Speed control method

- Ford

A method for controlling an engine having both an electronically controlled inlet device, such as an electronic throttle unite, and an electronically controlled outlet device, such as a variable cam timing system is disclosed. The method of the present invention achieves cylinder air charge control that is faster than possible by using an inlet device alone. In other words, the method of the present invention controls cylinder air charge faster than manifold dynamics by coordination of the inlet and outlet device. This improved control is used to improve various engine control functions.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
FIELD OF THE INVENTION

The field of the invention relates to engine speed control in internal combustion engines.

BACKGROUND OF THE INVENTION

A vehicle's engine typically utilizes an idle speed control mode where engine speed is controlled to a desired speed when a vehicle is stationary or slowly moving and an operator is not requesting drive torque. During idle conditions, it is desirable to maintain a constant engine speed, thereby giving the operator superior drive feel. To keep engine speed constant, idle speed control should reject engine torque disturbances from various sources, such as, for example, air conditioning systems, power steering systems, changes in ambient conditions, or changes in any other devices that affect engine speed.

One method for controlling engine speed to a desired speed uses ignition timing, throttle position, or a combination of both. In one system a torque reserve is used so that it is possible to rapidly increase engine torque using ignition timing, thereby controlling engine speed. One example of a system using ignition timing is disclosed in U.S. Pat. No. 5,765,527.

The inventors herein have recognized several disadvantages with the above approaches. In particular, a disadvantage with using throttle position is that the throttle cannot quickly change engine torque since it controls flow entering an intake manifold. Controlling flow entering the manifold cannot rapidly control cylinder charge due to manifold volume. For example, if the throttle is instantly closed, cylinder air charge does not instantly decrease to zero. The engine must pump down the air stored in the manifold, which takes a certain number of revolutions. Therefore, the cylinder air charge gradually decreases toward zero.

Another disadvantage with the known approaches is related to ignition timing. In particular, to maximize fuel economy, ignition timing should be at MBT timing (ignition timing for maximum torque). However, when at MBT, adjustment of ignition timing in any direction decreases engine torque and fuel economy. Therefore, when maximizing fuel economy, load torques cannot be rejected since ignition timing can only decrease engine torque. To be able to use ignition timing in both positive and negative directions, ignition timing must be set away from MBT timing. This allows rapid engine torque control, but at the cost of degraded fuel economy.

SUMMARY OF THE INVENTION

An object of the present invention is to rapidly control engine speed to a desired engine speed while maximizing fuel economy.

The above object is achieved and disadvantages of prior approaches overcome by a method for controlling speed of an engine having at least one cylinder, the engine also having an intake manifold and an outlet control device for controlling flow from the intake manifold into the cylinder, comprising: generating a desired engine speed; and changing the outlet control device to control the engine speed to said desired engine speed.

By using an outlet control device that controls flow exiting the manifold (entering the cylinder), it is possible to rapidly change engine torque and engine speed, despite response delays of airflow inducted through the intake manifold. In other words, a rapid change in cylinder charge can be achieved, thereby allowing a rapid change in cylinder air/fuel ratio while preventing disturbances in engine torque.

An advantage of the above aspect of the invention is that engine speed can be more accurately controlled to a desired engine speed without fuel economy degradation.

In another aspect of the present invention, the above object is achieved and disadvantages of prior approaches overcome by a method for controlling speed of an engine having at least one cylinder, the engine also having an intake manifold and an outlet control device for controlling flow from the intake manifold into the cylinder and an inlet control device for controlling flow into the intake manifold, comprising: generating a desired engine speed; and changing both the outlet control device and the inlet control device based on the engine speed and said desired engine speed and in response to a respective outlet control device command and an inlet control device command.

By changing both the inlet and outlet control devices, it is possible to rapidly change engine torque and engine speed despite response delays of airflow inducted through the intake manifold. Since the cylinder air charge can be rapidly changed, the cylinder air/fuel ratio change can be compensated and abrupt changes in engine torque can be avoided. In other words, the present invention controls manifold inlet and outlet flows in a coordinated way to allow a rapid change in engine speed regardless of manifold volume. This rapid cylinder air charge change allows torque disturbances to by rapidly rejected without using an ignition timing torque reserve.

An advantage of the above aspect of the invention is that sustained torque disturbances can rejected.

Another advantage of the above aspect of the invention is that by using both an outlet and an inlet control device, a more controlled rapid change in engine torque and engine speed.

Other objects, features and advantages of the present invention will be readily appreciated by the reader of this specification.

BRIEF DESCRIPTION OF THE DRAWINGS

The object and advantages of the invention claimed herein will be more readily understood by reading an example of an embodiment in which the invention is used to advantage with reference to the following drawings wherein:

FIGS. 1A and 1B are a block diagrams of an embodiment in which the invention is used to advantage;

FIG. 2A is a block diagram of an embodiment in which the invention is used to advantage;

FIGS. 2B-2O are graphs describing operation of the embodiment in FIG. 2A;

FIGS. 3-5, 8-10 are high level flowcharts which perform a portion of operation of the embodiment shown in FIGS. 1A, 1B, and 2A;

FIG. 6 is a graph showing how various factors are related to engine operation according to the present invention;

FIG. 7 is a graph depicting results using the present invention;

FIGS. 11A-11F are graphs describing operation of an embodiment of the present invention; and

FIGS. 12 through 14 are a block diagrams of an embodiment in which the invention is used to advantage.

DESCRIPTION OF THE PREFERRED EMBODIMENT(S)

Direct injection spark ignited internal combustion engine 10, comprising a plurality of combustion chambers, is controlled by electronic engine controller 12. Combustion chamber 30 of engine 10 is shown in FIG. 1A including combustion chamber walls 32 with piston 36 positioned therein and connected to crankshaft 40. In this particular example piston 36 includes a recess or bowl (not shown) to help in forming stratified charges of air and fuel. Combustion chamber, or cylinder, 30 is shown communicating with intake manifold 44 and exhaust manifold 48 via respective intake valves 52a and 52b (not shown), and exhaust valves 54a and 54b (not shown). Fuel injector 66A is shown directly coupled to combustion chamber 30 for delivering liquid fuel directly therein in proportion to the pulse width of signal fpw received from controller 12 via conventional electronic driver 68. Fuel is delivered to fuel injector 66A by a conventional high pressure fuel system (not shown) including a fuel tank, fuel pumps, and a fuel rail.

