INTRANASAL DRUG DELIVERY DEVICE, SYSTEM, AND PROCESS
Embodiments relate to an intranasal drug delivery device, system, and process. The drug delivery device can have a compliant/flexible soft nib. The drug delivery device can have an actuator and shot chamber. The drug delivery device can have a non-air interface mechanically pressurized fluid reservoir. The drug delivery device can have a facial or device recognition application to prevent intentional or unintentional misuse.
This application is a Continuation of U.S. patent application Ser. No. 16/944,080, filed Jul. 30, 2020, which is a Continuation of International Application No. PCT/CA2019/050455, filed Apr. 12, 2019, which claims the benefit of priority of U.S. Provisional Patent Application Nos. 62/656,463 filed Apr. 12, 2018 and 62/774,444 filed Dec. 3, 2018, all of which are incorporated herein by reference in their entireties.
FIELDThe present disclosure generally relates to the field of drug delivery and intranasal devices.
BACKGROUNDThere are various devices currently available for delivering drugs to the nasal cavity. Examples of prior art intranasal delivery devices include: US 2016/0367774; US 2017/0072145; US 2016/0310683; US 2013/0331916; US 2015/0165139; US 2015/0080785; US 2016/0310683; U.S. Pat. No. 7,799,337; US 2007/0789976; US 2013/0142868; US 2014/0083424; US 2011/0132354; US 2002/0017294; US 2011/0088690; U.S. Pat. Nos. 9,707,226; 8,001,963; 9,480,644; 9,550,036; 5,331,954; 6,112,743; 6,180,603; 7,296,566; 5,224,471; and 5,307,953.
The inventors have determined a need for improved intranasal delivery devices.
SUMMARYIn accordance with an aspect, there is provided an intranasal drug delivery device having compliant or flexible, soft nib to precisely locate the dosage and provide comfort for user. The term drug can also be used herein to refer to other agents such as vitamins, fragrance, saline or non-pharmaceutical agents.
In accordance with an aspect, there is provided an intranasal drug delivery device having a cocking mechanism and actuator to load and release dosage.
In accordance with an aspect, there is provided an intranasal drug delivery device having a non-air interface mechanically pressurized fluid reservoir to enable dosing independent of orientation and to load shot chamber. In some example embodiments, reservoir can be collapsible from external pressure, including ambient air pressure.
In accordance with an aspect, there is provided an intranasal drug delivery device connectable to a facial or device recognition application to prevent intentional or unintentional misuse.
In accordance with an aspect, there is provided an intranasal fluid delivery device comprising a dispensing tip connected to a hollow needle, a shot chamber carrying a fluid, the shot chamber having a diaphragm at one end and a plunger at the other end, and an actuator connected to a push rod moveable toward the shot chamber and having a locking mechanism, wherein pushing the actuator releases the locking mechanism, allowing the push rod to push against the plunger, exerting pressure on the fluid and forces the needle through the diaphragm into the shot chamber such that the fluid flows out of the needle into the dispensing tip.
In accordance with an aspect, there is provided apparatus for delivering fluid to a nasal volume comprising a housing having a first end with a dispensing opening and a second end with an actuating opening, a dispensing tip coupled to the dispensing opening, a capsule within the housing between the actuating opening and the dispensing opening, the capsule comprising a tube pre-filled with fluid between a diaphragm and a plunger, and, an actuator coupled to the actuating opening, the actuator comprising a push rod moveable into contact with the plunger and held back by a locking mechanism, and a spring urging the push rod toward the plunger.
In accordance with an aspect, there is provided a method for targeted intranasal fluid delivery. The method comprises inserting a compliant dispensing tip into a nasal cavity, and ejecting a fluid from the compliant dispensing tip to deliver a laminar liquid bolus to a targeted region within the nasal cavity. The targeted region may be an olfactory region of the nasal cavity. Inserting the compliant dispensing tip into the nasal cavity may comprises inserting the compliant dispensing tip at least into an upper nares. Inserting the compliant dispensing tip into the nasal cavity may comprise positioning an end of the compliant dispensing tip proximate to the olfactory region. The compliant dispensing tip may comprise a cannula. Ejecting the fluid may comprise ejecting the fluid with a controlled velocity profile to limit shear forces on the fluid.
In various further aspects, the disclosure provides corresponding systems and devices, and logic structures such as machine-executable coded instruction sets for implementing such systems, devices, and methods.
