Fuel cell or electrodes with passive support
An electrode suitable for use in a fuel cell includes a passive support having pores wherein the passive support has an asymmetric pore morphology with respect to at least one dimension of the passive support; and an electrode material positioned in the pores of the passive support. An exemplary electrode includes an electrode material of a metal and/or metal oxide. An exemplary porous electrode includes a deposited electrolyte layer that blocks at least some pores of the porous electrode. An exemplary method includes reducing an electrode material positioned in pores of a passive support to create secondary porosity and/or to limit agglomeration. Other exemplary devices and/or methods are also disclosed.
Latest Hewlett Packard Patents:
The subject matter disclosed herein pertains to fuel cell, electrodes, electrolytes and frames for fuel cells or electrodes. Various fuel cells, electrodes and electrolytes rely on passive supports.
BACKGROUNDFuel cells typically operate under conditions that are detrimental to their longevity. For example, a typical solid oxide fuel cell may operate at a temperature in excess of 700° C. At such temperatures, a variety of phenomena may cause degradation of fuel cell components. For example, metals, which are often used as electrode materials, can become mobile and agglomerate. Upon oxidation (e.g., during cooling), such agglomerates may increase in size and exert detrimental stresses on fuel cell components. Further, thermal expansion can cause significant component stresses. Thus, temperature associated degradation can reduce fuel cell efficiency and even render a fuel cell inoperable. Of course, other operating conditions may also cause fuel cell degradation. Thus, a need exists for fuel cells that can withstand and/or minimize various operating stresses, fuel cells that can operate at lower temperatures, fuel cells that do not generate significant temperature associated stresses. Various exemplary fuel cells, electrodes, and methods presented below address these and/or other needs.
SUMMARYAn electrode suitable for use in a fuel cell includes a passive support having pores wherein the passive support has an asymmetric pore morphology with respect to at least one dimension of the passive support; and an electrode material positioned in the pores of the passive support. An exemplary electrode includes an electrode material of a metal and/or metal oxide. An exemplary method includes reducing an electrode material positioned in pores of a passive support to create secondary porosity and/or to limit agglomeration. Other exemplary devices and/or methods are also disclosed.
The following Detailed Description discusses exemplary fuel cells, passive supports, anodes, cathodes, fuel cell arrangements or configurations, and frames for fuel cells or electrodes. Various exemplary methods for making or using such fuel cells or fuel cell components are also discussed.
Fuel CellsA fuel cell can generate electricity and heat by electrochemically reacting a fuel and an oxidizer using an ion conducting electrolyte for transfer of charged species without combustion. A typical fuel cell may generate an electrical potential through conversion of energy stored in a fuel (e.g., hydrogen, natural gas, methanol, etc.) and an oxidant (e.g., oxygen).
Essential to operation of the fuel cell 100 is the electrolyte 118. As mentioned, the electrolyte 118 acts as a type of membrane, for example, an ion-conducting membrane. In the example given, the electrolyte 118 is an oxygen ion conducting membrane. If H2 is used as a fuel, two protons or hydrogen ions are formed at the anode 110 from each H2 molecule due to removal of electrons. An electron flow path or circuit 124 allows these electrons to become available at the cathode 114, which helps to drive oxygen ion formation from O2·. Oxygen ions conduct or permeate the electrolyte 118 and the anode 110, where the oxygen ions form water with protons or hydrogen ions. The electrochemical process may be represented by the following reaction equations:
O2+4e−→2O2−
2H2→4H++4e−
4H++2O2−→2H2O
At a temperature of 25° C. and a pressure of 1 ATM, a hydrogen-oxygen fuel cell according to the reaction equations has an equilibrium electromotive force (e.m.f.) of approximately 1.2 V.
