTGATACTG 1753 Epas1 GTTAGCGCAGGACTGAGTAA 1754 Epas1 GAAATCAGTTGACACACCTG 1755 Epas1 GAATAAAGATGGTACGGTTT 1756 Epas1 GAGCGCAGCTCCAGAGAAAG 1757 Epas1 GAGGATTGTACGGCCGCCTC 1758 Epas1 GACAAGAACAAGAGCCGACA 1759 Epas1 GGGCGATACCTGTAACCCGC 1760 Erf GAGAGTGGGTAGGAGAAGTA 1761 Erf GCTGAATAGGAACCCAACAA 1762 Erf GCTGCAGCAGATAGGAGGAA 1763 Erf GAGTTACCAAAGGAAGAGAT 1764 Erf GACCAAAGGCCCGAGCGTAG 1765 Erf GAGGAAAGGAATTATATGAA 1766 Erf GGAAGTGACCAGAATGCATT 1767 Erf GATGCGGCAAGCAAGAGGGA 1768 Erf GCGCACTCACACACGCTTGC 1769 Esr1 GTCACTGAGCATCTTATTCA 1770 Esr1 GACAGTAGTCAGTAGGCTAT 1771 Esr1 GTTTACAGACAGTAGTCAGT 1772 Esr1 GAGCGTGCAAACTATGGGTT 1773 Esr1 GCATCTGCTGTCTTGAGGTT 1774 Esr1 GTGGAAGTAAGAATGGTATC 1775 Esr1 GTTTGGTCCAGAGTCTGCAC 1776 Esr1 GACTCTACTCTTAGAGAAGC 1777 Esr1 GGAGAATGATGTTGGGTGTT 1778 Esr1 GAGTGAAGTGTTGGGTCGGG 1779 Esr2 GTGAGAGAGACAGGGAGACA 1780 Esr2 GCTGGGTTAAGCTTGCACTG 1781 Esr2 GGCAGGTAAAGGTGGTGTGA 1782 Esr2 GTTCACAGAACCCAAGGAGG 1783 Esr2 GAGTCCATCCTGGTGAGGAT 1784 Esr2 GACCTGGAAAGAGTGTGGGA 1785 Esr2 GCTCCCGGTTTGTGGTCACG 1786 Esr2 GCTTTCATAGACATCTTCCA 1787 Esr2 GGGACATTCTATCTCACAAA 1788 Esrra GGGTGGAGTGCTCACTGATG 1789 Esrra GCTCACTCTAACTAGTTATC 1790 Esrra GGTGGAGTGCTCACTGATGA 1791 Esrra GGAAGCCACATCGAACCTAC 1792 Esrra GTTCTGGATCTCAGCCGGGT 1793 Esrra GATGGGTGTGCCATAAGGGT 1794 Esrra GTGCGATGTGAAGAATGGAG 1795 Esrra GGGACACTGGTTTCAGCCCT 1796 Esrra GTAGGCACAGGCCGACTCAA 1797 Esrra GCGTCCTACTAGGAGGAACC 1798 Esrrb GTCAATTCAGAAGTCAACCT 1799 Esrrb GTATCTGTATCCCAGTAGAG 1800 Esrrb GCAGGAACCACAAGGCTATG 1801 Esrrb GTCATGTAGAAACCAACTCA 1802 Esrrb GTCCACCTCTTACATCATGG 1803 Esrrb GGTGAGTGAGTGACACCCTC 1804 Esrrb GCTTCAGGTATTGGAATGAA 1805 Esrrb GGTGGGACTGTTGGAAGGGA 1806 Esrrb GCAGGGAGACTGTGTAGGTA 1807 Esrrb GGTTAGTGGGCTCCAAGTGT 1808 Esrrg GAGAGGGCCTGTGCTTCTGT 1809 Esrrg GGGATATTAAGGCAGGATGC 1810 Esrrg GAAGAGGGTTGAAGGTAAAC 1811 Esrrg GACAAAGGTCTAAGGAGTAT 1812 Esrrg GAGCGATTGTAAATGTGTGA 1813 Esrrg GTGAATGCGTGCAATGAGCT 1814 Esrrg GGTAAGACTTCAAATGCAGG 1815 Esrrg GGGAGGGCGGGAAGTTGTTA 1816 Esrrg GCCAACTCACGAGCCAGGAA 1817 Esrrg GAAGACTTGCAGGAAGAGTG 1818 Esx1 GTGGGACTACACTGTAGGGT 1819 Esx1 GGAAACACTCCTATTTCTAA 1820 Esx1 GACATTTGAATTGGCTTCTT 1821 Esx1 GTAGTCCCACCCATTCCGAA 1822 Esx1 GGCATAAAGGGTTTCTTGCA 1823 Esx1 GAAGAAGCCACGGAAACCAA 1824 Esx1 GGAGTGTTTCCATTCGGAAT 1825 Esx1 GGGTGGGACTACATTGTAGG 1826 Esx1 GTCTTGCCCAACCATTCCAC 1827 Esx1 GTCTAGGCAGGAACCCTCGC 1828 Esx1 GCCAGATAACAAGATGAGTG 1829 Esx1 GAGCTGCCCTTTGTTTCTTA 1830 Esx1 GTGAGGAAATCCCTGTATAA 1831 Esx1 GACGGACTTTCCCGAGACTG 1832 Esx1 GAGTGTCAATCTCTGGGTCT 1833 Esx1 GCAAGAGTCACCTTTATACA 1834 Ets2 GCCAGGCTAGGCTTTAACTC 1835 Ets2 GGCACTTGGGTTGGGTGGTT 1836 Ets2 GTTGGGTGGTTAGGCTTCTG 1837 Ets2 GCTCAAAGGCTCTATCTTGG 1838 Ets2 GGCTGAGAACTTGGTAGGGA 1839 Ets2 GCCCTTTGAACCCAGAGGGT 1840 Ets2 GTGGGCCAACCACAAAGCAG 1841 Ets2 GTTCGGGCGTTATGCCCAGG 1842 Ets2 GCAGGGCTGAGAACTTGGTA 1843 Ets2 GGCAAGCTCAGGCAAGGCCA 1844 Etv1 GGAGCCGAAAGGTGGAGTGG 1845 Etv1 GGGTCAGCAATAAACAACAA 1846 Etv1 GCAGGATTTATTGAGATACT 1847 Etv1 GGACTTCTATCAACCTAGAG 1848 Etv1 GGAGTGTTAGGACATGCTCT 1849 Etv1 GAGAACGGGAGCCAAGAGAA 1850 Etv1 GAGAGGTGGCGCTGGAAGAG 1851 Etv1 GCCTTATCCGAATCACTCAA 1852 Etv1 GAGTCAAATAGTTAACAGGT 1853 Etv1 GAGCGAGAGATGCGAAGGGA 1854 Etv2 GGACAAGATGGTGACATTTA 1855 Etv2 GCATCAGCCTACGTCACAAT 1856 Etv2 GTTGAGAAAGGAAAGTTCTA 1857 Etv2 GGGTGACAGACAGCCAGATC 1858 Etv2 GCCTGGAGGATGAATGAATT 1859 Etv2 GGGTCAAGTTGCAGGGATGG 1860 Etv2 GTTCGTGGCTCACCTCTGGC 1861 Etv2 GTCTGAACTAGGAAGGACAG 1862 Etv2 GCTCTGGGCTTATCTGCAAC 1863 Etv2 GTGTCTGAACTAGGAAGGAC 1864 Etv4 GGTCAGATTCTGGGTCTCCC 1865 Etv4 GGAGGAACTCCGAGTCAGAC 1866 Etv4 GTGACAAGCTGAGTTACCTC 1867 Etv4 GAGGCGTGAGCTAACGCCAG 1868 Etv4 GCCATCTTACTCCTTATGAT 1869 Etv4 GGCTCAAACCGGCTTTCTCA 1870 Etv4 GAACCCGTGGAGAAGCTGCC 1871 Etv4 GGTCTCCATGAAGGTTCAGG 1872 Etv4 GAAAGCTAAGAAAGACACCA 1873 Etv4 GCCAGGGCTCTCCAGAGAAG 1874 Etv5 GCAGGACGAGGAGTTGGAAG 1875 Etv5 GTGTGAGTACGGGCTGCCCA 1876 Etv5 GGTCAGCGAGTTTCTGTGTG 1877 Etv5 GCAAGCAACACTGCTTCTCC 1878 Etv5 GATAGCCACAGTATCATATG 1879 Etv5 GGGATGAGAACAGGGAGGGA 1880 Etv5 GACACAAGAAGAATGTCCCA 1881 Etv5 GAGTCAGTGAAGCTCTTAAA 1882 Etv5 GTGTTGCTTGCCAAAGGATC 1883 Etv6 GAGTCTGGGAAACCCTCAGC 1884 Etv6 GAACCAGGCTTGCTGGTCCT 1885 Etv6 GGAGAAGGACATGTCAGGAA 1886 Etv6 GAGAGATGAACCAGGCTTGC 1887 Etv6 GGGAATACAGAGGTGAGTCT 1888 Etv6 GTTCTTGGAGGGAACCTCCA 1889 Etv6 GTCCAGTCACCTACGTCGGT 1890 Etv6 GACCTGGGCCACGCACAGTA 1891 Etv6 GGCATAGTGCATAGTGGCCC 1892 Etv6 GGAAAGCCACCCTGTGGTAT 1893 Evx1 GAGAGTGCTGGAGAAAGACA 1894 Evx1 GGCAGGTGGGCCAGATTGAG 1895 Evx1 GCGGCCAGTTCTTCGAGGAT 1896 Evx1 GGTAGGGAGAGGTTCAAGTA 1897 Evx1 GCATCGGCATAGGTAGGGAG 1898 Evx1 GAACAGAATTGTGAGATCAA 1899 Evx1 GCCCGGCTAGGAGGGATAGA 1900 Evx1 GCAGCTGTGGGTAGATTGTG 1901 Evx1 GAAGGTTATTTACTGAGCAG 1902 Evx1 GACCCAGGAAGGAGACTAAA 1903 Evx2 GAAATGCTATCCTCTGCTAA 1904 Evx2 GGGCGCGTCAAGAATGTAAG 1905 Evx2 GCTTGCCTGTAGAAATAAGT 1906 Evx2 GGCCTGCCTTTAAATAAGAC 1907 Evx2 GGTCTAGGCTAGGCTCCATG 1908 Evx2 GTGTCTCAAGGCGGGAAGGA 1909 Evx2 GCATCTGAGTCGGGCAGGGT 1910 Evx2 GTAAGGGCCTAGGGTGGAGG 1911 Evx2 GAAATCTTCCTAGGCCACTG 1912 Evx2 GCTTTCTTGCTACGTGGCTG 1913 Ezh2 GGTTCCTTTCGGCACCTTGG 1914 Ezh2 GATAACTGAACAGGGAGTGG 1915 Ezh2 GTTCGGCCCTCTGATTGGAC 1916 Ezh2 GTATGAATACTAGCTTCTAA 1917 Ezh2 GACACTGGTGGAAGTCATCC 1918 Ezh2 GGCGACCAGATTTCTCTGAA 1919 Ezh2 GAAAGCCATGGACAGGCAGG 1920 Ezh2 GCAGCTCATTTCTAITCCTC 1921 Fev GGATGATAGAGAAATTGTTG 1922 Fev GCTCAGTCTGACAGGGATCT 1923 Fev GAATCCTATGGAAACTGGGA 1924 Fev GCATATATTGGCTGTGAGAC 1925 Fev GCAGGGAGAAGAGTTCAGAG 1926 Fev GATGGCTAGAAAGAGGGCTC 1927 Fev GAGGGAGATGGCTAGAAAGA 1928 Fev GCCAGACGAGACAGGAAACC 1929 Fev GACTCTCA6CAAACATCGGT 1930 Fgf3 GTTCAACGGCTACATCCTGT 1931 Fgf3 GGATAGACCACTCCCACTTA 1932 Fgf3 GCAGAGACAGAAATAAAGGT 1933 Fgf3 GACTGCTTAAGATTTCTCAG 1934 Fgf3 GGATTCATTTGTGACATCTT 1935 Fgf3 GCATCCTTCATTTGAGTCCC 1936 Fgf3 GTCACAGAGCCTTAGAGCCC 1937 Fgf3 GGCAGAGACA6AAATAAAGG 1938 Fgf3 GAAGGACCACACCAGGGTGC 1939 Fgf3 GCCAGGCACAGGAAGGTAAC 1940 Figla GGAAATATTTGCATGCATTC 1941 Figla GGAACAAAGCCCGTAGACCA 1942 Figla GGGCCAAATAAATAATGGAA 1943 Figla GCTGCGACTTCTTACTTTCC 1944 Figla GGCTGAGGGTGTGACTGCTG 1945 Figla GTTGAGATCATTTCCTCACA 1946 Figla GGACTCTAGGACAGGAAGAG 1947 Figla GGCATCTGAAACCAGGAGGA 1948 Figla GCACGTGTGCAGCCTGAACA 1949 Figla GACTTAACCTGACTCACCTG 1950 Fli1 GTAAACCGAGTCTCAATTGC 1951 Fli1 GGAAAGAGGCCAGAGGCGTT 1952 Fli1 GCTGCCATTCCTGAGCTGCA 1953 Fli1 GGCGTTTGGCTTTGGATTTG 1954 Fli1 GGTGGTAACCACATTAAACA 1955 Fli1 GCTGGCCAGGAACAATGACG 1956 Fli1 GAGGGTCTCCTTCCAGGCAC 1957 Fli1 GAAGGGAAGAGCAAGAGGGC 1958 Fli1 GCTTAACCCTTTCCTGCCTG 1959 Fli1 GAGGGTGTGCACCACTGTGT 1960 Fos GGATGGACTTCCTACGTCAC 1961 Fos GATCTAAGGATGGAGTAGCA 1962 Fos GCAGTTATGAGTGGAAGGCA 1963 Fos GAGGGTTCAAGACAGGACTC 1964 Fos GAGAGGATTAGGACAGCGGA 1965 Fos GGCCGGTCCCTGTTGTTCTG 1966 Fos GAAAGATGTATGCCAAGACG 1967 Fos GATCCAAACCCAGCGGGAGC 1968 Fos GTAAAGGAO6GAGGGATTGA 1969 Fosb GGTGAGTCTTCAGGCTTTGA 1970 Fosb GAATCCGTGACAAAGCTAGT 1971 Fosb GTCACGGATTCTGTGTGACT 1972 Fosb GTCTCCTGAGCTAAGTGGGA 1973 Fosb GATATCTCCAGGTGTAGGGA 1974 Fosb GAGTTGCACCTTCTCCAACC 1975 Fosb GCGGGAAGGGAGAGTTTGGG 1976 Fosb GTATAAGCAGACCTGGGATC 1977 Fosl1 GTTCCCAATGAAGACAGCCC 1978 Fosl1 GGAGTGTGTGTACGTGAcTT 1979 Fosl1 GCTTTAATCCAGGCCTCTAC 1980 Fosl1 GCTCTCTGCCTGTAGAGGCC 1981 Fos11 GAGAGGAGCGGTCTTAAGTC 1982 Fosl1 GAGCATCACCTCCTGCTCCC 1983 Fosl1 GAGCGCCTACAGAAGGACAT 1984 Fosl1 GCTTGTGATAGCTCCAGAGA 1985 Fosl1 GCTGTCTTCATTGGGAACAA 1986 Fosl1 GTCCTGAGACACAGTCAGTA 1987 Fosl2 GGTAATCCCAAACAGTACTA 1988 Fosl2 GTACAGATAAGCGCTGTACC 1989 Fosl2 GGGCTGGAGAATAAAGAGTG 1990 Fosl2 GGAAACGCAGGCGCTTTATA 1991 Fosl2 GCGCCCTTGGTCTGTTCCAT 1992 Fosl2 GCCTGAGTTTCCCGGCGACT 1993 Fosl2 GGATACAGATGCACTGCATA 1994 Fosl2 GTACACGCACGCACCAGCCT 1995 Fosl2 GAGTCGCCGGGAAACTCAGG 1996 Foxa1 GCACGGAGTGTGTGTGTGTT 1997 Foxa1 GGAGTGACTTCTAGTCACAG 1998 Foxa1 GTACGTTCCCGCAATGCCGG 1999 roxa1 GCCCTGTCTTCTATGTCATA 2000 Foxa1 GCCTTCACTTTCTGCTTAGT 2001 Foxa1 GCTTAGTTGGTACCCAGATA 2002 Foxa1 GGGTCAAGAATCAGGATGAG 2003 Foxa1 GCAGGAACAAGGAAGCTTCT 2004 Foxa1 GCAGATGCGTTCCAGCACCC 2005 Foxa1 GATCAGTAGGAGAGCAGAGA 2006 Foxa2 GAAGTAGTGCTGGCGGCAAT 2007 Foxa2 GAAATAGTTGGCCCAAATCC 2008 Foxa2 GTTTAGCTGCAGCCAATACC 2009 Foxa2 GTGTGAGCTGATTATTCAAA 2010 Foxa2 GGCTGGTCACTGAATGCCAG 2011 Foxa2 GACCCATTTGAGTAGAAGGA 2012 Foxa2 GAATTGCACAGCGTTAAGCA 2013 Foxa2 GGAGCACTTGGGTGGAGATG 2014 Foxa2 GATTATTCAAATGGGCTGCC 2015 Foxa3 GTGTGGTCGAACTTGTTATT 2016 Foxa3 GATCCACTCTTTAGGATAAC 2017 Foxa3 GGTGGAGGAGGAGGAGGTGA 2018 Foxa3 GCTCCCGCTCTGTTGCTCTA 2019 Foxa3 GGAAGGAGGGAGGCAAACGG 2020 Foxa3 GCTCCGTACAGAGTCAGGGT 2021 Foxa3 GGAAACGTGCTGTTATCCTT 2022 Foxa3 GAAGCCAAAGAAGGCAAGGA 2023 Foxa3 GCGGATTTGAGGAAGGAGGG 2024 Foxa3 GCTTCGCACACGGCCAGTCT 2025 Foxb1 GATAGATATATTTGGACAGC 2026 Foxb1 GTATTTAACCTAGTGGCATG 2027 Foxb1 GTATCTTACTGGTTGCCATT 2028 Foxb1 GAAAGAAACCAGCGCTGGCC 2029 Foxb1 GAAGCATTGACCCGTCTCTG 2030 Foxb1 GATTGGATGGGTTGTTCAAA 2031 Foxb1 GCAATCGCGGCTTTAAGCCA 2032 Foxb1 GGTCCAACTGATTTAATCTT 2033 Foxb1 GAAGCTTGGTGGAGGTGGGA 2034 Foxb2 GGTCTGCTGTTCCACAGCAA 2035 Foxb2 GGTGTATCCTCTTGTTTCTT 2036 Foxb2 GGATGACTAGACTTGAGCTC 2037 Foxb2 GACCAGTGGAAATGGAGAAG 2038 Foxb2 GCCTCTCAGCTGTAAGGTTT 2039 Foxb2 GGGAAGTGAAAGCGAAGGGT 2040 Foxb2 GGCTGCAGCTGCAGCTCAGA 2041 Foxb2 GGAGCCAGAAGGTTCCCTGC 2042 Foxb2 GCCAAACAGCAGGAGCCAGA 2043 Foxb2 GGGCGTCCTAGGAATTCCTC 2044 Foxc1 GACGGCAAAGTGATTGCCCG 2045 Foxc1 GAGTCTGGGAGTGAGTGGGT 2046 Foxc1 GGAAAGGAGAGGACAAGGGA 2047 Foxc1 GTGGTGACACCACAGGAATG 2048 Foxc1 GAGGGATATTCGGAAAGGAG 2049 Foxc1 GCGGTATTGGAGGATCTGAG 2050 Foxc1 GAACGTGAAGATGCAGTCTT 2051 Foxc1 GTGTGTTAGTGAGGGAAAGA 2052 Foxc1 GTTTCCACATTCCAGCGGGC 2053 Foxc2 GAGTCGCTGTGCGTCAAGGT 2054 Foxc2 GAGGGAAGGAGCACGCTTGA 2055 Foxc2 GAGTCCTCCAAACAATTTCG 2056 Foxc2 GAAAGCGCTGTCTGGAGGTT 2057 Foxc2 GGTTTAAATTTGGCATACGC 2058 Foxc2 GGCTGGGAGGGAAGGCTTAG 2059 Foxc2 GTCCGGTGTAGATCTGGGTA 2060 Foxc2 GAGATCTGGCTAAGAGCATC 2061 Foxc2 GCTGGGAGGGAAGGCTTAGT 2062 Foxc2 GTGGGAATGCCAAACTGGGA 2063 Foxd1 GATCTAGTAGTCTCCTCTGA 2064 Foxd1 GAGAAAGTTCACCCGCAGGA 2065 Foxd1 GATCAATGAAGGTACAGAAC 2066 Foxd1 GATTCTGAGAGCTAGGGACC 2067 Foxd1 GGAGAAGAAGCCTGTTGTGC 2068 Foxd1 GCTTTCAGGCCAAGGAGTGG 2069 Foxd1 GGTAGGGTGTCCCAGCTCTC 2070 Foxd1 GCAGACAGGCGTCCTAACCA 2071 Foxd1 GGGCCTGTGACAAAGATGAA 2072 Foxd1 GAAACAGCCCTTTAACCCTT 2073 Foxd2 GGAGTGCACAGCAGGTATTG 2074 Foxd2 GGGATGAGGTTAAGTTTCTT 2075 Foxd2 GTGGCCAAGGCTCCAGCATA 2076 Foxd2 GCAACACTGGCCCAGGGATG 2077 Foxd2 GCGGTGCACACCAGGAAAGT 2078 Foxd2 GCCAGAACATTCCACTTCCA 2079 Foxd2 GCCCTATTCTCTGGGAGGGA 2080 Foxd2 GGGTGCCCTATTCTCTGGGA 2081 Foxd2 GCCTAAGGCGGAAGAACTGT 2082 Foxd2 GCCACTGTGAGGCGCTGTTG 2083 Foxd3 GACTTTGTCCGCCTCGTTGA 2084 Foxd3 GCTGGAAACGGAGCAGGCAT 2085 Foxd3 GTTATGACGTCTTTGTTTAT 2086 Foxd3 GGGAAATCCCAGAGATGCTG 2087 Foxd3 GGGCTCCAAGCAGCTCTGGA 2088 Foxd3 GTTCAGGGAATTGTCAACAA 2089 Foxd3 GCGGTCTTGGGTAAGTGGAG 2090 Foxd3 GGCTTAATATCGATTTCTAG 2091 Foxd3 GCTGACTAGACAGTCTTCTC 2092 Foxd4 GCTGGCCTCTGACCTCTACA 2093 Foxd4 GAACTTCCACAGTTTATGCT 2094 Foxd4 GTAGTTGGTAAAGACAACGA 2095 Foxd4 GGAACCGAGTCTCTCCAGCA 2096 Foxd4 GAGGGAAGGAGCCATTTCTC 2097 Foxd4 GCAGTGTGGATGCCTTACCA 2098 Foxd4 GAACCGAGTCTCTCCAGCAG 2099 Foge1 GCCAGTACCTTTCCTGAGCA 2100 Foxe1 GGGTAAGAACTGGACTAAAG 2101 Foxe1 GTCTACAGCTGAAGACGACG 2102 Foge1 GGTGGAAGGTACAACCCAAG 2103 Foxe1 GAATTCTGCTTCCCTCTGCT 2104 Foge1 GAAAGCCTCCTCGCCGCATC 2105 Foxe1 GAAGCAGAATTCTGGAAGAA 2106 Foxe1 GCCGCATCAGGGTCCTTAGG 2107 Foxe1 GTTTGCTGGCGCCTTTAAGG 2108 Foxe1 GGAAAGAGACACACTGTGGA 2109 Foxe3 GCTAGCAAAGACTGCTGGAG 2110 Foxe3 GAGCGGGAACTAGAAGCATG 2111 Doxe3 GCATCCTATGTAGCTGGTCA 2112 Foxe3 GGGATGGTACTTACTGAGAC 2113 Foxe3 GGGCTGGGAAAGCAAATTAG 2114 Foxe3 GGGAAAGCAAATTAGAGGGC 2115 Foxe3 GAGGAAAGCGAGAAAGGCTA 2116 Foxe3 GGACAGTTACACACAGGGAA 2117 Foxe3 GACTGACTCAGGGATGAGGG 2118 Foxe3 GACCCAGAGGGACTAGACCA 2119 Foxf1 GCGGATTTCAGAGTTAAGCG 2120 Foxf1 GCAAGCCTGCGCGTCTAAGT 2121 Foxf1 GGACAGACTTTAGAACTCTG 2122 Foxf1 GAGCCCACTGAATAGCTACG 2123 Foxf1 GGTGATTAGAGGATTCGCTT 2124 Foxf1 GAGCCACAGGATCACAAGAA 2125 roxf1 GGGTGTGGGAATGTGTGGCC 2126 Foxf1 GGCACATCTGTGCGAGGGTC 2127 Foxf1 GTCTGTCCTGGAGAAAGGAA 2128 Foxf1 GACCCTCGCACAGATGTGCC 2129 Foxf2 GGCACGGATCGCTAGGTTGG 2130 roxf2 GGGCACGGATCGCTAGGTTG 2131 Foxf2 GGGTCTGAGGAACAGAGGAA 2132 Foxf2 GGGATCAGCATGAAATAAAT 2133 Foxf2 GGAGCTTTGTGGGCAGACTT 2134 Foxf2 GGAGTAATCGAGTCTGGCCA 2135 Foxf2 GCTCAGAGAGAGATGGCCCT 2136 Foxf2 GCCTGGGAAGATGGGAGACA 2137 Foxf2 GTTGACAGATGGTGTCAGTT 2138 Foxg1 GAATGCGAGTCTCTCAAAGC 2139 Foxg1 GCTTTATGTGCAGAGGGAAG 2140 Foxg1 GCCCAGCATTTCCCAGGGAT 2141 Foxg1 GATTACCTTCAGAAGACAGA 2142 Foxg1 GTGAAATGATTCGGTGTAAC 2143 Foxg1 GTAGGAAGAGATCCAAGCAG 2144 Foxg1 GCGCGCCACGTTGTAAGCAG 2145 Foxg1 GCTAGAGAGATCTGTGAGCC 2146 Foxg1 GGTGCCAAAGGTTGATTTCT 2147 Foxg1 GCTCACAGATCTCTCTAGCT 2148 Foxh1 GTGAGGGTCGGGTCTATCTG 2149 Foxh1 GACTTTCCTGTGCTTCATGT 2150 Foxh1 GCTTTAACTGGAACCAAGGA 2151 Foxhl GTCATCCACTGTAGATTGAC 2152 Foxh1 GTCATGGTGATGGGACTTTC 2153 Foxh1 GAGGTTCCAGGIGAGAAGGC 2154 Foxh1 GGTACAGTCATGAGTGGAGG 2155 Foxh1 GCAGCAGTTTGGGTGATGGT 2156 Foxh1 GGAGTCTGCTCAGGACTTGA 2157 Foxh1 GATGGATTTGCCCGACCAAC 2158 Foxi1 GCTTACTTACTTTGAACCTC 2159 Foxi1 GGCAAATGAAAGCAATTCTG 2160 Foxi1 GAGCATGTGTCAGTGCCTGG 2161 Foxi1 GGATAAGCCACCTTTAAGCT 2162 Foxi1 GTGACCTGGCACAACTGTCC 2163 Foxi1 GAAGATGATGGCACCAAGAG 2164 Foxi1 GTAAAGCAGAGAGAGAGGTT 2165 Foxi1 GCCTAGCTCCCTCAGTGCCA 2166 Foxh1 GAAATCGTCCTTGCTGAGGG 2167 Foxh1 GACTCAGGAGAAGAAAGTAG 2168 Foxi2 GTTAACGAGGCAGTATGACA 2169 Foxi2 GTGCCTAAGGCAAGGGCATC 2170 Foxi2 GAGTTCCAAGACTGTTTGTC 2171 Foxi2 GACCTGTTTGTCATGTAGCC 2172 Foxi2 GGTTACAGCTGTGGCACAGA 2173 Foxi2 GCCCAGGCTACATGACAAAC 2174 Foxi2 GGTTGGTTAAGTAAAGGCAG 2175 Foxi2 GTCCAATCTGGCCTGGCTTC 2176 Foxi2 GAGAGAGAGGCTGGTGGCTT 2177 Foxi2 GAGAGCAGAGCCTTAGGAGC 2178 Foxi2 GGCCACTTCCCTGCAGTGCT 2179 Foxj1 GGGAAGCAGGGTGTTCAGAA 2180 Foxj1 GAATGAGCAAGGCAGAGCAA 2181 Foxj1 GAGACTTGGTCTGCAGAATC 2182 Foxj1 GGGCAAAGACTTCAAGGGCA 2183 FoKj1 GGCAGATGCAGAAGCAGGTA 2184 Foxj1 GGCAACTCTCTGGAACTCTC 2185 Foxj1 GGGAGGAATGCACTAGGGTA 2186 Foxj1 GCTTCCAACCAATAGTTCGG 2187 Foxj1 GACTTGGTCTGCAGAATCCG 2188 Foxj2 GCTGTCTGGAAGAGAAAGAG 2189 Foxj2 GTCAGTGAAAGATTGGATCG 2190 Foxj2 GTAGTGAGACCTGAAGGACC 2191 Foxj2 GATGCCAGCGTCCACGCTAA 2192 Foxj2 GGAAGGGTAGTGAGACCTGA 2193 Foxj2 GTCACTTGACTTTAGCACAA 2194 Foxj2 GGTCTCACTCCGGGTCCTTC 2195 Foxj2 GGGAGGGAAGAGGCTTTGTT 2196 Foxj2 GAGAAAGGGAGCCATGCCTG 2197 Foxj2 GGTCCTGGCTTGTGCGTATC 2198 Foxk1 GACACAGACCTTCCAGTGCT 2199 Foxk1 GATGAATCCAAGCACCCTTC 2200 Foxk1 GGTGGAGCAATTGAGCACAC 2201 Foxk1 GGGAATTAGCATCCCAGTGC 2202 Foxk1 GAGGCTGGAGTTTAAAGTCC 2203 Foxk1 GCACTGGAAGGTCTGTGTCT 2204 Foxk1 GCTGACGGCCAAGTGIGGGA 2205 Foxk1 GAGGGTGAGCTGGCACAGGT 2206 Foxl1 GAGGCAGGATGTGGAGGGAC 2207 Foxl1 GAAACACACTCCGACCCTCT 2208 Foxl1 GAACAGAGACTGCCTCCTCA 2209 Foxl1 GTTGAAGTCACAGAGGAAAG 2210 Foxl1 GAATCTACAGCGGAATGTGG 2211 Foxkl1 GGTTGGACACTTAAGGAATC 2212 Foxkl1 GCACCGCCCACTTTAGTCGT 2213 Foxkl1 GTGGGTGGGTGTGTGTGTGG 2214 Foxl2 GCAGAGCCTCTAACTTCTGC 2215 Foxl2 GACTTCTTGCTGTCCTTTGC 2216 Foxl2 GATGAGACCCAGGGTCAGCT 2217 Foxl2 GGTGGAGTGGCCGAACTTTG 2218 Foxl2 GAGAGGTGATCCAAGCCTCT 2219 Foxl2 GCATCTTCTCCTTCCAGCAT 2220 Foxl2 GCTTCCCACTTTGAGATGAA 2221 