High molecular weight surface proteins of non-typeable haemophilus

- St. Louis University

High molecular weight surface proteins of non-typeable Haemophilus influenzae which exhibit immunogenic properties and genes encoding the same are described. Specifically, genes coding for two immunodominant high molecular weight proteins, HMW1 and HMW2, have been cloned, expressed and sequenced, while genes coding for high molecular proteins HMW3 and HMW4 have been cloned, expressed and partially sequenced.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
FIELD OF INVENTION

This invention relates to high molecular weight proteins of non-typeable haemophilus.

BACKGROUND TO THE INVENTION

Non-typeable Haemophilus influenzae are non-encapsulated organisms that are defined by their lack of reactivity with antisera against known H. influenzae capsular antigens.

These organisms commonly inhabit the upper respiratory tract of humans and are frequently responsible for infections, such as otitis media, sinusitis, conjunctivitis, bronchitis and pneumonia. Since these organisms do not have a polysaccharide capsule, they are not controlled by the present Haemophilus influenzae type b (Hib) vaccines, which are directed towards Hib bacterial capsular polysaccharides. The non-typeable strains, however, do produce surface antigens that can elicit bactericidal antibodies. Two of the major outer membrane proteins, P2 and P6, have been identified as targets of human serum bactericidal activity. However, it has been shown that the P2 protein sequence is variable, in particular in the non-typeable Haemophilus strains. Thus, a P2-based vaccine would not protect against all strains of the organism.

There have previously been identified by Barenkamp et al (Pediatr. Infect. Dis. J., 9:333-339, 1990) a group of high-molecular-weight (HMW) proteins that appeared to be major targets of antibodies present in human convalescent sera. Examination of a series of middle ear isolates revealed the presence of one or two such proteins in most strains. However, prior to the present invention, the structures of these proteins were unknown as were pure isolates of such proteins.

SUMMARY OF INVENTION

The inventors, in an effort to further characterize the high molecular weight (HMW) Haemophilus proteins, have cloned, expressed and sequenced the genes coding for two immunodominant HMW proteins (designated HMW1 and HMW2) from a prototype non-typeable Haemophilus strain and have cloned, expressed and almost completely sequenced the genes coding for two additional immunodominant HMW proteins (designated HMW3 and HMW4) from another non-typeable Haemophilus strain.

In accordance with one aspect of the present invention, therefore, there is provided an isolated and purified gene coding for a high molecular weight protein of a non-typeable Haemophilus strain, particularly a gene coding for protein HMW1, HMW2, HMW3 or HMW4, as well as any variant or fragment of such protein which retains the immunological ability to protect against disease caused by a non-typeable Haemophilus strain. In another aspect, the invention provides a high molecular weight protein of non-typeable Haemophilus influenzae which is encoded by these genes.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a DNA sequence of a gene coding for protein HMW1 (SEQ ID NO: 1);

FIG. 2 is a derived amino acid sequence of protein HMW1 (SEQ ID NO: 2);

FIG. 3 is a DNA sequence of a gene coding for protein HMW2 (SEQ ID NO: 3);

FIG. 4 is a derived amino acid sequence of HMW2 (SEQ ID NO: 4);

FIG. 5A shows restriction maps of representative recombinant phages which contained the HMW1 or HMW2 structural genes, the locations of the structural genes being indicated by the shaded bars;

FIG. 5B shows the restriction map of the T7 expression vector pT7-7;

FIG. 6 contains the DNA sequence of a gene cluster for the hmw1 gene (SEQ ID NO: 5), comprising nucleotides 351 to 4958 (ORF a) (as in FIG. 1), as well as two additional downstream genes in the 3' flanking region, comprising ORFs b, nucleotides 5114-6748, and c nucleotides 7062-9011;

FIG. 7 contains the DNA sequence of a gene cluster for the hmw2 gene (SEQ ID NO: 6), comprising nucleotides 792 to 5222 (ORF a) (as in FIG. 3), as well as two additional downstream genes in the 3' flanking region, comprising ORFs b, nucleotides 5375-7009, and c, nucleotides 7249-9198;

FIG. 8 is a partial DNA sequence of a gene coding for protein HMW3 (SEQ ID NO: 7);

FIG. 9 is a partial DNA sequence of a gene coding for protein HMW4 (SEQ ID NO: 8); and

FIG. 10 is a comparison table for the derived amino acid sequence for proteins HMW1, HMW2, HMW3 and HMW4.

GENERAL DESCRIPTION OF INVENTION

The DNA sequences of the genes coding for HMW1 and HMW2, shown in FIGS. 1 and 3 respectively, were shown to be about 80% identical, with the first 1259 base pairs of the genes being identical. The derived amino acid sequences of the two HMW proteins, shown in FIGS. 2 and 4 respectively, are about 70% identical. Furthermore, the encoded proteins are antigenically related to the filamentous hemagglutinin surface protein of Bordetella pertussis. A monoclonal antibody prepared against filamentous hemagglutinin (FHA) of Bordetella pertussis was found to recognize both of the high molecular weight proteins. This data suggests that the HMW and FHA proteins may serve similar biological functions. The derived amino acid sequences of the HMW1 and HMW2 proteins show sequence similarity to that for the FHA protein. It has further been shown that these antigenically-related proteins are produced by the majority of the non-typeable strains of Haemophilus. Antisera raised against the protein expressed by the HMW1 gene recognizes both the HMW2 protein and the B. pertussis FHA. The present invention includes an isolated and purified high molecular weight protein of non-typeable haemophilus which is antigenically related to the B. pertussis FHA, which may be obtained from natural sources or produced recombinantly.

A phage genomic library of a known strain of non-typeable Haemophilus was prepared by standard methods and the library was screened for clones expressing high molecular weight proteins, using a high titre antiserum against HMW's. A number of strongly reactive DNA clones were plaque-purified and sub-cloned into a T7 expression plasmid. It was found that they all expressed either one or the other of the two high-molecular-weight proteins designated HMW1 and HMW2, with apparent molecular weights of 125 and 120 kDa, respectively, encoded by open reading frames of 4.6 kb and 4.4 kb, respectively.

Representative clones expressing either HMW1 and HMW2 were further characterized and the genes isolated, purified and sequenced. The DNA sequence of HMW1 is shown in FIG. 1 and the corresponding derived amino acid sequence in FIG. 2. Similarly, the DNA sequence of HMW2 is shown in FIG. 3 and the corresponding derived amino acid sequence in FIG. 4. Partial purification of the isolated proteins and N-terminal sequence analysis indicated that the expressed proteins are truncated since their sequence starts at residue number 442 of both full length HMW1 and HMW2 gene products.

Subcloning studies with respect to the hmw1 and hmw2 genes indicated that correct processing of the HMW proteins required the products of additional downstream genes. It has been found that both the hmw1 and hmw2 genes are flanked by two additional downstream open reading frames (ORFs), designated b and c, respectively, (see FIGS. 6 and 7).

The b ORFs are 1635 bp in length, extending from nucleotides 5114 to 6748 in the case of hmw1 and nucleotides 5375 to 7009 in the case of hmw2, with their derived amino acid sequences 99% identical. The derived amino acid sequences demonstrate similarity with the derived amino acid sequences of two genes which encode proteins required for secretion and activation of hemolysins of P. mirabilis and S. marcescens.

The c ORFs are 1950 bp in length, extending from nucleotides 7062 to 9011 in the case of hmw1 and nucleotides 7249 to 9198 in the case of hmw2, with their derived amino acid sequences 96% identical. The hmw1 c ORF is preceded by a series of 9 bp direct tandem repeats. In plasmid subclones, interruption of the hmw1 b or c ORF results in defective processing and secretion of the hmw1 structural gene product.

The two high molecular weight proteins have been isolated and purified and shown to be partially protective against otitis media in chinchillas and to function as adhesins. These results indicate the potential for use of such high molecular proteins and structurally-related proteins of other non-typeable strains of Haemophilus influenzae as components in non-typeable Haemophilus influenzae vaccines.

Since the proteins provided herein are good cross-reactive antigens and are present in the majority of non-typeable Haemophilus strains, it is evident that these HMW proteins may become integral constituents of a universal Haemophilus vaccine. Indeed, these proteins may be used not only as protective antigens against otitis, sinusitis and bronchitis caused by the non-typeable Haemophilus strains, but also may be used as carriers for the protective Hib polysaccharides in a conjugate vaccine against meningitis. The proteins also may be used as carriers for other antigens, haptens and polysaccharides from other organisms, so as to induce immunity to such antigens, haptens and polysaccharides.

The nucleotide sequences encoding two high molecular weight proteins of a different non-typeable Haemophilus strain (designated HMW3 and HMW4) have been largely elucidated, and are presented in FIGS. 8 and 9. HMW3 has an apparent molecular weight of 125 kDa while HMW4 has an apparent molecular weight of 123 kDa. These high molecular weight proteins are antigenically related to the HMW1 and HMW2 proteins and to FHA. Sequence analysis of HMW3 is approximately 85% complete and of HMW4 95% complete, with short stretches at the 5'-ends of each gene remaining to be sequenced.

FIG. 10 contains a multiple sequence comparison of the derived amino acid sequences for the four high molecular weight proteins identified herein. As may be seen from this comparison, stretches of identical peptide sequence may be found throughout the length of the comparison, with HMW3 more closely resembling HMW1 and HMW4 more closely resembling HMW2. This information is highly suggestive of a considerable sequence homology between high molecular weight proteins from various non-typeable Haemophilus strains.

In addition, mutants of non-typeable H. influenzae strains that are deficient in expression of HMW1 or HMW2 or both have been constructed and examined for their capacity to adhere to cultured human epithelial cells. The hmw1 and hmw2 gene clusters have been expressed in E. coli and have been examined for in vitro adherence. The results of such experimentation demonstrate that both HMW1 and HMW2 mediate attachment and hence are adhesins and that this function is present even in the absence of other H. influenzae surface structures.

With the isolation and purification of the high molecular weight proteins, the inventors are able to determine the major protective epitopes by conventional epitope mapping and synthesize peptides corresponding to these determinants to be incorporated in fully synthetic or recombinant vaccines. Accordingly, the invention also comprises a synthetic peptide having an amino acid sequence corresponding to at least one protective epitope of a high molecular weight protein of a non-typeable Haemophilus influenzae. Such peptides are of varying length that constitute portions of the high-molecular-weight proteins, that can be used to induce immunity, either directly or as part of a conjugate, against the relative organisms and thus constitute vaccines for protection against the corresponding diseases.

The present invention also provides any variant or fragment of the proteins that retains the potential immunological ability to protect against disease caused by non-typeable Haemophilus strains. The variants may be constructed by partial deletions or mutations of the genes and expression of the resulting modified genes to give the protein variations.

EXAMPLES Example 1

Non-typeable H.influenzae strains 5 and 12 were isolated in pure culture from the middle ear fluid of children with acute otitis media. Chromosomal DNA from strain 12, providing genes encoding proteins HMW1 and HMW2, was prepared by preparing Sau3A partial restriction digests of chromosomal DNA and fractionating on sucrose gradients. Fractions containing DNA fragments in the 9 to 20 kbp range were pooled and a library was prepared by ligation into .lambda.EMBL3 arms. Ligation mixtures were packaged in vitro and plate-amplified in a P2 lysogen of E. coli LE392.

For plasmid subcloning studies, DNA from a representative recombinant phage was subcloned into the T7 expression plasmid pT7-7, containing the T7 RNA polymerase promoter .PHI.10, a ribosome-binding site and the translational start site for the T7 gene 10 protein upstream from a multiple cloning site (see FIG. 5B).

DNA sequence analysis was performed by the dideoxy method and both strands of the HMW1 gene and a single strand of the HMW2 gene were sequenced.

Western immunoblot analysis was performed to identify the recombinant proteins being produced by reactive phage clones. Phage lysates grown in LE392 cells or plaques picked directly from a lawn of LE392 cells on YT plates were solubilized in gel electrophoresis sample buffer prior to electrophoresis. Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis was performed on 7.5% or 11% polyacrylamide modified Laemmli gels. After transfer of the proteins to nitrocellulose sheets, the sheets were probed sequentially with an E. coli-absorbed human serum sample containing high-titer antibody to the high-molecular-weight proteins and then with alkaline phosphatase-conjugated goat anti-human immunoglobulin G (IgG) second antibody. Sera from healthy adults contains high-titer antibody directed against surface-exposed high-molecular-weight proteins of non-typeable H. influenzae. One such serum sample was used as the screening antiserum after having been extensively absorbed with LE392 cells.

To identify recombinant proteins being produced by E. coli transformed with recombinant plasmids, the plasmids of interest were used to transform E. coli BL21 (DE3)/pLysS. The transformed strains were grown to an A.sub.600 of 0.5 in L broth containing 50 .mu.g of ampicillin per ml. IPTG was then added to 1 mM. One hour later, cells were harvested, and a sonicate of the cells was prepared. The protein concentrations of the samples were determined by the bicinchoninic acid method. Cell sonicates containing 100 .mu.g of total protein were solubilized in electrophoresis sample buffer, subjected to SDS-polyacrylamide gel electrophoresis, and transferred to nitrocellulose. The nitrocellulose was then probed sequentially with the E. coli-absorbed adult serum sample and then with alkaline phosphatase-conjugated goat anti-human IgG second antibody.

Western immunoblot analysis also was performed to determine whether homologous and heterologous non-typeable H. influenzae strains expressed high-molecular-weight proteins antigenically related to the protein encoded by the cloned HMW1 gene (rHMW1). Cell sonicates of bacterial cells were solubilized in electrophoresis sample buffer, subjected to SDS-polyacrylamide gel electrophoresis, and transferred to nitrocellulose. Nitrocellulose was probed sequentially with polyclonal rabbit rHMW1 antiserum and then with alkaline phosphatase-conjugated goat anti-rabbit IgG second antibody.

Finally, Western immunoblot analysis was performed to determine whether non-typeable Haemophilus strains expressed proteins antigenically related to the filamentous hemagglutinin protein of Bordetella pertussis. Monoclonal antibody X3C, a murine immunoglobulin G (IgG) antibody which recognizes filamentous hemagglutinin, was used to probe cell sonicates by Western blot. An alkaline phosphatase-conjugated goat anti-mouse IgG second antibody was used for detection.

To generate recombinant protein antiserum, E. coli BL21(DE3)/pLysS was transformed with pHMW1-4, and expression of recombinant protein was induced with IPTG, as described above. A cell sonicate of the bacterial cells was prepared and separated into a supernatant and pellet fraction by centrifugation at 10,000.times.g for 30 min. The recombinant protein fractionated with the pellet fraction. A rabbit was subcutaneously immunized on biweekly schedule with 1 mg of protein from the pellet fraction, the first dose given with Freund's complete adjuvant and subsequent doses with Freund's incomplete adjuvant. Following the fourth injection, the rabbit was bled. Prior to use in the Western blot assay, the antiserum was absorbed extensively with sonicates of the host E. coli strain transformed with cloning vector alone.

To assess the sharing of antigenic determinants between HMW1 and filamentous hemagglutinin, enzyme-linked immunosorbent assay (ELISA) plates (Costar, Cambridge, Mass.) were coated with 60 .mu.l of a 4-ug/ml solution of filamentous hemagglutinin in Dulbecco's phosphate-buffered saline per well for 2 h at room temperature. Wells were blocked for 1 h with 1% bovine serum albumin in Dulbecco's phosphate-buffered saline prior to addition of serum dilutions. rHMW1 antiserum was serially diluted in 0.1% Brij (Sigma, St. Louis, Mo.) in Dulbecco's phosphate-buffered saline and incubated for 3 h at room temperature. After being washed, the plates were incubated with peroxidase-conjugated goat anti-rabbit lgG antibody (Bio-Rad) for 2 h at room temperature and subsequently developed with 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (Sigma) at a concentration of 0.54 in mg/ml in 0.1M sodium citrate buffer, pH 4.2, containing 0.03% H.sub.2 O.sub.2. Absorbances were read on an automated ELISA reader.

Recombinant phage expressing HMW1 or HMW2 were recovered as follows. The non-typeable H. influenzae strain 12 genomic library was screened for clones expressing high-molecular-weight proteins with an E. coli-absorbed human serum sample containing a high titer of antibodies directed against the high-molecular-weight proteins.

Numerous strongly reactive clones were identified along with more weakly reactive ones. Twenty strongly reactive clones were plaque-purified and examined by Western blot for expression of recombinant proteins. Each of the strongly reactive clones expressed one of two types of high-molecular-weight proteins, designated HMW1 and HMW2. The major immunoreactive protein bands in the HMW1 and HMW2 lysates migrated with apparent molecular masses of 125 and 120 kDa, respectively. In addition to the major bands, each lysate contained minor protein bands of higher apparent molecular weight. Protein bands seen in the HMW2 lysates at molecular masses of less than 120 kDa were not regularly observed and presumably represent proteolytic degradation products. Lysates of LE392 infected with the .lambda.EMBL3 cloning vector alone were non-reactive when immunologically screened with the same serum sample. Thus, the observed activity was not due to cross-reactive E. coli proteins or .lambda.EMBL3-encoded proteins. Furthermore, the recombinant proteins were not simply binding immunoglobulin nonspecifically, since the proteins were not reactive with the goat anti-human IgG conjugate alone, with normal rabbit sera, or with serum from a number of healthy young infants.

Representative clones expressing either the HMW1 or HMW2 recombinant proteins were characterized further. The restriction maps of the two phage types were different from each other, including the regions encoding the HMW1 and HMW2 structural genes. FIG. 5A shows restriction maps of representative recombinant phage which contained the HMW1 or HMW2 structural genes. The locations of the structural genes are indicated by the shaded bars.

HMW1 plasmid subclones were constructed by using the T7 expression plasmid T7-7 (FIG. 5A and B). HMW2 plasmid subclones also were constructed, and the results with these latter subclones were similar to those observed with the HMW1 constructs.

The approximate location and direction of transcription of the HMW1 structure gene were initially determined by using plasmid pHMW1 (FIG. 5A). This plasmid was constructed by inserting the 8.5-kb BamHI-SalI fragment from .lambda.HMW1 into BamHI- and SalI-cut pT7-7. E. Coli transformed with pHMW1 expressed an immunoreactive recombinant protein with an apparent molecular mass of 115 kDa, which was strongly inducible with IPTG. This protein was significantly smaller than the 125-kDa major protein expressed by the parent phage, indicating that it either was being expressed as a fusion protein or was truncated at the carboxy terminus.

To more precisely localize the 3' end of the structural gene, additional plasmids were constructed with progressive deletions from the 3' end of the pHMW1 construct. Plasmid pHMW1-1 was constructed by digestion of pHMW1 with PstI, isolation of the resulting 8.8-kb fragment, and religation. Plasmid pHMW1-2 was constructed by digestion of pHMW1 with HindIII, isolation of the resulting 7.5-kb fragment, and religation. E. coli transformed with either plasmid pHMW1-1 or pHMW1-2 also expressed an immunoreactive recombinant protein with an apparent molecular mass of 115 kDa. These results indicated that the 3' end of the structural gene was 5' of the HindIII site.

To more precisely localize the 5' end of the gene, plasmids pHMW1-4 and pHMW1-7 were constructed. Plasmid pHMW1-4 was constructed by cloning the 5.1-kb BamHI-HindIII fragment from .lambda.HMW1 into a pT7-7-derived plasmid containing the upstream 3.8-kb EcoRI-BamHi fragment. E. coli transformed with pHMW1-4 expressed an immunoreactive protein with an apparent molecular mass of approximately 160 kDa. Although protein production was inducible with IPTG, the levels of protein production in these transformants were substantially lower than those with the pHMW1-2 transformants described above. Plasmid pHMW1-7 was constructed by digesting pHMW1-4 with NdeI and SpeI. The 9.0-kbp fragment generated by this double digestion was isolated, blunt ended, and religated. E. coli transformed with pHMW1-7 also expressed an immunoreactive protein with an apparent molecular mass of 160 kDa, a protein identical in size to that expressed by the pHMW1-4 transformants. The result indicated that the initiation codon for the HMW1 structural gene was 3' of the SpeI site. DNA sequence analysis confirmed this conclusion.