Intake manifold 44 is shown communicating with throttle body 58 via throttle plate 62. In this particular example, throttle plate 62 is coupled to electric motor 94 so that the position of throttle plate 62 is controlled by controller 12 via electric motor 94. This configuration is commonly referred to as electronic throttle control (ETC) which is also utilized during idle speed control. In an alternative embodiment (not shown), which is well known to those skilled in the art, a bypass air passageway is arranged in parallel with throttle plate 62 to control inducted airflow during idle speed control via a throttle control valve positioned within the air passageway.

Exhaust gas oxygen sensor 76 is shown coupled to exhaust manifold 48 upstream of catalytic converter 70. In this particular example, sensor 76 provides signal EGO to controller 12 which converts signal EGO into two-state signal EGOS. A high voltage state of signal EGOS indicates exhaust gases are rich of stoichiometry and a low voltage state of signal EGOS indicates exhaust gases are lean of stoichiometry. Signal EGOS is used to advantage during feedback air/fuel control in a conventional manner to maintain average air/fuel at stoichiometry during the stoichiometric homogeneous mode of operation.

Conventional distributorless ignition system 88 provides ignition spark to combustion chamber 30 via spark plug 92 in response to spark advance signal SA from controller 12.

Controller 12 causes combustion chamber 30 to operate in either a homogeneous air/fuel mode or a stratified air/fuel mode by controlling injection timing. In the stratified mode, controller 12 activates fuel injector 66A during the engine compression stroke se that fuel is sprayed directly into the bowl of piston 36. Stratified air/fuel layers are thereby formed. The strata closest to the spark plug contains a stoichiometric mixture or a mixture slightly rich of stoichiometry, and subsequent strata contain progressively leaner mixtures. During the homogeneous mode, controller 12 activates fuel injector 66A during the intake stroke so that a substantially homogeneous air/fuel mixture is formed when ignition power is supplied to spark plug 92 by ignition system 88. Controller 12 controls the amount of fuel delivered by fuel injector 66A so that the homogeneous air/fuel mixture in chamber 30 can be selected to be at stoichiometry, a value rich of stoichiometry, or a value lean of stoichiometry. The stratified air/fuel mixture will always be at a value lean of stoichiometry, the exact air/fuel being a function of the amount of fuel delivered to combustion chamber 30. An additional split mode of operation wherein additional fuel is injected during the exhaust stroke while operating in the stratified mode is also possible.

Nitrogen oxide (NOx) absorbent or trap 72 is shown positioned downstream of catalytic converter 70. NOx trap 72 absorbs NOx when engine 10 is operating lean of stoichiometry. The absorbed NOx is subsequently reacted with HC and catalyzed during a NOx purge cycle when controller 12 causes engine 10 to operate in either a rich homogeneous mode or a stoichiometric homogeneous mode.

Controller 12 is shown in FIG. 1A as a conventional microcomputer including: microprocessor unit 102, input/output ports 104, an electronic storage medium for executable programs and calibration values shown as read only memory chip 106 in this particular example, random access memory 108, keep alive memory 110, and a conventional data bus. Controller 12 is shown receiving various signals from sensors coupled to engine 10, in addition to those signals previously discussed, including: measurement of inducted mass air flow (MAP) from mass air flow sensor 100 coupled to throttle body 58; engine coolant temperature (ECT) from temperature sensor 112 coupled to cooling sleeve 114; a profile ignition pickup signal (PIP) from Hall effect sensor 118 coupled to crankshaft 40; and throttle position TP from throttle position sensor 120; and absolute Manifold Pressure Signal MAP from sensor 122. Engine speed signal RPM is generated by controller 12 from signal PIP in a conventional manner and manifold pressure signal MAP provides an indication of engine load. In a preferred aspect of the present invention, sensor 118, which is also used as an engine speed sensor, produces a predetermined number of equally spaced pulses every revolution of the crankshaft.

In this particular example, temperature Tcat of catalytic converter 70 and temperature Ttrp of NOx trap 72 are inferred from engine operation as disclosed in U.S. Pat. No. 5,414,994 the specification of which is incorporated herein by reference. In an alternate embodiment, temperature Tcat is provided by temperature sensor 124 and temperature Ttrp is provided by temperature sensor 126.

Continuing with FIG. 1A, camshaft 130 of engine 10 is shown communicating with rocker arms 132 and 134 for actuating intake valves 52a, 52b and exhaust valve 54a. 54b. Camshaft 130 is directly coupled to housing 136. Housing 136 forms a toothed wheel having a plurality of teeth 138. Housing 136 is hydraulically coupled to an inner shaft (not shown), which is in turn directly linked to camshaft 130 via a timing chain (not shown). Therefore, housing 136 and camshaft 130 rotate at a speed substantially equivalent to the inner camshaft. The inner camshaft rotates at a constant speed ratio to crankshaft 40. However, by manipulation of the hydraulic coupling as will be described later herein, the relative position of camshaft 130 to crankshaft 40 can be varied by hydraulic pressures in advance chamber 142 and retard chamber 144. By allowing high pressure hydraulic fluid to enter advance chamber 142, the relative relationship between camshaft 130 and crankshaft 40 is advanced. Thus, intake valves 52a, 52b and exhaust valves 54a, 54b open and close at a time earlier than normal relative to crankshaft 40. Similarly, by allowing high pressure hydraulic fluid to enter retard chamber 144, the relative relationship between camshaft 130 and crankshaft 40 is retarded. Thus, intake valves 52a, 52b and exhaust valves 54a, 54b open and close at a time later than normal relative to crankshaft 40.

Teeth 138, being coupled to housing 136 and camshaft 130, allow for measurement of relative cam position via cam timing sensor 150 providing signal VCT to controller 12. Teeth 1, 2, 3, and 4 are preferably used for measurement of cam timing and are equally spaced (for example, in a V-8 dual bank engine, spaced 90 degrees apart from one another), while tooth 5 is preferably used for cylinder identification, as described later herein. In addition, Controller 12 sends control signals (LACT,RACT) to conventional solenoid valves (not shown) to control the flow of hydraulic fluid either into advance chamber 142, retard chamber 144, or neither.

Relative cam timing is measured using the method described in U.S. Pat. No. 5,548,995, which is incorporated herein by reference. In general terms, the time, or rotation angle between the rising edge of the PIP signal and receiving a signal from one of the plurality of teeth 138 on housing 136 gives a measure of the relative cam timing. For the particular example of a V-8 engine, with two cylinder banks and a five toothed wheel, a measure of cam timing for a particular bank is received four times per revolution, with the extra signal used for cylinder identification.