Foxl2 GCACAAGTGTCACGCGTGGA 2222 Foxl2 GAAGTCAGCCTCTGGCCATC 2223 Foxl2 GAAGGAGAAGATGCAGGTAA 2224 Foxm1 GTTGAGTGTGGAGAATAATG 2225 Foxm1 GCCTTCTAGTACACAATGGC 2226 Foxm1 GCCACGTAACCGCAAGTCTA 2227 Foxm1 GTATGAAGAGAGCTGCAGGG 2228 Foxm1 GCAAGICACTTGCAATGACT 2229 Foxm1 GCCAAGGCGTTGTCACAGAA 2230 Foxm1 GGGAAGAAGGTCTGAGCCTC 2231 Foxm1 GAAGAGAGCTGCAGGGTGGA 2232 Foxm1 GCAAGCTTTGACCCTGAGGA 2233 Foxn1 GACATGGGAGGGAAGTCACA 2234 Foxn1 GCAGGCATGCCCACAGACAT 2235 Foxn1 GTTAACCATCGTGTACAGAT 2236 Foxn1 GGGTTCTGGGAAGCAGCACA 2237 Foxn1 GAGGGAAGTCACATGGATTT 2238 Foxn1 GTGCATGTCCCAACAGGCCT 2239 Foxn1 GCTACACACTGCCACACATA 2240 Foxn1 GGAGACACAAGCCTGAGTAC 2241 Foxn1 GAGTCAATTCACCGTTCTCT 2242 Foxnl GGACATGCTGTGTATGGATG 2243 Foxn2 GGAGATTCTTGTATACCAAG 2244 Foxn2 GTATTGCCTACACTGTATTG 2245 Foxn2 GGTCTGGGTGTGGTCAGTCA 2246 Foxn2 GCTTCATTTGGTTCCTGATG 2247 Foxn2 GCTTTGTTGAGCAAGCAGAC 2248 Foxn2 GGTGTGGTCAGTCACGGCAG 2249 Foxn2 GCTCCACTTAGTTCAAAGTC 2250 Foxn2 GGCAACAGTGATGCTATGTA 2251 Foxn2 GACAAAGGTGCCCAGGCTTG 2252 Foxn2 GCCCGGAAGGACCTATGGGA 2253 Foxn4 GCCACGGTCGCATGTTGAAG 2254 Foxn4 GCAGTGCATGACCCAGCCAG 2255 Foxn4 GACCGGTTTACGTATTACTC 2256 roxn4 GAGTTGGACAGCTCCAGAGA 2257 Foxn4 GTGCAGTGCATGACCCAGCC 2258 Foxn4 GAAGCAACGGGCTCTTTCTG 2259 Foxc8 GCGAGCTCGGGAGACGAAAG 2260 Foxn4 GATCAATCCTGTTAGGGAAC 2261 Foxn4 GCCTGAACTTAAGGGTTCCC 2262 Foxo1 GGTTCAGGATGAGTGGAGGC 2263 Foxo1 GAAGACTTCACTCATCTTGG 2264 Foxo1 GAGGCGGCAGTAGGTTGGTG 2265 Foxo1 GCACCTTAAACGGTTCATAG 2266 Foxo1 GGTGAAGACCCGTCGCTCTG 2267 Foxo1 GTCCTCGGCACCTCTGGTTC 2268 Foxo1 GCAGGTGTGCACAGGTAGGG 2269 Foxo1 GACGTCACTGAGCATCTTAC 2270 Foxo1 GCGAAGGCCAAATTCACAGC 2271 Foxo3 GTCTGGAGCCCAGAGACTGG 2272 Foxo3 GGGAGGAGGGAAAGGAGGTA 2273 Foxo3 GTGCACACACCTGGACCACA 2274 Foxo3 GCGTCGAACTAGCTTGGTGC 2275 Foxo3 GGCAATATAGATGGTGATGT 2276 Foxo3 GCATTCTGACCCTGAAGGTA 2277 Foxo3 GAAGAGGAGCGAGAGGCGTC 2278 Foxo3 GAGGCACGGATCGTGGGATA 2279 Foxo3 GACAGCGGGAGGACTAGAGG 2280 Foxo4 GAAGTAGCAAGTTACAGAAG 2281 Foxo4 GGGATTCAGTTCTGGAGTTG 2282 Foxo4 GTTTCCTCTGTCAGCTATGC 2283 Foxo4 GTAGTCTTCGAGAACGACCA 2284 Foxo4 GGTGGAACTTTAATGATTAG 2285 Foxo4 GGTAAACAGAGACGTCTGGC 2286 Foxo4 GGTCACTCTTGAGAGGGTCA 2287 Foxo4 GTCTCTGTTTACCACTCGCT 2288 Foxo4 GAAGGCCCAGTGTATGAAGA 2289 Foxp1 GGGAAGGAATCACACCACCA 2290 Foxp1 GCAGTGAGGGTTTCTAACCG 2291 Foxp1 GGTGGCCTCTGGATCCGCAA 2292 Foxp1 GACAGTCTTCTGAAGCAGGC 2293 Foxp1 GTAATTTGTCTGTAGAACCC 2294 Foxp1 GCAATTAAGAATTCACTCCA 2295 Foxp1 GAAGGCTAGGAATCTTCTTC 2296 Foxp1 GCTTTGGTGTTGATGACAGT 2297 Foxp1 GTAGAGTAGTAGGGTCTCAG 2298 Foxp2 GAGCTGCTGGCAAATGAAAC 2299 Foxp2 GAAACTCTAACTGCTTGCTT 2300 Foxp2 GTAGAGAAGAATGACTACAG 2301 Foxp2 GACCACATACCTTGCCACGG 2302 Foxp2 GGGTCTTGTGACTTGAATCT 2303 Foxp2 GAGGACCCTGTCAGAATGAA 2304 Foxp2 GTAGCCTAGCAGGGTTGGTG 2305 Foxp2 GGCGCACACACAGGAGAGAA 2306 Foxp2 GACCCTGTCAGAATGAAAGG 2307 Foxp2 GAGAGAGGCGACTTGAGCAG 2308 Foxp3 GGGTCTGTGGAAGCTGAGAC 2309 Foxp3 GAGCAGGGACCATTAACTTT 2310 Foxp3 GCTAAGGAAATACTGAGGTT 2311 Foxp3 GAGAAGACAGACCCATGCTG 2312 Foxp3 GGGATGAGGTCCTCTTACTT 2313 Foxp3 GGCAGAGAGGTATTGAGGGT 2314 Foxp3 GCCATTGACGTCATGGCGGC 2315 Foxp3 GGCAACAAGGAGGAAGAGAA 2316 Foxp3 GTAGCCTTTCTTTCCACAGA 2317 Foxp3 GCCCAAGTGTACAGGGAGCA 2318 Foxp4 GGAGGACTAAATTGGGTAGC 2319 Foxp4 GGATGAACTGGGTAAGGACT 2320 Foxp4 GAGCTTGTGTTTAGCACTTC 2321 Foxp4 GGACCACGTGGACCAAACTT 2322 Foxp4 GTAGCAATGAGAGACTGACT 2323 Foxp4 GTTCCTTCCTTGCTCCCACA 2324 Foxp4 GAGTTAATAAAGCCTCCCAT 2325 Foxp4 GCCTCAATTAGGACAAGATG 2326 Foxp4 GACTGAGTAGGCCTGAGTAG 2327 Foxp4 GTGGGCCAGGAGCTGAAAGG 2328 Foxq1 GAGAATTCATTCACCTTCTA 2329 Foxq1 GGCCATAGAGAGGAAGTAAG 2330 Foxq1 GGCCGAGGGACTGGTTGCAT 2331 Foxq1 GACAAAGCATTGATTTGGCC 2332 Foxq1 GATGGATTGATAAGTGCCTG 2333 Foxq1 GCCTAACCAAGATCAAGGTA 2334 Foxq1 GCACGGGTGTCAAACAGGAA 2335 Foxq1 GAAGCCGGCTAAGAAACAAG 2336 Foxq1 GAAGCTGGCGTGGTAGGCAT 2337 Foxs1 GCTGCCCTGAGCCTGAGCTT 2338 Foxs1 GTTCTGTCCTCAGGGCAGAC 2339 Foxs1 GTACTGGGAGTTCTGTGAAC 2340 Foxs1 GTACCAGCACCAATACCTAG 2341 Foxs1 GCCTGAATAGTATAGCCCGG 2342 Foxs1 GAAGGAAAGAGAGAGAGAGA 2343 Foxs1 GAGAGTGGGAGACACAGCAG 2344 Foxs1 GTAGACTTTGGAGGGCTACA 2345 Foxs1 GATAGTTGTGTGGAGATGGG 2346 Gab1 GAGTTGACTGATGTGATGCT 2347 Gab1 GGTAGAACAGCTCCTGGGTC 2348 Gab1 GGAGAATTCACCCTTCAAGA 2349 Gab1 GTTCCTCTCTGGCTGCCTCG 2350 Gab1 GTGTGTTTGAAACAAAGCCT 2351 Gab1 GCTTGAGTGAGTTCTCCTCC 2352 Gab1 GACCTCTTCCTTAAAGCATA 2353 Gab2 GCTGGCTATTAATTCCTCTT 2354 Gab2 GAGTTAACTTACAGTGAAGC 2355 Gab2 GTAGATCAAAGGGTGCTTGG 2356 Gab2 GCTTCGCTAGATTGTAATTT 2357 Gab2 GAGGATTTGTGGCCAGCAGC 2358 Gab2 GCGCTCTCCCATAGTGCCTC 2359 Gab2 GCCATCTCCTCCACAAAGCC 2360 Gab2 GGACTCATTTCAGCCAGAAT 2361 Gab2 GCATGTCCTTGCAGGGCTTA 2362 Gab2 GAGTGTGGCTTTGAATGTTA 2363 Gabpa GATGGCGGAGTCTTAGCTGA 2364 Gabpa GCCTCCTGGGACTGAGCTTC 2365 Gabpa GGGTTGTGTGGCCTTTATCA 2366 Gabpa GGATATCATAGAAGTGCGGT 2367 Gabpa GCTGTGCTACAGTGCTTACG 2368 Gabpa GAGTACGCTAAATTAGACGT 2369 Gabpa GCGATCTGTTCATGATCACA 2370 Gabpa GACAGAAGCCAAACAGGAGG 2371 Gabpa GGACTCAGTGCAAGGTGACT 2372 Gabpa GGTTTCTTCACGAGGAGAGA 2373 Gabpb1 GAGACAACCGAGAATAACCT 2374 Gabpb1 GGCCAGTAGGCTGATGTCTA 2375 Gabpb1 GCAAAGGGAGAGGACTGCTA 2376 Gabpb1 GTTCATTCCTTCAGCAGTGC 2377 Gabpb1 GGTGAAGGCCATCCAGTCGA 2378 Gabpb1 GTACCCGGAATCGCTGGTTG 2379 Gabpb1 GGCATGGAGAAGCAGTAGTT 2380 Gabpb1 GTTAGGTTTGGTTGGTTGGT 2381 Gabpbl GATTTAACTTACCGTGGTCC 2382 Gata1 GTGTATCTGAAGTTTGTTAC 2383 Gata1 GAGGGCTAAATATAATCCCA 2384 Gata1 GTCAGTCGGACCACTTAACA 2385 Gata1 GTGATCTTATCCCAATCCTC 2386 Gata1 GCCCTGGAAATCCGTAGGCT 2387 Gata1 GCAAGGGTGAGAATTGGAGG 2388 Gata1 GTGCCATTGGTGTGAGGATG 2389 Gata1 GCCTAGCCTACGGATTTCCA 2390 Gata1 GTGGAGGGACAATGGCTGGT 2391 Gata1 GATCCTGATACTAATAGCAG 2392 Gata2 GCAGTATGAGGCCCAGAACT 2393 Gata2 GCGTCTGATGCGGGTCTGCT 2394 Gata2 GTTCTTTGAATTTCTCAGAG 2395 Gata2 GAGGTTCCTAAGATACCTTC 2396 Gata2 GAATAACCGTTCTAATGAGG 2397 Gata2 GACCACCAGGCTGAACTGCC 2398 Gata2 GCTGAATAACCGTTCTAATG 2399 Gata2 GTCGTCCGTAGCAGTGGAGG 2400 Gata2 GGAGTCAGTTGGATTTGGGC 2401 Gata2 GTCCGTAATTGGGTAACTGG 2402 Gata3 GGTGCAGGGIGAACTCAGAA 2403 Gata3 GGACGCCCGCGTTATTGTTA 2404 Gata3 GGGCTTCCTCTTCCCTTGGC 2405 Gata3 GTAGCAAAGCCGATTCATTC 2406 Gata3 GGCACTGGATCCAGCCTGTA 2407 Gata3 GGTCTGAGGTAGTTTAGGGT 2408 Gata3 GCTTGGCTTTAGAGGGTTAC 2409 Gata3 GTCTCTGGGACAGGGTCTGG 2410 Gata3 GGGACACGATCCTCAGCACA 2411 Gata3 GTTGCAGTTTCCTTGTGCTG 2412 Gata4 GATTCTGACTGGCATTGTTT 2413 Gata4 GCAGTCAGTCCTCGAACCTA 2414 Gata4 GTCTCTAGGCACTGACCTTA 2415 Gata4 GTTTCCAATACAAGATTAGA 2416 Gata4 GAAAGCTACAGACTTAAGGC 2417 Gata4 GGGAGGCCAAAGAGAGGAGG 2418 Gata4 GAAGGAAAGCACTCAGTGCC 2419 Gata4 GCACAGAGGTCGCCTAGTTC 2420 Gata4 GCAACGCTGAGGATCAGACT 2421 Gata4 GTGCCATCCCGAGCCTTCTC 2422 Gata5 GATGGAGCTAGAAGGACCTA 2423 Gata5 GTCAGTGCCCAGGTCTAGAC 2424 Gata5 GGGAGCCTCAGCCAGTCTTT 2425 Gata5 GTCCTCCAACTTGGCCACTC 2426 Gata5 GCATTGACCAGTGGGCAGCA 2427 Gata5 GGATTAAACTCAGTTCAGAT 2428 Gata5 GGGTGCTGCAGACAGATACG 2429 Gata5 GGACCGACTAGAAGAGAGAA 2430 Gata5 GGGAGCTCGGAATAGACGTG 2431 Gata5 GGGACCGACTAGAAGAGAGA 2432 Gata6 GAAGGTGGCACACCAACCTA 2433 Gata6 GATAACGCGTTGAGAAGGAG 2434 Gata6 GTATATCACTGCTGCTGCCT 2435 Gata6 GCTAAAGGACACCAAGGGAG 2436 Gata6 GAACGGTTTATAGACCTACT 2437 Gata6 GTTACAGCGCTGGATGATTA 2438 Gata6 GGCGAGGTAGGGAATACACA 2439 Gata6 GAGAAGGGAAATGACTTACT 2440 Gata6 GTCAGTTACTAGCAACTGCG 2441 Gata6 GACCTGAGCATCCCGAAACA 2442 Gbx1 GCTTCCTCTCTCAAACACAG 2443 Gbx1 GATTGATGAGGCCGGACCCG 2444 Gbx1 GGACTCGGTTCTCTAAGCTC 2445 Gbx1 GTAGCTAGTATCATGTGTTG 2446 Gbx1 GAATACCTGCCCAATCAGAA 2447 Gbx1 GACCTCACTGTAAATGGAGG 2448 Gbx1 GAGGACAGAGCTGGGCTGAA 2449 Gbx1 GGACAGTCAAGGCGGAATGG 2450 Gbx1 GCTTTGTGAAAGTTTGCGGC 2451 Gbx1 GAGCCAGGGAGATAGAGTGA 2452 Gbx2 GATTGCGCCGAAAGGAAAGT 2453 Gbx2 GCCTCTCATGAGGCCTCCAC 2454 Gbx2 GAAGCTTCGGTCTGAGCAAG 2455 Gbx2 GGCTGGCGGTGAAAGGGAAG 2456 Gbx2 GAGCAGGGATCGCTCACGGA 2457 Gbx2 GTATTATTATTACCTGGAGG 2458 Gbx2 GAAAGGCACTGGCCAGCAGG 2459 Gbx2 GTTGCGGCACACACTGTCCC 2460 Gbx2 GTTATTTCCCAACTATGGCC 2461 Gbx2 GCGGCTGAACTTCCCTGGTG 2462 Gcm1 GTTATGAATGCCACAGAGAG 2463 Gcm1 GAGCTTCAGACTCTTGGACT 2464 Gcm1 GGTAAGGTCAGCTACTCCAC 2465 Gcm1 GATGAGGCATGGCAGAACTG 2466 Gcm1 GGAATCCCAGGTAGTCTGCT 2467 Gcm1 GCTTTCAGCCAGGGACAGGT 2468 Gcm1 GGAGTGTCTCTGCAAATTCA 2469 Gcm1 GTCACCCATAGCATGCCTGA 2470 Gcm1 GTCTAAAGGTGAGACTGGAA 2471 Gcm1 GAGATGGCTTTCAGTGTTTC 2472 Gcm2 GTCACTCTTAGACTCAGCGG 2473 Gcm2 GCAGGTCACTGTTAGAGGAG 2474 Gcm2 GCAAATCTGAAGGTTGGGAC 2475 Gcm2 GGTTGAGGCTCTGGAAGCAA 2476 Gcm2 GCTAAGGCTGACAATGGAAT 2477 Gcm2 GCTGGTGCGCTTTACAGCCA 2478 Gcm2 GTTTCCAACTTGGTCTGTTT 2479 Gcm2 GAAGTTAAGCAGTAGGCAGT 2480 Gcm2 GGTTTCCAACTTGGTCTGTT 2481 Gcm2 GTGACCCAAACAGACCAAGT 2482 Gfi1 GAAATGAGATCCTGGAGGAC 2483 Gfi1 GTGAGCAGTTTAAGTGCTGC 2484 Gfi1 GCGACGAACAGAAGCGAAAG 2485 Gfi1 GCAGAAAGAAACCTGCGCCT 2486 Gfi1 GGGAGCATAGGAGGAAGGCA 2487 Gfi1 GCATAGGAGGAAGGCAGGGA 2488 Gfi1 GAAGGCAGGGAAGGGAGAAG 2489 Gfi1 GGACTATGTGCTGCAGTGGC 2490 Gfi1 GACGAACAGAAGCGAAAGAG 2491 Gfi1 GTTTCTCCTGGGACAAGTGT 2492 Gfi1b GAGCATGGAACTTTGGAACA 2493 Gfi1b GGTTTGGGTCAGGGCTGTAT 2494 Gfi1b GGACTGGACCAGGAGTTCTC 2495 Gfi1b GATGGATGCCTCCAGAGATG 2496 Gfi1b GTTTGAGGCCTTTCTGCTGA 2497 Gfi1b GATTGAATACCCAAGTACCA 2498 Gfi1b GTGTAGCACAACCAGTTCAA 2499 Gfi1b GAAATGCCCTGCGCTGGCCT 2500 Gfi1b GAACATGGACCCAGATGTGG 2501 Gfi1b GCTTTAGACAAGGAACCGGT 2502 Gli1 GTCACAGTAGAAACAGATAA 2503 Gli1 GTGCGACCTATGGAACATGA 2504 Gli1 GTATAGGGTCCCTCAAGGGA 2505 Gli1 GTGGTCCAGGGCTGGAAACT 2506 Gli1 GGCAGTATAGGGTCCCTCAA 2507 Gli1 GGTGACTGGACACAGAGAGA 2508 Gli1 GGATATACGAGGGAAGTGAG 2509 Gli1 GATATACGAGGGAAGTGAGC 2510 Gli1 GGGTGGATAGAAGCTAGAGA 2511 Gli2 GGTTTGTTTACATGTATTGG 2512 Gli2 GGTAACAAGAAAGGAAGAAT 2513 Gli2 GATCCAATCAGTGAGTAACA 2514 Gli2 GGGTTTGTTTACATGTATTG 2515 Gli2 GAAGGAGCTTTCTCTAAGGC 2516 Gli2 GTCCACTCCAAGAAGCAAGC 2517 Gli2 GAACAACCAGCGGAGGGCTG 2518 Gli2 GCTACGGCGCACAGAGGATC 2519 Gli2 GTAGCTGGAACTTTCTGGTA 2520 Gli3 GGCCTGGATGTGTCTGTGTG 2521 Gli3 GAAACATCCTTCACTCATCT 2522 Gli3 GATACATTGITTCTGGCATT 2523 Gli3 GTTATCTCTTAACTCAGTAG 2524 Gli3 GGAAGTTTCAGGCTTGGCCT 2525 Gli3 GAGAGGTGGGCAACTCAGAT 2526 Gli3 GTTCTGATTTGGTTCAACCG 2527 Gli3 GTTCTGATAGCGTGGTGGGA 2528 Gli3 GAAACAAGAGGAATTCTTGA 2529 Gli3 GTGAACATGGTTTACAGAAA 2530 Glis1 GGAATGGGTACAGGAGAACG 2531 Glis1 GCCTGAACTCTCCATTCAAT 2532 Glis1 GGCCTGGGTTCAGATGACAA 2533 Glis1 GGCAGCAGGGTCTCAACTGT 2534 Glis1 GAAGACACTGGCGTGGGAGT 2535 Glis1 GTCTGCTACAGCAGGTAGCC 2536 Glis1 GTGTGTTTCTGCAACCGGCC 2537 Glis1 GTGCAGGCGATGAGCTGTTA 2538 Glis1 GGGTCCACACTTTAGAATTG 2539 Glis1 GTAAATGAGTTTGTTGCTGT 2540 Glis2 GTCCTGGATCTGGACTGGGC 2541 Glis2 GATAATGTCGCAGTGCTGCC 2542 Glis2 GGATAATGTCGCAGTGCTGC 2543 Glis2 GCACATCGGTAGTGTGAAAC 2544 Glis2 GTAGTTCAGCACGTGTTCCT 2545 Glis2 GTGAGATACTGCACTAGGGC 2546 Glis2 GGCCTTGTGCTTATTTCACC 2547 Glis2 GCCTACCTTCGCACCAGACC 2548 Glis2 GGTCCTGGATCTGGACTGGG 2549 Glis3 GCTAAAGTTCCAAGCATCAC 2550 Glis3 GGTAACTGGCATGAAGCTGA 2551 Glis3 GACCACTGGAGTGTACAATG 2552 Glis3 GCTGGAATAAATTCCATGTG 2553 Glis3 GGACCTGTTGTCAACTCTCA 2554 Glis3 GAAGGTGATGGCCAAAGGTA 2555 Glis3 GGTACAGIACGAAGGCCAGG 2556 Glis3 GTCAAGAGGGAGACACTGGC 2557 Glis3 GGCAAGCTCTCTGAGGTAAC 2558 Glis3 GCTAGCTAAAGTGAACAATG 2559 Gm4736 GTGACTGAAGTACTATATAG 2560 Gm4736 GGCCTACAAAGTCATCATGA 2561 Gm4736 GGAAGGCCACAGTCTTTATA 2562 Gm4736 GGCCACAGTCTTTATAAGGA 2563 Gmeb1 GTCAGCTCGAAGGAGCACAT 2564 Gmeb1 GGCAGTGAATGGAGCTTGTA 2565 Gmeb1 GTGGAGTCCTCTCTGAGGCT 2566 Gmeb1 GGTCAGCCACTGGGTTCAGC 2567 Gmeb1 GAAAGCCTAGGTCAGCCACT 2568 Gmeb1 GTGTGAGGAGGGAAGTAGGT 2569 Gmeb1 GATGTCCTCTGTAAAGGATG 2570 Gmeb1 GGCAATGTGGTCAGGCCTTG 2571 Gmeb1 GTGGTGGAACTCAGGTGGTC 2572 Gmeb1 GGTGGGTAAGTGCTCTGACA 2573 Gsc GAACCTATCGGCACCCACGC 2574 Gsc GTGAACAGCCTCTTCCTTCT 2575 Gsc GTTTGCCAGGTGGCAATGTT 2576 GsC GTTAGGAGCTAGGGAGAGTC 2577 Gsc GCGCAGAACTAGGCAGTGCG 2578 GSc GCCACTCAATATGTTGAGAA 2579 Gsc GGGTCCGGGAGCTTCTTTCT 2580 Gsc GATAGAGACCGGCTTCAGTT 2581 Gsc GGAGAGATGCCAAGAGGAGG 2582 Gsc2 GCCAAGTATTTGTTCTCAGT 2583 Gsc2 GCAGCCATTCTGTAACCATG 2584 Gsc2 GAGGGAATGAGGGAAGCCAG 2585 Gsc2 GGAGGGAATGAGGGAAGCCA 2586 Gsc2 GCCAGGCTCTGTGCACTTGG 2587 Gsc2 GAAGCCCATAGAGTCCTCAC 2588 Gsc2 GCACCATGTCATCTTCCTAC 2589 Gsc2 GGACTTGGTAAAGTGGGAGA 2590 Gsc2 GGGATTAGCACGCGCGAACG 2591 Gsc2 GGGATTAGCACGCGCGAACG 2592 Gsx1 GAGCAATTAGAACGGGAATT 2593 Gsx1 GGGAGTGAGAGCCGAATTCG 2594 Gsx1 GTTGCCAGCGCCTTCTCTTC 2595 Gsx1 GGAACGCAGAGGCAGAAGGC 2596 Gsx1 GAAGCTGTGTACACAGAGCG 2597 Gsx1 GAGAGAAGAGACTCCACAGG 2598 Gsx1 GATCGCCAGCGCAAAGCCAA 2599 Gsx1 GTAACAGAAAGAAAGGGACC 2600 Gsx1 GGAAGAAGTAACAGAAAGAA 2601 Gsx1 GAGTGCACCGGCGTGTCTAG 2602 Gsx2 GCCGAATAAATCCTTCCACG 2603 GsX2 GAGGGAGAAGACAGATATAG 2604 Gsx2 GAGCTCTAATTGCCAGGACT 2605 Gsx2 GTGGTCACAGAGATGGAAAG 2606 Gsx2 GGGCAGGGAACAGCAGTTGG 2607 Gsx2 GAGAGTGATGGAGGGAGAGG 2608 Gsx2 GCCTACCTTCCTCCCTCGCT 2609 Gsx2 GAGAGTAGGTTGGTCGGAGC 2610 Gsx2 GCTGGTTAGAAAGATGCACA 2611 Gsx2 GGTAGGTTATCTACAGTCCT 2612 Gft2a2 GCGTGAAAGGCTTCAGTGTG 2613 Gtf2a2 GGTTGGTATCAGTCTCCACC 2614 Gtf2a2 GACTGCAGTGTAGGGAAACC 2615 Gtf2a2 GCAGCTATAGGTACTGCAGA 2616 Gtf2a2 GCAAGAGGTGCCAGGAAGTG 2617 Gtf2a2 GTTTACCAGCCGTGAAGGGT 2618 Gtf2a2 GAGCCAAAGTATAACAGAGA 2619 Gtf2a2 GTCTATATACAAAGGTACCA 2620 Gtf2a2 GGTAGCTGTCAGTTACTCCA 2621 Gtf2a2 GAAACAGATCACGTATGGTG 2622 Gtf2f2 GTCCTGACGTAGTCGTGCGC 2623 Gtf2f2 GTTTGAAAGAGGCTCTGAAA 2624 Gtf2f2 GTGTAAAGATCAGGGAAAGC 2625 Gtf2f2 GCAGGTGGATGGGCTTGGTG 2626 Gtf2f2 GCATCACACACTATCATATG 2627 Gtf2f2 GCAGTAAGGTATTGGAAGAA 2628 Gtf2f2 GAACCGTGCGTTTACAGCAA 2629 Gtf2h1 GGTGGAAGCAAGAAGGCACG 2630 Gtf2h1 GCCCAGTATGTAAAGATCTT 2631 Gtf2h1 GATGACAGGTGGAAGCAAGA 2632 Gtf2h1 GTTCAGGATAGCTGAATAAT 2633 Gtf2h1 GTTCTTCCGCTGGGAGGGAC 2634 Gtf2h1 GCCTTCGGGCAGTAGATTAA 2635 Gtf2h1 GCCAGCGTTTGTTAGGAGGG 2636 Gtf2h1 GCCTCACTTCCTTCGTTCTC 2637 Gtf2h1 GGTAAGTTGAGACCGAAGAA 2638 Gtf2h1 GGCGTGATCGTCACGTGACG 2639 Gtf2h2 GCCAGGCTTGCTCTTTGCTT 2640 Gtf2h2 GTTCTCTTGAACACAAGGAA 2641 Gtf2h2 GACAGATCACCTCCCACATG 2642 Gtf2h2 GAGGGCAACTACGTATGGTG 2643 Gtf2h2 GACTGCCGGTACTTCCGGTG 2644 Gtf2h2 GTTCACCAATATTTCTGCTG 2645 Gtf2h2 GTGTAGACAAGTGTGAGACC 2646 Gtf2h2 GGGAGGTGATCTGTCCTGCC 2647 Gtf2h2 GCTGCCAGAAGAGGGAGCTA 2648 Gtf2i GGCCTGCTGGAGAAGGAAGG 2649 Gtf2i GTTCATGCCGCAAGGCTGTC 2650 Gtf2i GGGTTCAGAACTACAACTCC 2651 Gtf2i GTGGCCTGCTGGAGAAGGAA 2652 Gtf2i GTTTACTTTCTTTGTAGCTG 2653 Gtf2i GTAAACTTAAGACCCTCCTC 2654 Gtf2i GAGGGCGCCCGAATATTCGG 2655 Gtf2i GGCGGACATAAGCGGTGGGA 2656 Gtf2i GGACAGGCAACGGATGGGAG 2657 Gtf2i GTCGCCTGATTTGCAGAGGG 2658 Gtf2ird1 GGGATCAGAAACAAGGCCAT 2659 Gtf2ird1 GTAGCTGGCAGAGAGGCTAT 2660 Gtf2ird1 GGACAGGATCAGTAGAGGGA 2661 Gtf2ird1 GGCTAGGCCTTTGCTGGGAT 2662 Gtf2ird1 GTGTCCAAGGTCAGAAGGGA 2663 Gtf2ird1 GATGAGGGATGATGGAGATG 2664 Gtf2ird1 GTAGAGGGAGGGAGGGAAGG 2665 Gtf2ird1 GGGACAGGATCAGTAGAGGG 2666 Gtf2ird1 GTAGTATACAGGAGGTCAGA 2667 Gtf2ird1 GATCTAGAAGGAGACCAGGT 2668 Gzf1 GGTAAAGCAATGATTTACCG 2669 Gzf1 GGTGGGTCAAGTCTTGGCGT 2670 Gzf1 GCAGAGCTATTTGACAAAGT 2671 Gzf1 GTGTGAGGGACAAAGCGCTG 2672 Gzf1 GTGTTATGGAGCCAACCACA 2673 Gzf1 GCCTGAGTCTCCCAGTGTGA 2674 Gzf1 GGAGACTCAGGCAGCCACTG 2675 Gzf1 GCTAAGGCGCAACCAAAGGA 2676 Gzf1 GTGGGTCAAGTCTTGGCGTA 2677 Hand1 GAGGTGGAAGTGGGAGGGAA 2678 Hand1 GTAACTTAGGAGACTGAAGC 2679 Hand1 GTTGTGCAAGAGATTGTGAG 2680 Hand1 GTGTAAGACAATTACCAGGC 2681 Hand1 GTTCAGTACAGGGAGTGAGC 2682 Hand1 GAAGTGGGAGGGAAAGGGAG 2683 Hand1 GTGAGTGTCCATTGTCCTTG 2684 Hand1 GTGATCTGGGATCTCAGGCA 2685 Hand1 