In this respect, before explaining at least one embodiment in detail, it is to be understood that the embodiments are not limited in application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. Also, it is to be understood that the phraseology and terminology employed herein are for the purpose of description and should not be regarded as limiting.
Many further features and combinations thereof concerning embodiments described herein will appear to those skilled in the art following a reading of the instant disclosure.
Embodiments of methods, systems, and apparatus are described through reference to the drawings.
Currently disposable intranasal drug delivery devices are characterized by low accuracy/uniformity of drug dosing, no design for anatomic variability and poor design for human factors—efficacy and safety. The applications where these shortcomings are most detrimental are: direct-to-brain delivery path (uptake through olfactory epithelium into CSF, action in brain), systemically acting drugs (uptake through mucosa into vasculature, systemic action), vaccines (uptake and action in mucosa), and topically acting drugs (uptake and action in mucosa).
The following provides for intranasal delivery of new and existing drugs, with the following benefits: less cost, increased effectiveness, increased safety (both to patient and society), and increased convenience (in terms of health care).
The following provides for opportunities in terms of design for markets where access to health care is challenged (humanitarian impact) and in terms of design for prevention of drug misuse.
The device 100 has a compliant or flexible, soft nib 102 (as opposed to a hard nib) to precisely locate the dosage. The soft nib 102 also provides comfort for user and may minimize blocking by the nasal wall or congestion.
Septal deviation can cause different health related problems. In some embodiments compliant, soft nib 102 conforms to the anterior aspect of the intranasal passage. In some embodiments the soft nib 102 is biased to follow the patient's septum. This allows the tip 110 to be placed in a location in the nasal cavity to discharge medicine targeting the olfactory region and accommodates differences in nasal cavity anatomy.
In some embodiments compliant, soft nib 102 has a kiss-cut valve near the tip 110. The valve reduces the partial discharge at the front and backend of the actuation. The tip 110 also reduces or eliminates air or contaminates from contacting the line-fill remaining in the nozzle between dosing. In some embodiments the orientation of the kiss cut is off set from the end of the tip 110 for directing the medicine in the direction of the olfactory region of the nasal anatomy. The nib 102 can be a multiple material over-moulded nib in some embodiments. As shown in
The device 100 has an actuator 106 (e.g. button, trigger) and cocking mechanism 108 to release dosage that is reproducible to reduce human error/variation. Use of a cock-and-release mechanism in some embodiments promotes steady positioning during delivery and reduces the need for priming of the device 100, thereby reducing the possibility of operator error. In some embodiments a finger press button actuation discharges the shot chamber. This method of actuating the device 100 requires very little dexterity or fine motor skills which may be of particular importance to patients whose motor skills may be impaired e.g. patients with Parkinson's. Priming can refer to ensuring full liquid filling dosing/metering mechanism suitable for pumping of the liquid including but not limited to positive displacement pumping.
The device 100 has an internal reservoir that can be under pressure constantly in some embodiments to enable dosing independent of orientation (e.g. the user can be standing up or laying down and it will work). The reservoir may be a bag and may be collapsible by external pressure, including ambient air pressure. The pressure within the reservoir may change depending on the spring used, but it can always be under some amount of pressure.
In some embodiments the device 100 has no air-port for filling, storing or actuating the device 100. This allows for traveling or transport by air, particularly unpressurized aircraft or higher elevations and may be useful for oxygen sensitive medicine and extending shelf life of certain medicines, particularly where there is no cold-chain infrastructure. In addition, this makes the device difficult to tamper with. In some embodiments, there can be an air bleed port.
In some embodiments the shape of the device 100 allows for correct nozzle positioning and ergonomic grip that does not engage the shoulder, wrist, or any part of the other arm not activating the device 100. The design of device 100 promotes minimal use of shoulder and arm movement.
In some embodiments the design of device 100 is made highly ergonomic in form, taking inspiration both from a wider remote controller design and a more dexterous pen design.
The ergonomics and considered human factors create a step change in the state of the art for nasal delivery devices. The design minimizes human error, allowing for a targeted, repeatable, and metered dose delivery. The design accommodates a consumable drug reservoir for short to long term use, while allowing for a low cost single patient consumable. This gives the ability for a wide variety of drugs to be filled at the point of care or by pharmaceutical filling lines. The design allows for, as an example, a compliant, soft nib 102 with an ultra-soft, matte finish, elastomeric shroud.
