PNEUMATIC VEHICLE TIRE
A pneumatic vehicle tire, in particular a commercial-vehicle tire, having a one- or multi-ply carcass, a multi-ply belt or breaker and having a profiled tread with grooves formed to a profile depth, wherein the profiled tread is provided at the tire shoulders either with a respective block row (2) or with a respective profile rib (7), wherein the blocks (1) of the shoulder-side block rows (2), or the shoulder-side profile ribs (7) each have a peripheral edge (1a, 7a) laterally delimiting the ground contact patch of the tire, or a shoulder rounding with a radius of up to 30.0 mm, wherein shoulder flank surfaces that extend in a radial direction adjoin the peripheral edges or the shoulder roundings, and wherein, in the case of shoulder roundings, an imaginary section line is defined between an envelope of the tread that is continued beyond the shoulder rounding and the shoulder flank surface that is continued beyond the shoulder rounding. The shoulder flank surfaces are provided, at in particular regular intervals over the tire circumference and within a distance (a) of 1.25 times to 2.5 times the profile depth from the respective peripheral edge (1a, 7a) or, in the case of shoulder roundings, from the imaginary section line, with at least one areal recess (6, 6′, 6″) having a depth (t) of 0.5 mm to 5.0 mm, which contains ribs (5) that extend parallel to one another and have a height (h) such that the ribs (5) do not project beyond the level of the shoulder flank surfaces.
Latest Continental Reifen Deutschland GmbH Patents:
This application is a continuation of application Ser. No. 16/487,984, filed Aug. 22, 2019; which is a national stage entry of International Application No. PCT/EP2018/050803, filed Jan. 15, 2018, which claims the benefit of DE application DE 102017203012, filed Feb. 24, 2017.
SUMMARYThe invention relates to a pneumatic vehicle tire, in particular a commercial-vehicle tire, having a one- or multi-ply carcass, a multi-ply belt or breaker and having a profiled tread with grooves formed to a profile depth, wherein the profiled tread is provided at the tire shoulders either with a respective block row or with a respective profile rib, wherein the blocks of the shoulder-side block rows, or the shoulder-side profile ribs each have a peripheral edge laterally delimiting the ground contact patch of the tire, or a shoulder rounding with a radius of up to 30.0 mm, wherein shoulder flank surfaces that extend in a radial direction adjoin the peripheral edges or the shoulder roundings, and wherein, in the case of shoulder roundings, an imaginary section line is defined between an envelope of the tread that is continued beyond the shoulder rounding and the shoulder flank surface that is continued beyond the shoulder rounding.
Depending on their intended use, pneumatic vehicle tires usually have either a tread with a block profile having shoulder-side profile block rows or a tread profile with shoulder-side profile ribs. Tires with block profiles have transverse grooves that open outward in the tire shoulders and, depending on the profile design, can also be at relatively large distances from one another. In order to improve the wear properties and the performance of the tire, what are known as block attachments or bottom elevations are provided, in particular in commercial-vehicle tires of large dimensions, in shoulder-side transverse grooves in order to stabilize the tire shoulders. In particular commercial-vehicle tires for specific purposes, for example tires for straddle carriers, have a large amount of rubber material in the shoulder-side tread regions, with the result that these regions heat up relatively greatly while the tires are running. Insufficient cooling or excessive development of heat in the rubber material results in an undesirably high temperature build-up, which not only has a negative effect on the tire performance but is also disadvantageous for the durability of the belt or breaker edges located on the inside close to the shoulder regions.
Therefore, the invention is based on the object, in pneumatic vehicle tires of the type mentioned at the beginning, of providing simple but effective measures for improving cooling and heat dissipation in the region of the tire shoulders.
The stated object is achieved according to the invention in that the shoulder flank surfaces are provided, at in particular regular intervals over the tire circumference and within a distance of 1.25 times to 2.5 times the profile depth from the respective peripheral edge or, in the case of shoulder roundings, from the imaginary section line, with at least one areal recess having a depth of 0.5 mm to 5.0 mm, which contains ribs that extend parallel to one another and have a height such that the ribs do not project beyond the level of the shoulder flank surfaces.
By way of the ribs, in that region of the tire shoulders in which, as a result of a large amount of rubber material, relatively high development of heat takes place while the tires are running, the rubber surface is enlarged and as a result the heat dissipation in this region improved.