GGGCACTGACCAGTTTGTTC 2686 Handl GTGGGAGCCTGAAGGCCATT 2687 Hand2 GCCAGGTAAACTTGCTGCTT 2688 Hand2 GCTTGTACAGCCCAAGAGTG 2689 Hand2 GGCTGTACAAGCAGGCCCTC 2690 Hand2 GTCTGGAAGGCCACATCAGA 2691 Hand2 GTAGCTGGACCTAGTCTTGC 2692 Hand2 GGACCTGAGGAGGCAAGCAG 2693 Hand2 GTACCCTGGGAGCAAGAAGA 2694 Hand2 GAAGAAGGTCCCTGTGTAAT 2695 Hand2 GTGCTGTCAGTGAGGAGTGA 2696 Hand2 GTGATTATGAGGGAACTAAC 2697 Hbp1 GTTGCATCATCAAAGATTTG 2698 Hbp1 GTATCTGAAAGTTGTACACT 2699 Hbp1 GGTGCTGAAATACCCAACCA 2700 Hbp1 GTTTCTCTTTCTACTTTGTT 2701 Hbp1 GGCCTAGAGCGTCCTTGGTT 2702 Hbp1 GTTGGCGGCGTATTGAGTCA 2703 Hbp1 GCCAAGTGCCATGTACTGTA 2704 Hbp1 GGCTGTGTCTCAACTAATTC 2705 Hdac2 GTTGGACACAGTTTCACAAG 2706 Hdac2 GGAAGAAGACTAGCATGAGT 2707 Hdac2 GGGAAGAAGACTAGCATGAG 2708 Hdac2 GAGTAATTCTAAGTCTCTTG 2709 Hdac2 GGTTGGGTCAGGGACCACAG 2710 Hdac2 GTGTTTATTACGAGCAGGTA 2711 Hdac2 GATAAAGTAGACAAAGCACG 2712 Hdac2 GGAGTAATTCTAAGTCtCTT 2713 Hdac2 GGTAGCGGGTGTGTGTGTGG 2714 Hdx GCACTTATCTGCTAAATCTG 2715 Hdx GCAATCACCTGTGAATTACA 2716 Hdx GGAAGAGGCAGCCCTACTAC 2717 Hdx GGACCCAGTTTGAGCACACT 2718 Hdx GTTGTACACTTACTTTGTTC 2719 Hdx GAATATGGCAAAGTGAAAGA 2720 Hdx GTAGTAGGGCTGCCTCTTCC 2721 Hdx GAAAGCAAAGTACAAATTGT 2722 Helt GGGAGAGCTTCTGGAGACGG 2723 Helt GCTGTGAGATGCAGGACTTC 2724 Helt GGATGTCCGGACAAATAAAG 2725 Helt GTTAGACAGTGAGACTGGGT 2726 Helt GCAGCACCTAGGAAGCTCCG 2727 Helt GTAAATCACCCGGAGATCCA 2728 Helt GTATATTCACTCGCACACAA 2729 Helt GTGCCTGGAGGGTGTGGAAT 2730 Helt GGTATATTCACTCGCACACA 2731 Helt GAAGTTGATCCTCTTACTGT 2732 Hes1 GGCTTTCTGGACAATGCTTG 2733 Hes1 GTTCTATAACTGAGGACATC 2734 Hes1 GAGAGGAAGGGAGCTACCGA 2735 Hes1 GCAGTTTGACATCAGCCGGC 2736 Hes1 GCTGATGTCAAACTGCAGCT 2737 Hes1 GATATATATAGAGGCCGCCA 2738 Hes1 GAGAGGAATGAATGGGCTAG 2739 Hes1 GTAAGGGCATGTTTAGCGTG 2740 Hes1 GGCTCCTAAGTGGCACAGGT 2741 Hes1 GCTTCTAGTAGGGCTACTGG 2742 Hes2 GGTTGTTCGGGTCTCGCCTT 2743 Hes2 GTGCTTGAGGAGCGGAGCCA 2744 Hes2 GTCTTTGATCAGTGTAGGGT 2745 Hes2 GCTTGTACAAAGTAACTCCT 2746 Hes2 GCTCCATTGAGGGCTTTGGT 2747 Hes2 GTCACATGACAGACGAGTGG 2748 Hes2 GGGACACTGGACTGAGTTGG 2749 Hes2 GATCAGTGTAGGGTGGGCTT 2750 Hes2 GCGTCTGTCAGGAGCCTTTC 2751 Hes3 GACAGACTCATCACTGCCCT 2752 Hes3 GCACAAACTGGTATGGGTGC 2753 Hes3 GAAGCCCTGAAATGACTCAG 2754 Hes3 GACTGGGACGAGAGCTTCCT 2755 Hes3 GGCTTCTTCCCTTCCCGCTC 2756 Hes3 GTGTGGTTTGACAGGGAGCA 2757 Hes3 GGGATACAGTCACACAGAGA 2758 Hes3 GAGCTCCGAGGAATTCTAAG 2759 Hes3 GCTCAGTGGTTAGCACATTC 2760 Hes3 GAAACCCTGCTTATGCAAAC 2761 Hesx1 GAGAGATACACGTTTACATG 2762 Hesx1 GCAACAGGGACTGAGCGAGC 2763 Hesx1 GAATATGAGAGTGCAAGTGG 2764 Hesx1 GGCATTTGACAAAGCTTTGC 2765 Hesx1 GCACTCTGTGTTAATAACAC 2766 Hey1 GTGGATGGAGAACTGGACCT 2767 Hey1 GTCATCTGCAGCTCAGAAAG 2768 Hey1 GGGATTGCAGGCTCCAAGAG 2769 Hey1 GTGATATGAGGCTCTGAAGA 2770 Hey1 GCAGATTGGCAGCCGCATGG 2771 Hey1 GTGTTAGATGGAGATGTAAT 2772 Hey1 GATAAGGAGAAGGGAGAGAA 2773 Hey1 GCACCTTCTGATAAGGAGAA 2774 Hey1 GAAACATGGGATGGCGTCAA 2775 Hey1 GGGTGCTCCGTCACTTTAGG 2776 Hey2 GCACACACCGGAGAAACTGG 2777 Hey2 GTGAGCGTGTGTGACGTCTA 2778 Hey2 GACACAGAAACTGGAGGGAG 2779 Hey2 GGCTGTCTGCTCTGTCCCTG 2780 Hey2 GAGTTCAAAGTTCTCGGATT 2781 Hey2 GCGTGTGTGACGTCTAGGGT 2782 Hey2 GGTGTGTTTAGACAGGAGAC 2783 Hey2 GCTGCACACACCGGAGAAAC 2784 Hey2 GACTGGACTGGGCGCAGATT 2785 Hey2 GCAAATCACAGGATCATCGG 2786 Heyl GAAATGCCTAGTGCACACAT 2787 Heyl GGCAGGGAGATGGTGGAGGT 2788 Heyl GTGCTATGCTGTCAGTTCAG 2789 Heyl GGCAGAAGAAGAAGGAGAGC 2790 Heyl GACTGAAGAATTACTTCCAA 2791 Heyl GAGCCTTCGGCTTCTCTTTC 2792 Heyl GGCACCAGGGAGAGGAAGAG 2793 Heyl GTAGGGTGTGGTGGTTGGTG 2794 Heyl GTGCAGAGGGAAGCTGAGGG 2795 Hhex GAGTTGGGCAGTTTCTGCTA 2796 Hhex GAGAAGCGATGGGACTCTGC 2797 Hhex GACTGCGACCGTCGAAGAGG 2798 Hhex GCAGTGTTCTTCGATCCAAT 2799 Hhex GGCTTAGTAGTAAGGGTTAC 2800 Hhex GTGAACTACTGGAAGGTTGC 2801 Hhex GGCCAGAAGGCTGCGCTTCT 2802 Hhex GATTCCGTTAGCATCCAGGG 2803 Hhex GAATCTGAAGCCAGCGCCAT 2804 Hhex GTTCGTTTCCTGCTTCCACC 2805 Hic1 GACCGGCAAGACAGACCGAC 2806 Hic1 GTGTCTTCCCTAGAGGACTC 2807 Hic1 GTGTGGAGCATGCAGGACGG 2808 Hic1 GGGCTCAATAGCTTGGCAGA 2809 Hic1 GTGGTATCCTCGCTCTCTCC 2810 Hic1 GGGACTCCGGAGTGAGGATG 2811 Hic1 GCTCTCTCCTGGTGTGTGTG 2812 Hic1 GAGTGAATAAACACAGAACG 2813 Hic1 GTAAGTGGATTAGATGGAGG 2814 Hic1 GACCACCAACAGTCGGAGAT 2815 Hif1a GCCATAAATAGATACCACCA 2816 Hif1a GCAGTCCTGTCAAGGTCTGT 2817 Hif1a GACACAACTGAGTCTGAATC 2818 Hif1a GTAAGGTCTGCAAAGTGAGT 2819 Hif1a GGCACTTTAACAGTTGAAAC 2820 Hif1a GCTGAGAGCAACGTGGGCTG 2821 Hif1a GCTCTCAGCCAATCAGGAGG 2822 Hif1a GTTGCTCTCAGCCAATCAGG 2823 Hif1a GTTGTGCAGATTGTGAAATG 2824 Hira GCGCATTTATTAGAAGAGCG 2825 Hira GTGTCTGACGTGTGCCTGGC 2826 Hira GGAACTTTGGATGCTTTCTT 2827 Hira GGTCTGGGATTCCGAGAGGC 2828 Hira GAAATCTGCTTGCTAACCCA 2829 Hira GAAGTGAACGTGCTGAACTA 2830 Hira GGGTGATGCTGTGTGCTGCG 2831 Hira GTCTGCCGCTAGATGCATGC 2832 Hira GTCCACTGTCTTCCCGAGGA 2833 Hira GGGCGCATTTATTAGAAGAG 2834 Hivep1 GGGCGTGAGAGGAAACGCTG 2835 Hivep1 GGGCTGGGTTGTTGACTTGG 2836 Hivep1 GTGGGCGTGAGAGGAAACGC 2837 Hivep1 GCTTAGGCTCTGGGAAGCAC 2838 Hivep1 GGTTCAAACAGCTCGGCTGG 2839 Hivep1 GCTTGGCTTGGGAAGAGCCC 2840 Hivep1 GAACTTTGGAAGCCGAAGAG 2841 Hivep1 GGAACTTTGGAAGCCGAAGA 2842 Hivep1 GGAATAACCTTGGCTTTCCT 2843 Hivep1 GAGAGCATCGGTCCAACCCG 2844 Hivep2 GAAGTTCTCTGATCCTACAA 2845 Hivep2 GACTCGCCAGTGTTTCTGCG 2846 Hivep2 GAACGCTCGAATCCAAAGAG 2847 Hivep2 GAAGGGAATCCCAAGCGAGT 2848 Hivep2 GCGAGAAATCCTTGGTACGC 2849 Hivep2 GGCTAGAGAGGGAAGGGAAT 2850 Hivep2 GAGAACCAGAAGCGCGCAGC 2851 Hivep2 GGACTCGTGTGCACCCTCAA 2852 Hivep3 GTGGGCTTCAGAGTGCATGA 2853 Hivep3 GGAGAAACATATGCAAATAC 2854 Hivep3 GTTGGATCAGAATGAGGTCA 2855 Hivep3 GCGGTCTTGACGTTGAGCGC 2856 Hivep3 GAACCTCCAACTTAACCTCT 2857 Hivep3 GGGATTAAGCTGGAGGTGGA 2858 Hivep3 GTAGTTGGCATGCACAGTTT 2859 Hivep3 GTGATGGAGGAGCCTGCTGA 2860 Hivep3 GTATTGGAGAATAGCAGCCT 2861 Hivep3 GGATCCCTAGCTATTGAAAG 2862 Hltf GTCAGACGCTCCCTATCTGA 2863 Hltf GGCTTCTTGAGTGAGCCACA 2864 Hltf GCTCAAGGTTCTGACGGACT 2865 Hltf GTATGCGAGACCCTGAGTTC 2866 Hltf GCTAAGAATAAATAGAGTCA 2867 Hltf GTTCACGAGGTGAAGGGCTG 2868 Hltf GAGGCACCAATGCATTGTCG 2869 Hltf GAAATGCAGGTATCCCACCC 2870 Hltf GTAAGGTCCGAGGTGGTGGC 2871 Hltf GTGGTGTGGACACGTCTCAC 2872 Hlx GATGTCCCAGTATCAGGGAC 2873 Hlx GCTATGATGTCCCAGTATCA 2874 Hlx GGCTACTATCAGCTCAGGAT 2875 Hlx GTAGACTTGGGTCGGGATTC 2876 Hlx GGCTATGATGTCCCAGTATC 2877 Hlx GTCTAGCAGGGAGCAGAGGG 2878 Hlx GCCTGTGGTCTGTTTGGGAG 2879 Hlx GGGAGCTCCGATTAGGCCTC 2880 Hlx GCCAAAGCGACTGGTCTACA 2881 Hlx GTTGCGTTGTGCACCTAGTC 2882 Hmbox1 GTCTAGCATCCATGGTATTC 2883 Hmbox1 GCTGGAAGCTGTAGTTCCCT 2884 Hmbox1 GATGGAAAGGAAGGATGAAT 2885 Hmbox1 GCGGCGGCGATGAATTTGAG 2886 Hmbox1 GACTTTCACAGGTGCACATG 2887 Hmbox1 GTTTCCACTACTAAGTCAGA 2888 Hmbox1 GTTTATTCAAACCCTTTGGT 2889 Hmbox1 GAAGACCTCCTGACAGATGC 2890 Hmbox1 GAATCTTCCTAATTGCTACG 2891 Hmga1 GTGTTTGCCTACTTCTAGAG 2892 Hmga1 GGATACCCTTCCTTCCTGGA 2893 Hmga1 GGCGGCCCTGCTGTTTAAGT 2894 Hmga1 GGTTCGAGTTTCCCGCCTCT 2895 Hmga1 GAGATCCCAACTGGAATGTC 2896 Hmga1 GGGCACAAAGATGGAGGGCG 2897 Hmga1 GCTCCTTTGAAGCCTGCACC 2898 Hmga1 GTTGCAAGGAAGTCCTGTTC 2899 Hmga1 GTAGGAGATGCAGGAAGCAC 2900 Hmga1 GAAGACCAGACAAGAGGCAG 2901 Hmga2 GAAGTTTCCGGAAGCATTCA 2902 Hmga2 GAGTTCTGAGTCTTCTCATT 2903 Hmga2 GTTATGGGCGTCCCAGCACG 2904 Hmga2 GGCATTTCTCAGTGGAGCGG 2905 Hmga2 GTGCACGCTTGTTTGTGCGC 2906 Hmga2 GACAGCAGGTGAAGGAGAAA 2907 Hmga2 GCTTGGAGAGGGAAGAGACT 2908 Hmga2 GCGGCACTGCACAGATGCAG 2909 Hmga2 GCACCCAAATTTATAAAGCA 2910 Hmga2 GGTAGAAGCCAAGCTCTCCA 2911 Hmx1 GAAGTCTGGGTTACCCTCTG 2912 Hmx1 GATGGAATGCTCTCATATCC 2913 Hmx1 GGATAGGTGAGACAGAAACA 2914 Hmx1 GCTTGGGAGCACTAGAAAGA 2915 Hmx1 GTCTTACCCAGCACTCCCTC 2916 Hmx1 GGACCAGGCAGACTCTGCTA 2917 Hmx1 GGAGAGCCTTGCTCACCCTC 2918 Hmx1 GATCCAATCGCGCAGATTTA 2919 Hmx1 GATCTGTCAGGAAACCTGCC 2920 Hmx1 GTTGCCTTCTCCTGGACAGT 2921 Hmx2 GATCAGGTAACAGGTGCTCT 2922 Hmx2 GAGAGCACTGACTGGTGTTG 2923 Hmx2 GCGACACTAAGAAGTTTGCC 2924 Hmx2 GGGAGTGAAGTTTGGTCACG 2925 Hmx2 GTGTGGGAAGGCGAGCTGTG 2926 Hmx2 GCATCCTGAAACAGAAAGCC 2927 Hmx2 GGAGTCTGAAAGAGGAGGTG 2928 Hmx2 GTCACCGCATTAACCTCTTC 2929 Hmx2 GGAGCTTTGCTGCTCTGGGC 2930 Hmx2 GGGAGAGGCCACAAGAAGGA 2931 Hmx3 GCCGAGATICICCAGGGACT 2932 Hmx3 GAAAGATAAAGAACGGGCTG 2933 Hmx3 GATTTCGTATAAGGCTTTAC 2934 Hmx3 GCTACTTACAAGGCAATAGT 2935 Hmx3 GCGGGCCTCTGAGGAATAGC 2936 Hmx3 GCCGGAAATCAGACCATAAA 2937 Hmx3 GGAGAGAACTCTTCCAAAGG 2938 Hmx3 GGCCAAGGAACTATCACCAG 2939 Hmx3 GCTGCCTCTTAACTCTTCTT 2940 Hmx3 GACACCTGCAGCATGTCCCA 2941 Hnf1a GCTGGGACAGCAGGAAGCTC 2942 Hnf1a GCTAGAGACCTGCATAGGAA 2943 Hnf1a GGGAGTCATGGCCTGCAATT 2944 Hnf1a GTGGTTGGTGGCACGATTGT 2945 Hnf1a GCCTGTTTCTTTGGGCCGCT 2946 Hnf1a GAGTGAGCAGAAGGGAGGGT 2947 Hnf1a GCAATTGGGAGTGAGCAGAA 2948 Hnf1a GCCCAACATCAGACTTCCCA 2949 Hnf1a GGCAGTTTCCAGAATCTTCA 2950 Hnf1b GATCACCTGTGGGAGGACTC 2951 Hnf1b GCAGTAACTCCTCCAAGGCC 2952 Hnf1b GAAGACCACCTGTGCAAAGC 2953 Hnf1b GGAGCCGACTTAGGGAAGCC 2954 Hnf1b GTGCCTCCTTGCTTCCTCTC 2955 Hnf1b GGACGGCAGTAACTCCTCCA 2956 Hnf1b GAACCTAAGGGACAGTCCAA 2957 Hnf1b GTCTGAAAGCTAAAGGGTGG 2958 Hnf1b GCTCTGGCAAGTCCCAATCC 2959 Hnf1b GTTTGGCTGATAAACAGAAT 2960 Hnf4a GGGTGCCTGCCTTGGAAGAT 2961 Hnf4a GAAAGACCCAAGTGTGGGCT 2962 Hnf4a GAGAACCACAAATCCACTTG 2963 Hnf4a GCAGGACCTTAGGAAGCTTC 2964 Hnf4a GTGAGTTTAGAAACTCTCTG 2965 Hnf4a GACTATTAATGAGCGGGAGG 2966 Hnf4a GTTGGTTTCTGACTGACACC 2967 Hnf4a GTCCTCTGGGAGACTCAGCC 2968 Hnf4a GACTCCCACTAGCTGGAGAA 2969 Hnf4g GACATATTGTTGGACTTGAA 2970 Hnf4g GGCTGTAAACAGCACACCTG 2971 Hnf4g GGGTAAGAACATTAAGGGAG 2972 Hnf4g GACATGCCAATGTTGCAGAG 2973 Hnf4g GATTTCCATCATATGATCAT 2974 Hnf4g GCCTAAGAGATCCAGATGAA 2975 Hnf4g GCATCTGCAGTCCTGCTCCC 2976 Hnf4g GATCCTCTGAGAGCTTTCTG 2977 Hnf4g GTGTTGCAGTCACTGAGGGA 2978 HnF4g GCTTTGTTCTGCAAGAGTTC 2979 Homez GGGAACCAAACACCTGACTC 2980 Homez GGGAAGAGTCTGTGCTTGAA 2981 Homez GAGATCTGAAGGTGACCTCT 2982 Homez GCCAATC3CGGACCTCTGCT 2983 Homez GGAAGGAGATCCACACAATT 2984 Homez GAGTTCGTGAAATGAGGAAA 2985 Homez GTCTTCCGAGGGCCTTCCTG 2986 Homez GCTCTTCTGATTAATGGACT 2987 Homez GGGCTGGGAACATGTCTTCC 2988 Homez GGAAGGACCACAGGATGCAG 2989 Hoxa1 GAGGCCTCCTGGCTCTCTTG 2990 Hoxa1 GTAATTTACGTGTGAGTTTG 2991 Hoxa1 GTCCCTCTACATTCCGAGGC 2992 Hoxa1 GGTGAAGAAAGAGGGCTTGG 2993 Hoxa1 GCCTCCTGGCTCTCTTGTGG 2994 Hoxa1 GAGCATGCTCACTCTAAAGT 2995 Hoxa1 GAGCCTCCTCGGGAAAGCTT 2996 Hoxa1 GCAGAGGATTATTTCACTCA 2997 Hoxa1 GGGAGGGACAGATGACTGAG 2998 Hoxa1 GTGGATGGGACCCTTTCCAA 2999 Hoxa10 GAACTGTGGTTTGGGAGGTC 3000 Hoxa10 GCTGCCTCAAAGTGGAGGTT 3001 Hoxa10 GATGAGGAAGTCCATTCCCT 3002 Hoxa10 GACCAGCAATAGAAGCCTGA 3003 Hoxa10 GTGTGAGATCCAGACAGGGA 3004 Haxa10 GAGCGAGAGAGAAAGCAGTG 3005 Hoxa10 GATAGCACTCTGAGAGGGAG 3006 Hoxa10 GCAAAGAGTGAGAGGGCGAT 3007 Hoxa10 GCCAGATCTCTCATGCTGAA 3008 Hoxa10 GGAATGAGGGATTTGGGAGG 3009 Hoxa11 GAAGAAAGGGAGGTCTCTGA 3010 Hoxa11 GCTACTATTGAGCAGCCTTA 3011 Hoxa11 GCTTTGCCTGTTGGCGGTTT 3012 Hoxa11 GTGTGCTCTTATCCCTAGTT 3013 Hoxa11 GGCTGACAGAGCAATTCGAC 3014 Hoxa11 GAAGCCGCCTCTTCTAGAAA 3015 Hoxa11 GTGGGTGAGGGATACTCTCT 3016 Hoxa11 GAAAGGAAGCCGAGGAGGGA 3017 Hoxa11 GAGAGTATCCCTCACCCACC 3018 Hoxa11 GCTACAAAGAAAGGAAGCCG 3019 Hoxa13 GGGTCCCAGGACATTTCTCT 3020 Hoxa13 GTAGTGGGTTCAAGGTGCCG 3021 Hoxa13 GAATGCAACAGTGGATTGCC 3022 Hoxa13 GATGCAGCAGCTATTCTCTC 3023 Hoxa13 GGGCAAATCAATATTTACCC 3024 Hoxa13 GCGGTGTTTACAGGCTGGAC 3025 Hoxa13 GAACTGGTCAGACATCCAGA 3026 Hoxa13 GCTAGACCCTCCCAAGGATG 3027 Hoxa13 GCAGTAAGAAGGTAAACTCG 3028 Hoxa13 GAAAGGACTCCCTGGGTGTG 3029 Hoxa2 GAGGCAAGGAGGAAGCCAAA 3030 Hoxa2 GTTTCATACCCGTAGGGCTC 3031 Hoxa2 GTTCAAATGCTGATTATCTC 3032 Hoxa2 GAAGGTGCTTTGCAGATGGA 3033 Hoxa2 GATGGAAGGGTGGTGGCTTT 3034 Hoxa2 GAAGCTGAGATGTGTTCTTA 3035 Hoxa2 GACCTGCGTGTGGAGATTGG 3036 Hoxa2 GGAGGGTAGACGACGACGTG 3037 Hoxa2 GCTCCTAAACGCTGCTCTCT 3038 Hoxa2 GTGGGTAGAGGCCATGATGA 3039 Hoxa3 GTAGGAAAGACATGGAATTC 3040 Hoxa3 GATAAGAATGGAGACCTTCG 3041 Hoxa3 GGTATTGGCCGGGTGTGTGA 3042 Hoxa3 GGACATGAAGGAGGCTTCTT 3043 Haxa3 GCCAGAGAAAGAGGGATTCT 3044 Hoxa3 GAAACTGGCCCAGCCTAGTC 3045 Hoxa3 GGACGGGACATGAGGAGACA 3046 Hoxa3 GCATCAAGGTCCAGCCTGGG 3047 Hoxa3 GGCACTCCCAAACTACCTAT 3048 Hoxa3 GCCATTAACCCTACTTCAGG 3049 Hoxa4 GCAGTGCATGTGTATTTGTA 3050 Hoxa4 GACCGATTGACAATTAGACC 3051 Hoxa4 GAAGGCAAGAGATGCTTCTT 3052 Hoxa4 GGCTGTGGAAGGTTCAGGAA 3053 Hoxa4 GAGGTTCTATTAAGGAGGAT 3054 Hoxa4 GCTCTGGAAAGGAGAGAGAA 3055 Hoxa4 GTTCTGAAACGCGAAGTTAC 3056 Hoxa4 GCTCGCTTCTCCCACCCTGA 3057 Hoxa4 GCAGGGACTCCCTAACAGCC 3058 Hoxa5 GGGTCCTGAAAGCTGCGAGG 3059 Hoxa5 GGTGCCGTGTATGGGAGTCA 3060 Hoxa5 GGCTGCTTGGAAGCTGGGAT 3061 Hoxa5 GTCTGTGAAAGACGCTATCC 3062 Hoxa5 GCAGTGCCCTGTTTGGTGCC 3063 Hoxa5 GCGCGTTAGCGATCTCGATG 3064 Hoxa5 GGCTGCTACTCTCCCACTGA 3065 Hoxa5 GAGGACTGTGTTGGGCTGTC 3066 Hoxa5 GCCAGGTGTGAGGTTCAGGC 3067 Hoxa5 GGCACCTGTGGGCAGAAATG 3068 Hoxa6 GAGCCTGGCTTGCAGGTGTG 3069 Hoxa6 GCTTGTCAGGTTTCCTGTTT 3070 Hoxa6 GTCCTGACAGAGTGGAGACC 3071 Hoxa6 GCCGATGGTCAAGGTAATTC 3072 Hoxa6 GGAGGGCGGTACTGAGAAGA 3073 Hoxa6 GCGTCCCAAAGGCGTCCTGA 3074 Hoxa6 GAGATTTGACTGGATGGAGG 3075 Hoxa6 GATCCTTTGAGTGAAGCTCT 3076 Hoxa6 GCCTGTACAAACAGTCTCCA 3077 Hoxa6 GGAAGGCCCTGGCTTTGGTG 3078 Hoxa7 GCTTAGAAAGGTGAAGCCGC 3079 Hoxa7 GGGAACCACTTAGTCCTTTC 3080 Hoxa7 GAGACCTGACAACCAGAGTT 3081 Hoxa7 GGCTGTCTTGTGTAGATCTT 3082 Hoxa7 GACCCTAAGGCGGCAATATC 3083 Hoxa7 GAGTAAGAGAGAGAAAGAGA 3084 Hoxa7 GCTGCTGAGATTGGCGGAGG 3085 Hoxa7 GAGCCGCCAGGAGTGTATGA 3086 Hoxa7 GCCAACAGATATACTAACAT 3087 Hoxa7 GCAGTTTATGAGGCGTTTAG 3088 Hoxa9 GGTGGAGAGCCTAATATTTG 3089 Hoxa9 GTAGAGACCCAGCCAGAGAC 3090 Hoxa9 GTTAGGGTGGTGTCTCTGTC 3091 Hoxa9 GAAGGGTAAGCAACAAGGCC 3092 Hoxa9 GATCAGGGAGGGCACAAACT 3093 Hoxa9 GTCTCTGGCTGGGTCTCTAC 3094 Hoxa9 GTCCTGCCTTGTGCAACTGA 3095 Hoxa9 GGAGCCCTCTTCATCCACCA 3096 Hoxa9 GTGTCGTGCTGTCGAGAGAA 3097 Hoxb1 GAACCTATTGAAGGCCTTGG 3098 Hoxb1 GTGATCTCTCCCAGGCCAAT 3099 Hoxb1 GGTAACCCTTGAAACTTCTC 3100 Hoxb1 GCCTGAGCTAGGGCAAGTCC 3101 Hoxb1 GCGGAGGAAGCCAAAGCAGG 3102 Hoxb1 GATGAGTTGATGGATAGGTA 3103 Hoxb1 GATGCCGCATGGAAAGAGGA 3104 Hoxb1 GAGAGGCTGAGGGAGAGAAA 3105 Hoxb1 GGAGGGCAAGAGTTCAGGGA 3106 Hoxb1 GCCTCAAATACATAAATCCA 3107 Hoxb13 GGGAAATAGAGCCAATGTCT 3108 Hoxb13 GTCCCAAGATTGCAGGAGCT 3109 Hoxb13 GGTGAACAACAACCTGGATT 3110 Hoxb13 GAAGGGCTGGGAGGCCACTT 3111 Hoxb13 GGGAGCCAAGGCTGGITTCG 3112 Hoxb13 GGGAGCAAAGCAGGAATCCT 3113 Hoxb13 GCCAATCAGCGCTCATGCCC 3114 Hoxb13 GGGTCTGGATTTCCGTTTAA 3115 Hoxb13 GCTGCCTCAAAGGAGAACCC 3116 Hoxb13 GGCTGCCTCAAAGGAGAACC 3117 Hoxb3 GGCGACGCAGCTTTAAACAG 3118 Hoxb3 GAACCGAGATTGGAGTCATA 3119 Hoxb3 GTCCTGCGATGGTTTCGTTT 3120 Hoxb3 GTCTTCTGGTTTCATTCTAA 3121 Hoxb3 GGAACAGCGAGCACCGAAGG 3122 Hoxb3 GAGGCAACGTAGCTGCATCC 3123 Hoxb3 GCCAAGCATCCTAGAGGGTA 3124 Hoxb3 GAAGCAGAGAGGCCTCCCTA 3125 Hoxb3 GTTGCCTGTAGCCCTGGAGG 3126 Hoxb3 GCTGCATCCTGGGCCATGAC 3127 Hoxb4 GGGATAGAGAGATGCAAAGC 3128 Hoxb4 GAACAAGGACCCAAGCTTCC 3129 Hoxb4 GGAGAGGTGTCTGGGTGTGA 3130 Hoxb4 GCTCCCACCTGCAGGCAACT 3131 Hoxb4 GTCTTCTTGAAGGCAGTCAC 3132 Hoxb4 GGCCTTGTGGGTTAAAGGGA 3133 Hoxb4 GATCACAAACTAAAGGCTGT 3134 Hoxb4 GCAGTTCATTTCCGAATGAA 3135 Hoxb4 GACAGAGGCGGCGGCTTTAG 3136 Hoxb4 GAGCTCCAAGGGAGAGGAAT 3137 Hoxb5 GAGAGACACAACCAACGCTG 3138 Hoxb5 GCCAGAATCTATCATCGAGT 3139 Hoxb5 GCATCTGGCGAGCTTGTTAA 3140 Hoxb5 GTCTTTCAGGTCCCTGCTGA 3141 Hoxb5 GCGAAGGGAGAGGTCTGTGG 3142 Hoxb5 GACGCGAAGGGAGAGGTCTG 3143 Hoxb5 GGTAGTGTCTCACAGCTCCC 3144 Hoxb5 GTTGCACAGAGCCAGCAAAG 3145 Hoxb5 GTCTCAGCTCAGTGCGGAGG 3146 Hoxb5 GAGTCCAGGAGGGAATCTGG 3147 Hoxb6 GAGCAAGCATGCCAGTTTGA 3148 Hoxb6 GAAGCTGTCTTTGTGAACTG 3149 Hoxb6 GGGTTGCAGCGGTCAGTTCT 3150 Hoxb6 GAGGCCAGGCCAGCAAGTAG 