Referring now to FIG. 1B, a port fuel injection configuration is shown where fuel injector 66B is coupled to intake manifold 44, rather than directly cylinder 30.

Referring now to FIG. 2A, a more general diagram shows manifold 44a, with inlet flow, m_in, and outlet flow, m_out. Inlet flow, m_in, is governed by inlet control device 170. Outlet flow, m_out, is governed by outlet flow device 171. In a preferred embodiment, manifold 44a is an intake manifold of an engine, inlet control device 170 is a throttle, and outlet control device 171 is a variable cam timing mechanism. However, as one skilled in the art would recognize, there are many alternative embodiments of the present invention. For example, outlet control device could be a swirl control valve, a variable valve timing mechanism, a variable valve lift mechanism, or an electronically controlled intake valve used in camless engine technology.

Continuing with FIG. 2A, there are other variables that affect flow entering and exiting manifold 44a. For example, pressures p1 and p2, along with inlet control device 170, determine flow m_in. Similarly, pressures p2 and p3, along with outlet device 171 determine flow m_out. Therefore, flow storage in manifold 44a, which dictates how fast pressure p2 can change, affects flow m_out. In an example where manifold 44a is an intake manifold of an engine operating at stoichiometry, flow m_out represents flow entering a cylinder and is directly proportional to engine torque.

FIGS. 2B-2K illustrate the effect of such interrelationships on system performance. In FIG. 2B, inlet control device 170 is rapidly changed at time t1. The resulting change in outlet flow (m_out) is shown in FIG. 2D. The resulting change in inlet flow (m_in) is shown in FIG. 2C. This example has outlet control device 171 fixed, and therefore represents conventional engine operation and prior art operation where throttle position is used to control outlet flow (m_out). In this example, a rapid change in inlet control device 170 does not produce an equally rapid change in exit flow m_out.

According to the present invention, in FIG. 2E, outlet control device 171 is rapidly changed at time t2. The resulting change in outlet flow (m_out) is shown in FIG. 2F. The resulting change in inlet flow (m_in) is shown in FIG. 2G. This example has inlet control device 170 fixed, and therefore represents adjustment of outlet device 170 only to control outlet flow (m_out). In this example, a rapid change in outlet control device 170 does produce an equally rapid change in exit flow m_out. However, the rapid change is not completely sustained.

According to the present invention, in FIG. 2H, inlet control device 170 is rapidly changed at time t3. Similarly, in FIG. 2I, outlet control device 171 is rapidly changed at time t3. The resulting change in outlet flow m_out is shown in FIG. 2J. The resulting change in inlet flow (m_in) is shown in FIG. 2K. This example varies both inlet control device 170 and outlet control device 170 concurrently. In this example, a rapid change in both inlet control device and 170 outlet control device 171 does produce an equally rapid change in exit flow m_out, where the rapid change is sustained.

According to the present invention, in FIG. 2L, inlet control device 170 is rapidly changed at time t4. Similarly, in FIG. 2M, outlet control device 171 is rapidly changed at time t4 to a greater extent than in FIG. 2I. The resulting change in outlet flow (m_out) is shown in FIG. 2N. The resulting change in inlet flow (m_in) is shown in FIG. 2O. This example varies both inlet control device 170 and outlet control device 170 concurrently. In this example, a rapid change in both inlet control device and 170 outlet control device 171 does produce an equally rapid change in exit flow m_out, where the rapid change is sustained and actually produces a certain amount of peak, or overshoot. This represents how the present invention can be used to not only rapidly produce an increase in outlet flow, but to also add an overshoot. Thus, a control system according to the present invention can therefore generate a airflow lead control. Such lead control is advantageous for engine idle speed control to counteract engine inertia, or for vehicle launch conditions, to give improved drive feel.

According to the present invention, by using an outlet control device it is possible to rapidly control flow exiting a manifold. Further, by controlling both an inlet and outlet control device it is possible to more accurately rapidly control flow exiting a manifold in various shapes.

In cases where engine 10 operates at a stoichiometric air/fuel ratio, then engine torque directly proportional to cylinder charge, which is in turn proportional to exit flow m_out and engine speed. Thus, according to the present invention, by controlling engine airflow to a desired value.

Engine Idle Speed Control

Referring now to FIG. 3, a routine is described for controlling engine speed using both throttle position and cam timing. In step 310, an engine speed error (Nerr) is calculated based on a difference between the desired engine speed (Ndes) and an actual engine speed (Nact). Then, in step 320, the desired change in cylinder charge is calculated from speed error using controller K1, where controller K1 is represented in the Laplace domain as K1(s) as is known to those skilled in the art. The desired in cylinder charge (&Dgr;mcyl) is preferably calculated using a proportional controller. Therefore, in the preferred embodiment, controller K1 represents a proportional controller. However, as those skilled in the art will recognize, various other control schemes can be used in place of proportional controller K1. For example, proportional integral derivative controllers, or sliding mode controllers, or any other controllers known to those skilled in the art, can be used. Next, in step 330, an intermediate throttle position (Tpint) is calculated from speed error and controller K3. As described above, various controllers can be used for controller K3. In a preferred embodiment, controller K3 is an integral controller. Next, in step 340, a nominal cam timing error (VCTerr) is calculated based on a difference between a desired nominal cam timing (VCTdesnom) and an actual cam timing (VCTact). Desired nominal cam timing (VCTdesnom) can be determined based on operating conditions, for example, based on idle mode, or drive mode. Also, desired nominal cam timing (VCTdesnom) can be set as a function of desired engine torque, or any other steady state scheduling method known to those skilled in the art. Next, in step 350, an intermediate timing (VCTint) is calculated from nominal cam timing error and controller K2. Controller K2 can be any controller known to those skilled in the art. In the preferred embodiment, controller K2 is a proportional integral controller.