In general, an electrolyte should have a high transport rate for desired ionic species while preventing transport of unwanted species. Various ceramics (e.g., electroceramics) have properties suitable for use as electrolyte. For example, a group of electroceramics, referred to sometimes as “fast ion conductors”, “rapid ion conductors” or “superionic conductors”, may support high transport rates for desired ionic species. A commonly used ceramic for oxygen ion ion-conducting membranes is yttria stabilized zirconia (YSZ). For an YSZ electrolyte to provide sufficient oxygen ion conductivity, fairly high temperatures are required (e.g., typically greater than 700° C.), even for a thin electrolyte (e.g., less than approximately 10 μm). Of course, numerous costs are associated with operation at such high temperatures. For example, high cost alloys (e.g., superalloys, etc.) may be required as a fuel cell housing thereby increasing cost substantially. Stresses at such operating temperatures may also degrade anodes, cathodes and/or electrolytes and thereby increase cost. For example, a cathode may have a coefficient of thermal expansion that differs from that of an electrolyte. In such a situation, substantial shear stresses may develop at the interface between the cathode and the electrolyte and cause microfractures of the cathode and/or the electrolyte which, in turn, may diminish interfacial contact area and/or the ability of the electrolyte to reject unwanted species.
Further, operating temperatures and/or temperature cycling may have a detrimental impact on anode, cathode and/or electrolyte characteristics. For example, one or more metal components in an anode may have a tendency to agglomerate above certain temperatures. Temperature and/or oxidation-reduction cycling may also promote agglomeration. Agglomeration is known to occur in Ni-YSZ cermet anodes of solid oxide fuel cells and to be generally related to factors such as current density and fuel utilization. For example, evenly distributed nickel particles are desirable to maximize the interface or three-phase-boundary (TPB) between an anode and an electrolyte. Agglomeration occurs throughout an anode and causes an increase in “particle size” and a reduction in evenness of particle distribution. These effects decrease effective TPB and thereby increase anode losses. Eventually, a disparate distribution may result that wholly compromises interparticle (or interagglomerate) conductivity.
An agglomerate may further degrade an electrode upon oxidation. Oxidation typically occurs during and after cooling (e.g., as a part of a fuel cell's operational cycling). In Ni-YSZ cermet anodes, Ni particles or agglomerates typically oxidize during and/or after cooling. Upon oxidation, the particles or agglomerates increase in size. After a few heating and cooling cycles particles or agglomerates may become large enough to exert significant forces (e.g., stress) on, in this example, the ceramic YSZ matrix. Thus, oxidation and/or agglomeration may degrade or break a matrix and render an electrode inoperable or prohibitively inefficient.
Thus, as mentioned in the Background section, a need exists for fuel cells that can withstand and/or minimize various operating stresses (e.g., reduction, oxidation, temperature, cycling, etc.), fuel cells that can operate at lower temperatures, fuel cells that do not generate significant temperature associated stresses. Various exemplary fuel cells and/or electrodes described herein meet these and/or other needs.
To lower the operating temperature, either the conductivity of YSZ must be improved, or other suitable electrolyte materials must be used to substitute or augment YSZ. In general, conductivity is a function of electrolyte thickness wherein conductivity decreases with increasing thickness; thus, a thinner electrolyte may have less overall resistance, noting that the electrolyte typically has a resistance higher than an anode or a cathode. Thin film technologies have allowed for production of dense electrolytes having thicknesses of between, for example, approximately 0.5 μm and approximately 5 μm. Techniques for producing such electrolytes include chemical vapor deposition (CVD), which has been used to create electrolytes having a thickness of approximately 1 μm, atomic layer deposition (ALD), which has been used to create electrolytes having a thickness of approximately a few atomic layers, and other techniques, some of which are mentioned below. In addition, some of these techniques may be used to deposit electrode material. In various exemplary fuel cells, or components thereof, electrode and/or electrolyte may have larger thicknesses, for example, of approximately 100 μm or more. Film deposition techniques such as tape casting, screen-printing, etc., have been used to deposit electrode material and/or electrolyte material in thickness up to an beyond 100 μm. Further, an electrolyte should be “fully dense” to avoid short circuits due to passage of unwanted species through the electrolyte.