The compliant, soft nib 102 of the device is entered into the intranasal cavity and uses the common internal nasal geometry to guide the tip proximate to the olfactory region. The compliant soft nib 102 stops at a distance from the olfactory region and the ejected drug bolus is guided to the olfactory by the native geometry of the nasal anatomy. The device mechanism supports a pocketable form being based on compact and low-cost injection-mouldable parts.
In some embodiments the lid 202 may be used with the cocking mechanism 108, or instead of cocking mechanism 108, as part of reloading the intranasal drug delivery device 100. The addition of the lid 202 increases the grip size of the drug delivery device 100 and prevents misfiring of the drug delivery device 100. In some embodiments lid 202 may provide extra space for full hand grip when attached to bottom of device 100. In some embodiments lid 202 is shaped to increase the surface area without obstruction by hand when in use so that machine readable indicia (i.e. URL code) can be added to the increased surface area.
In some embodiments, the device 100 may include rechargeable energy storage to provide motive energy with separate actuation. Rechargeable energy may include electrical, chemical or pressurized fluid storage.
In topical drug delivery, drug is delivered to the entire mucosa, i.e. both the upper nares 308 and lower nares 310. In systematic drug delivery, drug is delivered through the mucosa of the upper nares 308 into the vasculature. In direct-to-brain drug delivery, drug is delivered mainly through the olfactory region 306 diffusion through the olfactory mucosa. The olfactory path may be short and drugs might be transported through the cribriform plate within the cerebrospinal fluid draining from olfactory bulb. This may also involve the participation of trigeminal nerves.
Current drug formulations for nasal delivery use standard sprays with no specificity to the olfactory region 306, relatively small molecules are used, and formulations are mainly water-based with some alcohols. For non-active ingredients in drug formulations for nasal delivery a wide variety of functionality is used: solvents, mucoadhesive, agents, absorption enhancers, viscosity modifiers, pH buffers, antioxidants, preservatives, surfactants and more.
The majority of airflow passes through the lower nares 310. Therefore, sneezing would likely not expel liquids deposited in the olfactory region 306. Nasal congestion may affect mainly the lower nares 310 while the olfactory region 306 stays clear.
Targeted direct-to-brain drug delivery may be achieved through saturation of the olfactory region 306 with an excipient/drug combination. The drug may travel via extracellular transport to the Central Nervous System, via the cribriform plate. This targeted delivery is intended to reduce both topical and system delivery, allowing for safer and more effective drug delivery.
In some embodiments the device 100 may be adapted by the addition of a lateral atomizer tip to achieve the current state of the art of topical drug delivery by saturating the entire mucosa, or systemic drug delivery by targeting the Upper Nares 308.
The Olfactory plateau is generally located to the posterior aspect of the Radix line. This correlates to the Nasal Bridge length, which is measured from the soft tissue of the Nasion (Sellion) to the Subnasale.
The release and reload mechanism 500 has a reservoir 502 containing a drug for delivery into the nasal cavity.
The release and reload mechanism 500 has an insertion needle 504 for insertion into the reservoir 502.
In some embodiments reservoir 502 is a bag and may be collapsible by external pressure, including ambient air pressure.
In some embodiments, reservoir 502 is removable and insertion needle 504 is inserted through a silicon stopper in the top of reservoir 502 for drawing the substance into the device 100. The silicon stopper has re-sealing properties for air sensitive medicine. The insertion needle 504 can be left in the bottle from which the medicine for the device was obtained. The filling process can eliminate the need for a separate syringe. In some embodiments, this may be referred to as a lure lock.
The release and reload mechanism 500 has actuator 506 connected to release spring 508.
The release and reload mechanism 500 has plunger 510, load valves 512 and load chambers 514.
The release and reload mechanism 500 has shot chamber 516, fluid chamber 518, release valves 520 and nozzle 522. The nozzle 522 may be in fluid communication with the nib 102 such that fluid is ejected from nozzle 522 and through nib 102 or as described below.
In some embodiments release valves 520 may comprise an elongated duckbill valve in tip to reduce and valve the line/dead volume.
In some embodiments, reservoir 502 is held under tension by compression spring 524. A constant and predetermined fluid pressure may be maintained by compression spring 524 pushing up from the bottom of the reservoir towards the shot chamber 516 and nozzle 522 and plunger 510. This constant liquid pressure charges the load chamber 514 without exposing the medicine to air or metal springs typical in most nasal pumps. In some embodiments, this may avoid the use of tubing between the reservoir 502 and shot chamber 516. This can reduce dead volume of medication or medication left in line after use. This can ensures dosing accuracy is not compromised by air entering the shot chamber 516 and no content remains in the shot chamber 516 or reservoir 502 after the last usable medicine was administered. The constant pressure enables dosing independent of user orientation.