As noted above, the .lambda.HMW1 phage clones expressed a major immunoreactive band of 125 kDa, whereas the HMW1 plasmid clones pHMW1-4 and pHMW1-7, which contained what was believed to be the full-length gene, expressed an immunoreactive protein of approximately 160 kDa. This size discrepancy was disconcerting. One possible explanation was that an additional gene or genes necessary for correct processing of the HMW1 gene product were deleted in the process of subcloning. To address this possibility, plasmid pHMW1-14 was constructed. This construct was generated by digesting pHMW1 with NdeI and MluI and inserting the 7.6-kbp NdeI-MluI fragment isolated from pHMW1-4. Such a construct would contain the full-length HMW1 gene as well as the DNA 3' of the HMW1 gene which was present in the original HMW1 phage. E. coli transformed with this plasmid expressed major immunoreactive proteins with apparent molecular masses of 125 and 160 kDa as well as additional degradation products. The 125- and 160-kDa bands were identical to the major and minor immunoreactive bands detected in the HMW1 phage lysates. Interestingly, the pHMW1-14 construct also expressed significant amounts of protein in the uninduced condition, a situation not observed with the earlier constructs.

The relationship between the 125- and 160-kDa proteins remains somewhat unclear. Sequence analysis, described below, reveals that the HMW1 gene would be predicted to encode a protein of 159 kDa. It is believed that the 160-kDa protein is a precursor form of the mature 125-kDa protein, with the conversion from one protein to the other being dependent on the products of the two downstream genes.

Sequence analysis of the HMW1 gene (FIG. 1) revealed a 4,608-bp open reading frame (ORF), beginning with an ATG codon at nucleotide 351 and ending with a TAG stop codon at nucleotide 4959. A putative ribosome-binding site with the sequence AGGAG begins 10 bp up-stream of the putative initiation codon. Five other in-frame ATG codons are located within 250 bp of the beginning of the ORF, but none of these is preceded by a typical ribosome-binding site. The 5'-flanking region of the ORF contains a series of direct tandem repeats, with the 7-bp sequence ATCTTTC repeated 16 times. These tandem repeats stop 100 bp 5' of the putative initiation codon. An 8-bp inverted repeat characteristic of a rho-independent transcriptional terminator is present, beginning at nucleotide 4983, 25 bp 3' of the presumed translational stop. Multiple termination codons are present in all three reading frames both upstream and downstream of the ORF. The derived amino acid sequence of the protein encoded by the HMW1 gene (FIG. 2) has a molecular weight of 159,000, in good agreement with the apparent molecular weights of the proteins expressed by the HMW1-4 and HMW1-7 transformants. The derived amino acid sequence of the amino terminus does not demonstrate the characteristics of a typical signal sequence. The BamHI site used in generation of pHMW1 comprises bp 1743 through 1748 of the nucleotide sequence. The ORF downstream of the BamHI site would be predicted to encode a protein of 111 kDa, in good agreement with the 115 kDa estimated for the apparent molecular mass of the pHMW1-encoded fusion protein.

The sequence of the HMW2 gene (FIG. 3) consists of a 4,431-bp ORF, beginning with an ATG codon at nucleotide 352 and ending with a TAG stop codon at nucleotide 4783. The first 1,259 bp of the ORF of the HMW2 gene are identical to those of the HMW1 gene. Thereafter, the sequences begin to diverge but are 80% identical overall. With the exception of a single base addition at nucleotide 93 of the HMW2 sequence, the 5'-flanking regions of the HMW1 and HMW2 genes are identical for 310 bp upstream from the respective initiation codons. Thus, the HMW2 gene is preceded by the same set of tandem repeats and the same putative ribosome-binding site which lies 5' of the HMW1 gene. A putative transcriptional terminator identical to that identified 3' of the HMW1 ORF is noted, beginning at nucleotide 4804. The discrepancy in the lengths of the two genes is principally accounted for by a 186-bp gap in the HMW2 sequence, beginning at nucleotide position 3839. The derived amino acid sequence of the protein encoded by the HMW2 gene (FIG. 4) has a molecular weight of 155,000 and is 71% identical with the derived amino acid sequence of the HMW1 gene.

The derived amino acid sequences of both the HMW1 and HMW2 genes (FIGS. 2 and 4) demonstrated sequence similarity with the derived amino acid sequence of filamentous hemagglutinin of Bordetella pertussis, a surface-associated protein of this organism. The initial and optimized TFASTA scores for the HMW1-filamentous hemagglutinin sequence comparison were 87 and 186, respectively, with a word size of 2. The z score for the comparison was 45.8. The initial and optimized TFASTA scores for the HMW2-filamentous hemagglutinin sequence comparison were 68 and 196, respectively. The z score for the latter comparison was 48.7. The magnitudes of the initial and optimized TFASTA scores and the z scores suggested that a biologically significant relationship existed between the HMW1 and HMW2 gene products and filamentous hemagglutinin. When the derived amino acid sequences of HMW1, HMW2, and filamentous hemagglutinin genes were aligned and compared, the similarities were most notable at the amino-terminal ends of the three sequences. Twelve of the first 22 amino acids in the predicted peptide sequences were identical. In additional, the sequences demonstrated a common five-amino-acid stretch, Asn-Pro-Asn-Gly-Ile, and several shorter stretches of sequence identity within the first 200 amino acids.

Example 2

To further explore the HMW1-filamentous hemagglutinin relationship, the ability of antiserum prepared against the HMW1-4 recombinant protein (rHMW1) to recognize purified filamentous hemagglutinin was assessed. The rHMW1 antiserum demonstrated ELISA reactivity with filamentous hemagglutinin in a dose-dependent manner. Preimmune rabbit serum had minimal reactivity in this assay. The rHMW1 antiserum also was examined in a Western blot assay and demonstrated weak but positive reactivity with purified filamentous hemagglutinin in this system also.

To identify the native Haemophilus protein corresponding to the HMW1 gene product and to determine the extent to which proteins antigenically related to the HMW1 cloned gene product were common among other non-typeable H. influenzae strains, a panel of Haemophilus strains was screened by Western blot with the rHMW1 antiserum. The antiserum recognized both a 125- and a 120-kDa protein band in the homologous strain 12, the putative mature protein products of the HMW1 and HMW2 genes, respectively.

When used to screen heterologous non-typeable H. influenzae strains, rHMW1 antiserum recognized high-molecular-weight proteins in 75% of 125 epidemiologically unrelated strains. In general, the antiserum reacted with one or two protein bands in the 100- to 150-kDa range in each of the heterologous strains in a pattern similar but not identical to that seen in the homologous strain.

Monoclonal antibody X3C is a murine IgG antibody directed against the filamentous hemagglutinin protein of B. pertussis. This antibody can inhibit the binding of B. pertussis cells to Chinese hamster ovary cells and HeLa cells in culture and will inhibit hemagglutination of erythrocytes by purified filamentous hemagglutinin. A Western blot assay was performed in which this monoclonal antibody was screened against the same panel of non-typeable H. influenzae strains discussed above. Monoclonal antibody X3C recognized both the high-molecular-weight proteins in non-typeable H. influenzae strain 12 which were recognized by the recombinant-protein antiserum. In addition, the monoclonal antibody recognized protein bands in a subset of heterologous non-typeable H. influenzae strains which were identical to those recognized by the recombinant-protein antiserum. On occasion, the filamentous hemagglutinin monoclonal antibody appeared to recognize only one of the two bands which had been recognized by the recombinant-protein antiserum. Overall, monoclonal antibody X3C recognized high-molecular-weight protein bands identical to those recognized by the rHMW1 antiserum in approximately 35% of our collection of non-typeable H. influenzae strains.

Example 3

Mutants deficient in expression of HMW1, MW2 or both proteins were constructed to examine the role of these proteins in bacterial adherence. The following strategy was employed. pHMW1-14 (see Example 1, FIG. 5A) was digested with BamHI and then ligated to a kanamycin cassette isolated on a 1.3-kb BamHl fragment from pUC4K. The resultant plasmid (pHMW1-17) was linearized by digestion with XbaI and transformed into non-typeable H. influenzae strain 12, followed by selection for kanamycin resistant colonies. Southern analysis of a series of these colonies demonstrated two populations of transformants, one with an insertion in the HMW1 structural gene and the other with an insertion in the HMW2 structural gene. One mutant from each of these classes was selected for further studies.

Mutants deficient in expression of both proteins were recovered using the following protocol. After deletion of the 2.1-kb fragment of DNA between two EcoRI sites spanning the 3'-portion of the HMW1 structural gene in pHMW-15, the kanamycin cassette from pUC4K was inserted as a 1.3-kb EcoRl fragment. The resulting plasmid (pHMW1-16) was linearized by digestion with XbaI and transformed into strain 12, followed again by selection for kanamycin resistant colonies. Southern analysis of a representative sampling of these colonies demonstrated that in seven of eight cases, insertion into both the HMW1 and HMW2 loci had occurred. One such mutant was selected for further studies.

To confirm the intended phenotypes, the mutant strains were examined by Western blot analysis with a polyclonal antiserum against recombinant HMW1 protein. The parental strain expressed both the 125-kD HMW1 and the 120-kD HMW2 protein. In contrast, the HMW2 mutant failed to express the 120-kD protein, and the HMW1 mutant failed to express the 125-kD protein. The double mutant lacked expression of either protein. On the basis of whole cell lysates, outer membrane profiles, and colony morphology, the wild type strain and the mutants were otherwise identical with one another. Transmission electron microscopy demonstrated that none of the four strains expressed pili.

The capacity of wild type strain 12 to adhere to Chang epithelial cells was examined. In such assays, bacteria were inoculated into broth and allowed to grow to a density of .about.2.times.10.sup.9 cfu/ml. Approximately 2.times.10.sup.7 cfu were inoculated onto epithelial cell monolayers, and plates were gently centrifuged at 165.times.g for 5 minutes to facilitate contact between bacteria and the epithelial surface. After incubation for 30 minutes at 37.degree. C. in 5% CO.sub.2, monolayers were rinsed 5 times with PBS to remove nonadherent organisms and were treated with trypsin-EDTA (0.05% trypsin, 0.5% EDTA) in PBS to release them from the plastic support. Well contents were agitated, and dilutions were plated on solid medium to yield the number of adherent bacteria per monolayer. Percent adherence was calculated by dividing the number of adherent cfu per monolayer by the number of inoculated cfu.

As depicted in Table 1 below (the Tables appear at the end of the descriptive text), this strain adhered quite efficiently, with nearly 90% of the inoculum binding to the monolayer. Adherence by the mutant expressing HMW1 but not HMW2 (HMW2.sup.-) was also quite efficient and comparable to that by the wild type strain. In contrast, attachment by the strain expressing HMW2 but deficient in expression of HMW1 (HMW1.sup.-) was decreased about 15-fold relative to the wild type. Adherence by the double mutant (HMW1.sup.- /HMW2.sup.-) was decreased even further, approximately 50-fold compared with the wild type and approximately 3-fold compared with the HMW1 mutant. Considered together, these results suggest that both the HMW1 protein and the, HMW2 protein influence attachment to Chang epithelial cells. Interestingly, optimal adherence to this cell line appears to require HMW1 but not HMW2.

Example 4

Using the plasmids pHMW1-16 and pHMW1-17 (see Example 3) and following a scheme similar to that employed with strain 12 as described in Example 3, three non-typeable Haemophilus strain 5 mutants were isolated, including one with the kanamycin gene inserted into the hmw1-like (designated hmw3) locus, a second with an insertion in the hmw2-like (designated hmw4) locus, and a third with insertions in both loci. As predicted, Western immunoblot analysis demonstrated that the mutant with insertion of the kanamycin cassette into the hmw1-like locus had lost expression of the HMW3 125-kD protein, while the mutant with insertion into the hmw2-like locus failed to express the HMW4 123-kD protein. The mutant with a double insertion was unable to express either of the high molecular weight proteins.

As shown in Table 1 below, wild type strain 5 demonstrated high level adherence, with almost 80% of the inoculum adhering per monolayer. Adherence by the mutant deficient in expression of the HMW2-like protein was also quite high. In contrast, adherence by the mutant unable to express the, HMW1-like protein was reduced about 5-fold relative to the wild type, and attachment by the double mutant was diminished even further (approximately 25-fold). Examination of Giemsa-stained samples confirmed these observations (not shown). Thus, the results with strain 5 corroborate the findings with strain 12 and the HMW1 and HMW2 proteins.

Example 5

To confirm an adherence function for the HMW1 and HMW2 proteins and to examine the effect of HMW1 and HMW2 independently of other H. influenzae surface structures, the hmw1 and the hmw2 gene clusters were introduced into E. coli DH5.alpha., using plasmids pHMW1-14 and pHMW2-21, respectively. As a control, the cloning vector, pT7-7, was also transformed into E. coli DH5.alpha.. Western blot analysis demonstrated that E. coli DH5.alpha. containing the hmw1 genes expressed a 125 kDa protein, while the same strain harboring the hmw2 genes expressed a 120-kDa protein. E. coli DH5.alpha. containing pT7-7 failed to react with antiserum against recombinant HMW1. Transmission electron microscopy revealed no pili or other surface appendages on any of the E. coli strains.

Adherence by the E. coli strains was quantitated and compared with adherence by wild type non-typeable H. influenzae strain 12. As shown in Table 2 below, adherence by E. coli DH5.alpha. containing vector alone was less than 1% of that for strain 12. In contrast, E. coli DH5.alpha. harboring the hmw1 gene cluster demonstrated adherence levels comparable to those for strain 12. Adherence by E. coli DH5.alpha. containing the hmw2 genes was approximately 6-fold lower than attachment by strain 12 but was increased 20-fold over adherence by E. coli DH5.alpha. with pT7-7 alone. These results indicate that the HMW1 and HMW2 proteins are capable of independently mediating attachment to Chang conjunctival cells. These results are consistent with the results with the H. influenzae mutants reported in Examples 3 and 4, providing further evidence that, with Chang epithelial cells, HMW1 is a more efficient adhesin than is HMW2.

Experiments with E. coli HB101 harboring pT7-7, pHMW1-14, or pHMW2-21 confirmed the results obtained with the DH5.alpha. derivatives (see Table 2).

Example 6

HMW1 and HMW2 were isolated and purified from non-typeable H. influenzae (NTHI) strain 12 in the following manner. Non-typeable Haemophilus bacteria from frozen stock culture were streaked onto a chocolate plate and grown overnight at 37.degree. C. in an incubator with 5% CO.sub.2. 50 ml starter culture of brain heart infusion (BHI) broth, supplemented with 10 .mu.g/ml each of hemin and NAD was inoculated with growth on chocolate plate. The starter culture was grown until the optical density (O.D.--600 nm) reached 0.6 to 0.8 and then the bacteria in the starter culture was used to inoculate six 500 ml flasks of supplemented BHI using 8 to 10 ml per flask. The bacteria were grown in 500 ml flasks for an additional 5 to 6 hours at which time the O.D. was 1.5 or greater. Cultures were centrifuged at 10,000 rpm for 10 minutes.

Bacterial pellets were resuspended in a total volume of 250 ml of an extraction solution comprising 0.5M NaCl, 0.01M Na.sub.2 EDTA, 0.01M Tris 50 .mu.M 1,10-phenanthroline, pH 7.5. The cells were not sonicated or otherwise disrupted. The resuspended cells were allowed to sit on ice at 0.degree. C. for 60 minutes. The resuspended cells were centrifuged at 10,000 rpm for 10 minutes at 4.degree. C. to remove the majority of intact cells and cellular debris. The supernatant was collected and centrifuged at 100,000.times.g for 60 minutes at 4.degree. C. The supernatant again was collected and dialyzed overnight at 4.degree. C. against 0.01M sodium phosphate, pH 6.0.

The sample was centrifuged at 10,000 rpm for 10 minutes at 4.degree. C. to remove insoluble debris precipitated from solution during dialysis. The supernatant was applied to a 10 ml CM Sepharose column which has been pre-equilibrated with 0.01M sodium phosphate, pH 6. Following application to this column, the column was washed with 0.01M sodium phosphate. Proteins were elevated from the column with a 0-0.5M KCl gradient in 0.01M Na phosphate, pH 6 and fractions were collected for gel examination. Coomassie gels of column fractions were carried out to identify those fractions containing high molecular weight proteins. The fractions containing high molecular weight proteins were pooled and concentrated to a 1 to 3 ml volume in preparation for application of sample to gel filtration column.

A Sepharose CL-4B gel filtration column was equilibrated with phosphate-buffered saline, pH 7.5. The concentrated high molecular weight protein sample was applied to the gel filtration column and column fractions were collected. Coomassie gels were performed on the column fractions to identify those containing high molecular weight proteins. The column fractions containing high molecular weight proteins were pooled.

The proteins were tested to determine whether they would protect against experimental otitis media caused by the homologous strain.

Chinchillas received three monthly subcutaneous injections with 40 .mu.g of an HMW1-HMW2 protein mixture in Freund's adjuvant. One month after the last injection, the animals were challanged by intrabullar inoculation with 300 cfu of NTHI strain 12.

Infection developed in 5 of 5 control animals versus 5 of 10 immunized animals. Among infected animals, geometric mean bacterial counts in middle ear fluid 7 days post-challenge were 7.4.times.10.sup.6 in control animals versus 1.3.times.10.sup.5 in immunized animals.

Serum antibody titres following immunization were comparable in uninfected and infected animals. However, infection in immunized animals was uniformly associated with the appearance of bacteria down-regulated in expression of the HMW proteins, suggesting bacterial selection in response to immunologic pressure.

Although this data shows that protection following immunization was not complete, this data suggests the HMW adhesin proteins are potentially important protective antigens which may comprise one component of a multi-component NTHI vaccine.

Example 7

A number of synthetic peptides were derived from HMW1. Antisera then was raised to these peptides. The anti-peptide antisera to peptide HMW1-P5 was shown to recognize HMW1. Peptide HMW1-P5 covers amino acids 1453 to 1481 of HMW1, has the sequence VDEVIEAKRILEKVKDLSDEEREALAKLG (SEQ ID NO:9), and represents bases 1498 to 1576 in FIG. 10.

This finding demonstrates that the DNA sequence and the derived protein is being interpreted in the correct reading frame and that peptides derived from the sequence can be produced which will be immunogenic.

SUMMARY OF DISCLOSURE

In summary of this disclosure, the present invention provides high molecular weight proteins of non-typeable Haemophilus, genes coding for the same and vaccines incorporating such proteins. Modifications are possible within the scope of this invention.