Referring now to FIG. 4, a routine is described for calculating adjustments to cam timing and throttle position to rapidly change cylinder charge. First, in step 410, manifold pressure (Pm) is estimated or measured using sensor 122. In the preferred embodiment, manifold pressure (Pm) is estimated using methods known to those skilled in the art. For example, manifold pressure can be estimated using signal MAF from mass airflow sensor 100, engine speed, and other signals known to those skilled in the art to effect manifold pressure. Next, in step 412, the desired change in cylinder charge (&Dgr;ncyl) is read from FIG. 3. Next, in step 414, a change in cam timing (&Dgr;VCT) is determined to give the desired change in cylinder charge at manifold pressure (Pm) read in step 410. Step 414 is performed using maps relating to cam timing, cylinder charge, and manifold pressure. The maps can be determined theoretically using engine models or measured using engine test data. Next, in step 416, a change in throttle position (&Dgr;TP) is determined to give the desired change in cylinder charge (&Dgr;ncyl) at manifold pressure (Pm) determined in step 410. Step 416 is similarly performed using characteristic maps relating parameters, throttle position, cylinder charge, and manifold pressure. The maps can be determined either using engine models or engine test data.

Regarding FIG. 5, the routine is described for calculating the desired cam timing and desired throttle position. First, in step 510, a desired cylinder, desired cam timing (VCTdes) is determined based on the desired change in cam timing and intermediate cam timing. Next, in step 512, the desired throttle position (TPdes) is determined based on intermediate throttle position and desired change in throttle position.

However, when a cam timing position is desired that is greater than a maximum possible cam timing, or when a minimum cam timing is less than a minimum possible cam timing, desired cam timing (VCTdes) is clipped to the maximum or minimum value. In other words adjustment of cam timing may not be able to provide the desired increase, or decrease in cylinder air charge. In this case, cam timing is clipped to the achievable limit value and throttle position is relied upon to provide control.

Steady State Constraints

As described above herein with particular reference to FIGS. 3-5, a control method for controlling engine airflow, or engine torque, and thereby engine speed was described. In addition, the method included a method for rapidly controlling cylinder charge using both an inlet and outlet control device, while also relatively slowly controlling the outlet control device to a nominal position. Both of these process are now further illustrated using both FIGS. 6 and 7.

Referring now to FIG. 6, a graph is shown with throttle position (TP) on the vertical axis and cam timing (VCT) on the horizontal axis. Dash dotted lines are shown for constant values of engine torque (Te), assuming stoichiometric conditions, while solid lines show constant value of manifold pressure. According to the present invention, the engine can quickly change operating points along the lines of constant pressure (thereby rapidly changing engine airflow and torque) since there are no manifold dynamics in this direction. However, the engine can change only relatively slowly along the dash dotted lines if air/fuel ratio is fixed (for example at stoichiometry). The dashed vertical line represents the nominal desired cam timing for the given operating conditions. For example, the nominal timing for idle conditions, or the nominal timing for the current desired engine torque.

In other words, manifold dynamics represent dynamics associated with changing manifold pressure and explain why flow entering the cylinder is not always equal to flow entering the manifold. Manifold pressure cannot instantly change due to manifold volume. As manifold volume increases, manifold dynamics become lower. Conversely, as manifold volume decreases, manifold dynamics become faster. Thus, manifold dynamics, or manifold delay, is a function of manifold volume. As described above, when moving along lines of constant pressure, manifold dynamics are essentially immaterial. Therefore, flow changes are not limited by manifold dynamics when inlet and outlet control devices are changed to affect flow in similar directions. By changing inlet and outlet control devices faster than manifold dynamics to increase along both the abscissa and ordinate of FIG. 6, cylinder flow changes faster than manifold dynamics. Stated another way, cylinder flow changes faster than it would if only the inlet control device changed infinitely fast. When inlet and outlet control devices are changed to affect flow in opposite directions, cylinder charge can be kept constant. In particular, both the inlet and outlet control devices are changed slower than manifold dynamics since manifold pressure is changed. This is particular useful when engine airflow, or engine torque, is to be kept relatively constant yet it is desired to place either the inlet control device or the outlet control device in a specified location.

Referring now to both FIGS. 6 and 7, an example of operation according to an aspect of the present invention is now described. First, the system is operating at point 1. For example, the desired engine torque (Ted) is Te2, or this happens to be the engine torque to maintain a desired engine speed. Then, either the desired engine torque (Ted) changes to Te3, or a torque disturbance causes an engine speed to drop, thereby requiring an increase in engine torque to Te3 to maintain the desired engine speed. At this point (time t5), controller 12 causes both the throttle position and cam timing to change so that the engine system quickly moves to point 2. Next, in order to maintain cam timing and the nominal cam timing, controller 12 causes both the throttle position and cam timing to move to point 3 at a rate slower than the manifold dynamics.

Thus, according to the present invention, throttle position and cam timing are caused to move in the following way. When it is desired to rapidly increase cylinder air charge irrespective of manifold volume: 1) throttle position moves in a way that causes an increase in throttle opening area, and 2) cam timing is adjusted in a way to increase the inducted cylinder air charge for a given manifold pressure moved. Similarly, when it is desired to rapidly decrease cylinder air charge irrespective of manifold volume: 1) throttle position moves in a way that causes a decrease in throttle opening area, and 2) cam timing is adjusted in a way to decrease the inducted cylinder air charge for a given manifold pressure. Thus, it is possible to rapidly change and maintain flow into the cylinder by this combined action.

However, when it is desired to maintain cylinder air charge and either increase throttle opening or cause cam timing to move so that less air charge is inducted for a given manifold pressure, or both, 1) throttle position moves in a way that causes an increase in throttle opening area, and 2) cam timing is adjusted in a way to decrease the inducted cylinder air charge for a given manifold pressure. Thus, cylinder charge can be kept constant by this opposing action. Alternatively, when it is desired to maintain cylinder air charge and either decrease throttle opening or cause cam timing to move so that more air charge is inducted for a given manifold pressure, or both, 1) throttle position moves in way that causes a decrease in throttle opening area, and 2) cam timing is adjusted in a way to increase the inducted cylinder air charge for a given manifold pressure. Again, cylinder charge can be kept constant by this opposing action.

Such coordinated control is advantageous in that steady state optimization constraints on cam timing can be provided while still providing the ability to control cylinder air charge rapidly.