In some embodiments the compliant, soft nib 102 is designed to discharge a laminar flow and this may include a turbulent boundary, discreet liquid slug ideally suited for maximizing dose delivery to the flat narrow section of nasal cavity leading up to the olfactory region. Delivery of laminar liquid slug assists in capillary action required for maximum medicine reaching the olfactory. In some embodiments, the laminar stream is created by tube array or hydrodynamic focusing.
In some embodiments the design of the chamber and fluid path can promote high accuracy in ejected volume.
In some embodiments device 100 is cocked by pushing down, or compressing, the bottle. This method of preparing the device for actuating requires very little dexterity or fine motor skills. This method of preparing the device for administrating medicine may be of particular importance to patients whose motor skills may be impaired e.g. patients with Parkinson's. The device can be oriented in any direction and the reloading of the shot chamber and the shot performance will not be affected i.e. the device is not gravity sensitive.
In some embodiments the compliant, soft nib 102 is extended by cocking the device. This reduces over length profile of the device for shipping, shelf space and pocketing. In the resting position the device has a less ‘menacing’ look.
In some embodiments cocking the device 100 may activate a dose counter. In some embodiments cocking may activate a separate shot counter for each dosing session.
In some embodiments cocking may activate a dose delay. In some embodiments cocking may activate a timer to remind patient when to activate between shots needed for dosing session. The delay between shots accommodates drug dosing indications including the timing of maximum drug absorption via the olfactory tight junction and the natural clearing of the mucosa cilia.
In some embodiments cocking may change the exposed color 112 between the upper bottle sleeve 104 and base 108. This, along with an extended nozzle tip (which in some embodiments does not fit in the lid 202 while cocked) gives the patient or care giver a clear visual and/or feel the device is ready for dosing or storage. In some embodiments exposed color 112 is made with glow plastic for darkness which promotes ease and convenience of nighttime use and for patients sensitive to light e.g. for administering medicine that dilates pupils.
In some embodiments nozzle has an adjustable nostril stop 114. This stop gives patient feedback the nozzle has arrived at the optimum nostril depth. The stop also reduces sniffing/snorting during activation.
In some embodiments, the drug may be delivered by the intranasal drug delivery device 100 by delivery of a liquid jet, burst or plug, rather than a spray. In some embodiments the design of the compliant, soft nib 102, the nozzle 522, and the valves in the reload mechanism 500 may be designed to optimize laminar ejection of drug.
Technology for liquid delivery works for a wide variety of liquid properties. This technology may be adapted to olfactory, systemic and topical delivery of drugs through an intranasal drug delivery device 100.
In some embodiments intranasal drug delivery device 100 may use particular liquid properties (such as viscosity and surface tension) to ensure prolonged residence of the delivered liquid in the target area (i.e. the olfactory region) due to capillary bridging.
In some embodiments intranasal drug delivery device 100 may include excipients in the liquid drug for delivery with particular characteristics. For example, excipients may have thixotropicity (higher viscosity at rest which improves residence time in the olfactory region 306, and lower viscosity at under shear which improves ease of metering and delivery) through additives such as cellulose. As a further example, excipients used may impact surface tension of a drug to promote wetting and capillary bridging in olfactory region. As a further example, excipients used may be pre-approved by the Federal Drug Administration for shorter development time.
In some embodiments intranasal drug delivery device 100 may include a measurement method or accessory to determine the ideal compliant, soft nib 102 size, or nozzle 522 type.
In some embodiments intranasal drug delivery device 100 may include a mechanical or electronic timer and/or lock mechanism to prevent overdosing. Intranasal drug delivery device 100 may incorporate use of mobile technology for identifying users and tracking use to prevent overdosing. Intranasal drug delivery device 100 may incorporate use of a cock-and-release mechanism to promote steady positioning during drug delivery. These additions assist with patient compliance.
In some embodiments intranasal drug delivery device 100 may be used in one or more of the following applications: 1) drugs directly targeting the brain via the olfactory region, 2) systemically acting drugs (e.g. better systemic bioavailability or less degradation than via the GI tract), 3) vaccines eliciting a mucosal immune response, and 4) topically-acting drugs.