In a preferred embodiment of the invention, the recesses have a radial extent of 10% to 70% of the profile depth and an extent in the circumferential direction of 70% to 120% of the profile depth. The present recesses are therefore preferably provided locally, with a limited size, over the circumference of the shoulder flank surfaces. In particular the extent in the circumferential direction can also be greater, however, wherein a single recess which is formed in an annularly encircling manner over the shoulder flank surface and the bottom of which is covered in particular with ribs also be provided.
In a preferred embodiment of the invention, in each case two recesses that are arranged one above the other in the radial direction are provided, the smallest distance between said recesses being 2.0 mm. This measure allows targeted positioning of the recesses provided or covered with ribs close to those points on the shoulder flank surfaces at which support of the dissipation of heat is particularly advantageous.
The areal recesses are furthermore preferably designed in a quadrilateral manner, but can have areas of any shape in plan view.
In pneumatic vehicle tires that are provided with shoulder-side block rows, the blocks of which are separated from one another by transverse grooves that open outward at the respective shoulder flank surface, provision can be made for the groove bottoms of the transverse grooves to be provided with end portions that extend substantially in the radial direction over 10% to 30% of the profile depth and are offset inwardly with respect to the respective shoulder flank surface, said end portions likewise being covered with ribs that do not project beyond the level of the shoulder flank surface. This measure makes it possible to provide support for heat dissipation in the particularly sensitive regions of shoulder-side transverse grooves that have block attachments or bottom elevations and therefore exhibit a relatively large amount of rubber material.
Preference is furthermore given to an embodiment in which the ribs have a width of 1.0 mm to 5.0 mm at their base, the mutual center-to-center spacing of adjacent ribs of which is in particular 1.2 mm to 7.0 mm. The ribs furthermore have a height of 0.5 mm to 5.0 mm. The actual dimensioning of the ribs depends on the desired cooling action and on the size of the commercial-vehicle tire for which these measures are taken.
The cross section of the ribs is in particular trapezoidal or semicircular.
Around the tire circumference, it is advantageous for the recesses to be provided at distances of 5 cm to 15 cm.
Further features, advantages and details of the invention will now be described in more detail on the basis of the schematic drawing, which illustrates exemplary embodiments and in which
Pneumatic vehicle tires embodied according to the invention are in particular off-road tires or commercial-vehicle tires for a wide variety of purposes, preferably large-size commercial-vehicle tires for rim diameters of at least 24 inches. Such tires are for example tires for straddle carriers, reach stackers or container stackers. Tires embodied according to the invention have a one- or multi-ply carcass, either in the form of a radial carcass or of a diagonal carcass, and a multi-ply belt assembly or several breaker plies.
The groove bottom 3b of each transverse groove 3 has an end portion 3a that extends substantially parallel to the shoulder flank surface and is offset inwardly with respect to the shoulder flank surface in particular by up to in particular up to 7.0 mm and has, in the radial direction, an extent of 10% to 30% of the profile depth. The substantially rectangular end portions 3a are covered with ribs 5 that extend parallel to one another and do not project beyond the level of the shoulder flank surface.
Located radially on the inside of the end portion 3a, provided with ribs 5, of each transverse groove 3 is a recess 6, likewise provided, in particular covered with ribs 6, with an in particular constant depth t of 0.5 mm to 5.0 mm. The ribs 5 located at the bottom of the recess 6 have a height h that corresponds at most to the depth t. The recesses 6 are located radially outside a distance a of 1.25 times to 2.5 times the profile depth from the peripheral edge 1a.
In the embodiment shown, the recess 6 is in the shape of a quadrilateral, with a radially outer edge 6a, extending in particular in the circumferential direction, the smallest distance b of which from the radially inner end of the end portion 3a is 2.0 mm to 10.0 mm.
The maximum extent of the recess 6 in the circumferential direction is 70% to 120% of the circumferential extent of the end portion 3a. In the preferred embodiment illustrated, the recess 6 has side edges 6b that extend in the radial direction and extend in continuation of the block edges 1c. The side edges 6b of the recesses 6 can also extend otherwise, however, in particular at an angle of 0° to 45° to the radial direction.
The ribs 5 have a height h of 0.5 mm to 5 mm, in particular at least 3.0 mm. As shown in particular in
The ribs 5 bring about an enlargement of the outer surface of the tire at the tire shoulders and therefore act as cooling ribs, which support dissipation of the heat from the rubber material in the tire shoulders. The inclined position of the ribs 5 at the abovementioned angle α has the advantage that the air that sweeps past while the tire is rolling further improves heat dissipation.