                TABLE 1                                                     
     ______________________________________                                    
     Effect of mutation of high molecular weight                               
     proteins on adherence to Chang epithelial cells by                        
     nontypable H. influenzae.                                                 
                 ADHERENCE*                                                    
     Strain        % inoculum  relative to wild type.dagger.                   
     ______________________________________                                    
     Strain 12 derivatives                                                     
     wild type      87.7 .+-. 5.9                                              
                               100.0 .+-. 6.7                                  
     HMW1-mutant    6.0 .+-. 0.9                                               
                                6.8 .+-. 1.0                                   
     HMW2-mutant    89.9 .+-. 10.8                                             
                               102.5 .+-. 12.3                                 
     HMW1-/HMW2-mutant                                                         
                    2.0 .+-. 0.3                                               
                                2.3 .+-. 0.3                                   
     Strain 5 derivatives                                                      
     wild type      78.7 .+-. 3.2                                              
                               100.0 .+-. 4.1                                  
     HMW1-like mutant                                                          
                    15.7 .+-. 2.6                                              
                                19.9 .+-. 3.3                                  
     HMW2-like mutant                                                          
                   103.7 .+-. 14.0                                             
                               131.7 .+-. 17.8                                 
     double mutant  3.5 .+-. 0.6                                               
                                4.4 .+-. 0.8                                   
     ______________________________________                                    
      *Numbers represent mean (.+-. standard error of the mean) of measurements
      in triplicate or quadruplicate from representative experiments.          
      .dagger.Adherence values for strain 12 derivatives are relative to strain
      12 wild type; values for strain 5 derivatives are relative to strain 5   
      wild type.                                                               
                TABLE 2                                                     
     ______________________________________                                    
     Adherence by E. coli DH5.alpha. and HB101 harboring                       
     hmw1 or hmw2 gene clusters.                                               
                       Adherence relative to                                   
     Strain*           H. influenzae strain 12.dagger.                         
     ______________________________________                                    
     DH5.alpha. (pT7-7)                                                        
                        0.7 .+-. 0.02                                          
     DH5.alpha. (pHMW1-14)                                                     
                       114.2 .+-. 15.9                                         
     DH5.alpha. (pHMW2-21)                                                     
                        14.0 .+-. 3.7                                          
     HB101 (pT7-7)      1.2 .+-. 0.5                                           
     HB101 (pHMW1-14)   93.6 .+-. 15.8                                         
     HB101 (pHMW2-21)   3.6 .+-. 0.9                                           
     ______________________________________                                    
      *The plasmid pHMW114 contains the hmw1 gene cluster, while pHMW221       
      contains the hmw2 gene cluster; pT77 is the cloning vector used in these 
      constructs.                                                              
      .dagger.Numbers represent the mean (.+-. standard error of the mean) of  
      measurements made in triplicate from representative experiments.         
  __________________________________________________________________________
     SEQUENCE LISTING                                                          
     (1) GENERAL INFORMATION:                                                  
     (iii) NUMBER OF SEQUENCES: 8                                              
     (2) INFORMATION FOR SEQ ID NO:1:                                          
     (i) SEQUENCE CHARACTERISTICS:                                             
     (A) LENGTH: 5116 base pairs                                               
     (B) TYPE: nucleic acid                                                    
     (C) STRANDEDNESS: single                                                  
     (D) TOPOLOGY: linear                                                      
     (ii) MOLECULE TYPE: DNA (genomic)                                         
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:                                   
     ACAGCGTTCTCTTAATACTAGTACAAACCCACAATAAAATATGACAAACAACAATTACAA60            
     CACCTTTTTTGCAGTCTATATGCAAATATTTTAAAAAATAGTATAAATCCGCCATATAAA120           
     ATGGTATAATCTTTCATCTTTCATCTTTCATCTTTCATCTTTCATCTTTCATCTTTCATC180           
     TTTCATCTTTCATCTTTCATCTTTCATCTTTCATCTTTCATCTTTCATCTTTCATCTTTC240           
     ACATGCCCTGATGAACCGAGGGAAGGGAGGGAGGGGCAAGAATGAAGAGGGAGCTGAACG300           
     AACGCAAATGATAAAGTAATTTAATTGTTCAACTAACCTTAGGAGAAAATATGAACAAGC360           
     TATATCGTCTCAAATTCAGCAAACGCCTGAATGCTTTGGTTGCTGTGTCTGAATTGGCAC420           
     GGGGTTGTGACCATTCCACAGAAAAAGGCAGCGAAAAACCTGCTCGCATGAAAGTGCGTC480           
     ACTTAGCGTTAAAGCCACTTTCCGCTATGTTACTATCTTTAGGTGTAACATCTATTCCAC540           
     AATCTGTTTTAGCAAGCGGCTTACAAGGAATGGATGTAGTACACGGCACAGCCACTATGC600           
     AAGTAGATGGTAATAAAACCATTATCCGCAACAGTGTTGACGATATCATTAATTGGAAAC660           
     AATTTAACATCGACCAAAATGAAATGGTGCAGTTTTTACAAGAAAACAACAACTCCGCCG720           
     TATTCAACCGTGTTACATCTAACCAAATCTCCCAATTAAAAGGGATTTTAGATTCTAACG780           
     GACAAGTCTTTTTAATCAACCCAAATGGTATCACAATAGGTAAAGACGCAATTATTAACA840           
     CTAATGGCTTTACGGCTTCTACGCTAGACATTTCTAACGAAAACATCAAGGCGCGTAATT900           
     TCACCTTCGAGCAAACCAAAGATAAAGCGCTCGCTGAAATTGTGAATCACGGTTTAATTA960           
     CTGTCGGTAAAGACGGCAGTGTAAATCTTATTGGTGGCAAAGTGAAAAACGAGGGTGTGA1020          
     TTAGCGTAAATGGTGGCAGCATTTCTTTACTCGCAGGGCAAAAAATCACCATCAGCGATA1080          
     TAATAAACCCAACCATTACTTACAGCATTGCCGCGCCTGAAAATGAAGCGGTCAATCTGG1140          
     GCGATATTTTTGCCAAAGGCGGTAACATTAATGTCCGTGCTGCCACTATTCGAAACCAAG1200          
     GTAAACTTTCTGCTGATTCTGTAAGCAAAGATAAAAGCGGCAATATTGTTCTTTCCGCCA1260          
     AAGAGGGTGAAGCGGAAATTGGCGGTGTAATTTCCGCTCAAAATCAGCAAGCTAAAGGCG1320          
     GCAAGCTGATGATTACAGGCGATAAAGTCACATTAAAAACAGGTGCAGTTATCGACCTTT1380          
     CAGGTAAAGAAGGGGGAGAAACTTACCTTGGCGGTGACGAGCGCGGCGAAGGTAAAAAGG1440          
     GCATTCAATTAGCAAAGAAAACCTCTTTAGAAAAAGGCTCAACCATCAATGTATCAGGCA1500          
     AAGAAAAAGGCGGACGCGCTATTGTGTGGGGCGATATTGCGTTAATTGACGGCAATATTA1560          
     ACGCTCAAGGTAGTGGTGATATCGCTAAAACCGGTGGTTTTGTGGAGACGTCGGGGCATG1620          
     ATTTATTCATCAAAGACAATGCAATTGTTGACGCCAAAGAGTGGTTGTTAGACCCGGATA1680          
     ATGTATCTATTAATGCAGAAACAGCAGGACGCAGCAATACTTCAGAAGACGATGAATACA1740          
     CGGGATCCGGGAATAGTGCCAGCACCCCAAAACGAAACAAAGAAAAGACAACATTAACAA1800          
     ACACAACTCTTGAGAGTATACTAAAAAAAGGTACCTTTGTTAACATCACTGCTAATCAAC1860          
     GCATCTATGTCAATAGCTCCATTAATTTATCCAATGGCAGCTTAACTCTTTGGAGTGAGG1920          
     GTCGGAGCGGTGGCGGCGTTGAGATTAACAACGATATTACCACCGGTGATGATACCAGAG1980          
     GTGCAAACTTAACAATTTACTCAGGCGGCTGGGTTGATGTTCATAAAAATATCTCACTCG2040          
     GGGCGCAAGGTAACATAAACATTACAGCTAAACAAGATATCGCCTTTGAGAAAGGAAGCA2100          
     ACCAAGTCATTACAGGTCAAGGGACTATTACCTCAGGCAATCAAAAAGGTTTTAGATTTA2160          
     ATAATGTCTCTCTAAACGGCACTGGCAGCGGACTGCAATTCACCACTAAAAGAACCAATA2220          
     AATACGCTATCACAAATAAATTTGAAGGGACTTTAAATATTTCAGGGAAAGTGAACATCT2280          
     CAATGGTTTTACCTAAAAATGAAAGTGGATATGATAAATTCAAAGGACGCACTTACTGGA2340          
     ATTTAACCTCCTTAAATGTTTCCGAGAGTGGCGAGTTTAACCTCACTATTGACTCCAGAG2400          
     GAAGCGATAGTGCAGGCACACTTACCCAGCCTTATAATTTAAACGGTATATCATTCAACA2460          
     AAGACACTACCTTTAATGTTGAACGAAATGCAAGAGTCAACTTTGACATCAAGGCACCAA2520          
     TAGGGATAAATAAGTATTCTAGTTTGAATTACGCATCATTTAATGGAAACATTTCAGTTT2580          
     CGGGAGGGGGGAGTGTTGATTTCACACTTCTCGCCTCATCCTCTAACGTCCAAACCCCCG2640          
     GTGTAGTTATAAATTCTAAATACTTTAATGTTTCAACAGGGTCAAGTTTAAGATTTAAAA2700          
     CTTCAGGCTCAACAAAAACTGGCTTCTCAATAGAGAAAGATTTAACTTTAAATGCCACCG2760          
     GAGGCAACATAACACTTTTGCAAGTTGAAGGCACCGATGGAATGATTGGTAAAGGCATTG2820          
     TAGCCAAAAAAAACATAACCTTTGAAGGAGGTAACATCACCTTTGGCTCCAGGAAAGCCG2880          
     TAACAGAAATCGAAGGCAATGTTACTATCAATAACAACGCTAACGTCACTCTTATCGGTT2940          
     CGGATTTTGACAACCATCAAAAACCTTTAACTATTAAAAAAGATGTCATCATTAATAGCG3000          
     GCAACCTTACCGCTGGAGGCAATATTGTCAATATAGCCGGAAATCTTACCGTTGAAAGTA3060          
     ACGCTAATTTCAAAGCTATCACAAATTTCACTTTTAATGTAGGCGGCTTGTTTGACAACA3120          
     AAGGCAATTCAAATATTTCCATTGCCAAAGGAGGGGCTCGCTTTAAAGACATTGATAATT3180          
     CCAAGAATTTAAGCATCACCACCAACTCCAGCTCCACTTACCGCACTATTATAAGCGGCA3240          
     ATATAACCAATAAAAACGGTGATTTAAATATTACGAACGAAGGTAGTGATACTGAAATGC3300          
     AAATTGGCGGCGATGTCTCGCAAAAAGAAGGTAATCTCACGATTTCTTCTGACAAAATCA3360          
     ATATTACCAAACAGATAACAATCAAGGCAGGTGTTGATGGGGAGAATTCCGATTCAGACG3420          
     CGACAAACAATGCCAATCTAACCATTAAAACCAAAGAATTGAAATTAACGCAAGACCTAA3480          
     ATATTTCAGGTTTCAATAAAGCAGAGATTACAGCTAAAGATGGTAGTGATTTAACTATTG3540          
     GTAACACCAATAGTGCTGATGGTACTAATGCCAAAAAAGTAACCTTTAACCAGGTTAAAG3600          
     ATTCAAAAATCTCTGCTGACGGTCACAAGGTGACACTACACAGCAAAGTGGAAACATCCG3660          
     GTAGTAATAACAACACTGAAGATAGCAGTGACAATAATGCCGGCTTAACTATCGATGCAA3720          
     AAAATGTAACAGTAAACAACAATATTACTTCTCACAAAGCAGTGAGCATCTCTGCGACAA3780          
     GTGGAGAAATTACCACTAAAACAGGTACAACCATTAACGCAACCACTGGTAACGTGGAGA3840          
     TAACCGCTCAAACAGGTAGTATCCTAGGTGGAATTGAGTCCAGCTCTGGCTCTGTAACAC3900          
     TTACTGCAACCGAGGGCGCTCTTGCTGTAAGCAATATTTCGGGCAACACCGTTACTGTTA3960          
     CTGCAAATAGCGGTGCATTAACCACTTTGGCAGGCTCTACAATTAAAGGAACCGAGAGTG4020          
     TAACCACTTCAAGTCAATCAGGCGATATCGGCGGTACGATTTCTGGTGGCACAGTAGAGG4080          
     TTAAAGCAACCGAAAGTTTAACCACTCAATCCAATTCAAAAATTAAAGCAACAACAGGCG4140          
     AGGCTAACGTAACAAGTGCAACAGGTACAATTGGTGGTACGATTTCCGGTAATACGGTAA4200          
     ATGTTACGGCAAACGCTGGCGATTTAACAGTTGGGAATGGCGCAGAAATTAATGCGACAG4260          
     AAGGAGCTGCAACCTTAACTACATCATCGGGCAAATTAACTACCGAAGCTAGTTCACACA4320          
     TTACTTCAGCCAAGGGTCAGGTAAATCTTTCAGCTCAGGATGGTAGCGTTGCAGGAAGTA4380          
     TTAATGCCGCCAATGTGACACTAAATACTACAGGCACTTTAACTACCGTGAAGGGTTCAA4440          
     ACATTAATGCAACCAGCGGTACCTTGGTTATTAACGCAAAAGACGCTGAGCTAAATGGCG4500          
     CAGCATTGGGTAACCACACAGTGGTAAATGCAACCAACGCAAATGGCTCCGGCAGCGTAA4560          
     TCGCGACAACCTCAAGCAGAGTGAACATCACTGGGGATTTAATCACAATAAATGGATTAA4620          
     ATATCATTTCAAAAAACGGTATAAACACCGTACTGTTAAAAGGCGTTAAAATTGATGTGA4680          
     AATACATTCAACCGGGTATAGCAAGCGTAGATGAAGTAATTGAAGCGAAACGCATCCTTG4740          
     AGAAGGTAAAAGATTTATCTGATGAAGAAAGAGAAGCGTTAGCTAAACTTGGAGTAAGTG4800          
     CTGTACGTTTTATTGAGCCAAATAATACAATTACAGTCGATACACAAAATGAATTTGCAA4860          
     CCAGACCATTAAGTCGAATAGTGATTTCTGAAGGCAGGGCGTGTTTCTCAAACAGTGATG4920          
     GCGCGACGGTGTGCGTTAATATCGCTGATAACGGGCGGTAGCGGTCAGTAATTGACAAGG4980          
     TAGATTTCATCCTGCAATGAAGTCATTTTATTTTCGTATTATTTACTGTGTGGGTTAAAG5040          
     TTCAGTACGGGCTTTACCCATCTTGTAAAAAATTACGGAGAATACAATAAAGTATTTTTA5100          
     ACAGGTTATTATTATG5116                                                      
     (2) INFORMATION FOR SEQ ID NO:2:                                          
     (i) SEQUENCE CHARACTERISTICS:                                             
     (A) LENGTH: 1536 amino acids                                              
     (B) TYPE: amino acid                                                      
     (C) STRANDEDNESS: single                                                  
     (D) TOPOLOGY: linear                                                      
     (ii) MOLECULE TYPE: protein                                               
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:                                   
     MetAsnLysIleTyrArgLeuLysPheSerLysArgLeuAsnAlaLeu                          
     151015                                                                    
     ValAlaValSerGluLeuAlaArgGlyCysAspHisSerThrGluLys                          
     202530                                                                    
     GlySerGluLysProAlaArgMetLysValArgHisLeuAlaLeuLys                          
     354045                                                                    
     ProLeuSerAlaMetLeuLeuSerLeuGlyValThrSerIleProGln                          
     505560                                                                    
     SerValLeuAlaSerGlyLeuGlnGlyMetAspValValHisGlyThr                          
     65707580                                                                  
     AlaThrMetGlnValAspGlyAsnLysThrIleIleArgAsnSerVal                          
     859095                                                                    
     AspAlaIleIleAsnTrpLysGlnPheAsnIleAspGlnAsnGluMet                          
     100105110                                                                 
     ValGlnPheLeuGlnGluAsnAsnAsnSerAlaValPheAsnArgVal                          
     115120125                                                                 
     ThrSerAsnGlnIleSerGlnLeuLysGlyIleLeuAspSerAsnGly                          
     130135140                                                                 
     GlnValPheLeuIleAsnProAsnGlyIleThrIleGlyLysAspAla                          
     145150155160                                                              
     IleIleAsnThrAsnGlyPheThrAlaSerThrLeuAspIleSerAsn                          
     165170175                                                                 
     GluAsnIleLysAlaArgAsnPheThrPheGluGlnThrLysAspLys                          
     180185190                                                                 
     AlaLeuAlaGluIleValAsnHisGlyLeuIleThrValGlyLysAsp                          
     195200205                                                                 
     GlySerValAsnLeuIleGlyGlyLysValLysAsnGluGlyValIle                          
     210215220                                                                 
     SerValAsnGlyGlySerIleSerLeuLeuAlaGlyGlnLysIleThr                          
     225230235240                                                              
     IleSerAspIleIleAsnProThrIleThrTyrSerIleAlaAlaPro                          
     245250255                                                                 
     GluAsnGluAlaValAsnLeuGlyAspIlePheAlaLysGlyGlyAsn                          
     260265270                                                                 
     IleAsnValArgAlaAlaThrIleArgAsnGlnGlyLysLeuSerAla                          
     275280285                                                                 
     AspSerValSerLysAspLysSerGlyAsnIleValLeuSerAlaLys                          
     290295300                                                                 
     GluGlyGluAlaGluIleGlyGlyValIleSerAlaGlnAsnGlnGln                          
     305310315320                                                              
     AlaLysGlyGlyLysLeuMetIleThrGlyAspLysValThrLeuLys                          
     325330335                                                                 
     ThrGlyAlaValIleAspLeuSerGlyLysGluGlyGlyGluThrTyr                          
     340345350                                                                 
     LeuGlyGlyAspGluArgGlyGluGlyLysAsnGlyIleGlnLeuAla                          
     355360365                                                                 
     LysLysThrSerLeuGluLysGlySerThrIleAsnValSerGlyLys                          
     370375380                                                                 
     GluLysGlyGlyArgAlaIleValTrpGlyAspIleAlaLeuIleAsp                          
     385390395400                                                              
     GlyAsnIleAsnAlaGlnGlySerGlyAspIleAlaLysThrGlyGly                          
     405410415                                                                 
     PheValGluThrSerGlyHisAspLeuPheIleLysAspAsnAlaIle                          
     420425430                                                                 
     ValAspAlaLysGluTrpLeuLeuAspPheAspAsnValSerIleAsn                          
     435440445                                                                 
     AlaGluThrAlaGlyArgSerAsnThrSerGluAspAspGluTyrThr                          
     450455460                                                                 
     GlySerGlyAsnSerAlaSerThrProLysArgAsnLysGluLysThr                          
     465470475480                                                              
     ThrLeuThrAsnThrThrLeuGluSerIleLeuLysLysGlyThrPhe                          
     485490495                                                                 
     ValAsnIleThrAlaAsnGlnArgIleTyrValAsnSerSerIleAsn                          
     500505510                                                                 