In some embodiments the intranasal drug delivery device 100 may have one or more of the following features: 1) hand held, 2) useable with a single hand, 3) designed for ambidextrous use, 4) the priming mechanism is simple and intuitive to the user, 5) there is a clear indication when the dose is primed, 6) the form promotes proper positioning in the nasal cavity, 7) designed to require a single user action to deliver a primed dose, 8) designed to prevent the user from dispensing partial doses, and 9) useable for multiple doses.
In some embodiments the intranasal drug delivery device 100 is intended to be filled by a pharmacist or other medical professional. In some embodiments the intranasal drug delivery device 100 shall contain means for preventing unintended refills of the reservoir 502.
In some embodiments the intranasal drug delivery device 100 is designed for multiple uses. In some embodiments the intranasal drug delivery device 100 uses a disposable or a refillable reservoir 502. In some embodiments the compliant, soft nib 102 is disposable.
In some embodiments intranasal drug delivery device 100 is designed with a floating gasket in a disposable or reusable reservoir 502.
In some embodiments, the drug delivery device 100 may integrate with a system involving mobile technology such as, for example, face recognition and position tracking, Gyroscopic position tracking of device and correlation with facial position, use of NFC to track number of shots.
In some embodiments, the drug delivery device 100 may enable electrically activated drug delivery such as Iontophoresis. In some embodiments, the drug delivery device 100 may involve applying an ionic charge to the drug molecule to enhance transport. In some embodiments, the drug delivery device 100 may involve an extending tip that telescopes.
In some embodiments, intranasal drug delivery device 100 is designed to use a foam as an excipient to assure residence time in target area yet allow air to pass.
In some embodiments intranasal drug delivery device 100 has barbs to lock a gasket at the end of travel to prevent misuse by refilling.
In some embodiments intranasal drug delivery device 100 has a piston that scores the chamber walls as it travels to the top of the reservoir with each actuation. This renders the device useless after a single use.
In some embodiments intranasal drug delivery device 100 is a multi-dose device with a sterile barrier to avoid contamination.
The compliant, soft nib 102 of the device is entered into the intranasal cavity and uses the common internal nasal geometry to self-guide the compliant, soft nib 102 to the olfactory region. The compliant, soft nib 102 is held from lateral deviation via the flanking medial septum, and the lateral nasal wall.
In some embodiments when the device 100 is activated, an internal metering chamber ejects a repeatable and metered dose into the superior/posterior aspect of the olfactory region. A laminar flow is produced, as opposed to conventional atomization or spray, to ensure that the ejected dose gets delivered to the target area, rather than spreading in the entire intranasal space. Due to the Coanda effect, the ejected excipient adheres to the medial, lateral and superior aspect of the olfactory corridor while still motive.
When the motive energy of the ejected liquid has dissipated, opposing wall capillary motion allows the excipient to coat the entire olfactory area. This is due to the combination of excipient surface tension (which is caused by cohesion within the excipient) and mucoadhesive properties between the excipient and olfactory mucosa wall.
To achieve residence time, and as a result of capillary action, the excipient will be held in the olfactory corridor due to a capillary bridge effect caused by the opposing walls of the medial, lateral and superior aspect of the olfactory corridor. Thus preventing the excipient from draining to the inferior aspect of the nasal vault. An adequately high viscosity or thixotropic property of the excipient helps prolonging residence time.
In one embodiment the proposed method for targeted drug delivery using the device 100 is as follows: 1) The compliant tip is placed to the anterior aspect of the olfactory corridor; 2) The excipient is ejected out of the tip in a “reasonably” laminar jet, and towards the posterior aspect of the olfactory corridor; 3) Due to the Coanda effect, jet ejection will cause the excipient to adhere to the medial, lateral and superior aspect of the olfactory corridor while still motive; 4) When the motive energy of the ejected liquid has dissipated, opposing wall capillary motion allows the excipient to coat the entire olfactory area. This is due to the combination of excipient surface tension (which is caused by cohesion within the excipient) and mucoadhesive properties between the excipient and olfactory mucosa wall; 5) To achieve residence time, and as a result of capillary action, the excipient will be held in the olfactory corridor due to a capillary bridge effect caused by the opposing walls of the medial, lateral and superior aspect of the olfactory corridor. Thus preventing the excipient from draining to the inferior aspect of the nasal vault. An adequately high viscosity or thixotropic property of the excipient helps prolonging residence time.
The device 902 can connect to a software application 906 installed on a mobile device 904 for data logging to flag or track misuse and compliance. For example, the intranasal device software application 906 can capture images up the nasal cavity to flag misuse, implement user biometric authentication for compliance, capture timing data of dosage for compliance, provide alerts or reminders to user and so on.