3151 Hoxb6 GCTGCAAACCGCACAGGTGG 3152 Hoxb6 GTTGGATACACTGTTTGTCT 3153 Hoxb6 GAACCACCTCGGAGCTCTTA 3154 Hoxb6 GCACACACACACACAGGAGG 3155 Hoxb6 GGATTTATTTGGCTGCAATG 3156 Hoxb7 GTAGTAACTAGATGTGACCA 3157 Hoxb7 GGAAGGGAGGAAGGAGGCTT 3158 Hoxb7 GCAACTTGGTGGGTGGGTGC 3159 Hoxb7 GAGTCAGATAGGGATTAAAT 3160 Hoxb7 GGAGAAAGAGAAGCTGGAGC 3161 Hoxb7 GGGAAGAGATCTACCCAGGC 3162 Hoxb7 GCCGTCATACCATTGGCCGA 3163 Hoxb7 GAACTCCTTCTCCAGCTCCA 3164 Hoxb7 GGAGGAGAGAGGATCGAGGG 3165 Hoxb7 GAGGAGAGAGGATCGAGGGA 3166 Hoxb8 GGAAGCCGCAGCTCTCACCT 3167 Hoxh8 GGAATAAAGTGCAGGACAAT 3168 Hoxb8 GACAATGGGTCAGGTGAGAC 3169 Hoxb8 GGAAAGAGAAGAAGCCACAC 3170 Hoxb8 GGAAGCCAGTCCTTCTGGGA 3171 Hoxb8 GAAATAATAGGCACAAATCA 3172 Hoxb8 GATTCTCTCTTCAGCAGGTG 3173 Hpxh8 GTCATGATTTGAGGACTCAC 3174 Hoxb8 GCTGAAATGAGACCGATTAT 3175 Hoxb8 GCATAAcACAGCAGTAACCA 3176 Hoxb9 GACTGTGTGTGTGCTCTCGG 3177 Hoxb9 GGAGGCTAAGGAGGGAGTCA 3178 Hoxb9 GGCCCTGGAACTAGAGTTTC 3179 Hoxb9 GCAGCTGAGAGAGGCGAAAG 3180 Hoxb9 GGATGGAAAGGAAGGTAACC 3181 Hoxb9 GGAGCGAATGAATCATAGTT 3182 Hoxb9 GCAAAGCCCGGGAGAGGAAT 3183 Hoxb9 GCCCGACAGGGTAATTAAAG 3184 Haxb9 GGGAGGACCAGCATACAGGG 3185 Hoxb9 GTTAAGTATCTGTAGGTCCT 3186 Hoxc10 GCCAGGCAGGGACAATAGGA 3187 Hoxc10 GACTGTCCCAAGTCTGGTCT 3188 Hoxc10 GAGAGCGCTTGTGTGGGTCC 3189 Hoxc10 GCAGGAAGCATTTCTCCTGA 3190 Hoxc10 GGACTGTCCCAAGTCTGGTC 3191 Hoxcl0 GAAAGTGTAAGGTGAAGAGA 3192 Hoxc10 GGTCTAGCCGTCACATGGTG 3193 Hoxc10 GTGTTATTCAGGGCAAGGTT 3194 Hoxc10 GTGGAGTGT6TGGCCAGCAG 3195 Hoxc10 GAGTCTCCAGTGTCTGGAGT 3196 Hoxc11 GTAATAGCCAAAGGGACTGG 3197 Hoxc11 GGAAGTCTCTTCTACAATAT 3198 Hoxc11 GCACAGCCTTGGAGAGAGGT 3199 Haxc11 GCTAGACAAAGTTGGGACAC 3200 Hoxc11 GCAAGGAGGGTTTATAGACT 3201 Hoxc11 GGAGGAGAGAGAGAGAGGGT 3202 Hoxc11 GACTTGGAGAAGGGCAGGGT 3203 Hoxc11 GAGCACTTCGCAGACGTAGG 3204 Hoxc11 GCAACAGAATCTTCTGTTTC 3205 Hoxc11 GCTCTGATTCTTCAGGTAGA 3206 Hoxc12 GAACATCTGCAAGTCAACAT 3207 Hoxc12 GGCTAAGGGAGGGAACCAGG 3208 Hoxc12 GGTGATAAGATAATACATCT 3209 Hoxc12 GGAGATTAGCATTGTCGGAA 3210 Hoxc12 GCGTCCIGTAGAGGAGAGAG 3211 Hoxc12 GTGTTGCACAGAAGGAAGAG 3212 Hoxc12 GAGAAATCCACGTCTGAAGA 3213 Hoxc12 GGTTGCAGAGAGAATGAGAA 3214 Hoxc12 GAAGGAGAACCGGCCAAGCG 3215 Hoxc12 GAGATTACCCTACAACCTGC 3216 Hoxc13 GACTACCGAAGTCTCTAAAT 3217 Hoxc13 GTAATTACATCTCATTTCGG 3218 Hoxc13 GTAGCAGGCACGGAAGGTCT 3219 Hoxc13 GCTGCTGGAGTCCAAGGTCA 3220 Hoxc13 GGTCTAGGATTAGTCTTGAT 3221 Hoxc13 GCGTAGTGGGAATGCGGCTA 3222 Hoxc13 GGCTCCGGTTCTCAAACAGA 3223 Hoxc13 GTGATAAGCGCTAAGGAGCC 3224 Hoxc13 GCTGTGGTCACGTGGGAACC 3225 Hoxc13 GGGAGCTTGGCACAATTCCA 3226 Hoxc4 GACTTGAGGATCCGTGAATG 3227 Hoxc4 GAACTACAAGTTGCTGGAAG 3228 Hoxc4 GGGAAGGACAGTGGGTAGCA 3229 Hoxc4 GACAGGGTCCCAGCAGTACT 3230 Hoxc4 GGGCTTCAGTGCAGGTTGGA 3231 Hoxc4 GATGTCATTTCTGGAAGTCT 3232 Hoxc4 GTGTGTGGGTGACAGAGGGA 3233 Hoxc4 GGGAAAGCAGCCAGAGGCAC 3234 Hoxc4 GCCCACACAGGCTTCCCTTG 3235 Hoxc5 GCAGGAAGAAAGGCCCGCGT 3236 Hoxc5 GATGACTGAGAAAGAGAGTT 3237 Hoxc5 GAAGCTTGAGTGAGCCGGGT 3238 Hoxc5 GGGAGGTTAGTGATGGAAGC 3239 Hoxc5 GATGAGCAAGGGAGAAGAGA 3240 Hoxc5 GCCTTCTAGCAGTCAGTTTG 3241 Hoxc5 GGTCTCCTAGGCCTAGGCGA 3242 Hoxc5 GAAGTCTACCCAAGTTCACC 3243 Hoxc5 GAGACCTTGACCTTTAGTTT 3244 Hoxc5 GCTCAGAAGCCGAAGATCCC 3245 Hoxc6 GCTGTTGGAAACCTCTGCCC 3246 Hoxc6 GCATCCCGAAAGAGGAAATT 3247 Hoxc6 GAAATGGACTTTCTCCCTTT 3248 Hoxc6 GTTTCCCTGGAGTGTCACTA 3249 Hoxc6 GGACCCTCTTTCTACTGGGA 3250 Hoxc6 GCCTTACAACTCAGGTCCAG 3251 Hoxc6 GCAAGCCAGATGTCAAGAAA 3252 Hoxc6 GAAACATGGTGCACAGAGGA 3253 Hoxc8 GCTCTTTCCTCTAACAGCCC 3254 Hoxc8 GTCATCAAAGAAAGAATGGC 3255 Hoxc8 GGGTACATGATCACCATGCT 3256 Hoxc8 GCTGACATTTCTGGCCAGAG 3257 Hoxc8 GTGTGCTTCTAAGCCCAGGC 3258 Hoxc8 GTTTGCAGGTTAGGCAAGGA 3259 Hoxc8 GAGATGGGTCCTCACTCTAC 3260 Hoxc8 GGTGGCCTCACATACTGTAG 3261 Hoxc8 GAGGGTCCAGATCCTCTCTG 3262 Hoxc8 GCTCAGTACAGAACTGAACA 3263 Hoxc9 GTGACGTGAAGGCGGCAAAC 3264 Hoxc9 GGCGAGACATCTCAGAGATC 3265 Hoxc9 GCTTTGTGTGGGTCCTTGCT 3266 Hoxc9 GAAGTGGAGCAAGGTCTCAT 3267 Hoxc9 GTCTCAGACAGACAGGCAAG 3268 Hoxc9 GTCCAGAGCAGGTTGTCCGC 3269 Hoxc9 GGATTCTCTGAAACTCGGCA 3270 Hoxc9 GATGATGGATTTAAAGGAGG 3271 Hoxc9 GCACACAGCCAGTTTGGGTA 3272 Hoxc9 GGTGAAGGAAGATATGTATA 3273 Hoxd1 GAGCCCTGGACATCAGCTCC 3274 Hoxd1 GAATGAAATGACCAGAGGTT 3275 Hoxd1 GCTCCTGGGACAGGTATTGC 3276 Hoxd1 GTTTATAATCATCTGAGGAG 3277 Hoxd1 GGGCTCACTCCTGGACTATG 3278 Hoxd1 GGCTAAGTTGGCAGCAAGGC 3279 Hoxd1 GTGTGCTTAAGTATCTCCCA 3280 Hoxd1 GTCCACCTCACTAGCATAAT 3281 Hoxd1 GACCTTCTCAGAGGGAGGGC 3282 Hoxd1 GGTATTGCGGGAGAAAGGCA 3283 Hoxd10 GAAGGACGGCTCCCACACAC 3284 Hoxd10 GTGGAGGCTCTGGGCCTAAG 3285 Hoxd10 GGCCGGGAGAAATTCCTTTA 3286 Hoxd10 GGAGAGACGCTTTCGCGAAT 3287 Hoxd10 GGTGCTAATCAGTGGTTGTT 3288 Hoxd10 GTCTTCCGTTTCCTCTGGTG 3289 Hoxd10 GTCTCTGGGCCTGAAATCCA 3290 Hoxd10 GGGCAAGAAGGGAATAAAGA 3291 Hoxd10 GTGGTTGTTCTTTAATGAGC 3292 Hoxd10 GGGCTGGTTAATTTAGTACT 3293 Hoxd11 GAAGGGAGTGGTACTAAGCC 3294 Hoxd11 GAGATTGCTCAGGGCTTAGT 3295 Hoxd11 GATTTCTGTGGATCAGTAAA 3296 Hoxd11 GCCATGTCGTTGAACTTGAA 3297 Hoxd11 GAGAACCAACCGATCTCCCT 3298 Hoxd11 GATGTTGTGCATCTTGCTAA 3299 Hoxd11 GATAGGTGAGGCTGGAGCAG 3300 Hoxd11 GCCAGCAGACTTCACTTTAG 3301 Hoxd11 GGACTAGGTGTGAGAGTGTG 3302 Hoxd11 GAAGCATTTCTCTCTCTACG 3303 Hoxd12 GTTCAACTAACTTGCACATC 3304 Hoxd12 GAACAGCGTGAAGATTCCTT 3305 Hoxd12 GAGGGAAGGTGGGAGGAGGA 3306 Hoxd12 GGAATGAAGTGGGTCGATTA 3307 Hoxd12 GGGTCAGTTGCTACAACCTC 3308 Hoxd12 GCAGCCTGCGAAATAAGGGC 3309 Hoxd12 GAGCCAAAGCCTGTTGAGGG 3310 Hoxd12 GGTCCTGCTTTAGGCTAGCG 3311 Hoxdl2 GTGATGTGCTTCCCTTTCCA 3312 Hoxd13 GTGAGCTCTGATTTGAATCT 3313 Hoxd13 GTGGCTGCAAAGTCAACTCC 3314 Hoxd13 GGATGAGCTGTCTCGAATTT 3315 Hoxd13 GGGTGCGTGAGCCTCAAAGT 3316 Hoxd13 GGTTAGTCAAGAGTGCTGGG 3317 Hoxd13 GCTCTGATTTGAATCTAGGT 3318 Hoxd13 GACTGCTGAGGCTGATTATG 3319 Hoxd13 GGATTTGGAGTTCTACCTGT 3320 Hoxd13 GTGTAGGTTATGAGAGGTAC 3321 Hoxd13 GATTGCGCGACGGCCCATCT 3322 Hoxd3 GGGCTGCTTAGTTCTGGGTC 3323 Hoxd3 GAATTTACTGCAATTCCTTG 3324 Hoxd3 GTCCTCTTTGGAGATACCGC 3325 Hoxd3 GTTTCCAAATAAAGACCTTG 3326 Hoxd3 GAAGTCCGATGGGTTGAGTG 3327 Hoxd3 GGTTATCAGGATGCTCAAAC 3328 Hoxd3 GGTTAGAGGGACAGGAAAGG 3329 Hoxd3 GCCTTTCTGGAACAGGGCTA 3330 Hoxd3 GGCTCTGGGAAAGCAGAATG 3331 Hoxd3 GTGTCCATGGGRGAAAGGGC 3332 Hoxd4 GGCGGTGATGGTACTCACAG 3333 Hoxd4 GAGGCAATACCCAGTTTACT 3334 Hoxd4 GATTGAAATAAAGGCGGTGA 3335 Hoxd4 GGCTCTAGCTAAATGAGAAG 3336 Hoxd4 GGATTTATGCTTAAGTACAC 3337 Hoxd4 GTTCCTACTGGGAGTTGCAA 3338 Hoxd4 GGAGTTGCAATGGCAGCGGA 3339 Hoxd4 GCCTTCCTGCAGCATCTGTA 3340 Hoxd4 GTGTACTTAAGCATAAATCC 3341 Hoxd4 GAAGTGGGTTTGCAAATGGC 3342 Hoxd8 GGGTGGCATTTCCTAGGGCA 3343 Hoxd8 GTCCTCAAGATCAGAGAGCC 3344 Hoxd8 GGGAAGAAGGAATCATGCCG 3345 Hoxd8 GTGCTGAACCCTTTATCCTT 3346 Hoxd8 GAATAGGTCTGGGAATGGAA 3347 Hoxd8 GCCTCCGCCAGCCTTAAAGG 3348 Hoxd8 GGAGCCGGAGAGGAAACTGG 3349 Hoxd8 GTTTCCTCTCCGGCTCCAGG 3350 Hoxd8 GCAGATTTGCACAGGTGCCA 3351 Hoxd8 GGAGGCGAGAGAATGTGGGA 3352 Hoxd9 GTTCCTTCTGCTTTCTGAAA 3353 Hoxd9 GGGAAAGAGAAAGGGACTTG 3354 Hoxd9 GGAGATCGCAGGACCCAGAG 3355 Hoxd9 GTTATGAAGACTGAGCTCTC 3356 Hoxd9 GTTGCTTGTTCCTGCAATGG 3357 Hoxd9 GGAACCGCATCTCCGAGGGT 3358 Hoxd9 GGAGCCGACAGTGATGGCCA 3359 Hoxd9 GTTCTTACTTACCAGGCTCA 3360 Hoxd9 GCAGTGGGTTCTTACTTACC 3361 Hoxd9 GGTTCCTGCAGGCCTCTCTG 3362 Hsbp1 GAAGGCGGAGCTAAGAACTG 3363 Hsbp1 GTTTAGTAAAGGAGAGAAAC 3364 Hsbp1 GAATTGTACAGGCACATGGA 3365 Hsbp1 GGAACATGGAGAACTCTGGC 3366 Hsbp1 GCGCCGAGAAACCGAAGTGT 3367 Hsbp1 GTGTCCTAGGAAGGAAAGAG 3368 Hsbp1 GTAATTCCCATCTCTGTGTT 3369 Hsbp2 GGCGTAGCTTATCCGCAGGC 3370 Hsf1 GCTTTCCGACTTGTCCGTCA 3371 Hsf1 GGAGCTCAAATGTGTGACGA 3372 Hsf1 GTGTCAGTTTCAGGACCCTT 3373 Hsf1 GAAAGAGGAAGTGCCTGCCT 3374 Hsf1 GCAGCGATGCCGGTGACATG 3375 Hsf1 GGGTGAGGGACCAGCTTCCA 3376 Hsf1 GGCTCTCCTGCACATGAGGA 3377 Hsf1 GTCCACAGAGGCAGGAGAGG 3378 Hsf1 GGTCTTGCCAAGTGCCTGCA 3379 Hsfl GCTCTGATTGGTGAGCAGCC 3380 Hsf2 GTGCATCCGAAGCCTTGGAT 3381 Hsf2 GCAGAGTGCAGAGAAGCCCA 3382 Hsf2 GCGAGTCCAATCCAAGGCTT 3383 Hsf2 GGATTGGACTCGCTGAGACC 3384 Hsf2 GCACTACAGAGCAAAGCGAT 3385 Hsf2 GGATTCGCATGGAAAGGGTT 3386 Hsf2 GTCTCAGCGAGTCCAATCCA 3387 Hsf2 GATTCGCATGGAAAGGGTTT 3388 Hsf4 GAATTTATGGTGCCTGAGAT 3389 Hsf4 GCAGGTCGAGGTGGCGAAGT 3390 Hsf4 GACTCGAGATCACAGGACGC 3391 Hsf4 GGAAATACACAAAGGCTGGA 3392 Hsf4 GACATTCAAGGAGACCTCAA 3393 Hsf4 GCCTTTGTACTGTGACTGTG 3394 Hsf4 GACACATTGAAGCCTAGGTA 3395 Hsf4 GGCCTTTGTACTGTGACTGT 3396 Hsf4 GGGCCTTTGTACTGTGACTG 3397 Hsp90ab1 GAAGGTCTCTGTGAATAATG 3398 Hsp90ab1 GCTGACCTGGATCGGTCACA 3399 Hsp90ab1 GGTCGTTCAACCCTGGCCCA 3400 Hsp90ab1 GATCTGCTACCATGACGTCA 3401 Hsp90ab1 GCAGGCCACCTTTAGAACAG 3402 Hsp90ab1 GGACTGAAAGAGAATGGAGG 3403 Hsp90ab1 GGAGCATGCATATGCAATTA 3404 Hsp90ab1 GAGAGGCTAACAGACAGTGC 3405 Hsp90ab1 GGCCTCCTTAAAGTTGGACA 3406 Hsp90ab1 GTACAGCACAGCTTCAGGCT 3407 Id1 GAGTGTGAGGAGCTGAGGAG 3408 Id1 GACGCTGACACAGACCAGCC 3409 Id1 GAACGTTCTGAACCCGCCCT 3410 Id1 GGTCTCTTTCTCACTTCTCC 3411 Id1 GCGAAGGAATCCAACTCAGC 3412 Id1 GGCTCAAGAACTGAAAGGGT 3413 Id1 GCATAGGTAGAGCAGCTAGT 3414 Id1 GATCCAGAGGTGGGACCCAG 3415 Id1 GGCTCAGACCGTTAGACGCC 3416 Id1 GACCAGCCCGGGAAAGGAAA 3417 Id2 GACGTGCCCAGCTGCAGTAA 3418 Id2 GTCTTAAGTTTCGAGTGATT 3419 Id2 GTAACCCTGCCTCATTCTTG 3420 Id2 GGGTGGTGGGAAGGTGTGAA 3421 Id2 GGGCATCCCTGAATTGCCAT 3422 Id2 GCAGCCAATGCCTGTAGGGT 3423 Id2 GCCTCCTTAGAGAGAAGCCC 3424 Id2 GATCCCGCCCTTACTGCAGC 3425 Id2 GCCTCATTACCCCAACAGAA 3426 Id2 GCTCATTATCATCCAGCCCA 3427 Id3 GCTGATACCGAGGAGAGGCG 3428 Id3 GCTGATACCGAGGAGAGGCG 3429 Id3 GCTTTCTTAATCAATCAGCC 3430 Id3 GCTTACCTGTGATGTGATAC 3431 Id3 GGCGTGGAAAGGACTGAATG 3432 Id3 GTGCAAAGTGTGCAAAGGGA 4433 Id3 GTTCTATGTATGCCCGTGGA 3434 Id3 GCAGGCAAGAGAGAGTCTTT 3435 Id3 GAACGCATGACGTCCCACCC 3436 Id3 GAGTGTGCAAAGTGTGCAAA 3437 Id4 GTTACATCCATCTATGAAAC 3438 Id4 GGGAATGACGCTCGGGCCAA 3439 Id4 GGGACTCTGAGCCTTGTTTG 3440 Id4 GGTGGCACTGTCCTCCTGAT 3441 Id4 GAGCTTAAAGGTAGCAGTAT 3442 Id4 GCCTTCTCTATAGACAGCGT 3443 Id4 GAGGAGCATGAAGCCCATCC 3444 Id4 GCCTTCTGACCCTCCAAAGG 3445 Id4 GCCTCTAAGGATTTAGAGGG 3446 Id4 GACGCTCGGGCCAATGGGAA 3447 Ikzf1 GGAAGGCTCTGGGCCTCAAA 3448 Ikzf1 GTGCACACGCCAGCGTGGAA 3449 Ikzf1 GCTAGACTGGTGGTAAGGAA 3450 Ikzf1 GCTCAGGGTTAACGCCTGTC 3451 Ikzf1 GAGGAGTGAGCCACAGGGAC 3452 Ikzf1 GCGCCAACCCAAAGTTTGCA 3453 Ikzf1 GGCTGCAAAGTTTGTGTGCG 3454 Ikzf1 GGGCTTTCTGATATCATCTT 3455 Ikzf1 GCTGGTGGAAAGGAAGACAC 3456 Ikzf2 GTTGGCCTAGGTTCCTTGCT 3457 Ikzf2 GGCAGTGGATCTGTAGCTAA 3458 Ikzf2 GGTTATCCAATCTTTCTTCT 3459 Ikzf2 GGGAAGTTCTCTCTCTGGCC 3460 Ikzf2 GCTCCGCCGGATCGGTTTCT 3461 Ikzf2 GCCACATCCACCCGAGTCAA 3462 Ikzf2 GTCGATTCTTAAGGAACCGG 3463 Ikzf2 GCAGTGCACAAACACACGTT 3464 Ikzf2 GGTTTCTCAGAAATGTTGTT 3465 Ikzf2 GAGGATCTGGGACACTGAGC 3466 Ikzf3 GTCAGATGACAAGGTTTGTC 3467 Ikzf3 GCACTAGTTAATGTGAGCTC 3468 Ikzf3 GCATTTCTAACGATGCCAAC 3469 Ikzf3 GAGGAACTGTACACTTTCAC 3470 Ikzf3 GGGTAGAGGGACTAAGTCAA 3471 Ikzf3 GTTCCAGGTCCTTCCGTGTC 3472 Ikzf3 GAAAGCATTTGACAGGAGGG 3473 Ikzf3 GACGTCTACTTGAGAAACAC 3474 Il6 GAGAAAGCCTCTTCCAGATG 3475 Il6 GAAAGCACACGGCAGGGAAT 3476 Il6 GCAGAGAATAGGCTTGGACT 3477 Il6 GAACTCTTGTCAGCCTCATC 3478 Il6 GAAGCCCTGGTCTTCACAAA 3479 Il6 GAGAATGCAGAGAATAGGCT 3480 Il6 GTGAAGACCAGGGCTTCACA 3481 Il6 GTAACCCAGTGTAAACACAC 3482 Il6 GGTCATGCAAGGAGGCTTGA 3483 Il6 GTCTGTAGCTCATTCTGCTC 3484 Ilf2 GTGAATGGTAAGCTCTTCTA 3485 Ilf2 GGAGTAGATCCTAAGGACCC 3486 Ilf2 GGCTTCTTTCACTTGTCCCA 3487 Ilf2 GACTCACCTGGACTTGGCTG 3488 Ilf2 GAACAGGTAGAAGACTCACC 3489 Ilf2 GAGGGAATAGTGGTGGTAAG 3490 Ilf2 GCCAATAAGAAGACATAACA 3491 Ilf2 GTGAGTCTTCTACCTGTTCC 3492 Ilf3 GGTGGATCGCCCACGTGATG 3493 Ilf3 GGTCCGGAGCTCTTCATATC 3494 Ilf3 GGGAACACCGGCAAGGTAAG 3495 Ilf3 GCACATGCGGTTGTCAACAC 3496 Ilf3 GCCAAGAGGACGCTAGTGAC 3497 Ilf3 GTGGATCGCCCACGTGATGC 3498 Ilf3 GATGGAAGAGCCGAGCGAAG 3499 Ilf3 GATATGAAGAGCTCCGGACC 3500 Ilf3 GACCTGAGGTGCTTCTGATC 3501 Insm1 GCCTGTGGAGTTGACCCAAG 3502 Insm1 GGCTCCCTCTGAGGACAGAT 3503 Insm1 GGTGTCCACTTGGGACACTT 3504 Insm1 GGACCGCAGCTGCATCCATA 3505 Insm1 GGGTGAGCTTTGCTCTTCTC 3506 Insm1 GAAGGAGGAGACCCACAGGT 3507 Insm1 GACAGGGACGCGTCCATGAA 3508 Insm1 GTACATCTGCCGCACCTACC 3509 Insm1 GAGCAGCAGACCGTGAAGGG 3510 Irf1 GTTCTAGCTAGCGGTGACCA 3511 Irf1 GAGCGATTCGCAGAGGGTGC 3512 Irf1 GACGAAGGAGTGGTGCGCAC 3513 Irf1 GCTGGGAGTCTGCAGAAAGA 3514 Irf1 GCTTTCAGTAGGGTCTCTGT 3515 Irf1 GCACGGGACACCAGGAAGTG 3516 Irf1 GCGAAAGATGCCCGAGATGC 3517 Irf1 GAGACACTCTGACCAGCCAA 3518 Irf2 GCAGGTGTAACTAAATGTAA 3519 Irf2 GAACTTCCGCACCTCCAGGC 3520 Irf2 GTTCTGAGCACTTAAGCCAC 3521 Irf2 GTCTTCTCTTCCCTAGAACA 3522 Irf2 GATTCCACAGACAGGGATAA 3523 Irf2 GTGGTGGCCGTAGGGAAGGA 3524 Irf2 GCCTTTCCTCTCCCTGTTCT 3525 Irf2 GCTAGACCGTGTGGGAAAGA 3526 Irf2 GCAGGAACGTTGTTAGTTCC 3527 Irf3 GAACTCACCTGGGTGGAGTT 3528 Irf3 GGTGCTTGGAAGTCACAGCT 3529 Irf3 GGTGTGACAAAGACTTGAAA 3530 Irf3 GGTCACTTGTGAAACTTTCA 3531 Irf3 GTCAGATTACCAACTGGCCA 3532 Irf3 GAAGAGGGCGCCTAACTCCA 3533 Irf3 GATCTTCCATGAAAGGATGA 3534 Irf3 GTTCCCAGCATGCCTGTAGG 3535 Irf3 GAGCAATTCCGTGGTTGACC 3536 Irf3 GAGACCCAACTCTTCAGAGC 3537 Irf4 GTGGTTGTCAGGGCTCACAG 3538 Irf4 GAAGTGATAGTTTAACAGTG 3539 Irf4 GTTGCCATGATTGAAACTTT 3540 Irf4 GAAACAAGGTCTCCGTCTCT 3541 Irf4 GGCAGACTGGTTAAAGACAT 3542 Irf4 GAACTTTATAGACCGGGAGG 3543 Irf4 GTTCTTAGTGGTCAGCTAGA 3544 Irf4 GGAGGAGCTGAAGAAAGCCA 3545 Irf4 GCTTCGGACTAGAGCCCACC 3546 Irf4 GGTATGCTGTTTGCAAGGAA 3547 Irf5 GCAATTGTGAACTGGCAGGC 3548 Irf5 GGCAGGAGGGAGCTTCTGTG 3549 Irf5 GATCTCTGAGTTGTCCCATC 3550 Irf5 GCTTTGCAGGTTCTCTGGAC 3551 Irf5 GAAGGCCCGTTTATGGAACC 3552 Irf5 GAGCTGTGTGCCGACAGGGT 3553 Irf5 GTCGATGGAGCCACACTCCA 3554 Irf5 GTTGCCTTGAACTGGGTGTG 3555 Irf5 GCTAGCTAAAGTGAACAATG 3556 Irf5 GGACCAGAAAGGATGTGGAC 3557 Irf6 GTGACATCCCAAACTGAGCT 3558 Irf6 GTGCAGGGTCACTACGGGAG 3559 Irf6 GGACATTTGCTTGGTTTCAA 3560 Irf6 GGGAAAGCTCAGGTCTTCCC 3561 Irf6 GATGTCACCGGGCAAAGGCT 3562 Irf6 GTGGCACTTGTCAGGCACAC 3563 Irf6 GTGTTGTGATCGACTGAGGG 3564 Irf6 GTCCACCACTCAGGAGACTG 3565 Irf6 GAAGGGTTTGCCTCACTGCC 3566 Irf7 GGCTGCTTTGGCAATGAACA 3567 Irf7 GAATTCCAGAGTCTTAAGGC 3568 Irf7 GCTTTCCTCTTAGCTACAGT 3569 Irf7 GAACGTGCGTGTGGAGTGGA 3570 Irf7 GACAGCTTCACGTGAGGGAG 3571 Irf7 GTGGGTAGACCTTTAGGGAA 3572 Irf7 GCCAGTGCCTCGGGAAGTGA 3573 Irf7 GCATGCCATGACTGCTGTTC 3574 Irf7 GTGTGTAACTACCGTAGCCC 3575 Irf7 GGTGTTTGGGACCCTCATGA 3576 Irf8 GAGCACCGATTCTCCTCAGA 3577 Irf8 GCGCGAGCTAATTGAGGAGC 3578 Irf8 GGGAGAGGTGTTTGTTCATT 3579 Irf8 GCAGGAAATCTGGGAAACCA 3580 Irf8 GCATGTGCAGGGCTTAACTA 3581 Irf8 GGAAACCCTGACCTCAGCAG 3582 Irf8 GCCTGAGCAGCTGACACTCA 3583 Irf8 GGCCTCTAAGGATGAGGGTG 3584 Irf8 GTGGCCCAGGGCTGAATGAA 3585 Irf9 GAAGGACCACCAAGAAGCCT 3586 Irf9 GTGAACATATGCAAGATGGA 3587 Irf9 GCAGTAAGCTGAGGTCTCTG 3588 Irf9 GGCAGTAAGCTGAGGTCTCT 3589 Irf9 GGCAACACGGCTTAGTCATT 3590 Irf9 GGAGAATTGAAACTTAGGGT 3591 Irf9 GAGAATTGAAACTTAGGGTG 3592 Irf9 GATGGGCAATAGCTCCCTGC 3593 Irf9 GCCATAAGATGCCTCTTTAT 3594 Irf9 GGGTTCAGGGATGAAGCTTG 3595 Irx1 GTCGTGGGAGACTCAAAGAC 3596 Irx1 GGGATTGCGTTTCTACAGCT 3597 Irx1 GTGGACTCCCTGGTCAGGTC 3598 Irx1 GCAAGGGTGTGGACTCAGTT 3599 Irx1 GGCCTGGCTGCTCTGTTCTC 3600 Irx1 GAGGAGAGCTCCTAGAGGGT 3601 Irx1 GCTGAGAGGTCGCTGCCTAG 3602 Irx1 GTTTACAGCTGTCTGACACC 3603 Irx1 GCAAGCAAGTGTGCCTTAGC 3604 Irx1 GTTGTGGGAGTAATGACAAG 3605 Irx2 GGACTCTGAAACCTGGCGCG 3606 Irx2 GGGTAGATGCTTGGCAGCCC 3607 Irx2 GCTTCAAGGAGACACCTGTT 3608 Irx2 GCTCTACCTAGCAAGCTTCA 3609 Irx2 GTTGGAAACCAAGAGCAGTT 3610 Irx2 GTCACGGATCTGGCTGCTGC 3611 Irx2 GCTCTGAAGCTAGTAGAGGG 3612 Irx2 GTCCAGGTCCCAGGGAACCA 3613 Irx2 GCTATCTTCAGGGTGATGAG 3614 Irx2 GCCTCAGCCGOGAGTACAGG 3615 Irx3 GAAAGTCATACTGAAATTCC 3616 Irx3 GAACGTGCTGCCTGGGAGTT 3617 Irx3 