     LeuSerAsnGlySerLeuThrLeuTrpSerGluGlyArgSerGlyGly                          
     515520525                                                                 
     GlyValGluIleAsnAsnAspIleThrThrGlyAspAspThrArgGly                          
     530535540                                                                 
     AlaAsnLeuThrIleTyrSerGlyGlyTrpValAspValHisLysAsn                          
     545550555560                                                              
     IleSerLeuGlyAlaGlnGlyAsnIleAsnIleThrAlaLysGlnAsp                          
     565570575                                                                 
     IleAlaPheGluLysGlySerAsnGlnValIleThrGlyGlnGlyThr                          
     580585590                                                                 
     IleThrSerGlyAsnGlnLysGlyPheArgPheAsnAsnValSerLeu                          
     595600605                                                                 
     AsnGlyThrGlySerGlyLeuGlnPheThrThrLysArgThrAsnLys                          
     610615620                                                                 
     TyrAlaIleThrAsnLysPheGluGlyThrLeuAsnIleSerGlyLys                          
     625630635640                                                              
     ValAsnIleSerMetValLeuProLysAsnGluSerGlyTyrAspLys                          
     645650655                                                                 
     PheLysGlyArgThrTyrTrpAsnLeuThrSerLeuAsnValSerGlu                          
     660665670                                                                 
     SerGlyGluPheAsnLeuThrIleAspSerArgGlySerAspSerAla                          
     675680685                                                                 
     GlyThrLeuThrGlnProTyrAsnLeuAsnGlyIleSerPheAsnLys                          
     690695700                                                                 
     AspThrThrPheAsnValGluArgAsnAlaArgValAsnPheAspIle                          
     705710715720                                                              
     LysAlaProIleGlyIleAsnLysTyrSerSerLeuAsnTyrAlaSer                          
     725730735                                                                 
     PheAsnGlyAsnIleSerValSerGlyGlyGlySerValAspPheThr                          
     740745750                                                                 
     LeuLeuAlaSerSerSerAsnValGlnThrProGlyValValIleAsn                          
     755760765                                                                 
     SerLysTyrPheAsnValSerThrGlySerSerLeuArgPheLysThr                          
     770775780                                                                 
     SerGlySerThrLysThrGlyPheSerIleGluLysAspLeuThrLeu                          
     785790795800                                                              
     AsnAlaThrGlyGlyAsnIleThrLeuLeuGlnValGluGlyThrAsp                          
     805810815                                                                 
     GlyMetIleGlyLysGlyIleValAlaLysLysAsnIleThrPheGlu                          
     820825830                                                                 
     GlyGlyAsnIleThrPheGlySerArgLysAlaValThrGluIleGlu                          
     835840845                                                                 
     GlyAsnValThrIleAsnAsnAsnAlaAsnValThrLeuIleGlySer                          
     850855860                                                                 
     AspPheAspAsnHisGlnLysProLeuThrIleLysLysAspValIle                          
     865870875880                                                              
     IleAsnSerGlyAsnLeuThrAlaGlyGlyAsnIleValAsnIleAla                          
     885890895                                                                 
     GlyAsnLeuThrValGluSerAsnAlaAsnPheLysAlaIleThrAsn                          
     900905910                                                                 
     PheThrPheAsnValGlyGlyLeuPheAspAsnLysGlyAsnSerAsn                          
     915920925                                                                 
     IleSerIleAlaLysGlyGlyAlaArgPheLysAspIleAspAsnSer                          
     930935940                                                                 
     LysAsnLeuSerIleThrThrAsnSerSerSerThrTyrArgThrIle                          
     945950955960                                                              
     IleSerGlyAsnIleThrAsnLysAsnGlyAspLeuAsnIleThrAsn                          
     965970975                                                                 
     GluGlySerAspThrGluMetGlnIleGlyGlyAspValSerGlnLys                          
     980985990                                                                 
     GluGlyAsnLeuThrIleSerSerAspLysIleAsnIleThrLysGln                          
     99510001005                                                               
     IleThrIleLysAlaGlyValAspGlyGluAsnSerAspSerAspAla                          
     101010151020                                                              
     ThrAsnAsnAlaAsnLeuThrIleLysThrLysGluLeuLysLeuThr                          
     1025103010351040                                                          
     GlnAspLeuAsnIleSerGlyPheAsnLysAlaGluIleThrAlaLys                          
     104510501055                                                              
     AspGlySerAspLeuThrIleGlyAsnThrAsnSerAlaAspGlyThr                          
     106010651070                                                              
     AsnAlaLysLysValThrPheAsnGlnValLysAspSerLysIleSer                          
     107510801085                                                              
     AlaAspGlyHisLysValThrLeuHisSerLysValGluThrSerGly                          
     109010951100                                                              
     SerAsnAsnAsnThrGluAspSerSerAspAsnAsnAlaGlyLeuThr                          
     1105111011151120                                                          
     IleAspAlaLysAsnValThrValAsnAsnAsnIleThrSerHisLys                          
     112511301135                                                              
     AlaValSerIleSerAlaThrSerGlyGluIleThrThrLysThrGly                          
     114011451150                                                              
     ThrThrIleAsnAlaThrThrGlyAsnValGluIleThrAlaGlnThr                          
     115511601165                                                              
     GlySerIleLeuGlyGlyIleGluSerSerSerGlySerValThrLeu                          
     117011751180                                                              
     ThrAlaThrGluGlyAlaLeuAlaValSerAsnIleSerGlyAsnThr                          
     1185119011951200                                                          
     ValThrValThrAlaAsnSerGlyAlaLeuThrThrLeuAlaGlySer                          
     120512101215                                                              
     ThrIleLysGlyThrGluSerValThrThrSerSerGlnSerGlyAsp                          
     122012251230                                                              
     IleGlyGlyThrIleSerGlyGlyThrValGluValLysAlaThrGlu                          
     123512401245                                                              
     SerLeuThrThrGlnSerAsnSerLysIleLysAlaThrThrGlyGlu                          
     125012551260                                                              
     AlaAsnValThrSerAlaThrGlyThrIleGlyGlyThrIleSerGly                          
     1265127012751280                                                          
     AsnThrValAsnValThrAlaAsnAlaGlyAspLeuThrValGlyAsn                          
     128512901295                                                              
     GlyAlaGluIleAsnAlaThrGluGlyAlaAlaThrLeuThrThrSer                          
     130013051310                                                              
     SerGlyLysLeuThrThrGluAlaSerSerHisIleThrSerAlaLys                          
     131513201325                                                              
     GlyGlnValAsnLeuSerAlaGlnAspGlySerValAlaGlySerIle                          
     133013351340                                                              
     AsnAlaAlaAsnValThrLeuAsnThrThrGlyThrLeuThrThrVal                          
     1345135013551360                                                          
     LysGlySerAsnIleAsnAlaThrSerGlyThrLeuValIleAsnAla                          
     136513701375                                                              
     LysAspAlaGluLeuAsnGlyAlaAlaLeuGlyAsnHisThrValVal                          
     138013851390                                                              
     AsnAlaThrAsnAlaAsnGlySerGlySerValIleAlaThrThrSer                          
     139514001405                                                              
     SerArgValAsnIleThrGlyAspLeuIleThrIleAsnGlyLeuAsn                          
     141014151420                                                              
     IleIleSerLysAsnGlyIleAsnThrValLeuLeuLysGlyValLys                          
     1425143014351440                                                          
     IleAspValLysTyrIleGlnProGlyIleAlaSerValAspGluVal                          
     144514501455                                                              
     IleGluAlaLysArgIleLeuGluLysValLysAspLeuSerAspGlu                          
     146014651470                                                              
     GluArgGluAlaLeuAlaLysLeuGlyValSerAlaValArgPheIle                          
     147514801485                                                              
     GluProAsnAsnThrIleThrValAspThrGlnAsnGluPheAlaThr                          
     149014951500                                                              
     ArgProLeuSerArgIleValIleSerGluGlyArgAlaCysPheSer                          
     1505151015151520                                                          
     AsnSerAspGlyAlaThrValCysValAsnIleAlaAspAsnGlyArg                          
     152515301535                                                              
     (2) INFORMATION FOR SEQ ID NO:3:                                          
     (i) SEQUENCE CHARACTERISTICS:                                             
     (A) LENGTH: 4937 base pairs                                               
     (B) TYPE: nucleic acid                                                    
     (C) STRANDEDNESS: single                                                  
     (D) TOPOLOGY: linear                                                      
     (ii) MOLECULE TYPE: DNA (genomic)                                         
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:                                   
     TAAATATACAAGATAATAAAAATAAATCAAGATTTTTGTGATGACAAACAACAATTACAA60            
     CACCTTTTTTGCAGTCTATATGCAAATATTTTAAAAAAATAGTATAAATCCGCCATATAA120           
     AATGGTATAATCTTTCATCTTTCATCTTTAATCTTTCATCTTTCATCTTTCATCTTTCAT180           
     CTTTCATCTTTCATCTTTCATCTTTCATCTTTCATCTTTCATCTTTCATCTTTCATCTTT240           
     CACATGAAATGATGAACCGAGGGAAGGGAGGGAGGGGCAAGAATGAAGAGGGAGCTGAAC300           
     GAACGCAAATGATAAAGTAATTTAATTGTTCAACTAACCTTAGGAGAAAATATGAACAAG360           
     ATATATCGTCTCAAATTCAGCAAACGCCTGAATGCTTTGGTTGCTGTGTCTGAATTGGCA420           
     CGGGGTTGTGACCATTCCACAGAAAAAGGCTTCCGCTATGTTACTATCTTTAGGTGTAAC480           
     CACTTAGCGTTAAAGCCACTTTCCGCTATGTTACTATCTTTAGGTGTAACATCTATTCCA540           
     CAATCTGTTTTAGCAAGCGGCTTACAAGGAATGGATGTAGTACACGGCACAGCCACTATG600           
     CAAGTAGATGGTAATAAAACCATTATCCGCAACAGTGTTGACGCTATCATTAATTGGAAA660           
     CAATTTAACATCGACCAAAATGAAATGGTGCAGTTTTTACAAGAAAACAACAACTCCGCC720           
     GTATTCAACCGTGTTACATCTAACCAAATCTCCCAATTAAAAGGGATTTTAGATTCTAAC780           
     GGACAAGTCTTTTTAATCAACCCAAATGGTATCACAATAGGTAAAGACGCAATTATTAAC840           
     ACTAATGGCTTTACGGCTTCTACGCTAGACATTTCTAACGAAAACATCAAGGCGCGTAAT900           
     TTCACCTTCGAGCAAACCAAAGATAAAGCGCTCGCTGAAATTGTGAATCACGGTTTAATT960           
     ACTGTCGGTAAAGACGGCAGTGTAAATCTTATTGGTGGCAAAGTGAAAAACGAGGGTGTG1020          
     ATTAGCGTAAATGGTGGCAGCATTTCTTTACTCGCAGGGCAAAAAATCACCATCAGCGAT1080          
     ATAATAAACCCAACCATTACTTACAGCATTGCCGCGCCTGAAAATGAAGCGGTCAATCTG1140          
     GGCGATATTTTTGCCAAAGGCGGTAACATTAATGTCCGTGCTGCCACTATTCGAAACCAA1200          
     GGTAAACTTTCTGCTGATTCTGTAAGCAAAGATAAAAGCGGCAATATTGTTCTTTCCGCC1260          
     AAAGAGGGTGAAGCGGAAATTGGCGGTGTAATTTCCGCTCAAAATCAGCAAGCTAAAGGC1320          
     GGCAAGCTGATGATTACAGGCGATAAAGTCACATTAAAAACAGGTGCAGTTATCGACCTT1380          
     TCAGGTAAAGAAGGGGGAGAAACTTACCTTGGCGGTGACGAGCGCGGCGAAGGTAAAAAC1440          
     GGCATTCAATTAGCAAAGAAAACCTCTTTAGAAAAAGGCTCAACCATCAATGTATCAGGC1500          
     AAAGAAAAAGGCGGACGCGCTATTGTGTGGGGCGATATTGCGTTAATTGACGGCAATATT1560          
     AACGCTCAAGGTAGTGGTGATATCGCTAAAACCGGTGGTTTTGTGGAGACATCGGGGCAT1620          
     TATTTATCCATTGACAGCAATGCAATTGTTAAAACAAAAGAGTGGTTGCTAGACCCTGAT1680          
     GATGTAACAATTGAAGCCGAAGACCCCCTTCGCAATAATACCGGTATAAATGATGAATTC1740          
     CCAACAGGCACCGGTGAAGCAAGCGACCCTAAAAAAAATAGCGAACTCAAAACAACGCTA1800          
     ACCAATACAACTATTTCAAATTATCTGAAAAACGCCTGGACAATGAATATAACGGCATCA1860          
     AGAAAACTTACCGTTAATAGCTCAATCAACATCGGAAGCAACTCCCACTTAATTCTCCAT1920          
     AGTAAAGGTCAGCGTGGCGGAGGCGTTCAGATTGATGGAGATATTACTTCTAAAGGCGGA1980          
     AATTTAACCATTTATTCTGGCGGATGGGTTGATGTTCATAAAAATATTACGCTTGATCAG2040          
     GGTTTTTTAAATATTACCGCCGCTTCCGTAGCTTTTGAAGGTGGAAATAACAAAGCACGC2100          
     GACGCGGCAAATGCTAAAATTGTCGCCCAGGGCACTGTAACCATTACAGGAGAGGGAAAA2160          
     GATTTCAGGGCTAACAACGTATCTTTAAACGGAACGGGTAAAGGTCTGAATATCATTTCA2220          
     TCAGTGAATAATTTAACCCACAATCTTAGTGGCACAATTAACATATCTGGGAATATAACA2280          
     ATTAACCAAACTACGAGAAAGAACACCTCGTATTGGCAAACCAGCCATGATTCGCACTGG2340          
     AACGTCAGTGCTCTTAATCTAGAGACAGGCGCAAATTTTACCTTTATTAAATACATTTCA2400          
     AGCAATAGCAAAGGCTTAACAACACAGTATAGAAGCTCTGCAGGGGTGAATTTTAACGGC2460          
     GTAAATGGCAACATGTCATTCAATCTCAAAGAAGGAGCGAAAGTTAATTTCAAATTAAAA2520          
     CCAAACGAGAACATGAACACAAGCAAACCTTTACCAATTCGGTTTTTAGCCAATATCACA2580          
     GCCACTGGTGGGGGCTCTGTTTTTTTTGATATATATGCCAACCATTCTGGCAGAGGGGCT2640          
     GAGTTAAAAATGAGTGAAATTAATATCTCTAACGGCGCTAATTTTACCTTAAATTCCCAT2700          
     GTTCGCGGCGATGACGCTTTTAAAATCAACAAAGACTTAACCATAAATGCAACCAATTCA2760          
     AATTTCAGCCTCAGACAGACGAAAGATGATTTTTATGACGGGTACGCACGCAATGCCATC2820          
     AATTCAACCTACAACATATCCATTCTGGGCGGTAATGTCACCCTTGGTGGACAAAACTCA2880          
     AGCAGCAGCATTACGGGGAATATTACTATCGAGAAAGCAGCAAATGTTACGCTAGAAGCC2940          
     AATAACGCCCCTAATCAGCAAAACATAAGGGATAGAGTTATAAAACTTGGCAGCTTGCTC3000          
     GTTAATGGGAGTTTAAGTTTAACTGGCGAAAATGCAGATATTAAAGGCAATCTCACTATT3060          
     TCAGAAAGCGCCACTTTTAAAGGAAAGACTAGAGATACCCTAAATATCACCGGCAATTTT3120          
     ACCAATAATGGCACTGCCGAAATTAATATAACACAAGGAGTGGTAAAACTTGGCAATGTT3180          
     ACCAATGATGGTGATTTAAACATTACCACTCACGCTAAACGCAACCAAAGAAGCATCATC3240          
     GGCGGAGATATAATCAACAAAAAAGGAAGCTTAAATATTACAGACAGTAATAATGATGCT3300          
     GAAATCCAAATTGGCGGCAATATCTCGCAAAAAGAAGGCAACCTCACGATTTCTTCCGAT3360          
     AAAATTAATATCACCAAACAGATAACAATCAAAAAGGGTATTGATGGAGAGGACTCTAGT3420          
     TCAGATGCGACAAGTAATGCCAACCTAACTATTAAAACCAAAGAATTGAAATTGACAGAA3480          
     GACCTAAGTATTTCAGGTTTCAATAAAGCAGAGATTACAGCCAAAGATGGTAGAGATTTA3540          
     ACTATTGGCAACAGTAATGACGGTAACAGCGGTGCCGAAGCCAAAACAGTAACTTTTAAC3600          
     AATGTTAAAGATTCAAAAATCTCTGCTGACGGTCACAATGTGACACTAAATAGCAAAGTG3660          
     AAAACATCTAGCAGCAATGGCGGACGTGAAAGCAATAGCGACAACGATACCGGCTTAACT3720          
     ATTACTGCAAAAAATGTAGAAGTAAACAAAGATATTACTTCTCTCAAAACAGTAAATATC3780          
     ACCGCGTCGGAAAAGGTTACCACCACAGCAGGCTCGACCATTAACGCAACAAATGGCAAA3840          
     GCAAGTATTACAACCAAAACAGGTGATATCAGCGGTACGATTTCCGGTAACACGGTAAGT3900          
     GTTAGCGCGACTGGTGATTTAACCACTAAATCCGGCTCAAAAATTGAAGCGAAATCGGGT3960          
     GAGGCTAATGTAACAAGTGCAACAGGTACAATTGGCGGTACAATTTCCGGTAATACGGTA4020          
     AATGTTACGGCAAACGCTGGCGATTTAACAGTTGGGAATGGCGCAGAAATTAATGCGACA4080          
     GAAGGAGCTGCAACCTTAACCGCAACAGGGAATACCTTGACTACTGAAGCCGGTTCTAGC4140          
     ATCACTTCAACTAAGGGTCAGGTAGACCTCTTGGCTCAGAATGGTAGCATCGCAGGAAGC4200          
     ATTAATGCTGCTAATGTGACATTAAATACTACAGGCACCTTAACCACCGTGGCAGGCTCG4260          
     GATATTAAAGCAACCAGCGGCACCTTGGTTATTAACGCAAAAGATGCTAAGCTAAATGGT4320          
     GATGCATCAGGTGATAGTACAGAAGTGAATGCAGTCAACGCAAGCGGCTCTGGTAGTGTG4380          
     ACTGCGGCAACCTCAAGCAGTGTGAATATCACTGGGGATTTAAACACAGTAAATGGGTTA4440          
     AATATCATTTCGAAAGATGGTAGAAACACTGTGCGCTTAAGAGGCAAGGAAATTGAGGTG4500          
     AAATATATCCAGCCAGGTGTAGCAAGTGTAGAAGAAGTAATTGAAGCGAAACGCGTCCTT4560          
     GAAAAAGTAAAAGATTTATCTGATGAAGAAAGAGAAACATTAGCTAAACTTGGTGTAAGT4620          
     GCTGTACGTTTTGTTGAGCCAAATAATACAATTACAGTCAATACACAAAATGAATTTACA4680          
     ACCAGACCGTCAAGTCAAGTGATAATTTCTGAAGGTAAGGCGTGTTTCTCAAGTGGTAAT4740          
     GGCGCACGAGTATGTACCAATGTTGCTGACGATGGACAGCCGTAGTCAGTAATTGACAAG4800          
     GTAGATTTCATCCTGCAATGAAGTCATTTTATTTTCGTATTATTTACTGTGTGGGTTAAA4860          
     GTTCAGTACGGGCTTTACCCATCTTGTAAAAAATTACGGAGAATACAATAAAGTATTTTT4920          
     AACAGGTTATTATTATG4937                                                     
     (2) INFORMATION FOR SEQ ID NO:4:                                          
     (i) SEQUENCE CHARACTERISTICS:                                             
     (A) LENGTH: 1477 amino acids                                              
     (B) TYPE: amino acid                                                      
     (C) STRANDEDNESS: single                                                  
     (D) TOPOLOGY: linear                                                      
     (ii) MOLECULE TYPE: protein                                               