In some embodiments a software application will be available in association with the device 100 to create an integrated hardware and software intranasal drug-delivery platform 900. This includes a database for the storage of data generated from device 100 that serves as a basis for extension to a permission-based personal data ecosystem platform.
In some embodiments the software application may be extended to become a platform for more broad data aggregation and permission-based sharing. A patient's personal data could be collected and exchanged with permission to/from all parties who have a role and accountability for administering (dispensed and applied) intranasal treatments. The data exchange portal would provide patient insight aimed at aligning and continuously influencing positive behavior for optimum health care delivery. The extension will facilitate sharing of different types of smartphone-based personal data to different stakeholders such as other patients, guardians, doctors, clinics, clinical trial researches, health care providers, patient medical insurers, doctor insurers, health care insurers, drug developers, pharmacies, patient peer support groups, disease/disorder researchers, disease/disorder NGO's, government regulators, law enforcement/first responders. Privacy and control of personal data are important. A user may wish to share data in certain circumstances, based on incentives or goodwill.
In some embodiments components of an integrated intranasal drug-delivery platform 900 may comprise an intranasal drug delivery device 902 that is inextricably linked with a specified medicine and an individual patient through device and patient verification; intranasal drug delivery device 902 that provides machine readable signals (fiducial markers) at time of scrip writing, scrip filling, patient dosing, patient possession, and device redemption (i.e. patient life cycle events); ongoing data harvesting, transit, storage and retrieval capability; aggregation and anonymization of personal data into mineable and usable data sets eg. reporting, analytics, gamification, incentivizing, etc.; personal data for optimizing patient's immediate and ongoing healthcare and a permission-based sharing system.
Categories of data that an integrated intranasal drug-delivery platform 900 may utilize include a patient profile; stakeholder profiles to manage data that has been shared with them; non-medical passive personal data (recovery of which may be ongoing); medical/biometric personal data (recovery of which may be ongoing); event driven personal data at time of scrip writing, scrip filling, patient dosing, patient possession, and device redemption (i.e. patient lifecycle); and event driven prompting to influence immediate behavior.
For an example of an integrated intranasal drug-delivery platform 900 for a user that has been prescribed a drug that is dispensed with intranasal drug delivery device 902, 1) the user receives an alert on his/her mobile device 904 signaling that it's time to take a scheduled dose of drug, 2) the user unlocks the mobile device 904 using native identity authentication (passcode, fingerprint or facial recognition) and the intranasal device software application 906 opens on the mobile device, 3) the user touches the mobile device 904 to the intranasal drug delivery device 902 or initiates another form of recognition, 4) the user uses the mobile device 902 for facial recognition validation, 5) the intranasal device software application 906 prompts the user for measuring pre-actuation metrics/biometrics (relevant metrics may be determined by clinician, for example, cognition survey, HR measurement, short video capture to determine emotional state/impairment etc.), 6) the user completes any inputs needed to complete pre-actuation tests, 7) the intranasal device software application 906 determines that the intranasal drug delivery device 902 has been actuated (the action may be timestamped and recorded, methods for confirming actuation include Bluetooth connectivity, visual image, sound, colour change, artificial intelligence that recognizes actuation), 8) the intranasal device software application 906 prompts the user for measurements of post-actuation biometrics (relevant metrics may be determined by clinicians); 9) the user is taken back to dashboard as part of an interface controlled by software application 906 where he/she can track different metrics and manage permissions (who can see what data).
In some embodiments the device can include an olfactory marker that will be included with the excipient/drug that will provide biofeedback to the user. This may take the form of olfactory active marker that can signal to the user that the drug/excipient has been delivered to the olfactory region. This may include, but not be limited to markers which provide feedback of missed, un-deployed, deployed or over deployed drug/excipient. The marker can be included in the drug/excipient formulation or in some embodiments be added during the ejection process. In some embodiments, the marker may be included without the active drug agent to provide feedback to the user that an application and dosage (without the drug agent) was successful soliciting a psychological response.