Engine Torque Control

Referring now to FIG. 8, a routine is described for controlling engine torque rather than engine speed as described in FIG. 3. Engine torque control according to the present invention may be used for various reasons, including normal driving operating, traction control, and/or cruise control. In other words, FIG. 8, along with FIGS. 3-5 can be used to control engine torque, where steps 310-330 are replaced by FIG. 8. Regarding FIG. 8, first, in step 810, a desired engine torque (Ted) is determined. Those skilled in the art will recognize that desired engine torque (Ted) can be determined in various ways. For example, desired engine torque (Ted) can be determine from desired wheel torque and gear ratio, from pedal position and vehicle speed, from pedal position and engine speed, or any other method known to those skilled in the art. Then, in step 820, desired cylinder charge (mcyld) is determined based on a function (h) of desired engine torque (Ted). Function (h) is based on a desired air/fuel ratio, such as stoichiometric conditions.

Continuing with FIG. 8, in step 830, desired change in cylinder charge (Dmcyl) is determined based on the difference between desired cylinder charge (mcyld) and actual cylinder charge (mcyl). Then, in step 840, intermediate throttle position (Tpint) is calculated from desired change in cylinder charge (Dmcyl) and controller K3. As described above, various controllers can be used for controller K3. In a preferred embodiment, controller K3 is an integral controller. Then, in step 850, a nominal cam timing (VCTdesnom) if determined based on function (g) and desired engine torque (Ted). Then, the routine continues to step 340 in FIG. 3.

Alternative Embodiment for Cylinder Charge, Torque, and Engine Speed Control

An alternative embodiment is now described that can be used to control either cylinder air charge, Engine Torque at a given air/fuel ratio, or engine speed. Referring now to FIG. 9, in step 910, a determination is made as to whether the engine is currently in an idle condition. Those skilled in the art will recognize various methods for determining idle conditions such as accelerator pedal position, engine speed, and various other factors. When the answer to step 910 is YES, the routine continues to step 912. In step 912, the desired cylinder charge (mcyldes) based on an engine speed error (Nerr). The desired cylinder charge is calculated using function L1, which can represent any function such as, for example, engine speed error multiplied by a constant gain, which is the preferred embodiment. Otherwise, when the answer to step 910 is NO, the routine continues to step 914. In step 914, the desired cylinder charge is calculated based on either a driver command or operating conditions using function (L2). Those skilled in the art will recognize various methods for calculating a desired cylinder charge from a driver command such as, for example, to provide a desired engine torque, a desired wheel torque, an engine output, or provide any other condition requested by the driver. Those skilled in the art will also recognize various operating conditions that can affect a desired cylinder charge such as, for example, engine starting conditions, cold conditions, or cranking conditions.

Continuing with FIG. 9, the routine continues from either step 912 or step 914 to step 916. In step 916, a cylinder charge error (mcylerr) is calculated based on desired cylinder charge and actual cylinder charge (mcylact). Next, in step 918, cam timing nominal error is calculated. Next, in step 920, intermediate cam timing is calculated from cam timing nominal error and controller H1. In a preferred embodiment, controller H1 is an integral controller known to those skilled in the art. Also, in a preferred embodiment, the gains of controller H1 are determined so that the cam timing is adjusted slower than manifold dynamics. In other words, the gains of controller H1 are determined based on manifold volume, and engine speed. However, controller H1 can be any controller known to those skilled in the art such as, for example, a PID controller, a PI controller, or a P controller. Next, in step 930, intermediate throttle position is calculated from cylinder charge error and controller H2. In a preferred embodiment, controller H2 is an integral controller; however, as those skilled in the art will recognize, various controllers can be used. Next, in step 940, a difference in cam timing is calculated from cylinder charge error and controller H3. In a preferred embodiment, controller H3 is a lead controller or a high pass filter type controller. Next, the routine continues to step 950, where a difference in throttle position is calculated from the difference in cam timing using controller H4. In a preferred embodiment, controller H4 is simply a constant gain. Next, the routine continues to FIG. 5.

Air/Fuel Constraints in Lean Conditions

Referring now to FIG. 10, a routine for restricting air/fuel ratio to specific regions is described. In step 1010, a determination is made as to whether the engine is operating in stratified conditions. When the answer to step 1010 is YES, the routine continues to step 1012. In step 1012, the required fuel injection amount (fi) is calculated based on driver commands or operating conditions. Again, those skilled in the art will recognize various methods for determining a fuel injection amount based on driver command or engine operating conditions. Next, the routine continues to step 1014, where a restricted air range is calculated. The restricted air range is calculated using a maximum and minimum allowable air/fuel ratio, the fuel injection amount, and a band parameter (B). The band parameter is used to allow room for calculation inaccuracies. Next, the routine continues to step 1016, where a determination is made as to whether actual cylinder charge is between the maximum and minimum allowable cylinder charges (mcyl1, mcyl2). When the answer to step 1016 is YES, a determination is then made in step 1018 as to whether it is possible, given the current operating conditions, to produce air charge (mcyl1). This determination can be made based on factors such as, for example, engine speed and atmospheric pressure. In particular, as atmospheric pressure increases, engine 10 is able to pump a greater maximum air amount. Therefore, in a preferred embodiment, limit mcyl1 is selected when atmospheric pressure is greater than a calibrated value, and mcyl2 is selected otherwise. In other words, in step 1018, a determination is made as to whether the engine can physically produce upper air charge (mcyl1). When the answer to step 1018 is NO, the routine sets the desired cylinder charge (mcyldes) equal to lower air charge (mcyl2) in step 1020. Otherwise, the desired cylinder charge is set to upper cylinder charge (mcyl1).

Referring now to FIG. 11, the present invention is compared to prior art approaches in controlling engine torque or keeping an air/fuel ratio outside of a restricted air/fuel ratio range. The FIGS. 11a through 11f show a comparison of the present invention as represented by solid lines, and prior approaches as represented by dashed lines. In prior approaches, as shown in FIG. 11a, fuel injection amount @increases at time T6 in response to a change in desired engine torque shown in FIG. 11d. To maintain the air/fuel ratio at a desired point, as shown in FIG. 11e, increased airflow is required. To provide increased airflow, prior approaches change throttle position, as shown in FIG. 11c, at time T6. However, because of airflow dynamics due to the manifold volume, air charge does not increase fast enough, as shown in FIG. 11f. This results in a temporary excursion in the air/fuel ratio into the restricted region as shown in FIG. 11e. Thus, the prior approaches cannot keep the air/fuel ratio completely out of the restricted region.

According to the present invention, and as described in FIG. 10, at time T6, cam timing, as shown in FIG. 11b, is also increased. This allows the air/fuel ratio, as shown in FIG. 11e, to refrain from entering the restricted air/fuel range. This is possible since the airflow was quickly changed using both cam timing and throttle position as shown in FIG. 11f by the solid line.