For a solid oxide fuel cell (SOFC), a ceramic and metal composite, sometimes referred to as a cermet, of nickel-YSZ may serve as an anode while Sr-doped lanthanum manganite (La1-xSrxMnO3) may serve as a cathode. Of course various other materials may be used for the anode 110 or the cathode 114. To generate a reasonable voltage, a plurality of fuel cells may be grouped to form an array or “stack”. In a stack, an interconnect is often used to join anodes and cathodes, for example, an interconnect that includes a doped lanthanum chromite (e.g., La0.8Ca0.2CrO3). Of course other materials may be suitable.
It is to be understood that a fuel cell may be one of solid oxide fuel cells (SOFCs), proton conducting ceramic fuel cells, alkaline fuel cells, polymer electrolyte membranes (PEM) fuel cells, molten carbonate fuel cells, solid acid fuel cells, direct methanol PEM fuel cells and others (see, e.g., other examples below). Various exemplary fuel cells presented herein are solid oxide fuel cells.
An electrolyte may be formed from any suitable material. Various exemplary electrolytes as presented herein are at least one of oxygen ion conducting membrane electrolytes, proton conducting electrolytes, carbonate (CO32−) conducting electrolytes, OH−conducting electrolytes, hydride ion (H−) conducting and mixtures thereof. Regarding hydride ion electrolyte fuel cells, advances have been as to a molten hydride electrolyte fuel cell.
Yet other exemplary electrolytes are at least one of cubic fluorite structure electrolytes, doped cubic fluorite electrolytes, proton-exchange polymer electrolytes, proton-exchange ceramic electrolytes, and mixtures thereof. Further, an exemplary electrolyte is at least one of yttria-stabilized zirconia, samarium doped-ceria, gadolinium doped-ceria, LaaSrbGacMgdO3−δ, and mixtures thereof, which may be particularly suited for use in solid oxide fuel cells.
Anode and cathode may be formed from any suitable material, as desired and/or necessitated by a particular end use. Various exemplary anodes and/or cathodes are at least one of metal(s), ceramic(s) and cermet(s). Some non-limitative examples of metals which may be suitable for an anode include at least one of nickel, copper, platinum and mixtures thereof. Some non-limitative examples of ceramics which may be suitable for an anode include at least one of CexSmyO2−δ, CexGdyO2−δ, LaxSryCrzO3−δ, and mixtures thereof. Some non-limitative examples of cermets which may be suitable for an anode include at least one of Ni-YSZ, Cu-YSZ, Ni-SDC, Ni-GDC, Cu-SDC, Cu-GDC, and mixtures thereof.
Some non-limitative examples of metals which may be suitable for a cathode include at least one of silver, platinum, ruthenium, rhodium and mixtures thereof. Some non-limitative examples of ceramics which may be suitable for a cathode include at least one of SmxSryCoO3−δ, BaxLayCoO3−δ, GdxSryCoO3−δ,
Passive SupportsAs described herein, passive supports may support anodes, cathodes and/or electrolytes. In general, a passive support does not conduct electrons or ions to any significant degree. Examples of passive supports include, but are not limited to, aluminum oxide-based supports, magnesium oxide-based supports, zirconium oxide-based supports, titanium oxide-based supports, silicon carbide-based supports, steel-based supports, and mixtures thereof. Of course, such materials may have any of a variety of phase structures. For example, an aluminum oxide-based support may include α-Al2O3, γ-Al2O3, and/or other phases of Al2O3. An exemplary support may optionally includes magnesia and silica, for example, in a ratio of approximately 2:1 (e.g., two parts of magnesia (MgO)2 to one part of silica SiO2). Of course, other combinations of materials are also possible. Passive support material(s) may have desirable hydrophobicity-hydrophilicity, surface charge, and/or surface texture. Suitable supports can withstand temperatures associated with operation of various fuel cells described herein. Suitable supports may have any of a variety of geometries, such as, but not limited to, planar, tubular, cylindrical, and/or monolithic with one or more channels.