In some embodiments, the device 1100 is configured to receive a carpule 1120 (which comprises a diaphragm 1110, tube 1112, shot chamber 1114, and plunger 1116 as described below) pre-filled with a fluid, such as for example a pharmaceutical fluid. In the
The carpule 1120 comprises a tube 1112 with an interior shot chamber 1114 that contains a fluid. In some embodiments, shot chamber 1114 may carry medication, such as ketamine of other pharmaceuticals, for delivery to a patient's nasal cavity or olfactory region. The shot chamber 1114 has a plunger 1116 on one end, and a diaphragm 1110 on the opposite end from the plunger 1116. The device 1100 is configured such that when a user engages the actuator 1130, the fluid in the shot chamber 1114 is delivered through the dispensing tip with predetermined flow characteristics. In the example illustrated in
In some embodiments, plunger 1116 may be engaged by a push rod 1124. In the
The diaphragm 1110 is puncturable by the needle 1106. Needle 1106 connects to channel 1104 in flexible nib 102, which may be inserted into the nasal cavity for fluid delivery as described above. When engaged, the fluid in shot chamber 1114 is forced through needle 1106 and channel 1104 into the nasal cavity. Arms 1126 may assist the user in gripping device 1100 and engaging push button 1132.
In some embodiments, to assemble device 1100, carpule 1120 may be inserted into the carpule enclosure 1122. The carpule enclosure 1122 may then be inserted into outer chassis 1108. In the illustrated example, the chassis 1108 comprises a resilient lip 1109 and the actuator opening deforms slightly to receive the carpule enclosure 1122 and carpule 1120, then holds them within the chassis 1108. In other embodiments, seals may be added to assist in detection of tampering.
Use of a carpule may be advantageous in certain situations because it is a commonly manufactured vessel for medication and may be made of a material that is non-reactive with medication, such as glass.
When the push rod 1124 presses against the plunger 1116 it puts the fluid in shot chamber 1114 under pressure, and will move the carpule 1120 toward the needle. In some embodiments, a spring 1134 may be included to such that the push rod 1124 exerts even pressure on plunger 1116, and once the locking mechanism 1128 is released the spring 1134 will cause carpule 1120 to move further into outer chassis 1108 toward needle 1106 until needle 1106 punctures diaphragm 1110. In some embodiments a user continues to push on the push button 1132 to move the carpule 1120 into outer chassis 1108 until the needle 1106 punctures diaphragm 1110.
In some embodiments, actuator 1130 may be a push button located at the bottom of device 1100, in other embodiments, actuator 1132 may be located on the side of outer chassis 1108.
In some embodiments, device 1100 may be designed for one-time use, with a locking mechanism 1128 comprising tabs that break off, or other sacrificial clips or structures such that carpule enclosure 1122 may not be removed from outer chassis 1118 to replace the spent carpule 1120 with a new carpule 1120 without the device 1100 being damaged.
When actuator 1902 is first pushed by a user, the carpule 1904 is pressed into a needle 1906. The needle 1906 pierces the diaphragm 1908 (i.e. the carpule septum) and opens a fluid path through the channel 1910 (cannula) as shown in
Spring 1912 may be released by breaking a shear pin 1916 into pieces 1918 and 1920, as shown in
The travel of plunger 1914 is limited by a stop mechanism 1904 to set a total dose. Stop mechanism may comprise actuator projections 1922 that engage the base of the carpule 1924.
In some embodiments, the device comprises a dampening mechanism, examples of which are described further below with reference to
The flow resistance of the fluid path out of the elastomeric chamber 2902 is matched to the stiffness of the elastomeric chamber 2902 to provide a controlled jet velocity profile. As the elastomeric chamber 2902 relaxes, the pressure on the fluid decreases, so this provides an initial high velocity followed by a decrease in jet velocity.
Air may vent externally to the device, or it may vent into a secondary chamber to avoid the need for an external vent.
A prototype device including a cannula and dampening mechanism has been tested to demonstrate targeted delivery of the fluid bolus. The testing comprised inserting the cannula into the upper nares of a patient and ejecting a laminar flow of fluid through the cannula. In the testing, technicium 99 was used as a tracer fluid. A scan of the patient performed following the injection of the laminar flow of fluid show that the fluid is deposited at the olfactory region of the patient 3600, as shown in
The foregoing discussion provides many example embodiments of the inventive subject matter. Although each embodiment represents a single combination of inventive elements, the inventive subject matter is considered to include all possible combinations of the disclosed elements. Thus if one embodiment comprises elements A, B, and C, and a second embodiment comprises elements B and D, then the inventive subject matter is also considered to include other remaining combinations of A, B, C, or D, even if not explicitly disclosed.
The embodiments of the devices, systems and methods described herein may be implemented in a combination of both hardware and software. These embodiments may be implemented on programmable computers, each computer including at least one processor, a data storage system (including volatile memory or non-volatile memory or other data storage elements or a combination thereof), and at least one communication interface.