GGGTTCGATGTCAGCATGTG 3618 Irx3 GGTGCATCGGGAGTTGATTG 3619 Irx3 GGTTGGCTTTAAGGTGAGCC 3620 Irx3 GTGCCTGTTGGGAGAAAGAG 3621 Irx3 GGCGACAGAGCCAGATTGCA 3622 Irx3 GCTTTGTGCACTGTGCCTGT 3623 Irx3 GGAATGGATTTCTTTCTCCC 3624 Irx3 GCTACTTATCAGAACTTTGC 3625 Irx4 GAAGCTAAGGCTCACGGGAG 3626 Irx4 GACTCATTTCATGCTCACCG 3627 Irx4 GCTCTGGAGCCTTCCATGGG 3628 Irx4 GGGAAGCTGCCTTGCACAGT 3629 Irx4 GGAGTCTTCAAGGGAGCGAA 3630 Irx4 GCAAAGTCCAGGTGAGGAGG 3631 Irx4 GATGGTCCGGAAGGGAGAAG 3632 Irx4 GCCCTCACAATGCTATCCTT 3633 Irx4 GCCTGGGTCTTTGTAATCTG 3634 Irx4 GAGTAAGCTCCCGCCCAGAA 3635 Irx5 GGCAAAGCTTGATCATTAGC 3636 Irx5 GGGATGTGATTGTCATCCTG 3637 Irx5 GGGCCGTTCGGGAACACAAA 3638 Irx5 GATTACGTCATCCAGAGGAG 3639 Irx5 GCAAGCAGTTTGCTCGGTTG 3640 Irx5 GCCTCTTCTCGTCGTCTGCC 3641 Irx5 GAAGCCACTGTGGAGCGTGG 3642 Irx5 GTGTTCCGAGAACTCTGCCT 3643 Irx5 GCCTCTCGGGCTGACCATTC 3644 Irx5 GTCAGGTCTGTGGAGCCGGA 3645 Irx6 GGCTGCACCTCGATCTGGAG 3646 Irx6 GGCCAGGTCCTTGACCTCTT 3647 Irx6 GCGTTCTCTGTGGTCCAAAC 3648 Irx6 GATTCATTAAGTTAGTCCCT 3649 Irx6 GAAGGAGTTTATTACACCAT 3650 Irx6 GACAGGGCGACTGAAAGGTA 3651 Irx6 GTCCCGGGAGCTCTTAGGGT 3652 Irx6 GCTGCACCTCGATCTGGAGG 3653 Irx6 GATTCTAACAACCAAGCGCC 3654 Isl1 GAACTCAGTAATAGTAGGAT 3655 Isl1 GTAGCATGCCCTTGTACGGA 3656 Isl1 GTAGGTCCTTCCTGTGAAGC 3657 Isl1 GCTTTCTAATTTGTTTCCTC 3658 Isl1 GTCAACCTGGCTCTATAGAA 3659 Isl1 GAATCTTATATAGGTGAGGG 3660 Isl1 GCTCTCTGACATCCTATGTG 3661 Isl1 GTTCCTCCTGAGCTCCCTGC 3662 Isl1 GGGAGGAAAGGAACCAACCT 3663 Isl1 GGGAACTGCTTCTCTGGGCT 3664 Isl2 GGTGGGCCTGAGCCTTTGTT 3665 Isl2 GTCCAGTGCTGGCATGAGAG 3666 Isl2 GCCCGAGATCTATCTAATTC 3667 Isl2 GGAAAGCCCTGGAGAAAGCC 3668 Isl2 GTAATTTACCGTCTTCCCGG 3669 Isl2 GAGAGGAGAAAGGAGAGGGT 3670 Isl2 GAGATTGGCTGGGAGGAAGT 3671 Isl2 GGCTTTCTCTAGGTAGGAGA 3672 Isl2 GACGAGCTCTCTGTCATACA 3673 Isl2 GCTCCCAGCAAGGGCAAGAA 3674 Isx GGAGTGACAGGAGGAATTTA 3675 Isx GTGTAACCAAGGAGGAGGGT 3676 Isx GAGGTTTATAGGGTGAACCT 3677 Isx GGTGTTGGGTGGAGAGCTGA 3678 Isx GCTGTCTTGAAGACAGTAAA 3679 Isx GCTCCAAGCCCAGAGTTTAC 3680 Isx GAGCCTCACCCATCACACCC 3681 Isx GTCTTACTAGTACAAATCCA 3682 Isx GAAACCGAGGCTCAGAACAA 3683 Jun GAGAATAAAGTGTTGTGCCG 3684 Jun GTTTGGCTGTCTAGTGACGG 3685 Jun GATATGACTCCACCAGTGAG 3686 Jun GTAAGTGCGTTGAAGTTGAG 3687 Jun GAGGAACTCGGTTTCCATTT 3688 Jun GGGCTGCGGAGAGAGGAACT 3689 Jun GAGGTTTGCTTGGCGAGGGA 3690 Jun GCTGGAAGCTCAGTTGGGAA 3691 Jun GCAAGCCAATGGGAAAGCCT 3692 Jun GCAAATCAGGGAGGGAGGAA 3693 Junb GTGTCTGCAGGAGACTAACC 3694 Junb GGACTGTTCCATTGGCCGGC 3695 Junb GGTAATCGGAGTAGAAAGAT 3696 Junb GCTAGGCCAAAGCCAAGTCC 3697 Junb GAAGAGAAGAGTGGGAGGCT 3698 Junb GGTCTCTGGTAAGATAAAGG 3699 Junb GGTGAGTCAGTGTGGTCTCC 3700 Junb GGAAAGGGCCAAGACACAAC 3701 Junb GGTGACTAAGGGAGGGCTTT 3702 Junb GTAAACAGCGGCCACGAGCC 3703 Jund GGAGCCTGCAAATGAGAATC 3704 Jund GGCAACAACTGGTCAAGGCT 3705 Jund GCGAAGGTCCTGAGGTGCAA 3706 Jund GCTCCTGCTGATGGAAGTTC 3707 Jund GGTGCAAAGGAGCTCCAATG 3708 Jund GAGTGTGAGGGCAGAGCTTG 3709 Jund GCTGGGAACGGAGGTGGAAG 3710 Jund GGATCTCTCACCTTCCAGCT 3711 Jund GCATACTGTACTAATTAAGA 3712 Jund GCAACCAAGTTTCCAAATAA 3713 Kat2a GCTGTTGGTAGTTCTGATGG 3714 Kat2a GTGTCTGAAGTGACCTGTGA 3715 Kat2a GACCATCAGCTGATTCTGAA 3716 Kat2a GGCCAGAATCTGACGGTGAC 3717 Kat2a GCCCTTCTGGATGGGAAGAG 3718 Kat2a GTGACAATTACTATCCTCTT 3719 Kat2a GCCTGATCAGCTGCCAGAGA 3720 Kat2a GCCTGCCCTATTGTGGCTGC 3721 Kat2b GGGTGGTATGCTTATGCTCT 3722 Kat2b GGAAGACCAAGAATGAGCAA 3723 Ktt2b GTTTGCAGAGTGAATGCTGA 3724 Kat2b GCATTCACTCTGCAAACATT 3725 Kat2b GTGGAAGTAAACAGGAGTGA 3726 Kat2b GAGTCATCTCCCTCCCTCTC 3727 Kat2b GAACCGAATATGACCAGAGA 3728 Kat2b GTATCTCATGGAAGAATTCC 3729 Kat2b GAGGAGGATTGGCCGCTGAC 3730 Kin GTTGTATATTAGAATGCCCA 3731 Kin GGCGCTCCAGCACTGAACTA 3732 Kin GGGAGCAGCGTGACCCTTTA 3733 Kin GCCTTGAAGGTCGGGCAGAC 3734 Kin GGTGCTAGAGACTCACCTCA 3735 Kin GTGAACCTCTCGAGCCTTTA 3736 Kin GTTTCTGTACCAGCCTCCAG 3737 Kin GTGTTCACTAGTTAGCTAGT 3738 Klf1 GCCTAACGGCTCATTGTGTG 3739 Klf1 GACCCTCACTGGCTACTGCA 3740 Klf1 GTGCCCTATGAGTCAGGGTA 3741 Klf1 GGGTGCTGGTGGTTGTCTAG 3742 Klf1 GGCTACTGCAIGGAGCTGAA 3743 Klf1 GGTGCCCTATGAGTCAGGGT 3744 Klf1 GATAATGCCTGAAAGGGAGC 3745 Klf1 GGGTGTGTGCGATATGTGTG 3746 Klf1 GTCTGGGTGGCTAAATAGAC 3747 Klf10 GAGTGATCACAGCAGGAAAG 3748 Klf10 GGGTAGGAGAAACTGGGTAG 3749 Klf10 GAAGGACAGTGCTTATTGAA 3750 Klf10 GTACCAAAGAGCTAGTGGCG 3751 Klf10 GCGGTTTCTTGGTAGGGCGT 3752 Klf10 GGAGAACCAGGGCGAGATGG 3753 Klf10 GGAGGACTGAAGGCTAGGGT 3754 Klf10 GGGCGGAGGACTGAAGGCTA 3755 Klf12 GATTTGACCATCTCTTGCCG 3756 Klf12 GAGTCACATTGATCCTGCAA 3757 Klf12 GGCTGTATAGCTCTTCACCA 3758 Klf12 GAAAGTTGCAGGTCATGTTA 3759 Klf12 GCAATCAGCTCTAACTTCTT 3760 Klf12 GGAGTAGGGAAATGCAAGCC 3761 Klf12 GCTGTATAGCTCTTCACCAA 3762 Klf12 GGGAAGCCACCTGACGATGG 3763 Klf13 GAGAGGGTTCTACTGGCCGC 3764 Klf13 GGATATTTCTATCTGGGTTT 3765 Klf13 GGTGAGGAGGTGGCTGGAGA 3766 Klf13 GTGTGTTAAGATTGGTTCAA 3767 Klf13 GTTTGAAGCCTCCAGGACCG 3768 Klf13 GCCACAGACAGTCATCTCAT 3769 Klf13 GATAGAGACAGTCTCTCCTC 3770 Klf13 GGTGGCGTATCGGTCCCTAT 3771 Klf13 GTCTAGACTTTAGAGCAAGG 3772 K1f13 GCCACCAGAGAACTCCGCTG 3773 Klf16 GGTGCTCTGCTGGTACACGA 3774 Klf16 GGTGGCAGAGGTCCTTGCTC 3775 Klf16 GTGCTCTGCTGGTACACGAG 3776 Klf16 GAAGCTGAACCAGGCTTCAT 3777 Klf16 GGGCTGCTACATGCAATGGC 3778 Klf16 GGAACCCAAAGTTCTCAACG 3779 Klf16 GGAGCGATTGGAAACTTCCA 3780 Klf16 GACCTCTGCACAAATCTAGC 3781 Klf16 GGGACCATCATTTCACAACT 3782 Klf16 GCCTTGGGAGGTGACGATCC 3783 Klf2 GAGGAAGTATGTGGTGAGCC 3784 Klf2 GCTGGCTCAGTGCTTAAGAG 3785 Klf2 GAGGGTAATAGAGAGAGGGA 3786 Klf2 GCACTAGAAGGATTTATGTG 3787 Klf2 GTATGTTTGTGGGAGGTGAA 3788 Klf2 GCAAGAGGGTAATAGAGAGA 3789 Klf2 GCGGTATATAAGCCTGGCGG 3790 Klf2 GGCGACGGCGTCAACAAACC 3791 Klf2 GACGGAAACGCGTCCCGGAT 3792 Klf3 GTTTCTTGGGTGACTCAGTT 3793 K1f3 GACGTAGGGACAGGGCATCC 3794 Klf3 GTGGCCTCACGCAGCCTTTC 3795 Klf3 GACCTTTCTATCTGTACCGA 3796 Klf3 GCCTGGGCTGTTTAGGAAGC 3797 Klf3 GATGCCCTGTCCCTACGTCG 3798 Klf3 GAATGAATGGTAAGAGGGTA 3799 Klf3 GAGGATTTAGATAAGCCGGA 3800 Klf3 GAACAGGACATTCGTCATGA 3801 Klf3 GCTTGGTGCTAGGCTAGAGT 3802 Klf4 GGATGACTGCCCAGCTGTGG 3803 Klf4 GGCGTTCCAGATTTACATTG 3804 Klf4 GAAAGGGATGAGTTGTGAGC 3805 Klf4 GGGACCCTAGTGCTCCAAAG 3806 Klf4 GGCAGTAGCCAGAGCTAGGG 3807 Klf4 GTGCGTATGCGAGAGAGGGC 3808 Klf4 GCAGTTGGCAGATGATGTAA 3809 Klf4 GATAATGGAAGGAACAAGGA 3810 Klf4 GAATCTCAGAAGCTAGGAGA 3811 Klf4 GACAAGCGCGTACGCGAGCA 3812 Klf5 GTGCTCAAATAACTCTGAGA 3813 Klf5 GTCAACAGCGGTGTTTGTCT 3814 Klf5 GTAATTTCTGGCATAGAGAT 3815 Klf5 GGGCTGCAATCCTCTTTCTG 3816 Klf5 GTGAATGTTTGTGCCTTCTT 3817 Klf5 GCGGGTGGAATCTAGGAAGA 3818 Klf5 GTGCAGCCAGCCAGTGTGAA 3819 Klf5 GAGAGGAGCGGGTGGAATCT 3820 Klf5 GGCTAGGAGGGTAAGCATAG 3821 Klf5 GGAAGGTGAGTGGTTTGGTT 3822 Klf7 GTCCTCTCCGAGTGCCGCAT 3823 Klf7 GCAAATGGCAGTAAAGGCCT 3824 Klf7 GTTTGGTGGAACCCACACTC 3825 Klf7 GTGACCATGTAAGGTAAACA 3826 Klf7 GTACCCAGTGCAGATCCGAG 3827 Klf7 GTAACTTCATGGAGCAGGTA 3828 Klf7 GACCATGTAAGGTAAACAGG 3829 Klf7 GGCACTCGGAGAGGACCATG 3830 Klf7 GACCATGAATTTGAGAGGGA 3831 Klf7 GATCTCCCTGCTGCCTTACA 3832 Klf9 GAGAGGTGCGTCTAGAACTA 3833 Klf9 GAAGGGCCCTTCTGACTGGC 3834 Klf9 GGATGGGCGTAACTGCCTAG 3835 Klf9 GGGCCTGGATTGTGACGTGA 3836 Klf9 GGGATGGGCGTAACTGCCTA 3837 Klf9 GGCTCCTCTAAAGCAGAGTT 3838 Klf9 GCACTCCTCCCTGTTCCTGC 3839 Klf9 GGCTACCAAAGATTAAGGGC 3840 Lbx1 GGCAGAAATGCTGATAGTAG 3841 Lbx1 GATCCTCCCTATAGGCAGAG 3842 Lbx1 GTGTTATAACAGGGAAGGGC 3843 Lbx1 GCAAGATTGCAGAAGGAGGT 3844 ibx1 GGGAGTGGGACAGAAAGAAT 3845 Lbx1 GGAAGGAACAAGAGGGAGAA 3846 Lbx1 GAGATTGGGAGGTGGGAGGC 3847 Lbx1 GTACCCTGTGCCCTCCTTCA 3848 Lbx1 GAACAGGCTTCTTCGGTGCA 3849 Lbx1 GTAAGAACTGGAGCCCAGGC 3850 Lbx2 GGCCTCAGAATCAGAGGGAA 3851 Lbx2 GCATATTAAGTGAAACCACA 3852 Lbx2 GAGTCCAGTCCTCACTAGCC 3853 Lbx2 GGCTGGTACGACTTGCTCAG 3854 Lbx2 GGCTCAGGTAAGGAAGGGAT 3855 Lbx2 GGCTCCTGGCTAGTGAGGAC 3856 Lbx2 GCTGCTGTCACTGAGCTGAC 3857 Lbx2 GGTCACTCACATCTCCTATT 3858 Lbx2 GAGCTGAAATAAGGCAACTC 3859 Lbx2 GGAGAGGTTGCAGTGTCTGT 3860 Ldb1 GACTCTGACCTATCATTCAA 3861 Ldb1 GGGCAAGTGGTCCCAGGACT 3862 Ldb1 GTCAAGTCCTTCTATGCCCT 3863 Ldb1 GGGACACACTCACATGGCAA 3864 Ldb1 GATTCCGATCACCTACCTGG 3865 Ldb1 GTGGTGCTGTCAGGGTAAGG 3866 Ldb1 GGAAACACACACGCACAGGC 3867 Ldb1 GGCTGTCATACAGCTCAAGA 3868 Ldb1 GGAAGAGTTCTTCCCTTCCA 3869 Ldb2 GGGAAGGGTGTTCCCTAGAA 3870 Ldb2 GTACCTGCTGTACTTCGGAT 3871 Ldb2 GAAGAGGTAAATACAAACTC 3872 Ldb2 GGAGCACAGCTCTCCCTTTG 3873 Ldb2 GATGGTTCCACATTCAGGTC 3874 Ldb2 GTGCCAGTGTTGTTGTGTTT 3875 Ldb2 GGGTGGATGTTTCTTGCAGG 3876 Ldb2 GCTAAGTCAGCGGGTTTAAG 3877 Ldb2 GTGCACAGCTGACCCAAAGG 3878 Ldb2 GCCCGGAGGAATCTTCCAGA 3879 Lef1 GGGTGCTAGGAAATGAACTA 3880 Lef1 GTCGCCAGTGCTATGCCTCT 3881 Lef1 GAACTCTAGCGAACCACTGG 3882 Lef1 GTAGAGTAAATAGAGACACG 3883 Lef1 GAGCATTTAATCTGCTGGAG 3884 Lef1 GGAGGGAGTCTGTTAGGAGG 3885 Lef1 GACTAGAAGTGAGGCGCCGG 3886 Lef1 GGGCAGAAAGTTGCCATTTA 3887 Lef1 GATTGGGCGAGTGGGATCCT 3888 Lef1 GAAGGAAAGAAGCTCTAACG 3889 Lef1 GACTTGTTCTAGGAAGTGTT 3890 Lhx1 GGTATTAATCGACTTGTTCT 3891 Lhx1 GGGTGGGAGAAAGAGTGGGT 3892 Lhx1 GGTGAAGTAACCCAGCAGCG 3893 Lhx1 GCGAGATCTGGAAGCTTGGG 3894 Lhx1 GACTTTGAAGGATGGAGGGT 3895 Lhx1 GGGTGGACTTTGGATGGACA 3896 Lhx1 GCTCGAGTCTAAGGAGAGGT 3897 Lhx1 GACCTTCCCACCTAAAGGGC 3898 Lhxl GGACTGCACCGTAGCAGCAG 3899 Lhx2 GACGCAATAGTGTCTATTGG 3900 Lhx2 GTGAAGCAGGGTATGGAAGC 3901 Lhx2 GGTGTCTGGTGGAACAGGAA 3902 Lhx2 GACTGCCCTTGGTTTCTTAG 3903 Lhx2 GTAACCGTGCCCAAGAGGCA 3904 Lhx2 GCAGGATGTGCCAGTGGCTC 3905 Lhx2 GAGTGGGAGAGCTAGTGGGA 3906 Lhx2 GACGTCGCTTTGCCCTGTCC 3907 Lhx2 GTGACTTGTCCGAAGTCCCA 3908 Lhx2 GTGCCTGACACCTACTTACC 3909 Lhx3 GTCTAACATGGAGGCTGGGA 3910 Lhx3 GTGGGTTCAGAGACAATCTG 3911 Lhx3 GAAAGGTGCACAGTCTCCAG 3912 Lhx3 GTGAGGACAAGGTAACAGCA 3913 Lhx3 GTAGTAGGAGCCCTCAGTGA 3914 Lhx3 GATGTGGAAATCCAGGTGCA 3915 Lhx3 GGTCACAGTCCTAGGGATGG 3916 Lhx3 GGTCCAGAGTGTCAGAGTTG 3917 Lhx3 GCTTCTAGGCACCTCGGTTC 3918 Lhx3 GCACCTCGGTTCCGGCTGAA 3919 Lhx4 GCTACACTGGTTTGTTTGGT 3920 Lhx4 GATGGGTCTTTACAACCAAA 3921 Lhx4 GAAACCTACCGGGTCAGCCC 3922 Lhx4 GAACTCGGAGCGCCAACCCA 3923 Lhx4 GGTGGCTGTGTGTGCTACTT 3924 Lhx4 GCAACAGTGTCTCCTCAACC 3925 Lhx4 GCCCGGGAGAGCGAGATCAA 3926 Lhx4 GTATAAATACTGCGGCGGGC 3927 Lhx4 GCCCGCCGCAGTATTTATAC 3928 Lhx4 GTCCTCTAGGATCAAGGAGG 3929 Lhx5 GCAGGTGTGTGGGTACCAGC 3930 Lhx5 GGGATTCTCCTCATGGATTA 3931 Lhx5 GGCCATCTGTCAGTGCTGTT 3932 Lhx5 GATTCTCCTCATGGATTAGG 3933 Lhx5 GTCTTGGCACAATTCCTCTA 3934 Lhx5 GACTCTGAAGGGCTGTGTGT 3935 Lhx5 GTTTGTGTGTGTGTGTGTGG 3936 Lhx5 GCGAAGCTGCCTTTGGCTCT 3937 Lhx5 GGTAAATACTTACTTAGCTT 3938 Lhx5 GIGACATCCCTGAGTCAACC 3939 Lhx6 GTGTTTGAGGAAGAAGGCTG 3940 Lhx6 GCTGTTTACATCTGTAAATG 3941 Lhx6 GGTAAATCTTGAAGTGGAAG 3942 Lhx6 GATGAGATTTACATAGTCTG 3943 Lhx6 GGAGCCTGTGCTAGTGAGAG 3944 Lhx6 GCTAGTGAGAGTGGGAGGGT 3945 Lhx6 GATACTACTTCAGATTCTTC 3946 Lhx6 GGTCAGCCCATCTACAAGGC 3947 Lhx6 GAACTCAGTCACGTAAGTGG 3948 Lhx8 GAAATTTCAGTCCAATAGGA 3949 Lhx8 GCTTCCGGGCTTAGAGAAGG 3950 Lhx8 GCTCTTTCAGCGGCTCACGG 3951 Lhx8 GATAATGAAGGGACAAACGA 3952 Lhx8 GGGTTTGGGCTGGAGATGGG 3953 Lhx8 GGAACCTCGCAGAGAGGAGG 3954 Lhx8 GCCTTTGATAGGAATCGCCA 3955 Lhx8 GAATGCTGGCTCCAGCAGGT 3956 Lhx8 GGGAAAGGAAGTGCCGGAGC 3957 Lhx8 GACACAGGCAATTATGCTGC 3958 Lhx9 GCAAGGCAAAGGCAGGCTAG 3959 Lhx9 GTGGCCTCAGAACGGGTGTC 3960 Lhx9 GGCATGGACCAAGGACTGGA 3961 Lhx9 GGGTTTCTAATGCCCAGCTA 3962 Lhx9 GAGGCTACAGTGTCTCAGCT 3963 Lhx9 GGATTATTGAGAGGCTGGCA 3964 Lhx9 GAAAGGTGGGAATGAAGCAG 3965 Lhx9 GTCTATGCGGCTCTGAGTGT 3966 Lhx9 GCAGGAAGTCTTTGGAAAGG 3967 Lhx9 GAAACTAGGTACTGGAGCAG 3968 Lmo1 GTGCTGCCCAGCAAGTCTCC 3969 Lmo1 GGCAGGGAAGTCAGGCTTTG 3970 Lmo1 GTGCAAACCTCATACATTGA 3971 Lmo1 GAGTCTAGGAGGAGAGGCAC 3972 Lmo1 GTGCCTCAGGCTTGGGAAGC 3973 Lmo1 GCTCTAGAATATCTGGGATG 3974 Lmo1 GGCATCTTAGGATTCCACCC 3975 Lmo1 GCTGCACCAGTTGGGCTGAG 3976 Lmo1 GTGGTCTCTCTTAAACTTAT 3977 Lmo1 GAGCTCTAGAATATCTGGGA 3978 Lmo1 GTAGATTTCACATACTAAGA 3979 Lmo2 GGGAGATACTTTCATGACTT 3980 Lmo2 GTTCAGCTGAGTTCACATGA 3981 Lmo2 GGTACCTTCTTCAAGCACCC 3982 Lmo2 GGGCTGTTCTTACTAAACAA 3983 Lmo2 GAGTGGTTACTTTCAGCCTG 3984 Lmo2 GGAGGACTTTGCTCAGTACG 3985 Lmo2 GTCTTTCACAACTCTTTGGA 3986 Lmo2 GCTATTGCTAGGGAGAAATC 3987 Lmo2 GAACTTGTCTTCAAGCTTGA 3988 Lmo3 GGTCCAGTTGGTTTGGGACT 3989 Lmo3 GTGTGATAGGCATGGGTGGG 3990 Lmo3 GAGCTCCAAAGGAGAAGGGT 3991 Lmo3 GAAATGCATTAAAGCTGACA 3992 Lmo3 GACCGGCTATGCCAGGACTT 3993 Lmo3 GAGCTGTTCATTTAATTCCA 3994 Lmo3 GTGGGCGAGTCCTGGAGGTA 3995 Lmo3 GCAGTAGCATAGAGTCACCA 3996 Lmo3 GATCCCTGGAGAACAATACA 3997 Lmo3 GCTTTGTTGCTAATTTCCCA 3998 Lmo4 GGTCTGGTIGGTCTTTGTGG 3999 Lmo4 GAGAAACACTAGGACTTTAT 4000 Lmo4 GAGCAGATAGCTGGGAGCCT 4001 Lmo4 GCAAATGCTCGCATCGCTTT 4002 Lmo4 GAATGTCTTGAGCAGATAGC 4003 Lmo4 GGCTTTATCTGGGATCCATT 4004 Lmo4 GCAGTTTAAAGACCTAGGGC 4005 Lmo4 GAATCTGCATTTCCTGCCCT 4006 Lmo4 GAAACTTACTTTCCCAGAAA 4007 Lmo4 GAGCTCTGCCTAGGGAAGTG 4008 Lmx1a GTTCGCTCCTGCTCTCTCCC 4009 Lmx1a GCCTCTCTAGAGGCAGGAAC 4010 Lmx1a GTCTGCCATCCAGATAGAAC 4011 Lmx1a GATGTGTTTATTGAGTCACT 4012 Lmy1a GGGAACGTCTGCAGGAGCAA 4013 Lmx1a GTTAGGAGAACGCAGTTAGG 4014 Lmx1a GAGTACCATAGTTCTAGTGG 4015 Lmx1a GGCCACATTAGTATAGGATG 4016 Lmx1a GGGTTAGGAGAACGCAGTTA 4017 Lmx1a GGGCAGCAGACTGGAGCATC 4018 Lmx1b GACAGCCTGGTGTGCTGAGA 4019 Lmx1b GGATCTGGACCGCCTTCTCT 4020 Lmx1b GGATCAGATTTGGAGCCTGA 4021 Lmx1b GGCCTGGCAGAAATAGGGCG 4022 Lmx1b GAACGCAGCGACTTCTCCAG 4023 Lmx1b GAGCCGCTCGGTTTAGAGCT 4024 Lmx1b GGCGACGGCACTATTTGACG 4025 Lmx1b GGTCCCTTAGCCACAATGAA 4026 Lmx1b GAGACCAAGAGAGTGTTAAG 4027 Lmx1b GCTCCTAGGGTCGAGGGATG 4028 Lrrc41 GGTCAACCAAAGAATTCTGA 4029 Lrrc41 GGCTCCCGACATGGGACTAG 4030 Lrrc41 GACTAGTAAGGGTCACTCGA 4031 Lrrc41 GCATTTGTCTTGTCTACTTC 4032 Lrrc41 GCTTTGTTGAGCTAGGTCCC 4033 Lrrc41 GGACCGCTCCATAAGGGATA 4034 Lrrc41 GTAAAGAGCAGAGGTTACAG 4035 Lrrc41 GGGCTCCTGGGATCAAACTC 4036 Lrrc41 GCCCAATTTGTGCGTGTGTT 4037 Lrrc41 GTTAGTCTTTAACGTAGCTT 4038 Lyl1 GGAGGAAATGCCTGGATAGC 4039 Lyl1 GGCTGGGCAAAGACAAAGTG 4040 Lyl1 GAAGGAGCCAGCTGAGGACC 4041 Lyl1 GCTCAGGAGAGCAGTTCATC 4042 Lyl1 GGCCTCAGAGGACCGGAAAG 4043 Lyl1 GCTAGAGGAGTCACTAGGGT 4044 Lyl1 GCAGTTCATCAGGTGGCCAC 4045 Lyl1 GTGGTAATGTTGTAGAAGTG 4046 Lyl1 GCTCCGGAAGGAGACAATTC 4047 Lyl1 GCTGTGCTAGAGGAGTCACT 4048 Maf GTTATTGCCACAAATCGGGT 4049 Maf GCTCTTTCAAAGGGCTGGCA 4050 Maf GGATTCTAGTGTACATTCGA 4051 Maf GTGCGAAGTTTAGTGCACCA 4052 Maf GGAGGATGGTTTGCTTTCCT 4053 Maf GATCACCTCACTTGCAGAGA 4054 Maf GTGTGCACGTTCGAGCTTTC 4055 Maf GGGTTTCCGGACTTGTCCGG 4056 Mafa GATCCCAACCGAAGATAGAA 4057 Mafa GGAGGAGGAGGGCAGGATTG 4058 Mafa GACCTCGTGCTCTAACTCAA 4059 Mafa GTCTCCTTTGGAACAGGCTG 4060 Mafa GCTGTGGTTCATCTAGGACA 4061 Mafa GGGATCTGGAATTCTGGAGG 4062 Mafa GGACACTGAGGGAAGGAGCT 4063 Mafa GGCCTGGAGTCTCCAGAATG 4064 Mafa GAGGAACAGAAGGAGGAGGA 4065 Mafa GGTGTCTCAGATCCATTAGG 4066 Mafb GGAGGCTGGACCATTGAAAT 4067 Mafb GGTTTAGATCAGTGAACTGC 4068 Mafb GGTGAGTGTGTCCTAGCTGC 4069 Mafb GGAGGAGGAAGGCAGAACAC 4070 Mafb GAGCCACTGAGTGCACAGAC 4071 Mafb GTGGCAGCCTGGAGAGAGAA 4072 Mafb GCAAACCCTCCTGGGAACAC 4073 Mafb GTGGAAACCTTACAACTCCG 4074 Mafb GTTGCGCACCGTGGCCACTT 4075 Mafb GCGGGCCGAGTGAATGTGTG 4076 Maff GTAAGGACGCGTCAGGGACG 4077 Maff GATCGGGACCGCAGTTCACT 4078 Maff GCAAGAACTCCGAGGTTTCA 4079 Maff GGTTTCACGGGTCCTGGGTC 4080 Maff GGTTTGTTTACGTCTCCCGG 4081 Maff GGTGACGTCACTGCATGACT 4082 Maff GCTCGCCTTACAACTGCGCG 4083 Maff GACAAGCACGCACTGAGCGC 4084 Maff GAAACAAGGCTACCAGACCC 4085 Maff GCTCTGAAGCCTCTTCTCCC 4086 Mafg GACCTGTGAGTTGGAGGCAA 4087 Mafg GGCTGATCCTTGCTTGCTGT 4088 Mafg GGGCTCTGGACCACTCATTC 4089 Mafg GACCGTGCTCCTGCAGAGAC 4090 Mafg GCACAGGAAAGTGCAGAGTG 4091 Mafg GGTGTATGTGTGTTGAGGGT 4092 Mafg GCCTCAGGGCTCAGGGTTAA 