Passive supports are typically porous. Pores may be characterized by parameters such as pore volume, pore size, pore size distribution (e.g., mean pore size, etc.), and pore morphology, especially with respect to one or more passive support dimensions. Passive supports may also have some non-contiguous (e.g., dead end) and/or inaccessible pores (e.g., closed cells or voids). Of course, voids do not add to the usable porosity or total volume of usable pores.
The substantially isometric passive support 200 includes an exemplary enlarged cross-sectional view of the support 202. In this example, the pores are aligned substantially along the z-axis (e.g., from top to bottom). Of course, pores may have other shapes and/or be interconnected across other dimensions (e.g., x, y, etc.) as well.
The asymmetric passive support 220 has a first mean pore size over a first thickness or region 230 and a different, second mean pore size over a second thickness or region 240 of the passive support 220. The asymmetric passive support 220 includes an exemplary enlarged cross-sectional view of the support 232 for the first region 230 and an exemplary enlarged cross-sectional view of the support 242 for the second region 240. In these examples, the pores are aligned substantially along the z-axis (e.g., from top to bottom). Of course, pores may have other shapes and/or be interconnected across other dimensions (e.g., x, y, etc.) as well. For example, porosity, tortuosity, pore volume and/or occluded volume may vary over one or more dimensions or regions of the passive support 220. Porosity typically approximates open porosity because closed or inaccessible porosity (e.g., voids) is generally undesirable and a small fraction of total porosity. An exemplary asymmetric passive support includes aluminum oxide or alumina. For example, an asymmetric passive support may have an α-Al2O3 phase that defines a region having a large mean pore size and a γ-Al2O3 phase that defines a region having a small mean pore size. Of course an asymmetric passive support may include other materials and/or phases (see, e.g., aforementioned materials).
Passive Supports and AgglomerationAs mentioned, agglomeration can degrade performance of a fuel cell. In particular, agglomeration is known to be associated with a decrease in anode performance. Various exemplary anodes presented herein exhibit (i) no agglomeration, (ii) minimal agglomeration and/or (iii) predictable agglomeration. Further, various exemplary anodes presented herein exhibit asymmetric agglomeration. Yet further, use of a passive support can enhance stability of an electrode and/or an electrolyte.
Factors such as operation temperature, melting temperature of material deposited into pores of a passive support and corresponding Tamman temperatures (e.g., approximately 0.5 times the bulk melting temperature in degrees K), etc., are optionally used in selecting a passive support and/or characteristics thereof. In particular, pore size (e.g., mean pore size), pore asymmetry in the passive support and/or pore wall surface properties are optionally used in selecting a passive support. For example, an exemplary asymmetric support has pores having cross-sections such as those shown in the enlarged cross-sectional views 232, 242 of
As mentioned, thermal expansion and mismatch of thermal expansions between fuel cell components (e.g., interconnects, electrodes, electrolyte, etc.) can degrade performance of a fuel cell. In particular, thermal expansion and/or thermal expansion mismatches are known to be associated with a decrease in fuel cell performance. Various exemplary electrodes and/or electrolytes presented herein exhibit (i) matched or approximately matched thermal expansions and/or (ii) minimal thermal expansion. Further, various exemplary electrodes and/or electrolytes presented herein exhibit asymmetric thermal expansion. For example, an asymmetric thermal expansion may have a thermal expansion that approaches that of another fuel cell component in a direction approaching the other fuel cell component (e.g., an electrode that has thermal expansion approximating an electrolyte near the electrode/electrolyte interface). Yet further, various exemplary anodes may exhibit agglomeration characteristics as described above and matched, minimal and/or asymmetric thermal expansion.