Vehicle Launch Improvement

Vehicle driveability is improved according to the present invention by providing engine torque increases at a rate faster than available by prior art methods. Regarding FIG. 12, engine 10 is coupled to automatic transmission (AT) 1200 via torque converter (TC) 1210. Automatic transmission (AT) 1200 is shown coupled to drive shaft 1202, which in turn is coupled to final drive unit (FD) 1204. Final drive unit (FD) is coupled wheel 1208 via second drive shaft 1208. In this configuration, engine 10 can be somewhat downsized and still produce acceptable drive feel by controlling engine torque or airflow using both throttle position and cam timing as describe above herein.

Regarding FIG. 13, torque converter 1210 is removed. Thus, even without downsizing engine 10, using prior approaches driveability is reduced. In other words, vehicle launch is normally assisting from torque multiplication provided by torque converter 1210. Without torque converter 1210, vehicle launch feel is degraded. To compensate for the lack of torque converter 1210, engine 10 is controlled according to the present invention using both throttle position and cam timing to rapidly increase engine torque or airflow, thereby improving drive feel and allowing elimination of torque converter 1210.

In a preferred embodiment, during vehicle launch at low vehicle speed and low engine speed, both inlet control device and outlet control device 170 and 171 are coordinated to rapidly control engine cylinder charge, thereby improving drive feel. Further to enable such operating, nominal cam timing (VCTdesnom) is set to a value where a large potential increase in cylinder air charge can be achieved when the transmission is in drive and vehicle speed is below a predetermine vehicle speed indicating potential for vehicle launch.

Turbo Lag Compensation

Referring now to FIG. 14, a configuration is shown where engine 10 is coupled to a compression device 1400. In a preferred embodiment, compression device 1400 is a turbocharger. However, compression device 1400 can be any compression device such as, for example, a supercharger. Engine 10 is shown coupled to intake manifold 44b and exhaust manifold 48b. Also shown is outlet control device 171 coupled between intake manifold 44b and engine 10. Inlet control device 170 is also shown coupled between intake manifold 44b and compression device 1400. Compression device 1400 contains compressor 1410.

According to the present invention, it is now possible to compensate for delays related to turbo lag. In a preferred embodiment, during vehicle launch at low vehicle speed and low engine speed, both inlet control device and outlet control device 170 and 171 are coordinated to rapidly control engine cylinder charge, thereby compensating for the delayed pressure buildup from compression device 1400. However, such an approach can be used throughout various driving conditions, such as, for example, during highway cruising operation.

While the invention has been shown and described in its preferred embodiments, it will be clear to those skilled in the arts to which it pertains that many changes and modifications may be made thereto without departing from the scope of the invention. For example, as described above herein, any device that affects flow exiting intake manifold 44 and entering cylinder 30 can be used as an outlet control device. For example, a swirl control valve, a charge motion control valve, an intake manifold runner control valve, or an electronically controlled intake valve can be used according to the present invention to rapidly change cylinder fresh charge. Further, any device that affects flow entering intake manifold 44 can be used in place of intake control device. For example, an EGR valve, a purge control valve, or an intake air bypass valve can be used in conjunction with the outlet control device so rapidly change cylinder fresh charge.

Also, the invention can be applied to any situation where engine cylinder charge needs to be controlled faster than manifold dynamics would normally allow. Accordingly, it is intended that the invention be limited only by the following claims.

Claims

1. An article of manufacture comprising:

a computer storage medium having a computer program encoded therein for controlling an engine speed, the engine having at least one cylinder, the engine also having an intake manifold and an outlet control device for controlling flow from the intake manifold into the cylinder, said computer storage medium comprising:
code for generating a desired engine speed; and
code for adjusting the outlet control device to control the engine speed to said desired engine speed, wherein said outlet control device is at least one of a variable cam timing system or a variable valve lift mechanism.

2. The article recited in claim 1 wherein the engine further comprises an inlet control device for controlling flow into the intake manifold, the article further comprising code for adjusting both the inlet control device and the outlet control device to control the engine speed to said desired engine speed.

3. The article recited in claim 1 wherein said inlet control device is a throttle and the outlet control device is a variable cam timing system, the article further comprising:

code for adjusting the inlet control device and the outlet control device to affect flow in similar directions in response to an engine speed error; and
code for adjusting the inlet control device and the outlet control device to affect flow in opposite directions in response to an outlet control device setpoint error.

4. An article of manufacture comprising:

a computer storage medium having a computer program encoded therein for controlling an engine speed, the engine having at least one cylinder, the engine also having an intake manifold and an outlet control device for controlling flow from the intake manifold into the cylinder and an inlet control device to control flow into the intake manifold, said computer storage medium comprising:
code for generating a desired engine speed; and
code for adjusting the outlet control device to increase engine airflow when engine speed decreases below said desired engine speed and to decrease engine airflow when engine speed increases above said desired engine speed; and
code for adjusting the inlet control device based at least on an engine operating condition.

5. The article recited in claim 4 wherein the outlet control device is a variable cam timing system.

6. An article of manufacture comprising:

a computer storage medium having a computer program encoded therein for controlling an engine speed, the engine having at least one cylinder, the engine also having an intake manifold and an outlet control device for controlling flow from the intake manifold into the cylinder and an inlet control device to control flow into the intake manifold, said computer storage medium comprising:
code for determining whether the engine is in an idle condition;
code for generating a desired engine speed in response to said determination; and
code for adjusting the outlet control device to increase engine airflow when engine speed decreases below said desired engine speed; and
code for adjusting the inlet control device based at least on an engine operating condition.

7. The article recited in claim 6 wherein the outlet control device is a variable cam timing system.

8. An article of manufacture comprising:

a computer storage medium having a computer program encoded therein for controlling an engine speed, the engine having at least one cylinder, the engine also having an intake manifold and an outlet control device for controlling flow from the intake manifold into the cylinder and an inlet control device to control flow into the intake manifold, said computer storage medium comprising:
code for determining whether the engine is in an idle condition;
code for generating a desired engine speed in response to said determination; and
code for adjusting the outlet control device to control the engine speed to said desired engine speed and code for adjusting the inlet control device based at least on an engine operating condition; and
code for adjusting fuel injection based on an exhaust gas sensor to maintain a stoichiometric air-fuel ratio.