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:                                   
     MetAsnLysIleTyrArgLeuLysPheSerLysArgLeuAsnAlaLeu                          
     151015                                                                    
     ValAlaValSerGluLeuAlaArgGlyCysAspHisSerThrGluLys                          
     202530                                                                    
     GlySerGluLysProAlaArgMetLysValArgHisLeuAlaLeuLys                          
     354045                                                                    
     ProLeuSerAlaMetLeuLeuSerLeuGlyValThrSerIleProGln                          
     505560                                                                    
     SerValLeuAlaSerGlyLeuGlnGlyMetAspValValHisGlyThr                          
     65707580                                                                  
     AlaThrMetGlnValAspGlyAsnLysThrIleIleArgAsnSerVal                          
     859095                                                                    
     AspAlaIleIleAsnTrpLysGlnPheAsnIleAspGlnAsnGluMet                          
     100105110                                                                 
     ValGlnPheLeuGlnGluAsnAsnAsnSerAlaValPheAsnArgVal                          
     115120125                                                                 
     ThrSerAsnGlnIleSerGlnLeuLysGlyIleLeuAspSerAsnGly                          
     130135140                                                                 
     GlnValPheLeuIleAsnProAsnGlyIleThrIleGlyLysAspAla                          
     145150155160                                                              
     IleIleAsnThrAsnGlyPheThrAlaSerThrLeuAspIleSerAsn                          
     165170175                                                                 
     GluAsnIleLysAlaArgAsnPheThrPheGluGlnThrLysAspLys                          
     180185190                                                                 
     AlaLeuAlaGluIleValAsnHisGlyLeuIleThrValGlyLysAsp                          
     195200205                                                                 
     GlySerValAsnLeuIleGlyGlyLysValLysAsnGluGlyValIle                          
     210215220                                                                 
     SerValAsnGlyGlySerIleSerLeuLeuAlaGlyGlnLysIleThr                          
     225230235240                                                              
     IleSerAspIleIleAsnProThrIleThrTyrSerIleAlaAlaPro                          
     245250255                                                                 
     GluAsnGluAlaValAsnLeuGlyAspIlePheAlaLysGlyGlyAsn                          
     260265270                                                                 
     IleAsnValArgAlaAlaThrIleArgAsnGlnGlyLysLeuSerAla                          
     275280285                                                                 
     AspSerValSerLysAspLysSerGlyAsnIleValLeuSerAlaLys                          
     290295300                                                                 
     GluGlyGluAlaGluIleGlyGlyValIleSerAlaGlnAsnGlnGln                          
     305310315320                                                              
     AlaLysGlyGlyLysLeuMetIleThrGlyAspLysValThrLeuLys                          
     325330335                                                                 
     ThrGlyAlaValIleAspLeuSerGlyLysGluGlyGlyGluThrTyr                          
     340345350                                                                 
     LeuGlyGlyAspGluArgGlyGluGlyLysAsnGlyIleGlnLeuAla                          
     355360365                                                                 
     LysLysThrSerLeuGluLysGlySerThrIleAsnValSerGlyLys                          
     370375380                                                                 
     GluLysGlyGlyPheAlaIleValTrpGlyAspIleAlaLeuIleAsp                          
     385390395400                                                              
     GlyAsnIleAsnAlaGlnGlySerGlyAspIleAlaLysThrGlyGly                          
     405410415                                                                 
     PheValGluThrSerGlyHisAspLeuPheIleLysAspAsnAlaIle                          
     420425430                                                                 
     ValAspAlaLysGluTrpLeuLeuAspPheAspAsnValSerIleAsn                          
     435440445                                                                 
     AlaGluAspProLeuPheAsnAsnThrGlyIleAsnAspGluPhePro                          
     450455460                                                                 
     ThrGlyThrGlyGluAlaSerAspProLysLysAsnSerGluLeuLys                          
     465470475480                                                              
     ThrThrLeuThrAsnThrThrIleSerAsnTyrLeuLysAsnAlaTrp                          
     485490495                                                                 
     ThrMetAsnIleThrAlaSerArgLysLeuThrValAsnSerSerIle                          
     500505510                                                                 
     AsnIleGlySerAsnSerHisLeuIleLeuHisSerLysGlyGlnArg                          
     515520525                                                                 
     GlyGlyGlyValGlnIleAspGlyAspIleThrSerLysGlyGlyAsn                          
     530535540                                                                 
     LeuThrIleTyrSerGlyGlyTrpValAspValHisLysAsnIleThr                          
     545550555560                                                              
     LeuAspGlnGlyPheLeuAsnIleThrAlaAlaSerValAlaPheGlu                          
     565570575                                                                 
     GlyGlyAsnAsnLysAlaArgAspAlaAlaAsnAlaLysIleValAla                          
     580585590                                                                 
     GlnGlyThrValThrIleThrGlyGluGlyLysAspPheArgAlaAsn                          
     595600605                                                                 
     AsnValSerLeuAsnGlyThrGlyLysGlyLeuAsnIleIleSerSer                          
     610615620                                                                 
     ValAsnAsnLeuThrHisAsnLeuSerGlyThrIleAsnIleSerGly                          
     625630635640                                                              
     AsnIleThrIleAsnGlnThrThrArgLysAsnThrSerTyrTrpGln                          
     645650655                                                                 
     ThrSerHisAspSerHisTrpAsnValSerAlaLeuAsnLeuGluThr                          
     660665670                                                                 
     GlyAlaAsnPheThrPheIleLysTyrIleSerSerAsnSerLysGly                          
     675680685                                                                 
     LeuThrThrGlnTyrArgSerSerAlaGlyValAsnPheAsnGlyVal                          
     690695700                                                                 
     AsnGlyAsnMetSerPheAsnLeuLysGluGlyAlaLysValAsnPhe                          
     705710715720                                                              
     LysLeuLysProAsnGluAsnMetAsnThrSerLysProLeuProIle                          
     725730735                                                                 
     ArgPheLeuAlaAsnIleThrAlaThrGlyGlyGlySerValPhePhe                          
     740745750                                                                 
     AspIleTyrAlaAsnHisSerGlyArgGlyAlaGluLeuLysMetSer                          
     755760765                                                                 
     GluIleAsnIleSerAsnGlyAlaAsnPheThrLeuAsnSerHisVal                          
     770775780                                                                 
     ArgGlyAspAspAlaPheLysIleAsnLysAspLeuThrIleAsnAla                          
     785790795800                                                              
     ThrAsnSerAsnPheSerLeuArgGlnThrLysAspAspPheTyrAsp                          
     805810815                                                                 
     GlyTyrAlaArgAsnAlaIleAsnSerThrTyrAsnIleSerIleLeu                          
     820825830                                                                 
     GlyGlyAsnValThrLeuGlyGlyGlnAsnSerSerSerSerIleThr                          
     835840845                                                                 
     GlyAsnIleThrIleGluLysAlaAlaAsnValThrLeuGluAlaAsn                          
     850855860                                                                 
     AsnAlaProAsnGlnGlnAsnIleArgAspArgValIleLysLeuGly                          
     865870875880                                                              
     SerLeuLeuValAsnGlySerLeuSerLeuThrGlyGluAsnAlaAsp                          
     885890895                                                                 
     IleLysGlyAsnLeuThrIleSerGluSerAlaThrPheLysGlyLys                          
     900905910                                                                 
     ThrArgAspThrLeuAsnIleThrGlyAsnPheThrAsnAsnGlyThr                          
     915920925                                                                 
     AlaGluIleAsnIleThrGlnGlyValValLysLeuGlyAsnValThr                          
     930935940                                                                 
     AsnAspGlyAspLeuAsnIleThrThrHisAlaLysArgAsnGlnArg                          
     945950955960                                                              
     SerIleIleGlyGlyAspIleIleAsnLysLysGlySerLeuAsnIle                          
     965970975                                                                 
     ThrAspSerAsnAsnAspAlaGluIleGlnIleGlyGlyAsnIleSer                          
     980985990                                                                 
     GlnLysGluGlyAsnLeuThrIleSerSerAspLysIleAsnIleThr                          
     99510001005                                                               
     LysGlnIleThrIleLysLysGlyIleAspGlyGluAspSerSerSer                          
     101010151020                                                              
     AspAlaThrSerAsnAlaAsnLeuThrIleLysThrLysGluLeuLys                          
     1025103010351040                                                          
     LeuThrGluAspLeuSerIleSerGlyPheAsnLysAlaGluIleThr                          
     104510501055                                                              
     AlaLysAspGlyArgAspLeuThrIleGlyAsnSerAsnAspGlyAsn                          
     106010651070                                                              
     SerGlyAlaGluAlaLysThrValThrPheAsnAsnValLysAspSer                          
     107510801085                                                              
     LysIleSerAlaAspGlyHisAsnValThrLeuAsnSerLysValLys                          
     109010951100                                                              
     ThrSerSerSerAsnGlyGlyArgGluSerAsnSerAspAsnAspThr                          
     1105111011151120                                                          
     GlyLeuThrIleThrAlaLysAsnValGluValAsnLysAspIleThr                          
     112511301135                                                              
     SerLeuLysThrValAsnIleThrAlaSerGluLysValThrThrThr                          
     114011451150                                                              
     AlaGlySerThrIleAsnAlaThrAsnGlyLysAlaSerIleThrThr                          
     115511601165                                                              
     LysThrGlyAspIleSerGlyThrIleSerGlyAsnThrValSerVal                          
     117011751180                                                              
     SerAlaThrValAspLeuThrThrLysSerGlySerLysIleGluAla                          
     1185119011951200                                                          
     LysSerGlyGluAlaAsnValThrSerAlaThrGlyThrIleGlyGly                          
     120512101215                                                              
     ThrIleSerGlyAsnThrValAsnValThrAlaAsnAlaGlyAspLeu                          
     122012251230                                                              
     ThrValGlyAsnGlyAlaGluIleAsnAlaThrGluGlyAlaAlaThr                          
     123512401245                                                              
     LeuThrAlaThrGlyAsnThrLeuThrThrGluAlaGlySerSerIle                          
     125012551260                                                              
     ThrSerThrLysGlyGlnValAspLeuLeuAlaGlnAsnGlySerIle                          
     1265127012751280                                                          
     AlaGlySerIleAsnAlaAlaAsnValThrLeuAsnThrThrGlyThr                          
     128512901295                                                              
     LeuThrThrValAlaGlySerAspIleLysAlaThrSerGlyThrLeu                          
     130013051310                                                              
     ValIleAsnAlaLysAspAlaLysLeuAsnGlyAspAlaSerGlyAsp                          
     131513201325                                                              
     SerThrGluValAsnAlaValAsnAlaSerGlySerGlySerValThr                          
     133013351340                                                              
     AlaAlaThrSerSerSerValAsnIleThrGlyAspLeuAsnThrVal                          
     1345135013551360                                                          
     AsnGlyLeuAsnIleIleSerLysAspGlyArgAsnThrValArgLeu                          
     136513701375                                                              
     ArgGlyLysGluIleGluValLysTyrIleGlnProGlyValAlaSer                          
     138013851390                                                              
     ValGluGluValIleGluAlaLysArgValLeuGluLysValLysAsp                          
     139514001405                                                              
     LeuSerAspGluGluArgGluThrLeuAlaLysLeuGlyValSerAla                          
     141014151420                                                              
     ValArgPheValGluProAsnAsnThrIleThrValAsnThrGlnAsn                          
     1425143014351440                                                          
     GluPheThrThrArgProSerSerGlnValIleIleSerGluGlyLys                          
     144514501455                                                              
     AlaCysPheSerSerGlyAsnGlyAlaArgValCysThrAsnValAla                          
     146014651470                                                              
     AspAspGlyGlnPro                                                           
     1475                                                                      
     (2) INFORMATION FOR SEQ ID NO:5:                                          
     (i) SEQUENCE CHARACTERISTICS:                                             
     (A) LENGTH: 9171 base pairs                                               
     (B) TYPE: nucleic acid                                                    
     (C) STRANDEDNESS: single                                                  
     (D) TOPOLOGY: linear                                                      
     (ii) MOLECULE TYPE: DNA (genomic)                                         
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:                                   
     ACAGCGTTCTCTTAATACTAGTACAAACCCACAATAAAATATGACAAACAACAATTACAA60            
     CACCTTTTTTGCAGTCTATATGCAAATATTTTAAAAAATAGTATAAATCCGCCATATAAA120           
     ATGGTATAATCTTTCATCTTTCATCTTTCATCTTTCATCTTTCATCTTTCATCTTTCATC180           
     TTTCATCTTTCATCTTTCATCTTTCATCTTTCATCTTTCATCTTTCATCTTTCATCTTTC240           
     ACATGAAATGATGAACCGAGGGAAGGGAGGGAGGGGCAAGAATGAAGAGGGAGCTGAACG300           
     AACGCAAATGATAAAGTAATTTAATTGTTCAACTAACCTTAGGAGAAAATATGAACAAGA360           
     TATATCGTCTCAAATTCAGCAAACGCCTGAATGCTTTGGTTGCTGTGTCTGAATTGGCAC420           
     GGGGTTGTGACCATTCCACAGAAAAAGGCAGCGAAAAACCTGCTCGCATGAAAGTGCGTC480           
     ACTTAGCGTTAAAGCCACTTTCCGCTATGTTACTATCTTTAGGTGTAACATCTATTCCAC540           
     AATCTGTTTTAGCAAGCGGCTTACAAGGAATGGATGTAGTACACGGCACAGCCACTATGC600           
     AAGTAGATGGTAATAAAACCATTATCCGCAACAGTGTTGACGCTATCATTAATTGGAAAC660           
     AATTTAACATCGACCAAAATGAAATGGTGCAGTTTTTACAAGAAAACAACAACTCCGCCG720           
     TATTCAACCGTGTTACATCTAACCAAATCTCCCAATTAAAAGGGATTTTAGATTCTAACG780           
     GACAAGTCTTTTTAATCAACCCAAATGGTATCACAATAGGTAAAGACGCAATTATTAACA840           
     CTAATGGCTTTACGGCTTCTACGCTAGACATTTCTAACGAAAACATCAAGGCGCGTAATT900           
     TCACCTTCGAGCAAACCAAAGATAAAGCGCTCGCTGAAATTGTGAATCACGGTTTAATTA960           
     CTGTCGGTAAAGACGGCAGTGTAAATCTTATTGGTGGCAAAGTGAAAAACGAGGGTGTGA1020          
     TTAGCGTAAATGGTGGCAGCATTTCTTTACTCGCAGGGCAAAAAATCACCATCAGCGATA1080          
     TAATAAACCCAACCATTACTTACAGCATTGCCGCGCCTGAAAATGAAGCGGTCAATCTGG1140          
     GCGATATTTTTGCCAAAGGCGGTAACATTAATGTCCGTGCTGCCACTATTCGAAACCAAG1200          
     CTTTCCGCCAAAGAGGGTGAAGCGGAAATTGGCGGTGTAATTTCCGCTCAAAATCAGCAA1260          
     GCTAAAGGCGGCAAGCTGATGATTACAGGCGATAAAGTCACATTAAAAACAGGTGCAGTT1320          
     ATCGACCTTTCAGGTAAAGAAGGGGGAGAAACTTACCTTGGCGGTGACGAGCGCGGCGAA1380          
     GGTAAAAACGGCATTCAATTAGCAAAGAAAACCTCTTTAGAAAAAGGCTCAACCATCAAT1440          
     GTATCAGGCAAAGAAAAAGGCGGACGCGCTATTGTGTGGGGCGATATTGCGTTAATTGAC1500          
     GGCAATATTAACGCTCAAGGTAGTGGTGATATCGCTAAAACCGGTGGTTTTGTGGAGACG1560          
     TCGGGGCATGATTTATTCATCAAAGACAATGCAATTGTTGACGCCAAAGAGTGGTTGTTA1620          
     GACCCGGATAATGTATCTATTAATGCAGAAACAGCAGGACGCAGCAATACTTCAGAAGAC1680          
     GATGAATACACGGGATCCGGGAATAGTGCCAGCACCCCAAAACGAAACAAAGAAAAGACA1740          
     ACATTAACAAACACAACTCTTGAGAGTATACTAAAAAAAGGTACCTTTGTTAACATCACT1800          
     GCTAATCAACGCATCTATGTCAATAGCTCCATTAATTTATCCAATGGCAGCTTAACTCTT1860          
     TGGAGTGAGGGTCGGAGCGGTGGCGGCGTTGAGATTAACAACGATATTACCACCGGTGAT1920          