In the embodiment variant shown in
Depending on the tire size, the recesses 6, 6′ are provided at distances of 5 cm to 15 cm around the tire circumference. In alternative embodiments of the pneumatic vehicle tire according to the invention, the peripheral edges 1a are can rounded with a radius of in particular 1.0 mm to 30.0 mm or provided with a bevel with a width of up to 5.0 mm. The distance a is determined in these embodiments from an imaginary section line between an envelope of the tread that continues beyond the shoulder rounding or bevel and the shoulder flank surface that is continued beyond the shoulder rounding or bevel.
LIST OF REFERENCE SIGNS
-
- 1 Block
- 1a Peripheral edge
- 1b Shoulder flank
- 1c Block edge
- 2 Block row
- 3 Transverse groove
- 3a End portion
- 3b Groove bottom
- 5 Rib
- 6, 6′, 6″ Recess
- 6a Edge
- 6b Side edge
- 7 Shoulder rib
- 7a Peripheral edge
- a, b, c Distance
- b1 Width
- h Height
- t Depth
Claims
1. A vehicle tire comprising:
- a carcass having at least one ply;
- a multi-ply belt or breaker;
- a shoulder-side block row;
- a plurality of tire shoulders;
- a profiled tread with grooves formed to a profile depth, wherein the profiled tread is provided at the tire shoulders;
- a plurality of blocks of the shoulder-side block row each have a one of a peripheral edge laterally delimiting the ground contact patch of the pneumatic vehicle tire;
- a plurality of transverse grooves separate the blocks of the shoulder-side block rows from one another and open outward at the shoulder flank surface and groove bottoms of the transverse grooves have end portions that extend in the radial direction;
- the end portion of each transverse groove comprises an upper recess and a lower recess
- the upper recess and the lower recess comprising cooling ribs arranged at an angle alpha, the angle alpha configured to facilitate heat dissipation while the tire is rolling, the above recess having less than half the surface area of the other recess of the at least two recesses and separated by a distance b.
2. The tire of claim 1, the upper recess and the lower recess separated by a radial distance.
3. The tire of claim 2, the radial distance is at least 2.0 mm.
4. The tire of claim 1, further comprising:
- shoulder flank surfaces that extend in a radial direction adjoin the peripheral edges or the shoulder roundings, and wherein, in the case of shoulder roundings, an imaginary section line is defined between an envelope of the tread that is continued beyond the shoulder rounding and the shoulder flank surface that is continued beyond the shoulder rounding; and
- the shoulder flank surfaces are provided, at in particular regular intervals over a circumference of the pneumatic vehicle tire and within a distance of 1.25 times to 2.5 times the profile depth from the respective peripheral edge or, in the case of shoulder roundings, from an imaginary section line.
5. The tire of claim 1, the end portions extend in the radial direction over 10% to 30% of the profile depth and are offset inwardly with respect to the shoulder flank surface, the end portions likewise being provided with the ribs that do not project beyond the level of the shoulder flank surfaces.
6. The tire of claim 1, wherein the upper recess and the lower recess have a radial extent of 10% to 70% of the profile depth.
7. The tire of claim 1, wherein the upper recess and the lower recess are designed in a quadrilateral manner.
8. The tire of claim 1, wherein the cooling ribs have a width of 1.0 mm to 5.0 mm at their base.
9. The tire of claim 1, wherein the cooling ribs have a mutual center-to-center spacing of 1.2 mm to 7.0 mm.
10. The tire of claim 1, wherein the cooling ribs have a height of 0.5 mm to 5.0 mm.
11. The tire of claim 1, the recesses are provided at spacings of 5 cm to 15 cm over the circumference of the pneumatic vehicle tire.
12. The tire of claim 1, upper recess and the lower recess have an extent in the circumferential direction of 70% to 120% of the profile depth.
13. The tire of claim 1, the lower recess has a quadrilateral shape.
14. The tire of claim 1, the peripheral edges are rounded.
15. The tire of claim 1, the tire has a rim diameter of at least 24 inches.
16. The tire of claim 1, the ribs have an isosceles trapezoids shape in cross section.
Type: Application
Filed: Jun 2, 2023
Publication Date: Oct 5, 2023
Applicant: Continental Reifen Deutschland GmbH (Hannover)
Inventors: Frank Lippert (Lehrte), Florian Kristen (Hannover), Christian Meiners (Hannover), Paul Naglatzki (Hannover)
Application Number: 18/328,654