9. The article recited in claim 8 wherein the outlet control device is a variable cam timing system.

10. An article of manufacture comprising:

a computer storage medium having a computer program encoded therein for controlling an engine speed, the engine having at least one cylinder, the engine also having an intake manifold and an outlet control device for controlling flow from the intake manifold into the cylinder, wherein said outlet control device is at least one of a variable cam timing system or a variable valve lift mechanism, said computer storage medium comprising:
code for generating a desired engine speed when the engine is in an idle condition;
code for generating a desired outlet control device setpoint based on an operating condition during conditions other than said idle condition;
code for adjusting the outlet control device to control the engine speed to said desired engine speed when the engine is in said idle condition, and
code for adjusting the outlet control device to said control device setpoint during conditions other than said idle condition.

11. An article of manufacture comprising:

a computer storage medium having a computer program encoded therein for controlling an engine speed, the engine having at least one cylinder, the engine also having an intake manifold and an outlet control device for controlling flow from the intake manifold into the cylinder, the engine further comprises an inlet control device for controlling flow into the intake manifold, said computer storage medium comprising:
code for determining whether the engine is in an idle condition;
code for generating a desired engine speed in response to said determination; and
code for adjusting both the inlet control device and the outlet control device to control the engine speed to said desired engine speed.

12. An article of manufacture comprising:

a computer storage medium having a computer program encoded therein for controlling an engine speed, the engine having at least one cylinder, the engine also having an intake manifold and an outlet control device for controlling flow from the intake manifold into the cylinder, the engine further comprises an inlet control device for controlling flow into the intake manifold, said computer storage medium comprising:
code for generating a desired engine speed; and
code for adjusting both the inlet control device and the outlet control device to increase engine airflow when engine speed decreases below said desired engine speed and to decrease engine airflow when engine speed increases above said desired engine speed.

13. The article recited in claim 12 wherein the outlet control device is a variable cam timing system and the inlet control device is a throttle.

14. An article of manufacture comprising:

a computer storage medium having a computer program encoded therein for controlling an engine speed, the engine having at least one cylinder, the engine also having an intake manifold and a variable cam timing system for controlling flow from the intake manifold into the cylinder and a throttle for controlling flow into the intake manifold, said computer storage medium comprising:
code for generating a desired engine speed; and
code for adjusting the variable cam timing system and the throttle to affect flow in similar directions in response to an engine speed error; and
code for adjusting the variable cam timing system and the throttle to affect flow in opposite directions in response to an outlet control device setpoint error.

15. An article of manufacture comprising:

a computer storage medium having a computer program encoded therein for controlling an engine speed, the engine having at least one cylinder, the engine also having an intake manifold and an outlet control device for controlling flow from the intake manifold into the cylinder and an inlet control device for controlling flow into the intake manifold, said computer storage medium comprising:
code for generating a desired engine speed; and
code for adjusting the inlet control device and the outlet control device to affect flow in similar directions in response to an engine speed error; and
code for adjusting the inlet control device and the outlet control device to affect flow in opposite directions in response to an outlet control device setpoint error.

16. An article of manufacture comprising:

a computer storage medium having a computer program encoded therein for controlling an engine speed, the engine having at least one cylinder, the engine also having an intake manifold and an outlet control device for controlling flow from the intake manifold into the cylinder, wherein said outlet control device is at least one of a variable cam timing system or a variable valve lift mechanism, said computer storage medium comprising:
code for determining whether the engine is in an idle condition;
code for generating a desired engine speed in response to said determination; and
code for adjusting the outlet control device to increase engine airflow when engine speed decreases below said desired engine speed and to decrease engine airflow when engine speed increases above said desired engine speed.

17. An article of manufacture comprising:

a computer storage medium having a computer program encoded therein for controlling an engine speed, the engine having at least one cylinder, the engine also having an intake manifold and an outlet control device for controlling flow from the intake manifold into the cylinder, wherein said outlet control device is at least one of a variable cam timing system or a variable valve lift mechanism, said computer storage medium comprising:
code for generating a desired engine speed; and
code for adjusting the outlet control device based on a proportion of a difference between said desired engine speed and actual engine speed and an integral of a difference between said desired engine speed and actual engine speed.

18. An article of manufacture comprising:

a computer storage medium having a computer program encoded therein for controlling an engine speed, the engine having at least one cylinder, the engine also having an intake manifold and an outlet control device for controlling flow from the intake manifold into the cylinder, wherein said outlet control device is at least one of a variable cam timing system or a variable valve lift mechanism, said computer storage medium comprising:
code for generating a desired engine speed; and
code for adjusting the outlet control device to increase engine airflow when engine speed decreases below said desired engine speed.

19. An article of manufacture comprising:

a computer storage medium having a computer program encoded therein for controlling an engine speed, the engine having at least one cylinder, the engine also having an intake manifold and an outlet control device for controlling flow from the intake manifold into the cylinder, wherein said outlet control device is at least one of a variable cam timing system or a variable valve lift mechanism, said cylinder having a spark plug positioned therein, said computer storage medium comprising:
code for determining whether the engine is in an idle condition;
code for generating a desired engine speed in response to said determination; and
code for adjusting the outlet control device based on a proportion of a difference between said desired engine speed and actual engine speed and an integral of a difference between said desired engine speed and actual engine speed;
adjusting a spark advance to adjust ignition of said spark plug; and
code for adjusting a fuel injection amount based on an exhaust gas sensor to maintain air-fuel ratio at stoichiometry.

20. An article of manufacture comprising:

a computer storage medium having a computer program encoded therein for controlling an engine speed, the engine having at least one cylinder, the engine also having an intake manifold and an outlet control device for controlling flow from the intake manifold into the cylinder, wherein said outlet control device is at least one of a variable cam timing system or a variable valve lift mechanism, said computer storage medium comprising:
code for determining whether conditions are such that the outlet control device should be adjusted for speed control;
code for generating a desired speed in response to said determination; and
code for adjusting the outlet control device to increase engine airflow when speed decreases below said desired speed.

21. The article recited in claim 20 wherein said speed control is engine speed control.

22. An article of manufacture comprising:

a computer storage medium having a computer program encoded therein for controlling an engine speed, the engine having at least one cylinder, the engine also having an intake manifold and an outlet control device for controlling flow from the intake manifold into the cylinder, said computer storage medium comprising:
code for generating a desired engine speed;
code for calculating a desired air amount based on said desired speed; and
code for adjusting the outlet control device to control the engine speed to said desired engine speed.