     GATACCAGAGGTGCAAACTTAACAATTTACTCAGGCGGCTGGGTTGATGTTCATAAAAAT1980          
     ATCTCACTCGGGGCGCAAGGTAACATAAACATTACAGCTAAACAAGATATCGCCTTTGAG2040          
     AAAGGAAGCAACCAAGTCATTACAGGTCAAGGGACTATTACCTCAGGCAATCAAAAAGGT2100          
     TTTAGATTTAATAATGTCTCTCTAAACGGCACTGGCAGCGGACTGCAATTCACCACTAAA2160          
     AGAACCAATAAATACGCTATCACAAATAAATTTGAAGGGACTTTAAATATTTCAGGGAAA2220          
     GTGAACATCTCAATGGTTTTACCTAAAAATGAAAGTGGATATGATAAATTCAAAGGACGC2280          
     ACTTACTGGAATTTAACCTCGAAAGTGGATATGATAAATTCAAAGGACGCCCTCACTATT2340          
     GACTCCAGAGGAAGCGATAGTGCAGGCACACTTACCCAGCCTTATAATTTAAACGGTATA2400          
     TCATTCAACAAAGACACTACCTTTAATGTTGAACGAAATGCAAGAGTCAACTTTGACATC2460          
     AAGGCACCAATAGGGATAAATAAGTATTCTAGTTTGAATTACGCATCATTTAATGGAAAC2520          
     ATTTCAGTTTCGGGAGGGGGGAGTGTTGATTTCACACTTCTCGCCTCATCCTCTAACGTC2580          
     CAAACCCCCGGTGTAGTTATAAATTCTAAATACTTTAATGTTTCAACAGGGTCAAGTTTA2640          
     AGATTTAAAACTTCAGGCTCAACAAAAACTGGCTTCTCAATAGAGAAAGATTTAACTTTA2700          
     AATGCCACCGGAGGCAACATAACACTTTTGCAAGTTGAAGGCACCGATGGAATGATTGGT2760          
     AAAGGCATTGTAGCCAAAAAAAACATAACCTTTGAAGGAGGTAAGATGAGGTTTGGCTCC2820          
     AGGAAAGCCGTAACAGAAATCGAAGGCAATGTTACTATCAATAACAACGCTAACGTCACT2880          
     CTTATCGGTTCGGATTTTGACAACCATCAAAAACCTTTAACTATTAAAAAAGATGTCATC2940          
     ATTAATAGCGGCAACCTTACCGCTGGAGGCAATATTGTCAATATAGCCGGAAATCTTACC3000          
     GTTGAAAGTAACGCTAATTTCAAAGCTATCACAAATTTCACTTTTAATGTAGGCGGCTTG3060          
     TTTGACAACAAAGGCAATTCAAATATTTCCATTGCCAAAGGAGGGGCTCGCTTTAAAGAC3120          
     ATTGATAATTCCAAGAATTTAAGCATCACCACCAACTCCAGCTCCACTTACCGCACTATT3180          
     ATAAGCGGCAATATAACCAATAAAAACGGTGATTTAAATATTACGAACGAAGGTAGTGAT3240          
     ACTGAAATGCAAATTGGCGGCGATGTCTCGCAAAAAGAAGGTAATCTCACGATTTCTTCT3300          
     GACAAAATCAATATTACCAAACAGATAACAATCAAGGCAGGTGTTGATGGGGAGAATTCC3360          
     GATTCAGACGCGACAAACAATGCCAATCTAACCATTAAAACCAAAGAATTGAAATTAACG3420          
     CAAGACCTAAATATTTCAGGTTTCAATAAAGCAGAGATTACAGCTAAAGATGGTAGTGAT3480          
     TTAACTATTGGTAACACCAATAGTGCTGATGGTACTAATGCCAAAAAAGTAACCTTTAAC3540          
     CAGGTTAAAGATTCAAAAATCTCTGCTGACGGTCACAAGGTGACACTACACAGCAAAGTG3600          
     GAAACATCCGGTAGTAATAACAACACTGAAGATAGCAGTGACAATAATGCCGGCTTAACT3660          
     ATCGATGCAAAAAATGTAACAGTAAACAACAATATTACTTCTCACAAAGCAGTGAGCATC3720          
     TCTGCGACAAGTGGAGAAATTACCACTAAAACAGGTACAACCATTAACGCAACCACTGGT3780          
     AACGTGGAGATAACCGCTCAAACAGGTAGTATCCTAGGTGGAATTGAGTCCAGCTCTGGC3840          
     TCTGTAACACTTACTGCAACCGAGGGCGCTCTTGCTGTAAGCAATATTTCGGGCAACACC3900          
     GTTACTGTTACTGCAAATAGCGGTGCATTAACCACTTTGGCAGGCTCTACAATTAAAGGA3960          
     ACCGAGAGTGTAACCACTTCAAGTCAATCAGGCGATATCGGCGGTACGATTTCTGGTGGC4020          
     ACAGTAGAGGTTAAAGCAACCGAAAGTTTAACCACTCAATCCAATTCAAAAATTAAAGCA4080          
     ACAACAGGCGAGGCTAACGTAACAAGTGCAACAGGTACAATTGGTGGTACGATTTCCGGT4140          
     AATACGGTAAATGTTACGGCAAACGCTGGCGATTTAACAGTTGGGAATGGCGCAGAAATT4200          
     AATGCGACAGAAGGAGCTGCAACCTTAACTACATCATCGGGCAAATTAACTACCGAAGCT4260          
     AGTTCACACATTACTTCAGCCAAGGGTCAGGTAAATCTTTCAGCTCAGGATGGTAGCGTT4320          
     GCAGGAAGTATTAATGCCGCCAATGTGACACTAAATACTACAGGCACTTTAACTACCGTG4380          
     AAGGGTTCAAACATTAATGCAACCAGCGGTACCTTGGTTATTAACGCAAAAGACGCTGAG4440          
     CTAAATGGCGCAGCATTGGGTAACCACACAGTGGTAAATGCAACCAACGCAAATGGCTCC4500          
     GGCAGCGTAATCGCGACAACCTCAAGCAGAGTGAACATCACTGGGGATTTAATCACAATA4560          
     AATGGATTAAATATCATTTCAAAAAACGGTATAAACACCGTACTGTTAAAAGGCGTTAAA4620          
     ATTGATGTGAAATACATTCAACCGGGTATAGCAAGCGTAGATGAAGTAATTGAAGCGAAA4680          
     CGCATCCTTGAGAAGGTAAAAGATTTATCTGATGAAGAAAGAGAAGCGTTAGCTAAACTT4740          
     GGCGTAAGTGCTGTACGTTTTATTGAGCCAAATAATACAATTACAGTCGATACACAAAAT4800          
     GAATTTGCAACCAGACCATTAAGTCGAATAGTGATTTCTGAAGGCAGGGCGTGTTTCTCA4860          
     AACAGTGATGGCGCGACGGTGTGCGTTAATATCGCTGATAACGGGCGGTAGCGGTCAGTA4920          
     ATTGACAAGGTAGATTTCATCCTGCAATGAAGTCATTTTATTTTCGTATTATTTACTGTG4980          
     TGGGTTAAAGTTCAGTACGGGCTTTACCCATCTTGTAAAAAATTACGGAGAATACAATAA5040          
     AGTATTTTTAACAGGTTATTATTATGAAAAATATAAAAAGCAGATTAAAACTCAGTGCAA5100          
     TATCAGTATTGCTTGGCCTGGCTTCTTCATCATTGTATGCAGAAGAAGCGTTTTTAGTAA5160          
     AAGGCTTTCAGTTATCTGGTGCACTTGAAACTTTAAGTGAAGACGCCCAACTGTCTGTAG5220          
     CAAAATCTTTATCTAAATACCAAGGCTCGCAAACTTTAACAAACCTAAAAACAGCACAGC5280          
     TTGAATTACAGGCTGTGCTAGATAAGATTGAGCCAAATAAGTTTGATGTGATATTGCCAC5340          
     AACAAACCATTACGGATGGCAATATTATGTTTGAGCTAGTCTCGAAATCAGCCGCAGAAA5400          
     GCCAAGTTTTTTATAAGGCGAGCCAGGGTTATAGTGAAGAAAATATCGCTCGTAGCCTGC5460          
     CATCTTTGAAACAAGGAAAAGTGTATGAAGATGGTCGTCAGTGGTTCGATTTGCGTGAAT5520          
     TCAATATGGCAAAAGAAAATCCACTTAAAGTCACTCGCGTGCATTACGAGTTAAACCCTA5580          
     AAAACAAAACCTCTGATTTGGTAGTTGCAGGTTTTTCGCCTTTTGGCAAAACGCGTAGCT5640          
     TTGTTTCCTATGATAATTTCGGCGCAAGGGAGTTTAACTATCAACGTGTAAGTCTAGGTT5700          
     TTGTAAATGCCAATTTGACCGGACATGATGATGTATTAAATCTAAACGCATTGACCAATG5760          
     TAAAAGCACCATCAAAATCTTATGCGGTAGGCATAGGATATACTTATCCGTTTTATGATA5820          
     AACACCAATCCTTAAGTCTTTATACCAGCATGAGTTATGCTGATTCTAATGATATCGACG5880          
     GCTTACCAAGTGCGATTAATCGTAAATTATCAAAAGGTCAATCTATCTCTGCGAATCTGA5940          
     AATGGAGTTATTATCTCCCGACATTTAACCTTGGAATGGAAGACCAGTTTAAAATTAATT6000          
     TAGGCTACAACTACCGCCATATTAATCAAACATCCGAGTTAAACACCCTGGGTGCAACGA6060          
     AGAAAAAATTTGCAGTATCAGGCGTAAGTGCAGGCATTGATGGACATATCCAATTTACCC6120          
     CTAAAACAATCTTTAATATTGATTTAACTCATCATTATTACGCGAGTAAATTACCAGGCT6180          
     CTTTTGGAATGGAGCGCATTGGCGAAACATTTAATCGCAGCTATCACATTAGCACAGCCA6240          
     GTTTAGGGTTGAGTCAAGAGTTTGCTCAAGGTTGGCATTTTAGCAGTCAATTATCGGGTC6300          
     AGTTTACTCTACAAGATATAAGTAGCATAGATTTATTCTCTGTAACAGGTACTTATGGCG6360          
     TCAGAGGCTTTAAATACGGCGGTGCAAGTGGTGAGCGCGGTCTTGTATGGCGTAATGAAT6420          
     TAAGTATGCCAAAATACACCCGCTTTCAAATCAGCCCTTATGCGTTTTATGATGCAGGTC6480          
     AGTTCCGTTATAATAGCGAAAATGCTAAAACTTACGGCGAAGATATGCACACGGTATCCT6540          
     CTGCGGGTTTAGGCATTAAAACCTCTCCTACACAAAACTTAAGCTTAGATGCTTTTGTTG6600          
     CTCGTCGCTTTGCAAATGCCAATAGTGACAATTTGAATGGCAACAAAAAACGCACAAGCT6660          
     CACCTACAACCTTCTGGGGTAGATTAACATTCAGTTTCTAACCCTGAAATTTAATCAACT6720          
     GGTAAGCGTTCCGCCTACCAGTTTATAACTATATGCTTTACCCGCCAATTTACAGTCTAT6780          
     ACGCAACCCTGTTTTCATCCTTATATATCAAACAAACTAAGCAAACCAAGCAAACCAAGC6840          
     AAACCAAGCAAACCAAGCAAACCAAGCAAACCAAGCAAACCAAGCAAACCAAGCAAACCA6900          
     AGCAAACCAAGCAAACCAAGCAAACCAAGCAAACCAAGCAATGCTAAAAAACAATTTATA6960          
     TGATAAACTAAAACATACTCCATACCATGGCAATACAAGGGATTTAATAATATGACAAAA7020          
     GAAAATTTACAAAGTGTTCCACAAAATACGACCGCTTCACTTGTAGAATCAAACAACGAC7080          
     CAAACTTCCCTGCAAATACTTAAACAACCACCCAAACCCAACCTATTACGCCTGGAACAA7140          
     CATGTCGCCAAAAAAGATTATGAGCTTGCTTGCCGCGAATTAATGGCGATTTTGGAAAAA7200          
     ATGGACGCTAATTTTGGAGGCGTTCACGATATTGAATTTGACGCACCTGCTCAGCTGGCA7260          
     TATCTACCCGAAAAACTACTAATTCATTTTGCCACTCGTCTCGCTAATGCAATTACAACA7320          
     CTCTTTTCCGACCCCGAATTGGCAATTTCCGAAGAAGGGGCATTAAAGATGATTAGCCTG7380          
     CAACGCTGGTTGACGCTGATTTTTGCCTCTTCCCCCTACGTTAACGCAGACCATATTCTC7440          
     AATAAATATAATATCAACCCAGATTCCGAAGGTGGCTTTCATTTAGCAACAGACAACTCT7500          
     TCTATTGCTAAATTCTGTATTTTTTACTTACCCGAATCCAATGTCAATATGAGTTTAGAT7560          
     GCGTTATGGGCAGGGAATCAACAACTTTGTGCTTCATTGTGTTTTGCGTTGCAGTCTTCA7620          
     CGTTTTATTGGTACTGCATCTGCGTTTCATAAAAGAGCGGTGGTTTTACAGTGGTTTCCT7680          
     AAAAAACTCGCCGAAATTGCTAATTTAGATGAATTGCCTGCAAATATCCTTCATGATGTA7740          
     TATATGCACTGCAGTTATGATTTAGCAAAAAACAAGCACGATGTTAAGCGTCCATTAAAC7800          
     GAACTTGTCCGCAAGCATATCCTCACGCAAGGATGGCAAGACCGCTACCTTTACACCTTA7860          
     GGTAAAAAGGACGGCAAACCTGTGATGATGGTACTGCTTGAACATTTTAATTCGGGACAT7920          
     TCGATTTATCGCACGCATTCAACTTCAATGATTGCTGCTCGAGAAAAATTCTATTTAGTC7980          
     GGCTTAGGCCATGAGGGCGTTGATAACATAGGTCGAGAAGTGTTTGACGAGTTCTTTGAA8040          
     ATCAGTAGCAATAATATAATGGAGAGACTGTTTTTTATCCGTAAACAGTGCGAAACTTTC8100          
     CAACCCGCAGTGTTCTATATGCCAAGCATTGGCATGGATATTACCACGATTTTTGTGAGC8160          
     AACACTCGGCTTGCCCCTATTCAAGCTGTAGCCTTGGGTCATCCTGCCACTACGCATTCT8220          
     GAATTTATTGATTATGTCATCGTAGAAGATGATTATGTGGGCAGTGAAGATTGTTTTAGC8280          
     GAAACCCTTTTACGCTTACCCAAAGATGCCCTACCTTATGTACCATCTGCACTCGCCCCA8340          
     CAAAAAGTGGATTATGTACTCAGGGAAAACCCTGAAGTAGTCAATATCGGTATTGCCGCT8400          
     ACCACAATGAAATTAAACCCTGAATTTTTGCTAACATTGCAAGAAATCAGAGATAAAGCT8460          
     AAAGTCAAAATACATTTTCATTTCGCACTTGGACAATCAACAGGCTTGACACACCCTTAT8520          
     GTCAAATGGTTTATCGAAAGCTATTTAGGTGACGATGCCACTGCACATCCCCACGCACCT8580          
     TATCACGATTATCTGGCAATATTGCGTGATTGCGATATGCTACTAAATCCGTTTCCTTTC8640          
     GGTAATACTAACGGCATAATTGATATGGTTACATTAGGTTTAGTTGGTGTATGCAAAACG8700          
     GGGGATGAAGTACATGAACATATTGATGAAGGTCTGTTTAAACGCTTAGGACTACCAGAA8760          
     TGGCTGATAGCCGACACACGAGAAACATATATTGAATGTGCTTTGCGTCTAGCAGAAAAC8820          
     CATCAAGAACGCCTTGAACTCCGTCGTTACATCATAGAAAACAACGGCTTACAAAAGCTT8880          
     TTTACAGGCGACCCTCGTCCATTGGGCAAAATACTGCTTAAGAAAACAAATGAATGGAAG8940          
     CGGAAGCACTTGAGTAAAAAATAACGGTTTTTTAAAGTAAAAGTGCGGTTAATTTTCAAA9000          
     GCGTTTTAAAAACCTCTCAAAAATCAACCGCACTTTTATCTTTATAACGCTCCCGCGCGC9060          
     TGACAGTTTATCTCTTTCTTAAAATACCCATAAAATTGTGGCAATAGTTGGGTAATCAAA9120          
     TTCAATTGTTGATACGGCAAACTAAAGACGGCGCGTTCTTCGGCAGTCATC9171                   
     (2) INFORMATION FOR SEQ ID NO:6:                                          
     (i) SEQUENCE CHARACTERISTICS:                                             
     (A) LENGTH: 9323 base pairs                                               
     (B) TYPE: nucleic acid                                                    
     (C) STRANDEDNESS: single                                                  
     (D) TOPOLOGY: linear                                                      
     (ii) MOLECULE TYPE: DNA (genomic)                                         
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:                                   
     CGCCACTTCAATTTTGGATTGTTGAAATTCAACTAACCAAAAAGTGCGGTTAAAATCTGT60            
     GGAGAAAATAGGTTGTAGTGAAGAACGAGGTAATTGTTCAAAAGGATAAAGCTCTCTTAA120           
     TTGGGCATTGGTTGGCGTTTCTTTTTCGGTTAATAGTAAATTATATTCTGGACGACTATG180           
     CAATCCACCAACAACTTTACCGTTGGTTTTAAGCGTTAATGTAAGTTCTTGCTCTTCTTG240           
     GCGAATACGTAATCCCATTTTTTGTTTAGCAAGAAAATGATCGGGATAATCATAATAGGT300           
     GTTGCCCAAAAATAAATTTTGATGTTCTAAAATCATAAATTTTGCAAGATATTGTGGCAA360           
     TTCAATACCTATTTGTGGCGAAATCGCCAATTTTAATTCAATTTCTTGTAGCATAATATT420           
     TCCCACTCAAATCAACTGGTTAAATATACAAGATAATAAAAATAAATCAAGATTTTTGTG480           
     ATGACAAACAACAATTACAACACCTTTTTTGCAGTCTATATGCAAATATTTTAAAAAAAT540           
     AGTATAAATCCGCCATATAAAATGGTATAATCTTTCATCTTTCATCTTTCATCTTTCATC600           
     TTTCATCTTTCATCTTTCATCTTTCATCTTTCATCTTTCATCTTTCATCTTTCATCTTTC660           
     ATCTTTCATCTTTCATCTTTCACATGAAATGATGAACCGAGGGAAGGGAGGGAGGGGCAA720           
     GAATGAAGAGGGAGCTGAACGAACGCAAATGATAAAGTAATTTAATTGTTCAACTAACCT780           
     TAGGAGAAAATATGAACAAGATATATCGTCTCAAATTCAGCAAACGCCTGAATGCTTTGG840           
     TTGCTGTGTCTGAATTGGCACGGGGTTGTGACCATTCCACAGAAAAAGGCAGCGAAAAAC900           
     CTGCTCGCATGAAAGTGCGTCACTTAGCGTTAAAGCCACTTTCCGCTATGTTACTATCTT960           
     TAGGTGTAACATCTATTCCACAATCTGTTTTAGCAAGCGGCAATTTAACATCGACCAAAA1020          
     TGAAATGGTGCAGTTTTTACAAGAAAACAAGTAATAAAACCATTATCCGCAACAGTGTTG1080          
     ACGCTATCATTAATTGGAAACAATTTAACATCGACCAAAATGAAATGGTGCAGTTTTTAC1140          
     AAGAAAACAACAACTCCGCCGTATTCAACCGTGTTACATCTAACCAAATCTCCCAATTAA1200          
     AAGGGATTTTAGATTCTAACGGACAAGTCTTTTTAATCAACCCAAATGGTATCACAATAG1260          
     GTAAAGACGCAATTATTAACACTAATGGCTTTACGGCTTCTACGCTAGACATTTCTAACG1320          
     AAAACATCAAGGCGCGTAATTTCACCTTCGAGCAAACCAAAGATAAAGCGCTCGCTGAAA1380          
     TTGTGAATCACGGTTTAATTACTGTCGGTAAAGACGGCAGTGTAAATCTTATTGGTGGCA1440          
     AAGTGAAAAACGAGGGTGTGATTAGCGTAAATGGTGGCAGCATTTCTTTACTCGCAGGGC1500          
     AAAAAATCACCATCAGCGATATAATAAACCCAACCATTACTTACAGCATTGCCGCGCCTG1560          
     AAAATGAAGCGGTCAATCTGGGCGATATTTTTGCCAAAGGCGGTAACATTAATGTCCGTG1620          
     CTGCCACTATTCGAAACCAAGGTAAACTTTCTGCTGATTCTGTAAGCAAAGATAAAAGCG1680          
     GCAATATTGTTCTTTCCGCCAAAGAGGGTGAAGCGGAAATTGGCGGTGTAATTTCCGCTC1740          
     AAAATCAGCAAGCTAAAGGCGGCAAGCTGATGATAAAGTCCGATAAAGTCACATTAAAAA1800          
     CAGGTGCAGTTATCGACCTTTCAGGTAAAGAAGGGGGAGAAACTTACCTTGGCGGTGACG1860          
     AGCGCGGCGAAGGTAAAAACGGCATTCAATTAGCAAAGAAAACCTCTTTAGAAAAAGGCT1920          
     CAACCATCAATGTATCAGGCAAAGAAAAAGGCGGACGCGCTATTGTGTGGGGCGATATTG1980          
     CGTTAATTGACGGCAATATTAACGCTCAAGGTAGTGGTGATATCGCTAAAACCGGTGGTT2040          
     TTGTGGAGACATCGGGGCATTATTTATCCATTGACAGCAATGCAATTGTTAAAACAAAAG2100          
     AGTGGTTGCTAGACCCTGATGATGTAACAATTGAAGCCGAAGACCCCCTTCGCAATAATA2160          
     CCGGTATAAATGATGAATTCCCAACAGGCACCGGTGAAGCAAGCGACCCTAAAAAAAATA2220          
     GCGAACTCAAAACAACGCTAACCAATACAACTATTTCAAATTATCTGAAAAACGCCTGGA2280          
     CAATGAATATAACGGCATCAAGAAAACTTACCGTTAATAGCTCAATCAACATCGGAAGCA2340          
     ACTCCCACTTAATTCTCCATAGTAAAGGTCAGCGTGGCGGAGGCGTTCAGATTGATGGAG2400          
     ATATTACTTCTAAAGGCGGAAATTTAACCATTTATTCTGGCGGATGGGTTGATGTTCATA2460          
     AAAATATTACGCTTGATCAGGGTTTTTTAAATATTACCGCCGCTTCCGTAGCTTTTGAAG2520          
     GTGGAAATAACAAAGCACGCGACGCGGCAAATGCTAAAATTGTCGCCCAGGGCACTGTAA2580          
     CCATTACAGGAGAGGGAAAAGATTTCAGGGCTAACAACGTATCTTTAAACGGAACGGGTA2640          
     AAGGTCTGAATATCATTTCATCAGTGAATAATTTAACCCACAATCTTAGTGGCACAATTA2700          
     ACATATCTGGGAATATAACAATTAACCAAACTACGAGAAAGAACACCTCGTATTGGCAAA2760          
     CCAGCCATGATTCGCACTGGAACGTCAGTGCTCTTAATCTAGAGACAGGCGCAAATTTTA2820          
     CCTTTATTAAATACATTTCAAGCAATAGCAAAGGCTTAACAACACAGTATAGAAGCTCTG2880          
     CAGGGGTGAATTTTAACGGCGTAAATGGCAACATGTCATTCAATCTCAAAGAAGGAGCGA2940          
     AAGTTAATTTCAAATTAAAACCAAACGAGAACATGAACACAAGCAAACCTTTACCAATTC3000          
     GGTTTTTAGCCAATATCACAGCCACTGGTGGGGGCTCTGTTTTTTTTGATATATATGCCA3060          
     ACCATTCTGGCAGAGGGGCTGAGTTAAAAATGAGTGAAATTAATATCTCTAACGGCGCTA3120          
     ATTTTACCTTAAATTCCCATGTTCGCGGCGATGACGCTTTTAAAATCAACAAAGACTTAA3180          
     CCATAAATGCAACCAATTCAAATTTCAGCCTCAGACAGACGAAAGATGATTTTTATGACG3240          
     GGTACGCACGCAATGCCATCAATTCAACCTACAACATATCCATTCTGGGCGGTAATGTCA3300          
     CCCTTGGTGGACAAAACTCAAGCAGCAGCATTACGGGGAATATTACTATCGAGAAAGCAG3360          
     CAAATGTTACGCTAGAAGCCAATAACGCCCCTAATCAGCAAAACATAAGGGATAGAGTTA3420          
     TAAAACTTGGCAGCTTGCTCGTTAATGGGAGTTTAAGTTTAACTGGCGAAAATGCAGATA3480          
     TTAAAGGCAATCTCACTATTTCAGAAAGCGCCACTTTTAAAGGAAAGACTAGAGATACCC3540          
     TAAATATCACCGGCAATTTTACCAATAATGGCACTGCCGAAATTAATATAACACAAGGAG3600          
     TGGTAAAACTTGGCAATGTTACCAATGATGGTGATTTAAACATTACCACTCACGCTAAAC3660          
     GCAACCAAAGAAGCATCATCGGCGGAGATATAATCAACAAAAAAGGAAGCTTAAATATTA3720          
     CAGACAGTAATAATGATGCTGAAATCCAAATTGGCGGCAATATCTCGCAAAAAGAAGGCA3780          
     ACCTCACGATTTCTTCCGATAAAATTAATATCACCAAACAGATAACAATCAAAAAGGGTA3840          
     TTGATGGAGAGGACTCTAGTTCAGATGCGACAAGTAATGCCAACCTAACTATTAAAACCA3900          
     AAGAATTGAAATTGACAGAAGACCTAAGTATTTCAGGTTTCAATAAAGCAGAGATTACAG3960          
     CCAAAGATGGTAGAGATTTAACTATTGGCAACAGTAATGACGGTAACAGCGGTGCCGAAG4020          
     CCAAAACAGTAACTTTTAACAATGTTAAAGATTCAAAAATCTCTGCTGACGGTCACAATG4080          
     TGACACTAAATAGCAAAGTGAAAACATCTAGCAGCAATGGCGGACGTGAAAGCAATAGCG4140          
     ACAACGATACCGGCTTAACTATTACTGCAAAAAATGTAGAAGTAAACAAAGATATTACTT4200          
     CTCTCAAAACAGTAAATATCACCGCGTCGGAAAAGGTTACCACCACAGCAGGCTCGACCA4260          
     TTAACGCAACAAATGGCAAAGCAAGTATTACAACCAAAACAGGTGATATCAGCGGTACGA4320          
     TTTCCGGTAACACGGTAAGTGTTAGCGCGACTGGTGATTTAACCACTAAATCCGGCTCAA4380          
     AAATTGAAGCGAAATCGGGTGAGGCTAATGTAACAAGTGCAACAGGTACAATTGGCGGTA4440          
     CAATTTCCGGTAATACGGTAAATGTTACGGCAAACGCTGGCGATTTAACAGTTGGGAATG4500          
     GCGCAGAAATTAATGCGACAGAAGGAGCTGCAACCTTAACCGCAACAGGGAATACCTTGA4560          
     CTACTGAAGCCGGTTCTAGCATCACTTCAACTAAGGGTCAGGTAGACCTCTTGGCTCAGA4620          
     ATGGTAGCATCGCAGGAAGCATTAATGCTGCTAATGTGACATTAAATACTACAGGCACCT4680          
     TAACCACCGTGGCAGGCTCGGATATTAAAGCAACCAGCGGCACCTTGGTTATTAACGCAA4740          
     AAGATGCTAAGCTAAATGGTGATGCATCAGGTGATAGTACAGAAGTGAATGCAGTCAACG4800          
     ACTGGGGATTTGGTAGTGTGACTGCGGCAACCTCAAGCAGTGTGAATATCACTGGGGATT4860          
     TAAACACAGTAAATGGGTTAAATATCATTTCGAAAGATGGTAGAAACACTGTGCGCTTAA4920          
     GAGGCAAGGAAATTGAGGTGAAATATATCCAGCCAGGTGTAGCAAGTGTAGAAGAAGTAA4980          
     TTGAAGCGAAACGCGTCCTTGAAAAAGTAAAAGATTTATCTGATGAAGAAAGAGAAACAT5040          
     TAGCTAAACTTGGTGTAAGTGCTGTACGTTTTGTTGAGCCAAATAATACAATTACAGTCA5100          
     ATACACAAAATGAATTTACAACCAGACCGTCAAGTCAAGTGATAATTTCTGAAGGTAAGG5160          
     CGTGTTTCTCAAGTGGTAATGGCGCACGAGTATGTACCAATGTTGCTGACGATGGACAGC5220          
     CGTAGTCAGTAATTGACAAGGTAGATTTCATCCTGCAATGAAGTCATTTTATTTTCGTAT5280          
     TATTTACTGTGTGGGTTAAAGTTCAGTACGGGCTTTACCCATCTTGTAAAAAATTACGGA5340          
     GAATACAATAAAGTATTTTTAACAGGTTATTATTATGAAAAATATAAAAAGCAGATTAAA5400          
     ACTCAGTGCAATATCAGTATTGCTTGGCCTGGCTTCTTCATCATTGTATGCAGAAGAAGC5460          
     GTTTTTAGTAAAAGGCTTTCAGTTATCTGGTGCACTTGAAACTTTAAGTGAAGACGCCCA5520          
     ACTGTCTGTAGCAAAATCTTTATCTAAATACCAAGGCTCGCAAACTTTAACAAACCTAAA5580          
     AACAGCACAGCTTGAATTACAGGCTGTGCTAGATAAGATTGAGCCAAATAAATTTGATGT5640          
     GATATTGCCGCAACAAACCATTACGGATGGCAATATCATGTTTGAGCTAGTCTCGAAATC5700          
     AGCCGCAGAAAGCCAAGTTTTTTATAAGGCGAGCCAGGGTTATAGTGAAGAAAATATCGC5760          
     TCGTAGCCTGCCATCTTTGAAACAAGGAAAAGTGTATGAAGATGGTCGTCAGTGGTTCGA5820          