In general, various exemplary electrodes and/or electrolytes presented herein will have electrode or electrolyte material deposited within a porous passive support and/or electrode or electrolyte material deposited adjacent to a passive support. Hence, a plot such as that shown in
As described above and as shown in
An exemplary anode relies on a passive support such as but not limited to the asymmetric passive support 220 shown in
The reduction of deposited material 830 may occur during operation of an anode in a fuel cell and/or prior to operation of the anode in a fuel cell. For example, if the reduction occurs prior to operation of the anode in a fuel cell, then further agglomeration may be minimized and/or otherwise limited. Accordingly, an exemplary anode has a predetermined propensity to agglomeration that is at least in part determined by reduction prior to operation of the anode in a fuel cell. For example, a reduction procedure may take place prior to use of an electrode as an anode in an operational fuel cell. Of course, the predetermined propensity to agglomeration may also be based in part on selected pore size and/or pore asymmetry.
In addition, reduction of anode material typically creates secondary porosity. For example, if the anode material includes a metal oxide, then reduction of the metal oxide to metal will result in a decrease in volume. This decrease in volume translates to a decrease in filled void fraction of the passive support and hence an increase in effective porosity. While secondary porosity is not typically directly related to primary porosity of a passive support, selection of primary porosity (e.g., pore size) may aid in achieving a desirable secondary porosity. The creation of secondary porosity may affect transport of species through an anode. For example, if the deposited material fills the pores of a passive support to an extent where transport of one or more desired species is detrimentally minimized and/or otherwise limited, then creation of secondary porosity via reduction of anode material can allow for suitable levels of transport the one or more desired species.
Various procedures may occur prior to reduction of deposited material. For example, if the deposition deposits excess material, then removal of the excess material may occur. Further, sintering and/or annealing of the deposited material may occur. Yet further, deposition of an electrolyte material may occur, optionally followed by sintering and/or annealing. Of course, deposition of cathode material may occur as well, optionally followed by annealing and/or sintering.
Reduction may occur according to electrical, physical and/or chemical processes. For example, reduction may occur due to an applied electrical potential or due to being subject to a reducing chemical environment. Alternatives to reduction include other electrical, physical and/or chemical processes that act to create secondary porosity in an electrode, whether the electrode is a cathode or an anode. For example, secondary porosity may be created by adding a material prior to sintering wherein the material degrades upon sintering. Techniques that rely on adding a material to a green body or green paste are discussed below with respect to interconnects and may be suitable for creating secondary porosity.
Exemplary CathodesAn exemplary cathode optionally relies on a passive support such as but not limited to the asymmetric passive support 220 shown in
An exemplary method for making a cathode relies on a passive support. The method includes selection of a passive support, for example, as discussed above. Once selected, the method continues with deposition of a material suitable for use as a cathode into the pores of the passive support. The deposition may occur via any suitable deposition process, including physical and/or chemical deposition processes (e.g., ALD, CVD, EVD, ELD, etc.). Further, the material is optionally deposited as a liquid or a paste (e.g., extrusion of a paste into or through pores of a passive support, etc.). Various other procedures may occur at any time during the exemplary method. For example, if the deposition deposits excess material, then removal of the excess material may occur. Further, sintering and/or annealing of the deposited material may occur. For example, sintering that causes a decrease in density of the cathode material (e.g., an electrode material suitable for use as a cathode) may create secondary porosity. Yet further, deposition of an electrolyte material may occur, optionally followed by sintering and/or annealing. Of course, deposition of anode material may occur as well, optionally followed by annealing and/or sintering.