4093 Mafg GGAGAACGGCTCAGGAAGGG 4094 Mafg GGAGAGAAGACCTACGTAGG 4095 Mafg GCCATTCAGGGTCACAGAGA 4096 Mafk GGTGGTGGCAGTGAGGATGA 4097 Mafk GTCAGGTTAGAGGCAGAGGG 4098 Mafk GGAAGGTGCCTGGAAGAAGG 4099 Mafk GGACTGCCAGGATGTCGTGC 4100 Mafk GGTGAAGGCACTTAGGGTGA 4101 Mafk GTTTCTGGTCTCCCAGAATG 4102 Mafk GAGGCTGACAGCAGGGTGCA 4103 Mafk GTGCTGAGGAACTGCTTCCG 4104 Mafk GTAAGGAGGGAGGAGGGATT 4105 Mafk GACATCACTAATGTTGTTAT 4106 Mapk8ip1 GCTTTGTAGCCAGGATGGGT 4107 Mapk8ip1 GTGTCTATGTCCTCTCAGCA 4108 Mapk8ip1 GATCTAGCCCGTGGTGGCTA 4109 Mapk8ip1 GGATCGAAGCGTCAGCACTT 4110 Mapk8ip1 GGAGAACCACACAGCCTGGC 4111 Mapk8ip1 GAGTCCCAGACCTTACAGGC 4112 Mapk8ip1 GTCCTGCTCCATTTATGTGA 4113 Mapk8ip1 GAACCTAAAGCCAGAGGCCT 4114 Mapk8ip1 GCTCCATTTATGTGAAGGGC 4115 Mapk8ip1 GACGGAGGAGGTCACTACCA 4116 Max GGACACATCATGCCATTCCT 4117 Max GTTTCTGCACTCAATAGTCA 4118 Max GCCAGATTTCAGGGAGGGTG 4119 Max GACTTGTAGTCCTCGAGCGT 4120 Max GAGAAACTACAAATCCCATC 4121 Max GAGATGCCAGATTTCAGGGA 4122 Max GATACCAGAAGTAGAGACAA 4123 Max GAATCTAGTTTAGGCTTTGT 4124 Max GGCTGTAAGGGAGACAAAGA 4125 Maz GGAAGGCATCTCTGGGAAGC 4126 Maz GGGACAGGAGGGACTCTAGA 4127 Maz GGGTTGTTACCTCACTGAAG 4128 Maz GAAGGGAGTGGACACAGCAC 4129 Maz GGGTGGATCAAGCTCTCTGC 4130 Maz GAGGACTTGGAACAGGTGGA 4131 Maz GTTGCTGGGATCCATGGCGG 4132 Maz GAAATAACGGCCGCTGGCGG 4133 Maz GACACACAAGAGGCTGGAGC 4134 Maz GCAGCCAATCCAAACACAAG 4135 Mbd2 GCCTGTCTCAGAGATGAGTG 4136 Mbd2 GTGTACAGATGGAGAAACCA 4137 Mbd2 GAGTGGCAGAAGTGTACAGA 4138 Mbd2 GACCAGTGACCTTCATGCAG 4139 Mbd2 GTGTCGTGAAGGCAGAGGCT 4140 Mbd2 GGCTCTTGATATAAACCTCC 4141 Mbd2 GTGGCCCTGACTCCAAGGTC 4142 Mbd2 GGGAGTTTGTGCAGGAGTGG 4143 Mbd2 GCAAACAAAGGCTCTGAGCT 4144 Mecom GATTCTCAGGCAGGGCTCTA 4145 Mecom GACCAGTTCACTGAAAGATG 4146 Mecom GGCAGTTCTCTTGCCTAGTG 4147 Mecom GTAGTTTGGAAGCTCTGAAG 4148 Mecom GGCTTCCCTGCATTGATCTT 4149 Mecom GTGTTTCTGTCTTCTCTTGG 4150 Mecom GATGGCAATCGCCGAGGAGG 4151 Mecom GTGGTGGGTATTCTTAGATG 4152 Mecom GTTACTATTGGAGAGAGGCA 4153 Mecom GGGAAGTGAGAAGGGTGGAT 4154 Mef2a GATACGAGATTACCAGACAC 4155 Mef2a GAGGGTTTGTGCCCATTGCA 4156 Mef2a GATGTGCACAAAGCAGCCAT 4157 Kaf2a GCAAACAGAAGGCAGGGATG 4158 Mef2a GAAGTTACAAAGGAAGCTGG 4159 Mef2a GCTGGATCCTTGCTGTGACC 4160 Mef2a GCCCGGGAGAGAAGAAAGAG 4161 Mef2a GGTAATAAGAATGTGATGGC 4162 Mef2a GAGGACTGCAAACAGAAGGC 4163 Mef2a GCAGGGACTCAGCATTGCTC 4164 Mef2b GGGCCAGAGGAAGACCCAAG 4165 Mef2b GCAGAGGGAAAGTCACTGTG 4166 Mef2b GACAAAGCTGGAGCTGGCTG 4167 Mef2b GCTGCACTAGAATGCTGTTG 4168 Mef2b GTCCTCCCAGTTGCTCCAGT 4169 Mef2b GAATGTCAGGGTCAGAGGIC 4170 Mef2b GGAAGTAAGGCCCAGAAATG 4171 Mef2b GTCATCGCCTCTGGCTATTC 4172 Mef2b GCTCGCCTCTGGCTTTGCAG 4173 Mef2b GTGAAGGGCTTTGGGATGTG 4174 Mef2c GATACTGGGTGATGCCATTC 4175 Mef2c GTTGGCTTCAGTCTTGGTCG 4176 Mef2c GCTTGTAACTCTAAGAGACT 4177 Mef2c GCTAAACCAGGTACATTTAA 4178 Mef2c GATATCAGCAAGTGTTCAGC 4179 Mef2c GAAAGCTAGAAGACAGAGGA 4180 Mef2c GAGTTACAAGCTTTCTAATT 4181 Mef2c GTGTGATGAGAGAAAGAAAC 4182 Mef2c GAGAATGTTTCTCTACACTT 4183 Mef2c GTCATGGCACTTAAACGATT 4184 Mef2d GCTTCTGGATGTTTCCTGTG 4185 Mef2d GGAAATGACAGAGTCTGGCG 4186 Mef2d GAGAGTGAIGGACAAGCAGG 4187 Mef2d GTCCCTGTTCTGGCTTCTTG 4188 Mef2d GCCATTGGGTCCCAGCTTGT 4189 Mef2d GCAGAATAGTCCTATTGAAC 4190 Mef2d GTCACAGGTAGAGGGAGCAG 4191 Mef2d GAGGCAAGGGAGGTAGTGGT 4192 Mef2d GCCTAGCTTGCGAGATGGGA 4193 Mef2d GAACTCTCCAGATGGCGCAG 4194 Meis1 GTGTAAGACGCGACCTGTTA 4195 Meis1 GCGTCGCCGCTGAAAGAGCT 4196 Meis1 GTCAAAGCCAGAGCAAGAAG 4197 Meis1 GAGCACCGGTGAAATTCCCA 4198 Meis1 GTGAACATATGTCAACCTTC 4199 Meis1 GAGGGCTGCAAGAGAGGAGG 4200 Meis1 GCCGCATTGGTCTGGAGCTG 4201 Meis1 GCCAGAGCAAGAAGAGGAGC 4202 Meis1 GGGAATGCAAACTGCCATTC 4203 Meis1 GCAATCTAAGCCACGAGAGC 4204 Meis2 GAGTGAGTGTCAGTAGGTGT 4205 Meis2 GAACTCGGAGCATAGTCCCT 4206 Meis2 GCTCGTAACCTTCAGTTCGG 4207 Meis2 GCAGGAGCCAAGAGGAGTGG 4208 Meis2 GGGTCCTGGCCTCAATCTGG 4209 Meis2 GTCAGTAGGTGTTGGCAGGT 4210 Meis2 GCTCAAAGGGAGAGAAGGCA 4211 Meis2 GAAAGCAGCGCCTCCTGCAA 4212 Meis2 GATATAAATCCTCTCCTACA 4213 Meis2 GTTGGCAGGTTGGCTGCAGC 4214 Meis3 GTCTGAGCTAGGAAGACTTA 4215 Meis3 GAGAGGCGGTGACTTCGGGA 4216 Meis3 GGCACACTCAGGACAATAAG 4217 Meis3 GTGGTGGTGACAGAAATAAG 4218 Meis3 GACTGCACAGCCATGGCTAA 4219 Meis3 GAGCCACCTCACTCAGTCTA 4220 Meis3 GGCCTGAGAGGCTATGGAGG 4221 Meis3 GAGCTGCTGTGCTTCCCTCA 4222 Meis3 GGCTAGGCAGAGAGGACCTG 4223 Meis3 GCAGTGAGGACCAAGAGGGA 4224 Meox1 GTGAGATGGAAGGAGCCCAC 4225 Meox1 GTTCCCTGTCAAGGCCCTGT 4226 Meox1 GACATGGAGGCAGGAACCCA 4227 Meox1 GCTGACAAATGGGTTGCTGT 4228 Meox1 GAGGTGAGGTGTGCTGTCCC 4229 Meox1 GTGATTAGCCCGGAGAGGTG 4230 Mecx1 GGTAGAGAGTCTTTAAATCA 4231 Meox1 GTCTACGCTATACCTATACC 4232 Meox1 GAGACAAAGATGGATGGAGG 4233 Meox1 GCTTGTGTATGTGCTGTGTT 4234 Meox2 GTCCTGCAATTGCATGACTT 4235 Meox2 GGAACCTATGGGACAGATTG 4236 Meox2 GGGATGTCTGCAGTAGCCTA 4237 Meox2 GGTTCCAGCGTAAACACATT 4238 Meox2 GTTTGCATGTGGTCAGCGCT 4239 Meox2 GCAGCAAGGCTTTGACGGTA 4240 Meox2 GTCCTGCCAGCAATGGGAAC 4241 Meox2 GGAGCTTCCACCACAGCTAG 4242 Meox2 GATTTCATTTCTCAAAGGAT 4243 Meox2 GAGACACTGTGTGCTGGCTT 4244 Mesp2 GTATACAGCAAATTGGCTAA 4245 Mesp2 GAATGACTTCCAGCCCTCCC 4246 Mesp2 GAAGTGGAAATGGAAGGAGG 4247 Mesp2 GAGAGCCCTTGGGCAGTGAC 4248 Mesp2 GGCTGGGAAGTGGAAATGGA 4249 Mesp2 GGAAAGGCCTGGAGGTGGGA 4250 Mesp2 GAAGGGAAAGGCCTGGAGGT 4251 Mesp2 GCAATTTCAGGATTAATCCA 4252 Mesp2 GCATTGTTTCATTAGGGAGA 4253 Mesp2 GAGGCACGGGATAGACATCC 4254 Mga GAATGTCTGCCCTCACATTC 4255 Mga GGAAACCAAGAATGTAAGGA 4256 Mga GGAAAGGAGAGACAGGAGAG 4257 Mga GAAGCTTCATAAGTTCTTTC 4258 Mga GTTTGGCCTCCTGATGTTGG 4259 Mga GAGTCTTCTTGGGAAAGGCC 4260 Mga GCTCTAGAAATTGTGAGAAG 4261 Mir101a GTTGGAAAGTACCAGAACAC 4262 Mir101a GGCTTGAAACTTAACCTTCC 4263 Mir101a GTTTGAGATGTGACTGACAT 4264 Mir101a GGCAAATCACAGAATGTCCC 4265 Mir101a GCAAATCACAGAATGTCCCA 4266 Mir101a GCTATCTTTGCACTTTGGAG 4267 Mir101a GCACGTTTATGGTTCTTGAT 4268 Mir101a GTGTGAGGCTAGAAATCTTT 4269 Mir101a GTGCATAGGTGTGAGATTGG 4270 Mir101b GGAGTTCAGCAGGAGCCCAT 4271 Mir101b GGGCTCTGCAAATGGGCAGA 4272 Mir101b GAGCCCTCCCTTCCAAATTG 4273 Mir101b GTTCTGCTGCTCATGACCCT 4274 Mir101b GGAAGAGGTAAGACGCACTT 4275 Mir101b GGTGTACTGGGAAGAAGGCA 4276 Mir101b GAGCCGCTCTTGTCTTCAGC 4277 Mir101b GTCCCTTTCTAGGAGACCAT 4278 Mir101b GGTCAGATTTCCTGTTTGTA 4279 Mir101b GACCTCAATTAATCTAACAC 4280 Mir106a GGTCCAAGAGGATAGATATT 4281 Mir106a GTCTGACTCTTAAGAGTAAG 4282 Mir106a GAGAGTTAACTAAGGTGGGA 4283 Mir106a GAAGGGCAAGGCTGAGGGAG 4284 Mir124a-2 GTCTTCTTTGTGACCTGTAA 4285 Mir124a-2 GGTGCTTTAGGATGGGCGGT 4286 Mir124a-2 GATGGAAAGAAGAAGAATGA 4287 Mir124a-2 GGCACAGGTTTGGTTCACTG 4288 Mir124a-2 GTTAGATGGGTAAGGGCGCG 4289 Mir124a-2 GAGATTGGAGAATGCGGTTC 4290 Mir124a-2 GTGTTCTCGGAGGAAAGAGG 4291 Mir124a-2 GGTAGAAAGCAGAGACAGTT 4292 Mir124a-2 GACTGGAGAGGAGGGACAGG 4293 Mir124a-2 GCCAGCCTGGACCTTGACTG 4294 Mir124a-3 GCTGCCTGTGCGCTAAGAGA 4295 Mir124a-3 GGGACAGTGCCAAGGAAGCC 4296 Mir124a-3 GGGCCTTTGTTCCTGCAGAC 4297 Mir124a-3 GAAGGGTTGTCCTGGGTGTG 4298 Mir124a-3 GCGGTTCGAGAGTGTCCAAG 4299 Mir124a-3 GCTCTCTTCTCTTACGCCTC 4300 Mir124a-3 GACTGGCACCTGCAAAGGGA 4301 Mir124a-3 GGGTTGGGCATAAGCAAAGG 4302 Mir124a-3 GCTTCTGAGCCTCTCTCTCC 4303 Mir124a-3 GCACTCACGCACTCCTGGTG 4304 Mir125a GACCTCATTTCTGAGTTGGG 4305 Mir125a GACAACTGACTTTGGTCTAG 4306 Mir125a GGCCGGCAGTGTAGCTATGG 4307 Mir125a GAGACCAGAAGTAGGGAGGG 4308 Mir125a GCCTGGGATATGAAACCTTT 4309 Mir125a GAGACTGGAAGATGGGAGGA 4310 Mir125a GTCTGGGAGGTTGGGAAGGA 4311 Mir125a GCTTCCCTGGATCTGTGGGA 4312 Mir125a GCTCTGAGCCAGGTTGGTTG 4313 Mir125a GTCCAGGTTGCTCTGAGGAC 4314 Mir125b-1 GTTCAATAGGACAGAGAATG 4315 Mir125b-1 GTGTTCAATAGGACAGAGAA 4316 Mir125b-1 GTAGCTGTCTGTGAAGATGG 4317 Mir125b-1 GAGCTAAAGGTGATTAGAGG 4318 Mir125b-1 GTGTGTGGATGCCAAACAAT 4319 Mir125b-1 GAGCTGAACCTACAGAGGTG 4320 Mir125b-1 GGAAGGCTGTTGGGTGGGAG 4321 Mir125b-1 GGGTTGGAGCACGTTCAAGA 4322 Mir125b-1 GGCCATATCAGGACAAGGAG 4323 Mir133a-1 GGGACAGCTGATCTAAGTGC 4324 Mir133a-1 GTTAGTGATACATTGATGTA 4325 Mir133a-1 GAGCAACTGCACTTGCTGAC 4326 Mir133a-1 GAGTATGGAAGTCATCCTCC 4327 Mir133a-1 GCAAATTATAAAGAAGAGGG 4328 Mir133a-1 GTGAGTACATGTTAAACTCT 4329 Mir133a-1 GCTAAAGGAAACTTTCCAGG 4330 Mir133b GTTGGGTGCTTTAAAGTATG 4331 Mir133b GGTTCTCTCTGTTACAGGCT 4332 Mir133b GTACCTTGATGATTCGAGAC 4333 Mir133b GAGTCTATCGAGGGAAACAG 4334 Mir133b GAGATCAAGTGTAGGTAAGA 4335 Mir133b GAGTCCATCTGGAAGAAGCC 4336 Mir133b GACTTTAGTAGAGTCTATCG 4337 Mir133b GCATGCCACCCTATTCTTCT 3338 Mir134 GTAGGTCAGAAGTCCTCTGC 4339 Mir134 GAATGATTCGGTGGGCTGCA 4340 Mir134 GCTCTGAAAGGCTGCTAAGA 4341 Mir134 GATGGCAACTTGCAGAAAGA 4342 Mir134 GCTCTAGAAACACACTGGAG 4343 Mir134 GAGCCACAGCTGCCTCACCA 4344 Mir134 GTCTTCCTAAGAATGGATTG 4345 Mir141 GGCTCGCAGGTGGATAGTAG 4346 Mir141 GTGGAGGCCAAGTCGGCTCT 4347 Mir141 GACGCCGATGACACTGGGAC 4348 Mir141 GATCTGCCGCTTCTCTTGAG 4349 mir141 GAGATCTGCCGCTTCTCTTG 4350 Mir141 GGAGGAAGGAGCCGCTGGAA 4351 Mir141 GGAAGCCTCTGCAGGGATCA 4352 Mir141 GAAGAGTTGGCTCCCACCAT 4353 Mir141 GCGGGTCTGGTGCCAGGTAA 4354 Mir141 GGTGGGAGCCAACTCTTCCC 4355 Mir150 GGTATGGTGATACCCATCTT 4356 Mir150 GGAGTAGAGCCACTAAGCAG 4357 Mir150 GGATCCAGGTGTTCTGAGAC 4358 Mir150 GAAGACATTTCCACCGGGAG 4359 Mir150 GTGTGGAACTTTCTTTGGGT 4360 Mir150 GCAGAGGTTATGTATGGTTA 4361 Mir150 GCGGGTGAGGCTTCTCAGCA 4362 Mir150 GTTGCAGAGTCTGTGAGGGA 4363 Mir150 GACCTGTTTCAAACGAAGCC 4364 Mir150 GGCATATCACCATTTCTCTG 4365 Mir150 GCTTGGAAATTTCCAAACCA 4366 Mir155 GCCATATTATTGACCCATTA 4367 Mir155 GCCACATAGTGAATGGGACC 4368 Mir155 GCAGGTGCTGCAAACCAGGA 4369 Mir155 GTGATATGCCACATAGTGAA 4370 Mir155 GTTGCATATATTCTCCCTAA 4371 Mir15a GTTATCCTAAGATGATGTTC 4372 Mir15a GTGGTTTATATTCTGGCCTA 4373 Mir15a GAACATCATCTTAGGATAAC 4374 Mir15a GAAGCTTTGTCCIATGGATT 4375 Mir15a GACACTCAAAGGACAGTGTC 4376 Mir15a GCTGGCACACTTGAAAGCAA 4377 Mir15a GGAAACAAATAGAGTTGAAG 4378 Mir15a GCGTGCTGGAGGAAGTGCTT 4379 Mir16-2 GCATATGTGTGTAAAGAGTC 4380 Mir16-2 GTTAAGGGAGAGGCAAAGAG 4381 Mir16-2 GAGGTCTTGTTCGCCTTCCT 4382 Mir16-2 GGCTGAAATTTGTGTTTGCT 4383 Mir16-2 GAGGCTCTAGGTTAAGGGAG 4384 Mir16-2 GCTGGATAACAGAAGTTTAG 4385 Mir16-2 GCTCCTCACCTGGAGGCTCT 4386 Mir16-2 GCTATCTCTGTAGGCGGTTC 4387 Mir181a-1 GCATTGATCTGACAAATGAG 4388 Mir181a-1 GATTCCAGAATGACTGGAGT 4389 Mir181a-1 GCAAAGCACCGCAATGTGAG 4390 Mir181a-1 GATTACAGGACAAGTGTCTC 4391 Mir181a-1 GAATTTCAGGCAGTAGGCAT 4392 Mir181a-1 GTTACAGGCTGTTAAAGACA 4393 Mir181a-1 GTAAGAGAATAACTTCAGGA 4394 Mir181a-1 GATCTGACAAATGAGAGGGA 4395 Mir181b-1 GGTCCTTAGAATATGAGAGC 4396 Mir181b-2 GCAACCAAGCCAGCCTTAAG 4397 Mir181b-2 GAATCCCAAGGTACAGTCAA 4398 Mir181b-2 GAACTCTGGTGTTCAAGTTC 4399 Mir181b-2 GAGCATCACTAGCACTTCTG 4400 Mir181b-2 GTGTCATTCTAGTCAGAAAT 4401 Mir181b-2 GTGCTAATTTAAGGAATTCT 4402 Mir181b-2 GCAACATATCCAACCAATAC 4403 Mir192 GAGTTGCTGTTACAGAGGGT 4404 Mir192 GGAGTTGCTGTTACAGAGGG 4405 Mir194-2 GAAGGCTTGGCTTAGGGCTC 4406 Mir194-2 GGAAGCCTCTAGAGTATGCT 4407 Mir194-2 GCCAACTGGCCGAGAGAGTG 4408 Mir194-2 GATCAAGGCTTAGACAGAGT 4409 Mir194-2 GGCAGCTCTGCTGCTTCTCT 4410 Mir194-2 GGGAGCCTTCAGCAGCCTTC 4411 Mir194-2 GATGGCTTGGCAGGAAGGCT 4412 Mir194-2 GGGTCCAGGAAGTACCAGAC 4413 Mir194-2 GGGATAGATGCCATGTGGGT 4414 Mir194-2 GAGAAGCAGCAGAGCTGCCA 4415 Mir196a-2 GAGAGCAAACTGCAATCTTG 4416 Mir196a-2 GATAGTCTCCCGTTAGTTTC 4417 Mir196a-2 GAGGGTTTAGTCTAGACACT 4418 Mir196a-2 GGAATAAACTTAACTGCCGG 4419 Mir196a-2 GGCTGACAGCAAAGAGCGGA 4420 Mir196a-2 GGGAAAGACAGAGAGAGGGA 4421 Mir196a-2 GTCAAATGCACCCGATTAGA 4422 Mir196a-2 GGAGCAGGACAACTTGGAGG 4423 Mir196a-2 GCGGCAGCAAGAGAAGGAGG 4424 Mir196a-2 GAACCGAGAGAATCGGATCC 4425 Mir196b GGGCTGGGTTTGCTGCCTCT 4426 Mir196b GCGTGGGTTCTTCTGGGACC 4427 Mir196b GGCGCCTAGGAGGGAGAAGA 4428 Mir196b GGTGTCTGGCCTGAGGTCAA 4429 Mir196b GAACCCACGCCCGAAATCCG 4430 Mir196b GGAAACTCAAAGGTGAATGA 4431 Mir196b GTATGGAAGCATGGACATTC 4432 Mir196b GAGGACCGGGTGTGGATTTG 4433 Mir199a-2 GCAGGTACAAATAAGTTGTT 4434 Mir199a-2 GGCTTCCTACAATAGCGTGG 4435 Mir199a-2 GGCACATTTGCAGCAGACTA 4436 Mir199a-2 GGCCTCCTTCTCCTTCTTTA 4437 Mir199a-2 GGGTGACATCATCCCATATA 4438 Mir199a-2 GATTCTAGCGGTCTCTCCAG 4439 Mir199a-2 GGGCTGGAGAGTCCATATAT 4440 Mir199a-2 GGACTAGGCATAGAAAGGGA 4441 Mir199a-2 GGACTATTTGAGAGTGGTTA 4442 Mir199a-2 GGGAATGATGACCAAGAGGA 4443 Mir1a-1 GCTCCCATTGCGTCCGCACT 4444 Mir1a-1 GTGTCTCCAGCTCTTTCTGT 4445 Mir1a-1 GTAAAGACTGGAAGCAGACA 4446 Mir1a-1 GTAAGTTTAGCCACAATCTC 4447 Mir1a-1 GGCACTGAGACCTTCTCTCG 4448 Mir1a-1 GGACTGATGGATCAGGAACT 4449 Mir1a-1 GGATGTGACTTCCCTCTGTT 4450 Mir1a-1 GTCGTAAGGAACCGCTCCCA 4451 Mir1a-1 GACACCCACTGCAGGAGAGG 4452 Mir1a-1 GAGTTCTCAGGGAGCCTAAG 4453 Mir200a GAGGAAGGACTTAGCACCCA 4454 Mir200a GACGGACTTGGGATGAGGAG 4455 Mir200a GCATCTACTAGGCTTAGTTT 4456 Mir200a GATCAAGGCACTCTGGAAAG 4457 Mir200a GTCCCAAGTATCCTTGGGAC 4458 Mir200a GGTCTGCTTTGTCCAAAGCA 4459 Mir200a GCGGCTCCATTGCTGCATGC 4460 Mir200a GCGGCCTCCATATCCAACTT 4461 Mir200a GGATACTGGGATGAGGGACC 4462 Mir200a GATCCGAGGAAATCAGTACA 4463 Mir200b GTTGGAACTGCGTGTCTTCA 4464 Mir200b GTCATCTTCAACTCCCTGCT 4465 Mir200b GCCTGCCTCCCAGCTCTTTC 4466 Mir206 GCGTCACTAACTGTGAGGCC 4467 Mir206 GTCTGACTGATCACCCTGGA 4468 Mir206 GGCAGCTGTTGAGCCATTCA 4469 Mir206 GATCTCAGACTGAAGTGTAT 4470 Mir206 GCCTAACAGGCAGAGCTTGT 4471 Mir206 GACTAGTATGCTAGTATGCC 4472 Mir206 GAACAGCCTTGGATCAGTCC 4473 Mir206 GGCCAAACTTCCTGCACATT 4474 Mir206 GACCAATCCACCAAATGTGC 4475 Mir21 GCAGAGACGGACCTATGCCG 4476 Mir21 GTTAGAGCCCTCCCAGTGTA 4477 Mir21 GTTTCCTCGGTTCAACACTA 4478 Mir21 GAGATCTAAGCGGGACTATG 4479 Mir21 GGCCCTGTGAAGGTATCAGA 4480 Mir21 GGGACAGTCAGAGAGAGGGA 4481 Mir21 GAGCCCTCCCAGTGTAAGGC 4482 Mir21 GTTCTGCTTTCTTTCCTACA 4483 Mir21 GCAGGAGGGATCCTCACCTG 4484 Mir21 GCCTGAGAGAGCTACCTCCA 4485 Mir218-2 GACTAAGAGAAGGAAGGAAA 4486 Mir218-2 GGTCCTGTAAACACCAAGGC 4487 Mir218-2 GTACTAATCACGCTCAGTGG 4488 Mir218-2 GGATCCTTTGGGTACAACAC 4489 Mir218-2 GTGAGGGCCTTGGTATGAGT 4490 Mir218-2 GGACACAACCTCTGATGGGA 4491 Mir218-2 GAAGCCAGACGCCCTACCCA 4492 Mir218-2 GGAGAAGCTGAAGCCAGAGC 4493 Mir218-2 GCTAGGTCACTGCCATGGTG 4494 Mir23b GACATTATCGCTTGCCATGG 4495 Mir23b GGGCTAGAGCCACTTTGAAT 4496 Mir23b GTCTGCAGGAGGCAGTGAAG 4497 Mir23b GGTTCTCTGACCTGTAGAGT 4498 Mir23b GACAATGGAGACAGAGTAGA 4499 Mir23b GAGGGCTGCCAAACGGTCTT 4500 Mir23b GCAGGTGTGGTGTGTAGGGA 4501 Mir23b GACAGAGTCAAAGTGAGGGC 4502 Mir23b GGAGAACAGGGTGTGTCCCA 4503 Mir6a-2 GGCCTAAGGAACACTTGTGC 4504 Mir6a-2 GATGTCTGCATCACTGTCTC 4505 Mir6a-2 GGTCTCTCACCAATGCCTCG 4506 Mir6a-2 GATTGGGCTTACTTCTTGTT 4507 Mir6a-2 GGCAGTTTCCCTTTGAGGCA 4508 Mir6a-2 GTGTTGGCTAGAGGGAAGTG 4509 Mir6a-2 GATGTGGGCTAGGAGGGACT 4510 Mir6a-2 GATCGGACTGTGTGAGACAA 4511 Mir6a-2 GCTGGCTAAGAACTGCTCAG 4512 Mir6a-2 GGGTATCTGTGACTCCAGGG 4513 Mir375 GCCATTGGGAGGTGAGCAGC 4514 Mir375 GGATGCACAAGAAGCTATGT 4515 Mir375 GTTCTTAGTTTGGCCAGTGG 4516 Mir375 GGGCAAATATTGACTCATGG 4517 Mir375 GCTGACACCAGCAAACAGTC 4518 Mir375 GATGTTCTGCCTTCGCTAGG 4519 Mir375 GAGTGCTCTGAGTCCTGGCT 4520 Mir375 GTCAGCATGCACAGGTCAGG 4521 Mir375 GGTGGTAGGGCAATGATGCG 4522 Mir375 GTGGGAAGATTCTATCTCCA 4523 Mir7b GAAGGCCAACTGGACTGTTT 4524 Mir7b GGACTCTGAGTCCTTGAACT 4525 Mir7b GGAGGGTAAGTCAGTGAGTG 4526 Mir7b GTGAGAGAGACTGTGTTAGA 4527 Mir7b GCACTTGAGGGTGTTGAACC 4528 Mir7b GGTGTTGAACCTGGCGGAGG 4529 Mir7b GGTTCATTCTATACACCCTA 4530 Mir7b GAGGGACTCGGAGCAGAGTT 4531 Mir92-2 GGAGGGAAACCAAGGTAGGT 4532 Mir92-2 GGCCTCTGATTAAATCACCA 4533 Mir92-2 GTAATGTGTCTCTTGTGTTA 4534 Mir92-2 GAGCGGGTCCTGTGTGTCAC 4535 Mir92-2 GTGGTGCTGCGCGGACACTT 4536 Mir92-2 GCTCTCCTAGCTGGTGGAGG 4537 Mir92-2 