     TTTGCGTGAATTTAATATGGCAAAAGAAAACCCGCTTAAGGTTACCCGTGTACATTACGA5880          
     ACTAAACCCTAAAAACAAAACCTCTAATTTGATAATTGCGGGCTTCTCGCCTTTTGGTAA5940          
     AACGCGTAGCTTTATTTCTTATGATAATTTCGGCGCGAGAGAGTTTAACTACCAACGTGT6000          
     AAGCTTGGGTTTTGTTAATGCCAATTTAACTGGTCATGATGATGTGTTAATTATACCAGT6060          
     ATGAGTTATGCTGATTCTAATGATATCGACGGCTTACCAAGTGCGATTAATCGTAAATTA6120          
     TCAAAAGGTCAATCTATCTCTGCGAATCTGAAATGGAGTTATTATCTCCCAACATTTAAC6180          
     CTTGGCATGGAAGACCAATTTAAAATTAATTTAGGCTACAACTACCGCCATATTAATCAA6240          
     ACCTCCGCGTTAAATCGCTTGGGTGAAACGAAGAAAAAATTTGCAGTATCAGGCGTAAGT6300          
     GCAGGCATTGATGGACATATCCAATTTACCCCTAAAACAATCTTTAATATTGATTTAACT6360          
     CATCATTATTACGCGAGTAAATTACCAGGCTCTTTTGGAATGGAGCGCATTGGCGAAACA6420          
     TTTAATCGCAGCTATCACATTAGCACAGCCAGTTTAGGGTTGAGTCAAGAGTTTGCTCAA6480          
     GGTTGGCATTTTAGCAGTCAATTATCAGGTCAATTTACTCTACAAGATATTAGCAGTATA6540          
     GATTTATTCTCTGTAACAGGTACTTATGGCGTCAGAGGCTTTAAATACGGCGGTGCAAGT6600          
     GGTGAGCGCGGTCTTGTATGGCGTAATGAATTAAGTATGCCAAAATACACCCGCTTCCAA6660          
     ATCAGCCCTTATGCGTTTTATGATGCAGGTCAGTTCCGTTATAATAGCGAAAATGCTAAA6720          
     ACTTACGGCGAAGATATGCACACGGTATCCTCTGCGGGTTTAGGCATTAAAACCTCTCCT6780          
     ACACAAAACTTAAGCCTAGATGCTTTTGTTGCTCGTCGCTTTGCAAATGCCAATAGTGAC6840          
     AATTTGAATGGCAACAAAAAACGCACAAGCTCACCTACAACCTTCTGGGGGAGATTAACA6900          
     TTCAGTTTCTAACCCTGAAATTTAATCAACTGGTAAGCGTTCCGCCTACCAGTTTATAAC6960          
     TATATGCTTTACCCGCCAATTTACAGTCTATAGGCAACCCTGTTTTTACCCTTATATATC7020          
     AAATAAACAAGCTAAGCTGAGCTAAGCAAACCAAGCAAACTCAAGCAAGCCAAGTAATAC7080          
     TAAAAAAACAATTTATATGATAAACTAAAGTATACTCCATGCCATGGCGATACAAGGGAT7140          
     TTAATAATATGACAAAAGAAAATTTGCAAAACGCTCCTCAAGATGCGACCGCTTTACTTG7200          
     CGGAATTAAGCAACAATCAAACTCCCCTGCGAATATTTAAACAACCACGCAAGCCCAGCC7260          
     TATTACGCTTGGAACAACATATCGCAAAAAAAGATTATGAGTTTGCTTGTCGTGAATTAA7320          
     TGGTGATTCTGGAAAAAATGGACGCTAATTTTGGAGGCGTTCACGATATTGAATTTGACG7380          
     CACCCGCTCAGCTGGCATATCTACCCGAAAAATTACTAATTTATTTTGCCACTCGTCTCG7440          
     CTAATGCAATTACAACACTCTTTTCCGACCCCGAATTGGCAATTTCTGAAGAAGGGGCGT7500          
     TAAAGATGATTAGCCTGCAACGCTGGTTGACGCTGATTTTTGCCTCTTCCCCCTACGTTA7560          
     ACGCAGACCATATTCTCAATAAATATAATATCAACCCAGATTCCGAAGGTGGCTTTCATT7620          
     TAGCAACAGACAACTCTTCTATTGCTAAATTCTGTATTTTTTACTTACCCGAATCCAATG7680          
     TCAATATGAGTTTAGATGCGTTATGGGCAGGGAATCAACAACTTTGTGCTTCATTGTGTT7740          
     TTGCGTTGCAGTCTTCACGTTTTATTGGTACCGCATCTGCGTTTCATAAAAGAGCGGTGG7800          
     TTTTACAGTGGTTTCCTAAAAAACTCGCCGAAATTGCTAATTTAGATGAATTGCCTGCAA7860          
     ATATCCTTCATGATGTATATATGCACTGCAGTTATGATTTAGCAAAAAACAAGCACGATG7920          
     TTAAGCGTCCATTAAACGAACTTGTCCGCAAGCATATCCTCACGCAAGGATGGCAAGACC7980          
     GCTACCTTTACACCTTAGGTAAAAAGGACGGCAAACCTGTGATGATGGTACTGCTTGAAC8040          
     ATTTTAATTCGGGACATTCGATTTATCGTACACATTCAACTTCAATGATTGCTGCTCGAG8100          
     AAAAATTCTATTTAGTCGGCTTAGGCCATGAGGGCGTTGATAAAATAGGTCGAGAAGTGT8160          
     TTGACGAGTTCTTTGAAATCAGTAGCAATAATATAATGGAGAGACTGTTTTTTATCCGTA8220          
     AACAGTGCGAAACTTTCCAACCCGCAGTGTTCTATATGCCAAGCATTGGCATGGATATTA8280          
     CCACGATTTTTGTGAGCAACACTCGGCTTGCCCCTATTCAAGCTGTAGCCCTGGGTCATC8340          
     CTGCCACTACGCATTCTGAATTTATTGATTATGTCATCGTAGAAGATGATTATGTGGGCA8400          
     GTGAAGATTGTTTCAGCGAAACCCTTTTACGCTTACCCAAAGATGCCCTACCTTATGTAC8460          
     CTTCTGCACTCGCCCCACAAAAAGTGGATTATGTACTCAGGGAAAACCCTGAAGTAGTCA8520          
     ATATCGGTATTGCCGCTACCACAATGAAATTAAACCCTGAATTTTTGCTAACATTGCAAG8580          
     AAATCAGAGATAAAGCTAAAGTCAAAATACATTTTCATTTCGCACTTGGACAATCAACAG8640          
     GCTTGACACACCCTTATGTCAAATGGTTTATCGAAAGCTATTTAGGTGACGATGCCACTG8700          
     CACATCCCCACGCACCTTATCACGATTATCTGGCAATATTGCGTGATTGCGATATGCTAC8760          
     TAAATCCGTTTCCTTTCGGTAATACTAACGGCATAATTGATATGGTTACATTAGGTTTAG8820          
     TTGGTGTATGCAAAACGGGGGATGAAGTACATGAACATATTGATGAAGGTCTGTTTAAAC8880          
     GCTTAGGACTACCAGAATGGCTGATAGCCGACACACGAGAAACATATATTGAATGTGCTT8940          
     TGCGTCTAGCAGAAAACCATCAAGAACGCCTTGAACTCCGTCGTTACATCATAGAAAACA9000          
     ACGGCTTACAAAAGCTTTTTACAGGCGACCCTCGTCCATTGGGCAAAATACTGCTTAAGA9060          
     AAACAAATGAATGGAAGCGGAAGCACTTGAGTAAAAAATAACGGTTTTTTAAAGTAAAAG9120          
     TGCGGTTAATTTTCAAAGCGTTTTAAAAACCTCTCAAAAATCAACCGCACTTTTATCTTT9180          
     ATAACGATCCCGCACGCTGACAGTTTATCAGCCTCCCGCCATAAAACTCCGCCTTTCATG9240          
     GCGGAGATTTTAGCCAAAACTGGCAGAAATTAAAGGCTAAAATCACCAAATTGCACCACA9300          
     AAATCACCAATACCCACAAAAAA9323                                               
     (2) INFORMATION FOR SEQ ID NO:7:                                          
     (i) SEQUENCE CHARACTERISTICS:                                             
     (A) LENGTH: 4287 base pairs                                               
     (B) TYPE: nucleic acid                                                    
     (C) STRANDEDNESS: single                                                  
     (D) TOPOLOGY: linear                                                      
     (ii) MOLECULE TYPE: DNA (genomic)                                         
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:                                   
     GATCAATCTGGGCGATATTTTTGCCAAAGGTGGTAACATTAATGTCCGCGCTGCCACTAT60            
     TCGCAATAAAGGTAAACTTTCTGCCGACTCTGTAAGCAAAGATAAAAGTGGTAACATTGT120           
     TCTCTCTGCCAAAGAAGGTGAAGCGGAAATTGGCGGTGTAATTTCCGCTCAAAATCAGCA180           
     AGCCAAAGGTGGTAAGTTGATGATTACAGGCGATAAAGTTACATTGAAAACGGGTGCACT240           
     TATCGACCTTTCGGGTAAAGAAGGGGGAGAAACTTATCTTGGCGGTGACGAGCGTGGCGA300           
     AGGTAAAAACGGCATTCAATTAGCAAAGAAAACCACTTTAGAAAAAGGCTCAACAATTAA360           
     TGTGTCAGGTAAAGAAAAAGCTGGGCGCGCTATTGTATGGGGCGATATTGCGTTAATTGA420           
     CGGCAATATTAATGCCCAAGGTAAAGATATCGCTAAAACTGGTGGTTTTGTGGAGACGTC480           
     GGGGCATTACTTATCCATTGATGATAACGCAATTGTTAAAACAAAAGAATGGCTACTAGA540           
     CCCAGAGAATGTGACTATTGAAGCTCCTTCCGCTTCTCGCGTCGAGCTGGGTGCCGATAG600           
     GAATTCCCACTCGGCAGAGGTGATAAAAGTGACCCTAAAAAAAAATAACACCTCCTTGAC660           
     AACACTAACCAATACAACCATTTCAAATCTTCTGAAAAGTGCCCACGTGGTGAACATAAC720           
     GGCAAGGAGAAAACTTACCGTTAATAGCTCTATCAGTATAGAAAGAGGCTCCCACTTAAT780           
     TCTCCACAGTGAAGGTCAGGGCGGTCAAGGTGTTCAGATTGATAAAGATATTACTTCTGA840           
     AGGCGGAAATTTAACCATTTATTCTGGCGGATGGGTTGATGTTCATAAAAATATTACGCT900           
     TGGTAGCGGCTTTTTAAACATCACAACTAAAGAAGGAGATATCGCCTTCGAAGACAAGTC960           
     TGGACGGAACAACCTAACCATTACAGCCCAAGGGACCATCACCTCAGGTAATAGTAACGG1020          
     CTTTAGATTTAACAACGTCTCTCTAAACAGCCTTGGCGGAAAGCTGAGCTTTACTGACAG1080          
     CAGAGAGGACAGAGGTAGAAGAACTAAGGGTAATATCTCAAACAAATTTGACGGAACGTT1140          
     AAACATTTCCGGAACTGTAGATATCTCAATGAAAGCACCCAAAGTCAGCTGGTTTTACAG1200          
     AGACAAAGGACGCACCTACTGGAACGTAACCACTTTAAATGTTACCTCGGGTAGTAAATT1260          
     TAACCTCTCCATTGACAGCACAGGAAGTGGCTCAACAGGTCCAAGCATACGCAATGCAGA1320          
     ATTAAATGGCATAACATTTAATAAAGCCACTTTTAATATCGCACAAGGCTCAACAGCTAA1380          
     CTTTAGCATCAAGGCATCAATAATGCCCTTTAAGAGTAACGCTAACTACGCATTATTTAA1440          
     TGAAGATATTTCAGTCTCAGGGGGGGGTAGCGTTAATTTCAAACTTAACGCCTCATCTAG1500          
     CAACATACAAACCCCTGGCGTAATTATAAAATCTCAAAACTTTAATGTCTCAGGAGGGTC1560          
     AACTTTAAATCTCAAGGCTGAAGGTTCAACAGAAACCGCTTTTTCAATAGAAAATGATTT1620          
     AAACTTAAACGCCACCGGTGGCAATATAACAATCAGACAAGTCGAGGGTACCGATTCACG1680          
     CGTCAACAAAGGTGTCGCAGCCAAAAAAAACATAACTTTTAAAGGGGGTAATATCACCTT1740          
     CGGCTCTCAAAAAGCCACAACAGAAATCAAAGGCAATGTTACCATCAATAAAAACACTAA1800          
     CGCTACTCTTCGTGGTGCGAATTTTGCCGAAAACAAATCGCCTTTAAATATAGCAGGAAA1860          
     TGTTATTAATAATGGCAACCTTACCACTGCCGGCTCCATTATCAATATAGCCGGAAATCT1920          
     TACTGTTTCAAAAGGCGCTAACCTTCAAGCTATAACAAATTACACTTTTAATGTAGCCGG1980          
     CTCATTTGACAACAATGGCGCTTCAAACATTTCCATTGCCAGAGGAGGGGCTAAATTTAA2040          
     AGATATCAATAACACCAGTAGCTTAAATATTACCACCAACTCTGATACCACTTACCGCAC2100          
     CATTATAAAAGGCAATATATCCAACAAATCAGGTGATTTGAATATTATTGATAAAAAAAG2160          
     CGACGCTGAAATCCAAATTGGCGGCAATATCTCACAAAAAGAAGGCAATCTCACAATTTC2220          
     TTCTGATAAAGTAAATATTACCAATCAGATAACAATCAAAGCAGGCGTTGAAGGGGGGCG2280          
     TTCTGATTCAAGTGAGGCAGAAAATGCTAACCTAACTATTCAAACCAAAGAGTTAAAATT2340          
     GGCAGGAGACCTAAATATTTCAGGCTTTAATAAAGCAGAAATTACAGCTAAAAATGGCAG2400          
     TGATTTAACTATTGGCAATGCTAGCGGTGGTAATGCTGATGCTAAAAAAGTGACTTTTGA2460          
     CAAGGTTAAAGATTCAAAAATCTCGACTGACGGTCACAATGTAACACTAAATAGCGAAGT2520          
     GAAAACGTCTAATGGTAGTAGCAATGCTGGTAATGATAACAGCACCGGTTTAACCATTTC2580          
     CGCAAAAGATGTAACGGTAAACAATAACGTTACCTCCCACAAGACAATAAATATCTCTGC2640          
     CGCAGCAGGAAATGTAACAACCAAAGAAGGCACAACTATCAATGCAACCACAGGCAGCGT2700          
     GGAAGTAACTGCTCAAAATGGTACAATTAAAGGCAACATTACCTCGCAAAATGTAACAGT2760          
     GACAGCAACAGAAAATCTTGTTACCACAGAGAATGCTGTCATTAATGCAACCAGCGGCAC2820          
     AGTAAACATTAGTACAAAAACAGGGGATATTAAAGGTGGAATTGAATCAACTTCCGGTAA2880          
     TGTAAATATTACAGCGAGCGGCAATACACTTAAGGTAAGTAATATCACTGGTCAAGATGT2940          
     AACAGTAACAGCGGATGCAGGAGCCTTGACAACTACAGCAGGCTCAACCATTAGTGCGAC3000          
     AACAGGCAATGCAAATATTACAACCAAAACAGGTGATATCAACGGTAAAGTTGAATCCAG3060          
     CTCCGGCTCTGTAACACTTGTTGCAACTGGAGCAACTCTTGCTGTAGGTAATATTTCAGG3120          
     TAACACTGTTACTATTACTGCGGATAGCGGTAAATTAACCTCCACAGTAGGTTCTACAAT3180          
     TAATGGGACTAATAGTGTAACCACCTCAAGCCAATCAGGCGATATTGAAGGTACAATTTC3240          
     TGGTAATACAGTAAATGTTACAGCAAGCACTGGTGATTTAACTATTGGAAATAGTGCAAA3300          
     AGTTGAAGCGAAAAATGGAGCTGCAACCTTAACTGCTGAATCAGGCAAATTAACCACCCA3360          
     AACAGGCTCTAGCATTACCTCAAGCAATGGTCAGACAACTCTTACAGCCAAGGATAGCAG3420          
     TATCGCAGGAAACATTAATGCTGCTAATGTGACGTTAAATACCACAGGCACTTTAACTAC3480          
     TACAGGGGATTCAAAGATTAACGCAACCAGTGGTACCTTAACAATCAATGCAAAAGATGC3540          
     CAAATTAGATGGTGCTGCATCAGGTGACCGCACAGTAGTAAATGCAACTAACGCAAGTGG3600          
     CTCTGGTAACGTGACTGCGAAAACCTCAAGCAGCGTGAATATCACCGGGGATTTAAACAC3660          
     AATAAATGGGTTAAATATCATTTCGGAAAATGGTAGAAACACTGTGCGCTTAAGAGGCAA3720          
     GGAAATTGATGTGAAATATATCCAACCAGGTGTAGCAAGCGTAGAAGAGGTAATTGAAGC3780          
     GAAACGCGTCCTTGAGAAGGTAAAAGATTTATCTGATGAAGAAAGAGAAACACTAGCCAA3840          
     ACTTGGTGTAAGTGCTGTACGTTTCGTTGAGCCAAATAATGCCATTACGGTTAATACACA3900          
     AAACGAGTTTACAACCAAACCATCAAGTCAAGTGACAATTTCTGAAGGTAAGGCGTGTTT3960          
     CTCAAGTGGTAATGGCGCACGAGTATGTACCAATGTTGCTGACGATGGACAGCAGTAGTC4020          
     AGTAATTGACAAGGTAGATTTCATCCTGCAATGAAGTCATTTTATTTTCGTATTATTTAC4080          
     TGTGTGGGTTAAAGTTCAGTACGGGCTTTACCCACCTTGTAAAAAATTACGAAAAATACA4140          
     ATAAAGTATTTTTAACAGGTTATTATTATGAAAAACATAAAAAGCAGATTAAAACTCAGT4200          
     GCAATATCAATATTGCTTGGCTTGGCTTCTTCATCGACGTATGCAGAAGAAGCGTTTTTA4260          
     GTAAAAGGCTTTCAGTTATCTGGCGCG4287                                           
     (2) INFORMATION FOR SEQ ID NO:8:                                          
     (i) SEQUENCE CHARACTERISTICS:                                             
     (A) LENGTH: 4702 base pairs                                               
     (B) TYPE: nucleic acid                                                    
     (C) STRANDEDNESS: single                                                  
     (D) TOPOLOGY: linear                                                      
     (ii) MOLECULE TYPE: DNA (genomic)                                         
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:                                   
     GGGAATGAGCGTCGTACACGGTACAGCAACCATGCAAGTAGACGGCAATAAAACCACTAT60            
     CCGTAATAGCATCAATGCTATCATCAATTGGAAACAATTTAACATTGACCAAAATGAAAT120           
     GGAGCAGTTTTTACAAGAAAGCAGCAACTCTGCCGTTTTCAACCGTGTTACATCTGACCA180           
     AATCTCCCAATTAAAAGGGATTTTAGATTCTAACGGACAAGTCTTTTTAATCAACCCAAA240           
     TGGTATCACAATAGGTAAAGACGCAATTATTAACACTAATGGCTTTACTGCTTCTACGCT300           
     AGACATTTCTAACGAAAACATCAAGGCGCGTAATTTCACCCTTGAGCAAACCAAGGATAA360           
     AGCACTCGCTGAAATCGTGAATCACGGTTTAATTACCGTTGGTAAAGACGGTAGCGTAAA420           
     CCTTATTGGTGGCAAAGTGAAAAACGAGGGCGTGATTAGCGTAAATGGCGGTAGTATTTC480           
     TTTACTTGCAGGGCAAAAAATCACCATCAGCGATATAATAAATCCAACCATCACTTACAG540           
     CATTGCTGCACCTGAAAACGAAGCGATCAATCTGGGCGATATTTTTGCCAAAGGTGGTAA600           
     CATTAATGTCCGCGCTGCCACTATTCGCAATAAAGGTAAACTTTCTGCCGACTCTGTAAG660           
     CAAAGATAAAAGTGGTAACATTGTTCTCTCTGCCAAAGAAGGTGAAGCGGAAATTGGCGG720           
     TGTAATTTCCGCTCAAAATCAGCAAGCCAAAGGTGGTAAGTTGATGATTACAGGTGATAA780           
     AGTCACATTAAAAACAGGTGCAGTTATCGACCTTTCAGGTAAAGAAGGGGGAGAGACTTA840           
     TCTTGGCGGTGATGAGCGTGGCGAAGGTAAAAATGGTATTCAATTAGCGAAGAAAACCTC900           
     TTTAGAAAAAGGCTCGACAATTAATGTATCAGGCAAAGAAAAAGGCGGGCGCGCTATTGT960           
     ATGGGGCGATATTGCATTAATTAATGGTAACATTAATGCTCAAGGTAGCGATATTGCTAA1020          
     AACTGGCGGCTTTGTGGAAACATCAGGACATGACTTATCCATTGGTGATGATGTGATTGT1080          
     TGACGCTAAAGAGTGGTTATTAGACCCAGATGATGTGTCCATTGAAACTCTTACATCTGG1140          
     ACGCAATAATACCGGCGAAAACCAAGGATATACAACAGGAGATGGGACTAAAGAGTCACC1200          
     TAAAGGTAATAGTATTTCTAAACCTACATTAACAAACTCAACTCTTGAGCAAATCCTAAG1260          
     AAGAGGTTCTTATGTTAATATCACTGCTAATAATAGAATTTATGTTAATAGCTCCATCAA1320          
     CTTATCTAATGGCAGTTTAACACTTCACACTAAACGAGATGGAGTTAAAATTAACGGTGA1380          
     TATTACCTCAAACGAAAATGGTAATTTAACCATTAAAGCAGGCTCTTGGGTTGATGTTCA1440          
     TAAAAACATCACGCTTGGTACGGGTTTTTTCAATATTGTCGCTGGGGATTCTGTAGCTTT1500          
     TGAGAGAGAGGGCGATAAAGCACGTAACGCAACAGATGCTCAAATTACCGCACAAGGGAC1560          
     GATAACCGTCAATAAAGATGATAAACAATTTAGATTCAATAATGTATCTATTAACGGGAC1620          
     GGGCAAGGGTTTAAAGTTTATTGCAAATCAAAATAATTTCACTCATAAATTTGATGGCGA1680          
     AATTAACATATCTGGAATAGTAACAATTAACCAAACCACGAAAAAAGATGTTAAATACTG1740          
     GAATGCATCAAAAGACTCTTACTGGAATGTTTCTTCTCTTACTTTGAATACGGTGCAAAA1800          
     ATTTACCTTTATAAAATTCGTTGATAGCGGCTCAAATTCCCAAGATTTGAGGTCATCACG1860          
     TAGAAGTTTTGCAGGCGTACATTTTAACGGCATCGGAGGCAAAACAAACTTCAACATCGG1920          
     AGCTAACGCAAAAGCCTTATTTAAATTAAAACCAAACGCCGCTACAGACCCAAAAAAAGA1980          
     ATTACCTATTACTTTTAACGCCAACATTACAGCTACCGGTAACAGTGATAGCTCTGTGAT2040          
     GTTTGACATACACGCCAATCTTACCTCTAGAGCTGCCGGCATAAACATGGATTCAATTAA2100          
     CATTACCGGCGGGCTTGACTTTTCCATAACATCCCATAATCGCAATAGTAATGCTTTTGA2160          
     AATCAAAAAAGACTTAACTATAAATGCAACTGGCTCGAATTTTAGTCTTAAGCAAACGAA2220          
     AGATTCTTTTTATAATGAATACAGCAAACACGCCATTAACTCAAGTCATAATCTAACCAT2280          
     TCTTGGCGGCAATGTCACTCTAGGTGGGGAAAATTCAAGCAGTAGCATTACGGGCAATAT2340          
     CAATATCACCAATAAAGCAAATGTTACATTACAAGCTGACACCAGCAACAGCAACACAGG2400          
     CTTGAAGAAAAGAACTCTAACTCTTGGCAATATATCTGTTGAGGGGAATTTAAGCCTAAC2460          
     TGGTGCAAATGCAAACATTGTCGGCAATCTTTCTATTGCAGAAGATTCCACATTTAAAGG2520          
     AGAAGCCAGTGACAACCTAAACATCACCGGCACCTTTACCAACAACGGTACCGCCAACAT2580          
     TAATATAAAACAAGGAGTGGTAAAACTCCAAGGCGATATTATCAATAAAGGTGGTTTAAA2640          
     TATCACTACTAACGCCTCAGGCACTCAAAAAACCATTATTAACGGAAATATAACTAACGA2700          
     AAAAGGCGACTTAAACATCAAGAATATTAAAGCCGACGCCGAAATCCAAATTGGCGGCAA2760          
     TATCTCACAAAAAGAAGGCAATCTCACAATTTCTTCTGATAAAGTAAATATTACCAATCA2820          
     GATAACAATCAAAGCAGGCGTTGAAGGGGGGCGTTCTGATTCAAGTGAGGCAGAAAATGC2880          
     TAACCTAACTATTCAAACCAAAGAGTTAAAATTGGCAGGAGACCTAAATATTTCAGGCTT2940          
     TAATAAAGCAGAAATTACAGCTAAAAATGGCAGTGATTTAACTATTGGCAATGCTAGCGG3000          
     TGGTAATGCTGATGCTAAAAAAGTGACTTTTGACAAGGTTAAAGATTCAAAAATCTCGAC3060          
     TGACGGTCACAATGTAACACTAAATAGCGAAGTGAAAACGTCTAATGGTAGTAGCAATGC3120          
     TGGTAATGATAACAGCACCGGTTTAACCATTTCCGCAAAAGATGTAACGGTAAACAATAA3180          
     CGTTACCTCCCACAAGACAATAAATATCTCTGCCGCAGCAGGAAATGTAACAACCAAAGA3240          
     AGGCACAACTATCAATGCAACCACAGGCAGCGTGGAAGTAACTGCTCAAAATGGTACAAT3300          
     TAAAGGCAACATTACCTCGCAAAATGTAACAGTGACAGCAACAGAAAATCTTGTTACCAC3360          
     AGAGAATGCTGTCATTAATGCAACCAGCGGCACAGTAAACATTAGTACAAAAACAGGGGA3420          
     TATTAAAGGTGGAATTGAATCAACTTCCGGTAATGTAAATATTACAGCGAGCGGCAATAC3480          
     ACTTAAGGTAAGTAATATCACTGGTCAAGATGTAACAGTAACAGCGGATGCAGGAGCCTT3540          
     GACAACTACAGCAGGCTCAACCATTAGTGCGACAACAGGCAATGCAAATATTACAACCAA3600          
     AACAGGTGATATCAACGGTAAAGTTGAATCCAGCTCCGGCTCTGTAACACTTGTTGCAAC3660          
     TGGAGCAACTCTTGCTGTAGGTAATATTTCAGGTAACACTGTTACTATTACTGCGGATAG3720          
     CGGTAAATTAACCTCCACAGTAGGTTCTACAATTAATGGGACTAATAGTGTAACCACCTC3780          
     AAGCCAATCAGGCGATATTGAAGGTACAATTTCTGGTAATACAGTAAATGTTACAGCAAG3840          
     CACTGGTGATTTAACTATTGGAAATAGTGCAAAAGTTGAAGCGAAAAATGGAGCTGCAAC3900          
     CTTAACTGCTGAATCAGGCAAATTAACCACCCAAACAGGCTCTAGCATTACCTCAAGCAA3960          
     TGGTCAGACAACTCTTACAGCCAAGGATAGCAGTATCGCAGGAAACATTAATGCTGCTAA4020          
     TGTGACGTTAAATACCACAGGCACTTTAACTACTACAGGGGATTCAAAGATTAACGCAAC4080          
     CAGTGGTACCTTAACAATCAATGCAAAAGATGCCAAATTAGATGGTGCTGCATCAGGTGA4140          
     CCGCACAGTAGTAAATGCAACTAACGCAAGTGGCTCTGGTAACGTGACTGCGAAAACCTC4200          
     AAGCAGCGTGAATATCACCGGGGATTTAAACACAATAAATGGGTTAAATATCATTTCGGA4260          
     AAATGGTAGAAACACTGTGCGCTTAAGAGGCAAGGAAATTGATGTGAAATATATCCAACC4320          
     AGGTGTAGCAAGCGTAGAAGAGGTAATTGAAGCGAAACGCGTCCTTGAGAAGGTAAAAGA4380          
     TTTATCTGATGAAGAAAGAGAAACACTAGCCAAACTTGGTGTAAGTGCTGTACGTTTCGT4440          
     TGAGCCAAATAATGCCATTACGGTTAATACACAAAACGAGTTTACAACCAAACCATCAAG4500          
     TCAAGTGACAATTTCTGAAGGTAAGGCGTGTTTCTCAAGTGGTAATGGCGCACGAGTATG4560          
     TACCAATGTTGCTGACGATGGACAGCAGTAGTCAGTAATTGACAAGGTAGATTTCATCCT4620          
     GCAATGAAGTCATTTTATTTTCGTATTATTTACTGTGTGGGTTAAAGTTCAGTACGGGCT4680          
     TTACCCACCTTGTAAAAAATTA4702                                                
     __________________________________________________________________________