Exemplary Fuel CellsIn another example, a passive support has a pore region wherein pores within the region have an average pore diameter of approximately 1 μm to approximately 5 μm. After deposition of an electrode material in the pore region and subsequent processing (e.g., sintering, etc.), an electrode forms having an average pore diameter of approximately 0.01 μm (or approximately 100 Å) to approximately 0.5 μm. According to various pore blocking theories, a blocking layer has a thickness of approximately three times the pore diameter; hence, where an electrolyte material is deposited on such an electrode, the resulting electrolyte layer or blocking layer may have a thickness of approximately 0.03 μm to approximately 1.5 μm.
According to various exemplary methods, depending on configuration of the passive support, a deposition process deposits an electrolyte material throughout a passive support wherein the thickness of the electrolyte material is typically approximately equal to a fine pore diameter of pores in a fine pore region (e.g., an average fine pore diameter). In this example, an electrolyte layer forms that has a typical thickness of approximately twice the fine pore diameter. Depending on characteristics of the passive support, for example, geometric uniformity of fine pores in a fine pore region, a dense electrolyte layer may be formed using a process such as ALD wherein the dense electrolyte layer has a thickness of approximately one-half the fine pore diameter. In general, according to various exemplary methods, a dense electrolyte layer having a thickness of less than approximately 3 μm may be formed and, in particular, a thickness of approximately 1 μm.
Various exemplary methods may employ a deposition process that deposits an electrode material having a first particle size to block certain pores in a passive support and then deposits an electrode material having a second particle size wherein the second particle size is greater than the first particle size. In general, the electrode material is the same for both particle sizes. Of course, such a deposition process may be used for deposition of an electrolyte material.
An exemplary frame is made of a dense material. For example, an exemplary frame is optionally made of a material suitable for use as a passive support yet having a density that is greater than that of the bulk passive support. Another exemplary frame is optionally made of a material that does not contiguous open pore (e.g., a material having predominately inaccessible voids or closed cells). An exemplary frame is optionally made of a material that has thermal expansion characteristics that approximate those of a passive support. In general, a frame forms a gas-tight contact with a passive support and does not allow electrical or gas contact between electrode chambers (e.g., anode and cathode chambers).
An exemplary integral passive support and frame are produced from a suitable and electrically nonconductive material (e.g., alumina, etc.). For example, a green body is formed having a passive support region and a frame region whereby sintering of the green body produces a porous passive support region and a dense frame region. The porous passive support region is optionally isometric and/or asymmetric with respect to pore characteristics. Of course, suitable interconnects may be positioned in the green body prior to sintering and/or added after sintering. Further, a gasket material is optionally added that separates the passive support region from the frame region. Such a gasket material is optionally an insulator, which can thereby allow for use of a conductive material to form a frame region.
Masking processes may be used to produce a passive support and a frame.
As mentioned, the aperture 2014 may allow for fuel and/or air flow or exhaust. Further, an aperture may connect to one or more additional flow channels. In an exemplary method, flow channels are optionally formed are optionally formed by positioning material in a green body whereby upon sintering, or other processing, the positioned material is degraded.
Claims
1. An electrode suitable for use in a fuel cell comprising:
- a metal oxide-based passive support having pores wherein the passive support has an asymmetric pore morphology with respect to at least one dimension of the passive support and wherein the passive support does not conduct electrons or ions to any significant degree; and
- an electrode material positioned in the pores of the passive support.
2. The electrode of claim 1, wherein the electrode material comprises a metal and/or metal oxide.
3. The electrode of claim 1, wherein the electrode material comprises a reduced metal oxide having secondary porosity.
4. The electrode of claim 3, wherein the metal oxide comprises nickel oxide.
5. The electrode of claim 1, further comprising an electrolyte positioned adjacent to the electrode.
6. The electrode of claim 5, wherein the electrolyte is positioned adjacent to a region of the electrode wherein the passive support has a smallest mean pore size.
7. An apparatus comprising the electrode of claim 5 and further comprising a second electrode.
8. The apparatus of claim 7, wherein the second electrode comprises a second passive support and a second electrode material.
9. The electrode of claim 1, wherein the asymmetric pore morphology is selected to limit mobility of the electrode material in the pores.