GCACTGTTAGCACTTTGACA 4538 Mir92-2 GATGGAATGTTTGTGTTGAT 4539 Mir92-2 GAGCTTTCTCTGGAGGGCTG 4540 Mir92-2 GTTGTGTAGAAGAACAAGCT 4541 Mirlet7a-2 GGAACATACCATGGTACGGC 4542 Mirlet7a-2 GACCCATACAACTCTGCAAG 4543 Mirlet7a-2 GAAGACTGTGCAAGAGACTA 4544 Mirlet7a-2 GAGGCCAGGTTGAAAGATTG 4545 Mirlet7a-2 GGTTTGAGATTGCTCCGTGG 4546 Mirlet7a-2 GTTGTATTGTAGATAACTGC 4547 Mirlet7a-2 GTTTGAGATTGCTCCGTGGT 4548 Mirlet7a-2 GGTCAAAGATTCAAAGAAGC 4549 Mirlet7b GGAATAGCTAGAGACCACAT 4550 Mirlet7b GTCTGAGGCCTGAAAGAAGC 4551 Mirlet7b GCCCAGGTGAGAAGGCTGAG 4552 Mirlet7b GGTAAAGACATCTAAGCTGA 4553 Mirlet7b GCTAGTCGTTAGGGACAGAC 4554 Mirlet7b GCTGCCTGGCTTCCTAGGTC 4555 Mirlet7b GGCCCAGGTGAGAAGGCTGA 4556 Mirlet7b GCCTAGAGAAAGGCCAGATG 4557 Mirlet7b GCAGCAAGGCAGAAGAGGCG 4558 Mirlet7b GAGGCGTGACAGTAGACGCT 4559 Mirlet7i GGTGTTGCACTGCCTTATCT 4560 Mirlet7i GGCGCTGTAAAGATGGCGGC 4561 Mirlet7i GCAAGGATGCAGAGAGGAGA 4562 Mirlet7i GTATGTATGAAACGTGTAGG 4563 Mirlet7i GGACTGGGTGGGTGTGAGGT 4564 Mirlet7i GGCAGTGCAACACCGGAACC 4565 Mirlet7i GAGAGTAGGGAAACCAGCCG 4566 Mirlet7i GGGCGCTGTAAAGATGGCGG 4567 Mitf GAAGTCAGCAAATGGTGGTG 4568 Mitf GACACTCCTGAAAGTTGGGC 4569 Mitf GACACACTGGAAGTGGAATC 4570 Mitf GCCATAAGCAGTCAGAATAT 4571 Mitf GTGGGATGGACAGATGGAAA 4572 Mitf GGGCTGTGTTGGGAAGAAGA 4573 Mitf GAATTGTTACAGGGAGAACC 4574 Mitf GTCTGGTCTGGACACCTCTT 4575 Mitf GTAAGCTGTCTGTTGAGACT 4576 Mitf GCTGACCTCAGCCTGGTAAA 4577 Mixl1 GCGCCTTTGATGGTGACAGG 4578 Mixl1 GGGAGGCGCGAACTTGAGTC 4579 Mixl1 GAATTCTTCAACCTGCTACG 4580 Mixl1 GTAAGGTCTAGCACATAGCA 4581 Mixl1 GCTTGACCTGTCCACCAGCT 4582 Mixl1 GCTAGGCTGTTTAACCAACC 4583 Mixl1 GAAGAAGAAAGAAAGGGAGA 4584 Mixl1 GGGCAGACAGAAGGTGGCAG 4585 Mixl1 GGATTGGTGGTTGGACTGGC 4586 Mkl1 GAACCACGAGTGTACGCTAT 4587 Mkl1 GGGAAGGATGAGACTGCCCT 4588 Mkl1 GGCAAATAGCAGTTGGATTC 4589 Mkl1 GACCTCCTCCCACCTCTTGG 4590 Mkl1 GTTAGGGCTAGCCCGATTTA 4591 Mkl1 GCTCTTAAACACCGTGTTCT 4592 Mkl1 GGCAGAGAGAGAGGCGTCAT 4593 Mkl1 GTGCTTCACCAGAAAGAGTC 4594 Mkl1 GGCATTTATTGTGTCCTTTC 4595 Mkl1 GAAGTCTGGAACTGGCGGAG 4596 Mlx GCGGCTTAACTGTCCCACTT 4597 Mlx GCAATGAGGACACAGCTAAT 4598 Mlx GATGACACACGGGTCAGGAA 4599 Mlx GTTCAGGAACTTGTCTGTGG 4600 Mlx GCATCTGACTGAGTTCCTGG 4601 Mlx GGCCCATAGGGATCCAGCAG 4602 Mlx GACTGAGCCTCGCCTCTTCC 4603 Mlx GAACAGGTACTAGCCAGAGA 4604 Mlx GGTCCAGATACCTCAGTCTC 4605 Mlx GAGGCTGAAGCAGGTTTCCC 4606 Mlxip GGACTCAGTTCCGGGTATGG 4607 Mlxip GCACTCCACGTGGTGGGTAG 4608 Mlxip GCTGAAGTTGTTGGGTCTGG 4609 Mlxip GTTTAAGAGCGGTGATGCCC 4610 Mlxip GTGGCTGAAGTTGTTGGGTC 4611 Mlxip GGCACTCCACGTGGTGGGTA 4612 Mlxip GGAGCTTGGGAATAGCCCTG 4613 Mlxip GGAGAAAGCTGGCCTAATGT 4614 Mlxip GAATTGCAGTAAAGACAACT 4615 Mlxip GCCCAGAAGCCAAATTCCAA 4616 Mlxipl GTTAGACTGTAGAGAGGCAC 4617 Mlxipl GGCTGTGAACTCTGGGCATC 4618 Mlxipl GGACAATCATAAGAGCGCCT 4619 Mlxipl GGCCTCTCTTTCCCACTAGA 4620 Mlxipl GGAGAGCAACCGATGGTTGG 4621 Mlxipl GGCATCGGGTACTAGAGGGC 4622 Mlxipl GCTAACCTTTCCACTGGGAC 4623 Mlxipl GAACTTTGCTGTAGAGGCAT 4624 Mlxipl GACATAGCTAACCTTTCCAC 4625 Mnt GGAAATGGAGACATGCCAGT 4526 Mnt GAGGAATAGCACAAGACAGA 4527 Mnt GCCTGGTGATCTAGCCTAAT 4628 Mnt GGGAATTGCGACAGACCGGA 4629 Mnt GTCTGGGTCAGGAGGGCAAC 4630 Mnt GTATGTTTATAGGTAAGACC 4531 Mnt GCACTGGAGCTGTAAGTGTG 4632 Mnt GAAGAGGGAAATGAATGGGA 4633 Mnt GGGAGGGTAATGTAAAGCAG 4634 Mnt GGAAGGGTGAGACACCTACA 4635 Msc GGCTTTGTTAACAAACAGAC 4636 Msc GAGTAATGAACTTGAATGAC 4637 Msc GATTGCTTAAACTTGACTGT 4638 Msc GGTGCAGGCAGAAAGATGGA 4639 Msc GTAGTGAGCAGCTGCAGCTT 4640 Msc GAAGTATCATAGCAGGTGGC 4641 Msc GATGTGTGTTTGCTTATCCA 4642 Msc GGCAGAAAGATGGAAGGCAG 4643 Msc GGGCTGCTTGGTAGTCCTTT 4644 Msx1 GTTATTTGTCAGAGTAGCAA 4645 Msx1 GCCGATTTACACTCTGCGCT 4646 Msx1 GGGTAATTATCCGAGCACGG 4647 Msx1 GGAGGTATATCTTTGGTGCA 4648 Msx1 GCAACTGTGTAGACAACTTC 4649 Msx1 GATGCCCACCTGACTTAGCT 4650 Msx1 GAGCCTCACATCTGCCCACA 4651 Msx1 GGGCTGCCGTGGCCATTTAG 4652 Msx1 GAGGTGATTGGCGGCTCACC 4653 Msx1 GAGCAAAGAGGCCTAGCCTC 4654 Msx2 GAGAAGGCTGTAGACGGGCC 4655 Msx2 GCCAGAGCTTGGTACTCTGG 4656 Msx2 GCACCAGAAACACTTTAAAG 4657 Msx2 GAATGTTGGAAATCTGCGGA 4658 Msx2 GCCTAGAGAGGAGACTCAAG 4659 Msx2 GACTGTATCTCTGCCTAACC 4660 Msx2 GGTGCTGGAGGGAGTATTTA 4661 Msx2 GACACTGAAAGGGAAACGGT 4662 Msx2 GTTGGAGAGGCGCCTGGCAA 4663 Msx2 GAGGCGCCTGGCAAAGGGAT 4664 Msx3 GATGAGTGTTTACCAAGGAG 4665 Msx3 GGGCTAGAAAGACGCGTCCT 4666 Msx3 GTCGACAGCAATGACTCATT 4667 Msx3 GATGCAGTCTTTCCTTGACC 4668 Msx3 GTCATCAGTTTGTGGACAAT 4669 Msx3 GTCCATTCCTCCACTCCAGA 4670 Msx3 GCCTCAGCCTTCTGGAGTGG 4671 Msx3 GATCTCTTGAGGTCGAGTTG 4672 Msx3 GGGCTACAGGGTAGGAGTGG 4673 Msx3 GGGCTGAGTCTTCAATGGTG 4674 Mtf1 GCTCAGGTAGAAGAAACAGG 4675 Mtf1 GCCACAAAGGACTAGCTGCC 4676 Mtf1 GAACTGGIGAATAAACTCTT 4677 Mtf1 GCCTTGGAGTTGAGCAGAAA 4678 Mtf1 GATGCTCAGTACGGGATATG 4679 Mtf1 GCTTGGACAGTGGAAGCATC 4680 Mtf1 GTTCTTGAGCTGAAACAGGT 4681 Mtf1 GCAAGGGAGAAGAGAAGGGA 4682 Mtf1 GGTTCCAACCTTCCTTAAGG 4683 Mtf1 GGACTAACTGAAGTCCCTGA 4684 Mxd1 GGCAATGACCTCCACCCAGC 4685 Mxd1 GTTATAGGAGAGGACTGAGC 4686 Mxd1 GTGACGTCATCGTAGCCGGG 4687 Mxd1 GACAGTGGGCAACAGGTCGG 4688 Mxd1 GGGATGGAAGGGATGGCCTC 4689 Mxd1 GCGGTTTGAATTTAGTTCTG 4690 Mxd1 GAGGTGACGTCATCGTAGCC 4691 Mxd1 GAGTATCTAGCGCCATCTAC 4692 Mxd3 GGTAGCCATACCTATGAGTC 4693 Mxd3 GAGCAATCTGTAGCAGGAGA 4694 Mxd3 GGCTGTTACCTATACCTCCT 4695 Mxd3 GCTCCTCCTTCTCTTCCAAG 4696 Mxd3 GCATCAGTTCTACTGCAGCA 4697 Mxd3 GTAACAGTTTGTAGACTGAA 4698 Mxd3 GAAGGACGGGAGAGCTAGGA 4699 Mxd3 GTCCTGTCTGCCTCTGCTAC 4700 Mxd3 GGCCCTATCTACATATTCAT 4701 Mxd4 GCGTTCGGCCAGTCCCTATT 4702 Mxd4 GCAGAATGAGCTGGCTTCCC 4703 Mxd4 GACAGCAAGCCTGCTGCTCA 4704 Mxd4 GATTGTGGGCTTGGTCAGAG 4705 Mxd4 GTAGGCATTGCACGCCGATT 4706 Mxd4 GTGCCATCTTCCCTCACAAA 4707 Mxd4 GATCCGTGAGTGTCTGTTTG 4708 Mxd4 GACATGTGTGGCTCACACCC 4709 Mxd4 GTCTGGGCTCTGTCTATACA 4710 Mxd4 GTTTGCGGTGCTTGGTCTGA 4711 Mxi1 GGTGTGTCCACGCATACATG 4712 Mxi1 GGGCGGGACTACATTTCCCA 4713 Mxi1 GCTAGGATTTGCGGAGAGGC 4714 Mxi1 GTCTCCAGGCTACCCTGTCC 4715 Mxi1 GGAGGGAAGAAGAGGTTCCT 4716 Mxi1 GGAAAGACTACATCTCCCGG 4717 Mxi1 GACTTTATTTACTGAGAGGG 4718 Mxi1 GTCTCTGGGCTGGTGAGGAC 4719 Mxi1 GATCATCCGCACCCGCTCCA 4720 Mxi1 GAATGAACCTACAGGACGGA 4721 Myb GGATTCAAGAGGCTCAGGAA 4722 Myb GTCCAGCAAGTGTTTGACGC 4723 Myb GTGAGTGTCCCAAGTGCTTT 4724 Myb GGAAGAGAATGCTTCTGTAA 4725 Myb GGATGCAATAGATGCAACTT 4726 Myb GGCGTGTGTCTAAGTGAGGG 4727 Myb GTGGTAGGCACCTCCTAGGG 4728 Myb GCTCCCGGGTGTGTTGAAGT 4729 Myb GTTCAAGACTTGTGCTGACT 4730 Mybl1 GCCGTTTGAATCTGCGCACG 4731 Mybl1 GGCCAGTTTCCTTGTCCTTT 4732 Mybl1 GCTGTGAGTCTCGCCACTTA 4733 Mybl1 GGTGACAGGACACGGAACGC 4734 Mybl1 GAGTAACTGAAATCTTGCAT 4735 Mybl1 GCAACTTCTCAACAGTTACA 4736 Mybl1 GAAGAACACTTGAAGTTCTC 4737 Myc GACGAACGAATGAGTTATCT 4738 Myc GGATACCGCGGATCCCAAGT 4739 Myc GAGCTCCTCGAGCTGTTTGA 4740 Myc GAATTGCCAACCCAGATCTG 4741 Myc GATGACCGGAAGCTTGTCTT 4742 Myc GAAGTCCGAACCGGAGGTGC 4743 Myc GCCCGAACAACCGTACAGAA 4744 Myc GACGAGCGTCACTGATAGTA 4745 Myc GCCTTGGCTTCAGAGGCTGA 4746 Mycl GACTGTTCGAGAGGCTCCCG 4747 Mycl GTCTAACTACTCAGAACTAC 4748 Mycl GCTAATGGTTACTGAAGCAA 4749 Mycl GTGCGTCCCACCCATGACAG 4750 Mycl GAACACTATCAAGATCTCGC 4751 Mycl GGGAAGTAGACTAGCAGGGT 4752 Mycl GGACGCACCTGAACCTGGTG 4753 Mycl GACCAGTTCAGCCAGGAGGT 4754 Mycl GAGGATGAATTCTGGGAGGC 4755 Mycs GACCTGGTGGGTGGATTCAA 4756 Mycs GCTCTCAAGAGCATCTTCCC 4757 Mycs GGCACAGGACATGATGCTCC 4758 Mycs GCACAGGACATGATGCTCCT 4759 Mycs GTGGATTCAAAGGAGGGTGG 4760 Myef2 GGTTAAGGGAATGATCACTT 4761 Myef2 GCTAGTAATAGTAACCAGAT 4762 Myef2 GGAGAATTTAATTCCCTCAC 4763 Myef2 GCCTTTGGATGAGAGGACTA 4764 Myef2 GCTTATGATAATCTAGAACT 4765 Myef2 GTGAATTCATAAAGAGCTAA 4766 Myef2 GGACACTAGAGCTCTGCTGG 4767 Myef2 GAGTTCAATGTTGCCTTCTG 4768 Myef2 GAACTGAAATGCCTCAGCCG 4769 Myef2 GGGACAATTTAGCTGGAAGA 4770 Myf5 GAACAATAAATCAACCGTGC 4771 Myf5 GGAAGGATGGAAGCTCGGAG 4772 Myf5 GGGAAGGATGGAAGCTCGGA 4773 Myf5 GGAGGTTGGTCCCTGTAGCT 4774 Myf5 GTCCCAAAGGGCCCTCCACA 4775 Myf5 GACACGTGTGCTGGGAAGGA 4776 Myf5 GTTTGTGTACTGGTAACAGT 4777 Myf5 GGTTAGGGCTGTCTTTGGTA 4778 Myf6 GAATCCTAAGCAACCAACTT 4779 Myf6 GAATTCAGTTGAACTCTGGA 4780 My46 GGGCTGGAATTGGAGTGTGT 4781 Myf6 GTGAACTAATGTTTACTGCA 4782 Myf6 GGTATGCAACCGCATTAACT 4783 Myf6 GAATTATGAGAAGACAGAGC 4784 Myf6 GATGACTCTCTGTCTTGATA 4785 Myf6 GCACTAATTAAATGCCATCT 4786 Myf6 GTGTTAACTATAAGCTGTTT 4787 Myocd GGTACATCTCCAGAACGCGC 4788 Myocd GATGGATGGGTAGGGAGGCA 4789 Myocd GCTTACTGCAGGGCTCTGGA 4790 Myocd GCAGCTGACTTCTGCCCTCC 4791 Myocd GGAGTGTATCTGCTTGTCCT 4792 Myocd GTCTTTCTGACCCAGAGGGA 4793 Myocd GGTCCCTTTCCCACTATGAA 4794 Myocd GACTAATCTCTGCCCTGATC 4795 Myocd GTTTCACAGAGTTTCCTCCA 4796 Myocd GGCAGCCTATGACATCAGCC 4797 Myod1 GCTGGTTATGCTATGCAAGC 4798 Myod1 GCAAAGCCAGAGAAGGTTGC 4799 Myod1 GCATGAACATCCCAGGGTTG 4800 Myod1 GAGCTGGAAAGGGAGGCTGG 4801 Myod1 GGTGCTCATGGCCACTCAGA 4802 Myod1 GGAGCCATTAAGAAGAATGG 4803 Myod1 GGACAGAAAGGTGATCCATT 4804 Myod1 GGTCTCCAGAGTGGAGTCCG 4805 Myod1 GGATGTGGAAATGTCAGTGG 4806 Myod1 GAGATCTGGCAGAGGGCTCT 4807 Myog GCTGGGTGAAAGGTGGCCAG 4808 Myog GCTGGTGGACAGGGCAGGAA 4809 Myog GCGTTGGCTATATTTATCTC 4810 Myog GTCCAAGGCAGCTGGTGGAC 4811 Myog GCAGGAAGGGAACAAGAAAG 4812 Myog GAAAGGAGCAGATGAGACGG 4813 Myog GATTGAAGTAAGAGAACACA 4814 Myog GCTTCTTCACTTTGAGGAGG 4815 Myog GGCAAAGACAGAAACCCAGA 4816 Myog GAGAGAGTAGGCAGGAGGCC 4817 Mzf1 GTTGTATCTGACCTGAATTC 4818 Mzf1 GCAAACCAGGAAGTCTCTTA 4819 Mzf1 GTGAGACATCGAAACTCTAG 4820 Mzf1 GATTAGAACCACAACTCTCA 4821 Mzf1 GCTTTCTGGGAGTCGTAGTT 4822 Mzf1 GAGGTAATGTTTAAGTAGTC 4823 Mzf1 GCGGGACTCCATGGTAACTA 4824 Mzf1 GTTTGGTCCCTTAGTTACCA 4825 Mzf1 GGAAGAAGAGAGAAGCAGAA 4826 Mzf1 GGTAACTAAGGGACCAAACC 4827 Nab1 GTAAGGTAACAATTATGGAG 4828 Nab1 GTGTCCTCAGAACTTAACTT 4829 Nab1 GTCCTTCCTTGTTTATGTTC 4830 Nab1 GGAGTTGCTGTTGAAGTCAC 4831 Nab1 GGAGCATAAACACTGACAAT 4832 Nab1 GAGTTTAGGAATGGGAAGGA 4833 Nab1 GCCCAGAACATAAACAAGGA 4834 Nab1 GGTATCCTTAAGGCTCTTTC 4335 Nab1 GTGGAAAGGTAGAGGTTAAT 4836 Nab1 GGCCAGCCAGGAAGTGGGAA 4537 Nacc1 GTTGGATCCTGTGAGCGGAA 4838 Nacc1 GAGTCAAGAACAGAAGAGTG 4839 Nacc1 GTTTGTCCGGGTGTGTGTGT 4840 Nacc1 GGAACAGTTTAGGCTCTTTG 4841 Nacc1 GCCTGAACCTCCACTCACTC 4842 Nacc1 GATCACAGCACACCTGGAGG 4843 Nacc1 GTCTGTGTGAATACAACTAC 4844 Nacc1 GCAGTAAGGAAGGGACTTTA 4845 Nacc1 GAGCCACTCAGACTGAGTGT 4846 Nacc1 GAACCGAAGCGCTCGAAGCG 4847 Nanog GTGGGAAGTTTCAGGTCAAG 4848 Nanog GGGAAGTTTCAGGTCAAGTG 4849 Nanog GCTTTCCCTCCCTCCCAGTC 4850 Nanog GTGAATTCACAGGGCTGGTG 4851 Nanog GCGCTCTGCGTTTCTCCAGC 4852 Nanog GGAAGTTTCAGGTCAAGTGG 4853 Nanog GGGATTAACTGTGAATTCAC 4854 Nanog GCTGTAAGGTGACCCAGACT 4855 Nanog GGAGGGAGGGAAAGCTTAGG 4856 Ncoa1 GGGACGCTAAGGGACACTCT 4857 Ncoa1 GTACCACTCACTGTTCTCTC 4858 Ncoa1 GTGGTACTGTAAAGAAGGTG 4859 Ncoa1 GAGAACAGGTAGAAAGAATG 4860 Ncoa1 GACCAGGAAACAGACTCCAC 4861 Ncoa1 GTCTTAAGGAAGTGTGAGAA 4862 Ncoa1 GGAATGAACACAGGGATGGA 4863 Ncoa1 GCTCATTTGTAAGCACCAGA 4864 Ncoa1 GTCCCTTAGCGTCCCTGAGC 4865 Ncoa2 GTCCTCAGCATCTCCCTGGC 4866 Ncoa2 GAAGAAATCTAAGTGGCAAT 4867 Ncoa2 GAGCGGTGACAGCGTTCGCT 4868 Ncoa2 GCTGTAACAAATGTTAACAT 4869 Ncoa2 GGTCTAGGGACCGTGACCTA 4870 Ncoa2 GGGATTGCCTGACAAAGCAA 4871 Ncoa2 GACAGGAGAAGAAATCTAAG 4872 Ncoa2 GCTTAGTCTGGAGAATGAGA 4873 Ncoa2 GTGCACTGAGTAACACAGCA 4874 Ncoa3 GCAGGGATTTAAAGCCAAGT 4875 Ncoa3 GAGGTTCTGCTGTCACCTCA 4876 Ncoa3 GCCTGTGACTTGTGTTTCCT 4877 Ncoa3 GATGGTGGCAAGGGCATGTG 4878 Ncoa3 GGCAGACATGCCGCTGCTTT 4879 Ncoa3 GAGTGAGGTCTCAGAACAGA 4880 Ncoa3 CATGTAAAGAACAGACCACC 4881 Ncoa3 GTACAAGAAGGCTGTGTGCA 4882 Ncoa6 GCTCTTACATGAAGCTACTT 4883 Ncoa6 GGAAACTACCTATAGATATT 4884 Ncoa6 GGCTCTTACATGAAGCTACT 4885 Ncoa6 GCTTTCCTTTCAGTGCAGGT 4886 Ncor1 GTTTGTTCTTTCTCAGATGG 4887 Ncor1 GCATGCTTGCTTACTGTGAG 4888 Ncor1 GTGCCTGACCTGTTATCCTG 4889 Ncor1 GATTCCGCCACCGAGGAGAC 4890 Ncor1 GCCGTGGCTGTCCTGACTTG 4891 Ncor1 GGAACTCAGCGGAACGAATG 4892 Ncor1 GTCCAGTCATCACCATATTT 4893 Ncor1 GTAGGAGGGTCGCTGGGTTA 4894 Ncor1 GTTCCGCTGAGTTCCAAACC 4895 Ncor2 GAAGGAGAAGCCATGGAGGC 4896 Ncor2 GGCTTTGCCTTATAGAGACT 4897 Ncor2 GGAAGTTCATTTCAGCCTTT 4898 Ncor2 GGCAAGGTGTGCTGAGGTGG 4899 Ncor2 GTTAAAGATCTAAGGCAGAG 4900 Nccr2 GTAGGAGCCAGGGAGGACAA 4901 Nccr2 GCTGGGTAGCGGCACTACTC 4902 Ncor2 GAGCCCTCACATTGCCAGCC 4903 Ncor2 GAGTCATCCTCGCCATCCCA 4904 Ncor2 GTTCTAGCTTTAAGCCTGCC 4905 Neurod1 GCATAGTTCTTGGATACCTT 4906 Neurod1 GTTATCTCCGCTTGCCTGAC 4907 Neurod1 GTCGCCAGTTAGAGACTCCG 4908 Neurod1 GCGCATAAGAACAAGGCAGC 4909 Neurod1 GGTAGGAGCAGGTGACCGTT 4910 Neurod1 GGTCGGGCTACCTAACTCCA 4911 Neurod1 GTAACTGCAAGGCCCTTAGA 4912 Neurod1 GAACTATGCTGGGTAACAGT 4913 Neurod1 GTCAGAACCTTGCCTTCTAA 4914 Neurod1 GTGAAAGTATGTGTGTGTTG 4915 Neurod6 GTGCATCTGGGTACCAGGGA 4916 Neurod6 GATTAGAAGAGCCACTCTGG 4917 Neurod6 GTGTCTGTGTGTAAACCTGG 4918 Neurod6 GAGGGTTCATCCAGGATTCA 4919 Neurod6 GAGAGGGAAAGTTTCATATG 4920 Neurod6 GTAGAGCTAAAGTGAGTCTT 4921 Neurod6 GTTGTAACATGGGAGATCCA 4922 Neurod6 GTGTCACCGCTATGATTCTT 4923 Neurod6 GTGCTGCTGCCACATGTCAA 4924 Neurog1 GGCTGCTGGGAGTTGTGCAA 4925 Neurog1 GTGCACTACTGAATCCAAGA 4926 Neurog1 GTCAATCAGTAGCAGGCAAA 4927 Neurog1 GATTGGCCGGCGGTAATTAC 4928 Neurog1 GAATTGTCACAAGGTCAGAC 4929 Neurog1 GAGCAAGATTTCAGGAGAAG 4930 Neurog1 GCATAATTTATGCTCGCGGG 4931 Neurog1 GCTGTCACAGGGACAGAAAG 4932 Neurog1 GGCCCTGTATTTATTTCTTT 4933 Neurog1 GGCTGGCTGTCTATTAAGTC 4934 Neurog2 GAATAAAGGATGGGAACAGT 4935 Neurog2 GTTTCCTCTCAAGTCCAGCA 4936 Neurog2 GTATGACCTCTGCTCCGCTC 4937 Neurog2 GTCACGTACGTGTGCCAGAC 4938 Neurog2 GGACTTCAACACACGCCATC 4939 Neurog2 GATGAAAGGAGAGTCTTGGG 4940 Neurog2 GAGGGCTACGGAGCAGGATT 4941 Neurog2 GCCAAACAGACCCTTAGTGG 4942 Neurog2 GAAACGTGTCTATGACTGTT 4943 Neurog3 GGGAGGTGGTAGGATTGGGT 4944 Neurog3 GGATTCCGGACAAAGGGCAG 4945 Neurog3 GCCCATTAGTCTCACGGGAT 4946 Neurog3 GTGAAGCTGCTAGTCCTCTC 4947 Neurog3 GCATGGGAGGAAGCTATGGC 4948 Neurog3 GGGTAGACCTTCCTGTGAAC 4949 Neurog3 GAGGACAGAGTGACCAGAGA 4950 Neurog3 GCCCTTTAAGTCACTTTCCC 4951 Neurog3 GACAATGTCTTAAGGCTCAC 4952 Nf1 GTATCTTCCTATGTGGCTAA 4953 Nf1 GCCATGCATAGTGGTGTGAC 4954 Nf1 GGGAATTCTAGTCTCCAACT 4955 Nf1 GGCAATGACAGCCTACGCAC 4956 Nf1 GTCCTTCAAACTCTGGTTCT 4957 Nf1 GGCCCAGTGGTGATCCAAGT 4958 Nf1 GTCTCGGACTGTGATGGCTG 4959 Nf1 GATGGTGTGTGTGTGTGTGG 4960 Nf1 GAGCAAGAAGCCAGCAGTGA 4961 Nf1 GAAAGGATCCCACTTCCGGT 4962 Nfat5 GTGTCCTCCTAAGTACACCA 4963 Nfat5 GTGTTATGGGCCAACGTGTT 4964 Nfat5 GGGAATGGAGTTCCACAGCT 4965 Nfat5 GTGAATGGTCGAATTTACTC 4965 Nfat5 GCTAATGTCAATGACAGTTT 4967 Nfat5 GTGTAATGCACACGCGTGCG 4968 Nfat5 GTATCAGAIGTTCAGATGAA 4969 Nfat5 GCTGATCCCGGGCTGGGAAA 4970 Nfat5 GAGCTGATTTGTAGCCAGGA 4971 Nfat5 GACCTGGATGTCAGCCAGGA 4972 Nfatc1 GGGACGAAACGGGAAGGAAA 4973 Nfatc1 GCCGCTTGTTTATGTAAACC 4974 Nfatc1 GGACCCAGTACAGGGCTGAC 4975 Nfatc1 GACTCCTGGGAAAGAGTTGA 4976 Nfatc1 GACCAGCCGGACGCATTGAG 4977 Nfatc1 GGCTAACTTGAGCATCACGT 4978 Nfatc1 GCTAGATGCTGCTGGAAGAG 4979 Nfatc1 GACGGAACGGATTGGAGGGT 4980 Nfatc1 GGCCGTGGGAAAGCACCTTG 4981 Nfatc1 GTCTTGAGACAGCCAGACCC 4982 Nfatc2 GTCTCTTTGGAGGGTGGCCC 4983 Nfatc2 GCTTCTGCTGGTTTCTCTCC 4984 Nfatc2 GTTTGCACGCAGCTCCTGCA 4985 Nfatc2 GAGATAAAGCCAGCTTTGAT 4986 Nfatc2 GCGTAAACACATGCGTTGCC 4987 Nfatc2 GTTTGTAGAAACCTATGCCT 4988 Nfatc2 GGTGATGACTCACTAGCCCT 4989 Nfatc2 GCACAGTAAGAGGAGATTGG 4990 Nfatc3 GAAGTTGGTATGGAGGGATG 4991 Nfatc3 GGAGCTCATGTCGAGGAAGT 4992 Nfatc3 GGTGAAAGGAGTATGCATGT 4993 Nfatc3 GTGAAAGGAGTATGCATGTT 4994 Nfatc3 GCTACAGGAGTAGTAGAAAC 4995 Nfatc3 GCGATAGGTCGGTGAGGAGG 4996 Nfatc3 GATGGTGAGCAAGAGCTTTA 4997 Nfatc3 GCTACTAAGTGAGCCTCAGG 4998 Nfatc3 GCATTCAGATCAGCAGGAAG 4999 Nfatc3 GGGAACCCACGTAGGCCAAT 5000 Nf8tt4 