Claims

1. A vaccine against disease caused by non-typeable Haemophilus influenzae, including otitis media, sinusitis and bronchitis, comprising an effective amount of a high molecular weight protein of non-typeable Haemophilus influenzae which is protein HMW1 and/or HMW2 and a physiological carrier therefor.

2. The vaccine of claim 1 wherein said protein is HMW1 encoded by the DNA sequence shown in FIG. 1 (SEQ ID NO:1), having the derived amino acid sequence of FIG. 2 (SEQ ID ID NO:2) and having an apparent molecular weight of 125 kDa.

3. The vaccine of claim 1 wherein said protein is HMW2 encoding by the DNA sequence shown in FIG. 3 SEQ ID NO:3), having the derived amino acid sequence of FIG. 4 SEQ ID NO:4) and having an apparent molecular weight of 120 kDa.

Referenced Cited
Other references
  • Barenkamp S. J., Pediatr Res 29(4 part 2) 1991 p. 167A Abstract #985. Van Regenmortel, Immunology Today 10(8):266-272, 1989. Dick et al, Contrib Microbiol. Immunol 10:48-114, 1989. Roitt et al, eds Immunology, C. V. Mosby Co, St. Louis, Gowe-Medical Publishing, London, 1985 pp. 8.3-8.4. Boslego et al Vaccine 9:154-162, 1991. Pediatr. Infect. Dis. J., 9:333-339, 1990. The Journal of Infectious Diseases, vol. 165(Suppl.), issued Aug. 1992, S. J. Barenkamp, "Outer Membrane Protein and Lipopolysaccharides of Nontypeable Haemophilus influenzae", pp. S181-S184, see entire document. Infection and Immunity, vol. 56(1), issued Jan. 1988, E. J. Hansen, "Immune Enhancement of Pulmonary Clearance on Nontypable Haemophilus influenzae,"pp. 182-190, see entire document, especially Figs. 3 and 4. Infection and Immunity, vol. 60(4), issued Apr. 1992, S. J. Barenkamp et al, "Cloning, Expression and DNA Sequence Analysis of Genes Encoding Nontypeable Haemophilus influenzae High -Molecular-Weight Surface-Exposed Proteins Related to Filamentous Hemagglutinin of Bordetella pertussis," pp. 1302-1313, see entire document. Infection and Immunity, vol. 52(2), issued May 1986, S. J. Barenkamp, "Protection by Serum Antibodies in Experimental Nontypable Haemphilus influenzae Otitis Media", pp. 572-578, see Figs. 1 and 2. Proceedings of the National Academy of Sciences USA, vol. 80, issued Mar. 1983, R. A. Young et al, "Efficient Isolation of Genes by Using Antibody Probes, "pp. 1194-1198, see entire document. Journal of Molecular Biology, vol. 157, issued 1982, J. Kyte et al, "A Simple Method for Displaying the Hydrophatic Character of a Protein", pp. 105-132, see entire document. Proceedings of the National Academy of Sciences, vol. 78(6), issued Jun. 1981, T. P. Hopp et al, "Prediction of Protein Antigenic Determinants from Amino Acid Sequences", pp. 3824-3828, see entire document. Infection and Immunity, vol. 45(3), issued Sep. 1984, R. Schneerson et al, "Serum Antibody Responses of Juvenile and Infant Rhesus Monkeys Injected with Haemophilus influenzae Type b and Pneumoccus Type 6A Capsular Polysaccharide-Protein Conjugates", pp. 582-591, see entire document.
Patent History
Patent number: 5549897
Type: Grant
Filed: Mar 16, 1993
Date of Patent: Aug 27, 1996
Assignees: St. Louis University (St. Louis, MO), Washington University (St. Louis, MO)
Inventors: Stephen J. Barenkamp (Webster Grove, MO), Joseph W. St. Geme, III (St. Louis, MO)
Primary Examiner: James C. Housel
Assistant Examiner: Julie Krsek-Staples
Law Firm: Shoemaker and Mattare, Ltd.
Application Number: 8/38,682
Classifications
Current U.S. Class: 424/256N; Haemophilus (435/851); Proteins, I.e., More Than 100 Amino Acid Residues (530/350)
International Classification: A61K 39102; A61K 3816;