Program code is applied to input data to perform the functions described herein and to generate output information. The output information is applied to one or more output devices. In some embodiments, the communication interface may be a network communication interface. In embodiments in which elements may be combined, the communication interface may be a software communication interface, such as those for inter-process communication. In still other embodiments, there may be a combination of communication interfaces implemented as hardware, software, and combination thereof.
Throughout the foregoing discussion, numerous references will be made regarding servers, services, interfaces, portals, platforms, or other systems formed from computing devices. It should be appreciated that the use of such terms is deemed to represent one or more computing devices having at least one processor configured to execute software instructions stored on a computer readable tangible, non-transitory medium. For example, a server can include one or more computers operating as a web server, database server, or other type of computer server in a manner to fulfill described roles, responsibilities, or functions.
The technical solution of embodiments may be in the form of a software product. The software product may be stored in a non-volatile or non-transitory storage medium, which can be a compact disk read-only memory (CD-ROM), a USB flash disk, or a removable hard disk. The software product includes a number of instructions that enable a computer device (personal computer, server, or network device) to execute the methods provided by the embodiments.
The embodiments described herein are implemented by physical computer hardware, including computing devices, servers, receivers, transmitters, processors, memory, displays, and networks. The embodiments described herein provide useful physical machines and particularly configured computer hardware arrangements.
Although the embodiments have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein.
Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification.
As can be understood, the examples described above and illustrated are intended to be exemplary only.
Claims
1-22. (canceled)
23. A fluid delivery device for delivering fluid to a nasal cavity of a subject, the device comprising:
- (a) a dispensing tip for dispensing a fluid, the dispensing tip coupled to a shot chamber for containing the fluid; and
- (b) an actuator operatively coupled to the shot chamber such that upon actuation of the actuator the fluid flows from the shot chamber and out of the dispensing tip; wherein the compliant dispensing tip comprises a nostril stop that is configured to: (I) limit depth of insertion of the dispensing tip into a nasal cavity of the subject; and (II) provide feedback to a user when the dispensing tip reaches a location proximate to an olfactory region in the nasal cavity of the subject, wherein the dispensing tip defines a channel therein, wherein the device is configured for dispensing the fluid therefrom as a laminar flow.
24. The fluid delivery device of claim 23, wherein the dispensing tip comprises at least one cannula.
25. The fluid delivery device of claim 23, wherein the actuator is loaded by a spring.
26. The fluid delivery device of claim 23, wherein the spring is in alignment with a plunger.
27. The fluid delivery device of claim 26, wherein upon actuation of the device the plunger exerts pressure on the shot chamber and forces the fluid flow out of the shot chamber.
28. The fluid delivery device of claim 23, wherein the fluid delivery device is: hand held, useable with a single hand, designed for ambidextrous use, promotes proper positioning in the nasal cavity, requires only a single user action to deliver a primed dose, prevents dispensing partial of doses, or combinations thereof.
29. The fluid delivery device of claim 23, wherein the device is configured to deliver multiple doses.
30. The fluid delivery device of claim 23, wherein dispensing the fluid therefrom as a laminar flow comprises a discreet liquid slug.
31. The fluid delivery device of claim 30, wherein the discreet liquid slug is configured for maximizing dose delivery to a flat narrow section of the nasal cavity leading up to the olfactory region.
32. The fluid delivery device of claim 23, further comprising a housing, wherein the housing defines an outer body of the device.
33. The fluid delivery device of claim 23, wherein the housing comprises a dispensing opening.
34. The fluid delivery device of claim 23, wherein the dispensing tip is biased to follow the patient's septum.
35. The fluid delivery device of claim 23, wherein the dispensing tip conforms to the anterior aspect of the intranasal passage.
36. The fluid delivery device of claim 23, further comprising a removable reservoir comprising the fluid.
37. The fluid delivery device of claim 27, wherein the reservoir comprises a non-air interface mechanically pressurized fluid reservoir to enable dosing independent of orientation.
38. The fluid delivery device of claim 27, wherein the reservoir comprises a disposable reservoir.
39. The fluid delivery device of claim 27, wherein the reservoir comprises a refillable reservoir.
Type: Application
Filed: Oct 11, 2022
Publication Date: Sep 14, 2023
Inventors: David James ALT (North Vancouver), Kenneth Colin MacNarin IRVING (Victoria), James Patrick JACKSON (Victoria), Peter OXLEY (Rothesay), Kenza Elizabeth COUBROUGH (Seattle, WA)
Application Number: 18/045,589