GGAGAACAGACCCGGAAACT 5001 Nfatc4 GGTCTTCCAGACGAGGGAAG 5002 Nfatc4 GGCAGGGAGGAGAAGCTTGG 5003 Nfatc4 GGCTCTGAGCTGCTCTGTAG 5004 Nfatc4 GACAGTGAGGTGCCCTTTCT 5005 Nfatc4 GTGGTGGCTAAGAACTGCAA 5006 Nfatc4 GGAGATTTGCCAGGTTTATT 5007 Nfatc4 GAAACACTGCCCAGGATCAA 5008 Nfatc4 GAACTGCAAAGGCTCCTTGG 5009 Nfatc4 GTAACCTGAGAAGAACCCAA 5010 Nfe2 GATCCTCAAGGAGTGTGTTG 5011 Nfe2 GGGAATATGGAGGCAGGATG 5012 Nfe2 GACAGAGCTCTGCCTTGGGA 5013 Nfe2 GACACTATGGGAACTTGCTA 5014 Nfe2 GGGCAATTTCCGCCAGAACT 5015 Nfe2 GAAGTGGGCTGTAATGCCTC 5016 Nfe2 GCAAATTGGACTCAGATACC 5017 Nfe2 GTCTATGCAATCCACTCAGG 5018 Nfe2 GGGATGGCTTTATAGCAAGA 5019 Nfe2 GTGTCTCCTAAAGACCGACA 5020 Nfe2l1 GTGGGTAACTGGCATATCTG 5021 Nfe2l1 GAATTGTTGGTCATTGTGAT 5022 Nfe2l1 GGGTGGTGCAGTGAGAGTCC 5023 Nfe2l1 GACTAGCCATCGTCTTCTTA 5024 Nfe2l1 GTAAACTCCCTTTAGCTCCT 5025 Nfe2l1 GGCAGCCTAGGTAACAAGTT 5026 Nfe2l1 GCTAGGTAACAGGCGGTGGG 5027 Nfe2l1 GACCCTCAAGGACGGAATCT 5028 Nfe2l1 GGGTACCGGTTTCCGTTGCC 5029 Nfe2l1 GCAGCTAGGTAACAGGCGGT 5030 Nfe2l2 GATGTTTGTATGCGACAGTG 5031 Nfe2l2 GGTTCTGCAGGTCCAAATCA 5032 Nfe2l2 GTGAGACATCTAAGGCAAGA 5033 Nfe2l2 GAGATTACTGTATGACCTTG 5034 Nfe2l2 GGCATTCCTTTCTTCACCTC 5035 Nfe2l2 GAGAGGAGGATCAACAGTGG 5036 Nfe2l2 GGCAGTTAAAGAAGTATGTT 5037 Nfe2l2 GCTCTCCTGCCGACAGAGGT 5038 Nfe2l2 GGAGCTGCCACTCCCTGATT 5039 Nfe2l2 GGGCACGTGGGAGAAGTGGA 5040 Nfe2l3 GTGGTCCAGGTCACTACCAC 5041 Nfe2l3 GGAAAGTTGGAGAAGTTGGG 5042 Nfe2l3 GGGTGGGAGTGGAGGAAAGT 5043 Nfe2l3 GTGCTGCAATGCTGGCAGCT 5044 Nfe2l3 GCTGCCAGCATTGCAGCACT 5045 Nfe2l3 GTCACTACCACAGGGCTGCC 5046 Nfe2l3 GCAATCTCCAACAGCACACG 5047 Nfe2l3 GGAGAAGTTGGGAGGAGACA 5048 Nfe2l3 GGACACACTCATATCTGTTC 5049 Nfia GATAGGAGAGAAAGCAGGAG 5050 Nfia GCAAAGGCTGTAGTTGGAAC 5051 Nfia GCCAACTGAACCAGAAAGCA 5052 Nfia GTAGTTATATAGGCTAGTGT 5053 Nfia GATGCCGTAGAAATGAATTC 5054 Nfia GTTCACAATCTTGAGGAGGG 5055 Nfia GAAACAACAGTGGTTTAGCT 5056 Nfia GGATTTACCCTTCCTAACAA 5057 Nfia GCATAGGACATTCGGGATCC 5058 Nfia GTTTGCTTAAGCACATCCTG 5059 Nfib GTTTGAGCATTTCCCTAATG 5060 Nfib GCTCCATGTCGCCCTAGCTT 5061 Nfib GAAATAACCTCTCCCTGGGC 5062 Nfib GAACTTGATTCCCGGGACCC 5063 Nfib GGGTGCCAGGATTTCGCTGG 5064 Nfib GTTAAAGCTGGTATTATCAG 5065 Nfib GAACGCGCGTTTGCAGGAGG 5066 Nfib GAAGCAATAACAGTGTGGTG 5067 Nfib GAGAAAGCAGAGGTCTCAGG 5068 Nfib GAGAGAGTGCCCGCGCGAAA 5069 Nfic GGGCGCGCATCCAATCTGAC 5070 Nfic GTGCTGTCCCTAATATAGGG 5071 Nfic GACTTGTGAGTGGACACTGG 5072 Nfic GTCACTCACAGGCATCTCCT 5073 Nfic GTTGGCTCGGTAGTGACACC 5074 Nfic GCTGCTGCAGGGACTCAGGT 5075 Nfic GAGCTATCCATTTGTAGAGG 5076 Nfic GGTGGTTTGGTCAGTATCCG 5077 Nfic GACATGGGATGTGAGGGCTG 5078 Nfic GTCACTAACCCAGCAGGGTT 5079 Nfil3 GAAATGGGAGACAGAGCATC 5080 Nfil3 GTGCGTCACTGTCAGGAATA 5081 Nfil3 GATCCCTAAGTAGGTAGAAT 5082 Nfil3 GAAATGTCCCGCTCCTCTCC 5083 Nfil3 GCGTCCGGTGTTACACCCTG 5084 Nfil3 GAACTTGCCTGACTCACCCA 5085 Nfil3 GAGGATAAATCTCCTTTCAC 5086 Nfil3 GGTGGCAAGGTCCTTGAGCT 5087 Nfil3 GTTTCCCGGAGAGLCACAGA 5088 Nfix GGGAGGAATAGAGCAAATGA 5089 Nfix GCCATTGAACAGAAAGGCCA 5090 Nfix GGGAAAGTCCACACAAGTTG 5091 Nfix GGCCATGTTTGCAATTGTTT 5092 Nfix GGCGCTGCCTTCCCGTATAT 5093 Nfix GTGCTGCCCGTTTAGGGTAT 5094 Nfix GCGTCCATGCTCATAAACCA 5095 Nfix GTCCCAAACCTCTGAGATGG 5096 Nfix GTAGGACATAGAGAACTGTT 5097 Nfix GAAGGCAGAGGGCCTTTAGG 5098 Nfkb1 GACTCTCTAATATACAGTGT 5099 Nfkb1 GAAATTGTAACCTACGGGCC 5100 Nfkb1 GATTTGTAGAAGTTTGAGTG 5101 Nfkb1 GCCATTACTGAGGCGTTGAA 5102 Nfkb1 GATCGCTCCATAGAGCGGAC 5103 Nfkb1 GTCTCACTACTGAGTTCAAG 5104 Nfkb1 GTTGATTACAGGGCTCTTTA 5105 Nfkb1 GTTCTAACCAATGATGCCTA 5106 Nfkb1 GAGGCTCTGGAGAACTCCCA 5107 Nfkb1 GTTTGGTTGTTCCATGGCAG 5108 Nfkb2 GTTTGCTCCAGGCTGCGGAG 5109 Nfkb2 GATGTTTATTCTGTAAGTGG 5110 Nfkb2 GAGGGACCTCCTAGCTGGGA 5111 Nfkb2 GAGGACTTTAGATGACAGGC 5112 Nfkb2 GGGACCTCCTAGCTGGGAAG 5113 Nfkb2 GCTGTGCACAGGCAAGCTAA 5114 Nfkb2 GCCTTTCAAGTCAAATAGTT 5115 Nfkb2 GTGCGCTGTGAGTGCGTGTG 5116 Nfkb2 GGACTTTAGATGACAGGCTG 5117 Nfkb2 GACAGGGTGGTGTGAAACTT 5118 Nfkbib GTTCTTTGGGTAGAAAGGAA 5119 Nfkbib GCCGGCGGCCATATTGATAA 5120 Nfkbib GTACAGGCCTGAGAGCACGA 5121 Nfkbib GGAGATGCAGTGAAGGTAGG 5122 Nfkbib GAGCTGTOACAGCCTGCTGT 5123 Nfkbib GGCGAGACTGGACTGAAGGA 5124 Nfkbib GCATTCAGTGGTTGTAGGCA 5125 Nfkbib GTCGTATAAGTGAAGTGATA 5126 Nfkbib GGAGTACCGGGCAAACTCTG 5127 Nfkbib GGGAGACAGGATCTACCTGA 5128 Nfya GCGGTGTCAAATCCAGGAAG 5129 Nfya GCGCCCGCTCTCGGTAGTAA 5130 Nfya GCCTGCGTGGTATATAATTC 5131 Nfya GTAGCTATTCTGAAGAGGGA 5132 Nfya GCCCTCCTCCAAGCAGGGAA 5133 Nfya GTTGCCCTCCTTAGGGTAGG 5134 Nfya GGGTCATCCTTCACCTGCAA 5135 Nfya GAGAAGCAGGGTTGAAGCAG 5136 Nfya GCTTAGAAATAGGTGGGCAG 5137 Nfya GAGGATTGTCGAATGGGTGC 5138 Nfyb GCTACCATTCTCCCTTGTGG 5139 Nfyb GGTACAGGGTGGAAGTCGGC 5140 Nfyb GAGGAGGGTGTCCTAGAATT 5141 Nfyb GCTGTGTGCCTGAGGTGGCT 5142 Nfyb GGAAGGCCTTAAATGCACAG 5143 Nfyb GGTAGTAAGCCAACTTGGTA 5144 Nfyb GTAAATCTGGCTAGTAAGAA 5145 Nfyb GGATGAGAACGCCGGCCTCT 5146 Nfyb GGTAAATCTGGCTAGTAAGA 5147 Nfyc GCTGCGCACTACGCGTTGCT 5148 Myc GGAAACAGTCATGCTGTTAC 5149 Nfyc GTCTACAGTAATATCAGCTA 5150 Nfyc GGGTTGTGCATTGAGGCAAC 5151 Nfyc GCAGGAAGGGCTATAGCCCA 5152 Nfyc GTAATACATGCCTCTAATCT 5153 Nfyc GATAGTCTGTGATGTAATCT 5154 Nfyc GGAGCAGGAGGTCTTTCCCA 5155 Nfyc GAAACATTCTAGGGTGCTGA 5156 Nfyc GTAATTTCACTGCTTCTGAT 5157 Nhlh1 GGTCCTAGTCCTCCTTATCC 5158 Nhlh1 GACCCAGGTCCCGCAGACTT 5159 Nhlh1 GCACAGTGAGCTACAGTATA 5160 Nhlh1 GCAAAGATGAGGAGAGAGGA 5161 Nhlh1 GAAGAACCTTGAGAGACCAC 5162 Nhlh1 GTTCATCCCAACTCCCTACA 5163 Nhlh1 GGAACGAAGGCCTGAGGAGG 5164 Nhlh1 GTGTTAAGGCGTCATCCAAA 5165 Nhlh1 GGGAAGACAGAGAGGTAGGG 5166 Nhlh2 GGAGGTGGAAGATCCAAGAA 5167 Nhlh2 GGAGTGACGATGTGGGAGAG 5168 Nhlh2 GTCCCTGGTCACCCTCGTGT 5169 Nhlh2 GAAGGCTGGGCATCTGTGAG 5170 Nhlh2 GAGAGGAAGGTTTCCCAGCC 5171 Nhlh2 GAAAGCACAGCTGCTAGGAT 5172 Nh1h2 GGAACAGGGAGACAGGAGGT 5173 Nhlh2 GTGTCACAGCAAGCTGATGA 5174 Nhlh2 GGGAGCCAGGAGTGACGATG 5175 Nhlh2 GGGATACCTGGGTTGAGCAG 5176 Nhlh2 GAGGATGCTCAAACCATGGC 5177 Nkx1-1 GCGGGATCAGTTGGCTGTGG 5178 Nkx1-1 GGCGGGAGTCAAAGCCAGTG 5179 Nkxl-1 GGGAGCAAAGACCAAGATGG 5180 Nkx1-1 GTCAAAGCCAGTGAGGATGG 5181 Nkx1-1 GCTCATGTCAGAATATTGAG 5182 Nkx1-1 GAAGTGGAAGGAGGAGCAGA 5183 Nkx1-1 GTCCCACCTGGGTCCTTCAG 5184 Nkx1-1 GAGCCCGGCTTTGGAGGATG 5185 Nkx1-1 GACCTGCCTGCTGATGGGTA 5186 Nkx1-1 GTGGACTGTGCTCTGGCTCC 5187 Nkx1-2 GTAAGAAGTAGGAAGAGGAG 5188 Nkx1-2 GATTTGCACGCATTGTCCCT 5189 Nkx1-2 GGATATGTGTGTGTGTGCGG 5190 Nkx1-2 GGCTGTCCTCCCTGGAGACT 5191 Nkx1-2 GGCAAGGCTTTAAAGTCGGC 5192 Nkx1-2 GCCCTAAGCCTTCAGCTCTC 5193 Nkx1-2 GGCATCACATCCCAAAGCAG 5194 Nkx1-2 GCAATCAGGTCTGGCCTCTG 5195 Nkx1-2 GGACAATCGCTTGAGAAGCC 5196 Nkx1-2 GTTCTGTGTGATCGTGGCTG 5197 Nkx2-1 GTGTGCATACACACTGTATG 5198 Nkx2-1 GGATTAGCTAGGTTAGTGCT 5199 Nkx2-1 GTGCATACACACTGTATGTG 5200 Nkx2-1 GTGTCTAGGAGGCACCTGCC 5201 Nkx2-1 GGTGGTCATAGGAACACCAA 5202 Nkx2-1 GACTCAGTTCCACTCTGCAA 5203 Nkx2-1 GTGTCAGTGACTTAAATAAT 5204 Nkx2-1 GCGTTGTGTCTCTGTAGCTA 5205 Nkx2-1 GGCAAGTGGTAGATCTGGTT 5206 Nkx2-1 GCAGGAGGCACCAGCCATGA 5207 Nkx2-2 GTTGGGAGGGTAGAGGGCCT 5208 Nkx2-2 GGCCCAAGCAGCTGTGAGCT 5209 Nkx2-2 GGTTGAATGCCATGACAACT 5210 Nkx2-2 GTTCTGCTTCGCCTGGACTA 5211 Nkx2-2 GGTTTCCTTAATATTGTGGA 5212 Nkx2-2 GTCACAAGGCTCTAGAAACC 5213 Nkx2-2 GGTGAAGACCCAGAAATCCA 5214 Nkx2-2 GGGCGGTCTAGAGAAGGGAG 5215 Nkx2-2 GCTCTAGCAGTGGCAGGGTT 5216 Nkx2-2 GAGCACTGCTTGGTTGGACC 5217 Nkx2-3 GGTTCACCCACCCAGGGTTC 5218 Nkx2-3 GGAGAGGAGTGTTGTATCTG 5219 Nkx2-3 GAGCCGAATTGCCTCTTCTA 5220 Nkx2-3 GTTTCAGAAAGTTGAGGCCT 5221 Nkx2-3 GTCTGAIGGAGACCACCTTC 5222 Nkx2-3 GGGTGGGTGGAAGTCTCCAG 5223 Nkx2-3 GCCTGGCCTGAGTCAGTATT 5224 Nkx2-3 GCTGTCTGCTCCCTACCTGC 5225 Nkx2-3 GGGTACCCAACAAGGATCCC 5226 Nkx2-3 GGAAAGAAAGAACTGCGGGT 5227 Nkx2-4 GTGAGCTTGATAATAGACTC 5228 Nkx2-4 GTATGGTGCTCCTACTCTCA 5229 Nkx2-4 GGACTTGGGACACTTGAGCT 5230 Nkx2-4 GTGAGGAGAGGAAATGGGAA 5231 Nkx2-4 GTGTTGTGAGGAGAGGAAAT 5232 Nkx2-4 GCGAAGGATGGAGCTAGAAA 5233 Nkx2-4 GAGTCCAGGTTAAACTTTGG 5234 Nkx2-4 GCAAAGAATCTGCCTGTTGT 5235 Nkx2-5 GTTATGCTGAGTCTAAACGC 5236 Nkx2-5 GGGAGTCCTGTTAAGTGAAT 5237 Nkx2-5 GTTGTGCCTTTCAGAGCACA 5238 Nkx2-5 GGGTTCTGAGCTGAATGGAA 5239 Nkx2-5 GATCGGGCTAGAAAGGGTCT 5240 Nkx2-5 GCTGAGTCTAAACGCAGGGT 5241 Nkx2-5 GCGGCTGATTGCAGGAAAGG 5242 Nkx2-5 GATTGAAGATTGGTTTGTGT 5243 Nkx2-5 GTTGAAAGGGACAGAGACAA 5244 Nkx2-5 GATAGTCTCCCACTCCTGCA 5245 Nkx2-6 GGGTTTGGAGGGCTAGTTAG 5246 Nkx2-6 GAAGGCTCAGGGTTAGCACG 5247 Nkx2-6 GCTTAAGAGCAAAGACCTGG 5248 Nkx2-6 GAAAGCAGGGAGCCAGCCAG 5249 Nkx2-6 GGGTTAGCACGTGGTTTCTG 5250 NkX2-6 GTGCTATCTAGACCTGGGAG 5251 Nkx2-6 GAGATCAGTGGACCACTTGA 5252 Nkx2-6 GTACAACAGAGAGCTCCCGA 5253 Nkx2-6 GTGGTTTCTCTGGGAACCAA 5254 Nkx2-6 GGGAGAGTGCTGTTCAAACT 5255 Nkx2-9 GGGCTCAGTTGGGAGGACCA 5256 Nkx2-9 GCAATGTACAAGTCTTCCTT 5257 Nkx2-9 GGACCCTGAGTCTGGGACTC 5258 Nkx2-9 GTCTTGGGAGAAAGCAGGAG 5259 Nkx2-9 GTTTGAGCAGGGAAATGACC 5260 Nkx2-9 GGCACCGACTTGGGAGATGA 5261 Nkx2-9 GCTGAATTCGAACCTGACAA 5262 Nkx2-9 GAGCCAGAGGAAGACTAGAA 5263 Nkx2-9 GCACCGACTTGGGAGATGAA 5264 Nkx2-9 GCCAGAGGCAGAGGATGCAC 5265 Nkx3-1 GGGAAACCAGGAAAGGTTAA 5266 Nkx3-1 GGCATAGCCACTGCACCACT 5267 Nkx3-1 GGAATCAGAACTGAGCAGGC 5268 Nkx3-1 GGTTAAGGGCTCATCAGGGA 5269 Nkx3-1 GCAGTTACTCACTGTTTGGA 5270 Nkx3-1 GGGCTCCAGGTGACCCTCAA 5271 Nkx3-1 GTTGTCTAGATGTGTCCAGC 5272 Nkx3-1 GGTACAGTGCTATTTCAGTT 5273 Nkx3-2 GCTGGAGAAGGAACAGATTG 5274 Nkx3-2 GATGTTAATTTCAGAAGCTG 5275 Nkx3-2 GCGAGGAATTGGAAAGCATT 5276 Nkx3-2 GTGAGGAATGACACTCTGAT 5277 Nkx3-2 GTGAGCTCTGGACATGCTGA 5278 Nkx3-2 GTGTGATGGCCTGTGGACAT 5279 Nkx3-2 GGACCCTGCAGCATCTTCAT 5280 Nkx3-2 GCGAGGCGGACGACTTTGAC 5281 Nkx3-2 GGAATGACACTCTGATGGGA 5282 Nkx3-2 GTGGATTGGCTGGTTCCAAC 5283 Nkx6-1 GCCTGCCAGTCTCTAGGCTC 5284 Nkx6-1 GTGATAATGATCTAGGGAGT 5285 Nkx6-1 GGTTTGAAAGCAGCAAACCC 5286 Nkx6-1 GAGCTAATGGAGCAGGCAGG 5287 Nkx6-1 GCCTCTAGCCAGGTGCTGTC 5288 Nkx6-1 GTGTCACTGACTGCCCTTTC 5289 Nkx6-1 GGGTTTAGGTAGCAGAGGGC 5290 Nkx6-1 GGTCCAGACACCGTTGGAGG 5291 Nkx6-1 GATCATTATCACTTATGAGG 5292 Nkx6-1 GGGCAGTTGATACACCAGTG 5293 Nkx6-2 GGATGAATGAAGCGGGAGTG 5294 Nkx6-2 GAGACAGGGTAGGTGTGCTC 5295 Nkx6-2 GCTTAGTTCAGGGAAGAGCC 5296 Nkx6-2 GTGGGCTGTTGTGAACTTGT 5297 Nkx6-2 GTGCCTAGTGGTCCTGTCCT 5298 Nkx6-2 GGCGAACTATGAGACAGGGT 5299 Nkx6-2 GTTCAGGGAAGAGCCTGGGA 5300 Nkx6-2 GGGCGAATGGAAATTTGTTA 5301 Nkx6-2 GCATCTCCGTAGGTGGGCTG 5302 Nkx6-2 GGTCCTGGCGATTTAAGCAG 5303 Nkx6-3 GAGCAATCACTATTCTCTGG 5304 Nkx6-3 GAACAGAGCTACACAGAAAG 5305 Nkx6-3 GGCATTCCAcTGAAGAATGG 5306 Nkx6-3 GAGACCTAAGCAGGGCAGTC 5307 Nkx6-3 GATGAGCCAAGAAGAAGCGA 5308 Nkx6-3 GTCCACCAATGCCCAGATCC 5309 Nkx6-3 GGCTCATCTTTGGGAGTTCG 5310 Nkx6-3 GCGTCACATTCATTCCGACA 5311 Nkx6-3 GTAGGGACTGGAGGCTCCTG 5312 Nobox GAGAGACTTCTGACAGGAGT 5313 Nobox GGGTCAGCACTTCTAAGAAG 5314 Nobox GACTTCCAATAAGCTGCTGT 5315 Nobox GTTTAGTCTCCTCCAGGCCT 5316 Nobox GCTTCCCAAGGAAGGCCTTG 5317 Nobox GCCTGCTTGATGGAAAGGTA 5318 Nobox GGAGCAGAACAGCAATGGAA 5319 Nobox GCTCATATTCAAGGGTCAAG 5320 Nobox GCATGGTGCTCTTGCTGGTG 5321 Nov GCTGGAGAGTCAAGTCAAGC 5322 Nov GGTTGGAACTGTGAGGGCGG 5323 Nov GGAGCCATATGAGCTGGGCA 5324 Nov GGAGGCGTCCATCAGGTTAG 5325 Nov GCTGATTCTTGACCCTCTCC 5326 Nov GCAAAGTTTAGGCAGAGGTA 5327 Nov GTGCCATCTTGGAGTATTAG 5328 Nov GACTAAGCTTTGCCTAAAGG 5329 Nov GGGAAGAAAGGTGTAATTTA 5330 Npas1 GCTGGCAGAGCTTCCTGATG 5331 Npas1 GAGGCATAGAGACAAGACCT 5332 Npas1 GTGAGGATGCICCTACACTC 5333 Npas1 GGCATCCTGGAATTCTCACT 5334 Npas1 GTTACAGAACCTTCCAACAT 5335 Npas1 GCGATCGTGGTGGGACTCCA 5336 Npas1 GTGTGCTCACACGCATTCCA 5337 Npas1 GGGAACTATCCAGCAGGCAG 5338 Npas1 GTGACAGTTAAAGCTGCGCA 5339 Npas2 GTGTTTCTTCTCACCCAGGA 5340 Npas2 GAGGTGAGTCCTGCGCACTC 5341 Npas2 GATCTCTGGACGCCAGTAGA 5342 Npas2 GGCAGGGTTTGTAGGATGCT 5343 Npas2 GTCCTGGCTCATGGTGTTCT 5344 Npas2 GGCTAGACCAGCCGGAAGAG 5345 Npas2 GGTGCAGGTCCAGTTTGCAC 5346 Npas2 GATAGGTAGCCAGGAGCCAA 5347 Npas2 GTCAGAAACAAGCCTGAGGA 5348 Npas2 GTGAGAGTGAACGCTGTTCG 5349 Npas3 GAGCATTTCTACCTGGGTTA 5350 Npas3 ACAGTCACAGGGAGACTGGG 5351 Npas3 GAAAGATTGCATGGCACTAC 5352 Npas3 GGAGAACTTGATAGTTATCT 5353 Npas3 GTGAGCGGAAGAGTTGGTCT 5354 Npas3 GGGTTTCACTGAGCTAGGGT 5355 Npas3 GCCTGCACAGAGCAAAGGGC 5356 Npas3 GACGCCTGCCTTTCATTAGG 5357 Npas3 GTTTCCAGAATCATCAGGGT 5358 Npas3 GAAATAACCACCATCCGGGC 5359 Nr0b1 GATGCTGGATCGAGGAGCTG 5360 Nr0b1 GTTACTATCCTATGATGGTT 5361 Nr0b1 GAGGTCAGAGTCTAAGTTAA 5362 Nr0b1 GACCTTAAGGTGCAGGACTT 5363 Nr0b1 GGGACACTATCAGGAATAAA 5364 Nr0b1 GAACACTGAGCCAATGGGTA 5365 Nr0b1 GGTGACGAAGGCCAGCAATT 5366 Nr0b1 GGAACACTGAGCCAATGGGT 5367 Nr0b1 GTGGAGTGAAGAAGGAAAGG 5368 Nr0b1 GGATGCTGGATCGAGGAGCT 5369 Nr0b2 GAGACAAATGTCCAGGACAG 5370 Nr0b2 GAGAGAACAAACAGAGCTCA 5371 Nr0b2 GCGATAAGCCACTTCCAGGC 5372 Nr0b2 GTTCTACCCATACTGTAGGT 5373 Nr0b2 GAACCCTGGTCTTATGTGCA 5374 Nr0b2 GTCTCTAGIGGTCAGAGGTA 5375 Nr0b2 GGTTCTACCCATACTGTAGG 5376 Nr0b2 GTGACTGCTCCTTTCCATCA 5377 Nr0b2 GTATGGCCCACCTACAGTAT 5378 Nr0b2 GAGACTGTAAGGTCTTCCTG 5379 Nr1d1 GGGTAGGACTGGCATAGCAC 5380 Nr1d1 GCAAGGGCATGTGAATTCCT 5381 Nr1d1 GGGAGGAGCTAAGACAAACA 5382 Nr1d1 GAGGTAGTACTGGGACTAGG 5383 Nr1d1 GTGAGAAACACAGAGGCCTG 5384 Nr1d1 GTTGGCTGGGAGGAGGGAGA 5385 Nr1d1 GCTCCTCCCAGTTCCTCCCA 5386 Nr1d1 GATCTCAACGTGCCGGCTGC 5367 Nr1d1 GCTGGGAGGAAGGGAAGGAG 5388 Nr1d1 GGCAAGGGCATGTGAATTCC 5389 Nr1d2 GCTCAGAGTCCTGGAAAGCT 5390 Nr1d2 GCAGTAACCATGTGGGACCA 5391 Nr1d2 GGAGCCTGTATAGAGGAAGT 5392 Nr1d2 GAGGTCAGGACCGCTCGTTG 5393 Nr1d2 GGGATAAGCGGCTGCGAGAC 5394 Nr1d2 GGTCCACGGATTGGAAGAAG 5395 Nr1d2 GCGAGACAGGCTGGGAAGGA 5396 Nr1d2 GAGCAAACAACCTCTAGCAG 5397 Nr1d2 GTCACCTCCATGGTCCCACA 5398 Nr1h2 GATTCCCAACTGTCCATAAG 5399 Nr1h2 GCTGCGAGGAAAGTGAGGGA 5400 Nr1h2 GACAGACTTCCGGTCTGCCA 5401 Nr1h2 GGAGATGGCAAGATGGTTAC 5402 Nr1h2 GAGGTTATCTGAGGTTGGAC 5403 Nr1h2 GAGATGCTGGCCCTGGAAGC 5404 Nr1h2 GCGTCACTTCCGGAAGTAGG 5405 Nr1h2 GAGAGCTGCGAGGAAAGTGA 5406 Nr1h2 GGAAGTAACTTCAGAAGCCT 5407 Nr1h3 GAGGGAGCGCCAAGAGTAAA 5408 Nr1h3 GGGTGAAGACAGGCAGGTGC 5409 Nr1h3 GGGAAGGGTGAACATGGTTG 5410 Nr1h3 GAGCCTGTGAGCAGGAAACT 5411 Nr1h3 GACTGGGAACACGTGCAAGA 5412 Nr1h3 GAGGCTGCTGGGATTAGGGT 5413 Nr1h3 GAAGAGATTAGGGAGTCAGG 5414 Nr1h3 GAGGCAGAAGCTGAAGATGG 5415 Nr1h3 GACAGTGCTGCCTCTTCTAC 5416 Nr1h3 GAGGTGTCTTTGGGAGGAGG 5417 Nr1h4 GGAGGAGAAAGAAATGTATT 5418 Nr1h4 GGGATTCTCCAAACTGCTTC 5419 Nr1h4 GATACATGTAGAGGAGCTGA 5420 Nr1h4 GGATGTCAGCAAATTATGGC 5421 Nr1h4 GGAATAATTCCAACCATCAC 5422 Nr1h4 GGATCTTTACCTTTGTAACT 5423 Nr1h4 GCTGGAGGTTAAATGCCACA 5424 Nr1h4 GATCAAGGTGTTTACAAAGG 5425 Nr1h4 GTTCTTAGGAGATTAGAGGG 5426 Nr1h5 GTCCCAGCACCTATGTTAAT 5427 Nr1h5 GATCATTGCTGGCAAGGCAA 5428 Nr1h5 GAACTCCTCACTTACCCTTA 5429 Nr1h5 GATCTTGCTGCTGCGTGTCT 5430 Nr1h5 GAGAGCTGTACAGAAAGAAC 5431 Nr1h5 GAGCTGTACAGAAAGAACAG 5432 Nr1h5 GCACTGCTCTGCAGAGTGTC 5433 Nr1h5 GATGAAATCAAACGGACAGG 5434 Nr1h5 GTCACATCTTCTCTGACGGA 5435 Nr1i2 GGAGGAAATAGCTTCGAGAC 5436 Nr1i2 GAAGAGCATTTCTCTCCTTT 5437 Nr1i2 GAGTCACTCCCACGCATGGC 5438 Nr1i2 GGACAAGACGGGCTCCATTG 5439 Nr1i2 GGGACACTTATTTCCACGAG 5440 Nr1i2 GAGTGACTCAGGTCCTCTCT 5441 Nr1i2 GCCAGAGAACCAGAGAGAAT 5442 Nr1i2 GGGAAATTGAACAAACCAGA 5443 Nr1i2 GCTAGCTCGGGTGCTGGACT 5444 Nr1i2 GGAGTGACTCAGGTCCTCTC 5445 Nr1i3 GTGTTGGTTGGTGGCAGATG 5446 Nr1i3 GTGCCTGCTGAGGTCAGAAG 5447 Nr1i3 GTAGCATTGGGCAAGCTATG 5448 Nr1i3 GTATCAGGGTTGGAGCCTGG 5449 Nr1i3 GACCTCAGCAGGCACAAATA 5450 Nr1i3 GCATGGATCCTGAATAAGCC 5451 Nr1i3 GGATCCCACTTTCTTACGTG 5452 Nr1i3 GCCACCAACCAACACTTCTC 5453 Nr1i3 GGGATCCCACTTTCTTACGT 5454 Nr2c1 GCAGGAACTGTTAACTATCT 5455 Nr2c1 GGAGTCTGTGTAGGATAACA 5456 Nr2r1 GACACCAGAGTTGCAGGTAT 5457 Nr2c1 GTACCCTTCTCCCTCGAATC 5458 Nr2c1 GCCAGTGAGGTTCATCTAAA 5459 Nr2c1 GCAGAATCCTGAGCCGGAGG 5460<