23. The article recited in claim 22 wherein said outlet control device is at least one of a variable cam timing system or a variable valve lift mechanism.

24. The article recited in claim 22 wherein the engine also has an electronically controlled throttle valve.

25. The article recited in claim 24 further comprising code for adjusting said electronically controlled throttle valve based on manifold pressure.

26. The article recited in claim 22 wherein the engine also has catalytic converters for treating exhaust gas emissions.

27. The article recited in claim 22 further comprising code for feedback air/fuel control to maintain average air/fuel at stoichiometry based on an exhaust has oxygen sensor coupled to an engine exhaust.

28. The article recited in claim 22 wherein said air amount is at least one of cylinder air charge or an air flow.

29. An article of manufacture comprising:

a computer storage medium having a computer program encoded therein for controlling an engine speed, the engine having at least one cylinder, the engine also having an intake manifold and an outlet control device for controlling flow from the intake manifold into the cylinder, wherein said outlet control device is at least one of a variable cam timing system or a variable valve lift mechanism, the engine also having an electronically controlled throttle valve for controlling flow into the intake manifold, the engine further having an exhaust coupled to a catalytic converter, said computer storage medium comprising:
code for generating a desired engine speed;
code for calculating a desired air amount based on said desired speed;
code for adjusting the outlet control device to control the engine speed to said desired engine speed;
code for adjusting said electronically controlled throttle valve based on an engine operating parameter; and
code for adjusting a fuel injection amount to maintain average air/fuel at stoichiometry based on an exhaust gas oxygen sensor coupled to said engine exhaust.

30. The article recited in claim 29 wherein said air amount is at least one of cylinder air charge and an air flow.

31. The article recited in claim 29 wherein said engine operating parameter is manifold pressure.

Referenced Cited
U.S. Patent Documents
3548798 December 1970 Fleischer et al.
4084568 April 18, 1978 Sato et al.
4494506 January 22, 1985 Hayama et al.
4592315 June 3, 1986 Kobayashi et al.
4651684 March 24, 1987 Masuda et al.
4700684 October 20, 1987 Pischinger et al.
4856465 August 15, 1989 Denz et al.
5019989 May 28, 1991 Ueda et al.
5022357 June 11, 1991 Kawamura
5101786 April 7, 1992 Kamio et al.
5115782 May 26, 1992 Klinke et al.
5152267 October 6, 1992 Komatsu et al.
5168851 December 8, 1992 Itoyama et al.
5170759 December 15, 1992 Ito
5199403 April 6, 1993 Akazaki et al.
5357932 October 25, 1994 Clinton et al.
5365908 November 22, 1994 Takii et al.
5396874 March 14, 1995 Hitomi et al.
5414994 May 16, 1995 Cullen et al.
5548995 August 27, 1996 Clinton et al.
5606960 March 4, 1997 Takahashi et al.
5628290 May 13, 1997 Iida et al.
5635634 June 3, 1997 Reuschenbach et al.
5654501 August 5, 1997 Grizzle et al.
5666916 September 16, 1997 Fugieda et al.
5676112 October 14, 1997 Bauer et al.
5690071 November 25, 1997 Jankovic
5692471 December 2, 1997 Zhang
5712786 January 27, 1998 Ueda
5724927 March 10, 1998 Suzuki
5740045 April 14, 1998 Livshiz et al.
5746176 May 5, 1998 Damson et al.
5758493 June 2, 1998 Asik
5765527 June 16, 1998 Lehner et al.
5803043 September 8, 1998 Bayron et al.
6039026 March 21, 2000 Yoko et al.
5848529 December 15, 1998 Katoh et al.
5857437 January 12, 1999 Yoshioka
5896840 April 27, 1999 Takahashi
5913298 June 22, 1999 Yoshikawa
5950603 September 14, 1999 Cook et al.
5957096 September 28, 1999 Clarke et al.
5964201 October 12, 1999 Dickers et al.
5967114 October 19, 1999 Yasuoka
6000375 December 14, 1999 Isobe
6006724 December 28, 1999 Takahashi et al.
6006725 December 28, 1999 Stefanopoulou et al.
6009851 January 4, 2000 Iida et al.
6024069 February 15, 2000 Yoshino
6055476 April 25, 2000 Yoshino
6058906 May 9, 2000 Yoshino
6070567 June 6, 2000 Kakizaki et al.
6095117 August 1, 2000 Minowa et al.
6101993 August 15, 2000 Lewis et al.
6148791 November 21, 2000 Fujieda et al.
6170475 January 9, 2001 Lewis et al.
6178371 January 23, 2001 Light et al.
6182636 February 6, 2001 Russell et al.
6196173 March 6, 2001 Takahashi et al.
20010013329 August 16, 2001 Matsumoto et al.
Foreign Patent Documents
3916605 November 1989 DE
4209684 September 1993 DE
4321413 January 1995 DE
19847851 April 1999 DE
0376703 July 1990 EP
0440314 August 1991 EP
0560476 September 1993 EP
0990775 April 2000 EP
1020625 July 2000 EP
2315571 February 1998 GB
2338085 December 1999 GB
59-194058 February 1984 JP
59-194058 November 1984 JP
60-240828 November 1985 JP
62-101825 May 1987 JP
63-032122 February 1988 JP
1-100316 April 1989 JP
2-176115 July 1990 JP
3-009021 January 1991 JP
4-143410 May 1992 JP
4-148023 May 1992 JP
5-086913 April 1993 JP
9-125994 May 1997 JP
9-256880 September 1997 JP
9-303165 November 1997 JP
10-37772 February 1998 JP
10-220256 August 1998 JP
10-288055 October 1998 JP
10-288056 October 1998 JP
11-062643 March 1999 JP
11-270368 October 1999 JP
99/47800 September 1999 WO
Patent History
Patent number: 6560527
Type: Grant
Filed: Oct 18, 1999
Date of Patent: May 6, 2003
Assignee: Ford Global Technologies, Inc. (Dearborn, MI)
Inventors: John David Russell (Farmington Hills, MI), Brian D. Rutkowski (Ypsilanti, MI)
Primary Examiner: John Kwon
Attorney, Agent or Law Firms: John D. Russell, Allan J. Lippa
Application Number: 09/420,322
Classifications
Current U.S. Class: Speed, Acceleration, Deceleration (701/110); Electrical Sensing Or Regulating (123/350)
International Classification: G06F/1900;