10. The electrode of claim 9, wherein the asymmetric pore morphology limits mobility of the electrode material asymmetrically.
11. The electrode of claim 1, wherein the asymmetric pore morphology is selected to limit thermal expansion of the electrode.
12. The electrode of claim 11, wherein the asymmetric pore morphology limits thermal expansion of the electrode asymmetrIcally.
13. The electrode of claim 1, wherein the asymmetric pore morphology is selected to limit mobility of the electrode material in the pores and to limit thermal expansion.
14. The electrode of claim 1, wherein the asymmetric pore morphology is selected to allow the electrode to support an electrolyte layer.
15. The electrode of claim 1, further comprising one or more flow channels.
16. The electrode of claim 1, further comprising a frame.
17. The electrode of claim 16, further comprising one or more interconnects.
18. A fuel cell comprising the electrode of claim 1.
19. The electrode of claim 1, comprising a solid oxide fuel cell electrode.
20. The electrode of claim 1, further comprising a solid oxide fuel cell electrolyte.
21. A method comprising:
- sintering an electrode material positioned in a porous region of an asymmetric metal oxide-based passive support to produce an electrode having finer pores wherein the passive support does not conduct electrons or ions to any significant degree; and
- depositing an electrolyte material to block at least some of the finer pores of the electrode to thereby form an electrolyte layer in contact with the electrode.
22. The method of claim 21, further comprising reducing the electrode material to create additional electrode porosity.
23. The method of claim 22, wherein the reducing reduces a metal oxide.
24. The method of claim 22, wherein the reducing acts to limit further agglomeration of the electrode material.
25. The method of claim 21, wherein the electrolyte layer has a thickness less than approximately three times an average diameter of the finer pores.
26. The method of claim 21, wherein the electrolyte layer has a thickness less than approximately 3 μm.
27. The method of claim 21, further comprising using the electrode and the electrolyte layer in a fuel cell.
28. A method of generating an electrical potential comprising:
- providing fuel to an electrode having pores wherein the electrode comprises electrode material and a metal oxide-based passive support that has an asymmetric pore morphology with respect to at least one dimension of the passive support wherein the passive support does not conduct electrons or ions to any significant degree; and
- reacting the fuel with ions conducted through an electrolyte positioned adjacent to the electrode to thereby generate an electrical potential.
29. The method of claim 28, wherein the electrode material comprises a reduced electrode material.
30. The method of claim 29, further comprising reducing the electrode material, prior to the providing of fuel, to increase pore size of the electrode.
31. A method of constructing an electrode of a fuel cell comprising:
- determining an acceptable range of thermal expansion of the electrode;
- determining an acceptable range of agglomeration of electrode material in the electrode;
- selecting a passive support based on the acceptable range of thermal expansion and the acceptable range of agglomeration; and
- constructing an electrode using the selected passive support.
32. The method of claim 31, wherein the selecting includes selecting one or more pore sizes.
33. The method of claim 31, wherein the selecting includes selecting a passive support having an asymmetric pore morphology.
34. The method of claim 31, wherein the acceptable range of agglomeration depends at least in part on an agglomeration rate.
35. A method of making a frame and a metal oxide-based passive support for a fuel cell or an electrode comprising:
- selecting a first powder for the passive support;
- selecting a second powder for a frame;
- forming a green body having a passive support green body region and a frame green body region; and
- sintering the green body to produce the frame and the passive support for a fuel cell or an electrode wherein the passive support does not conduct electrons or ions to any significant degree.
36. The method of claim 35, wherein the forming includes molding, extruding, and/or pressure filtering.
37. The method of claim 35, further comprising positioning a gasket material at least at a boundary between the passive support green body and the frame green body.
38. The method of claim 35, further comprising positioning a material in the green body to form one or more passageways, interconnects and/or flow channels.
39. The method of claim 38, wherein the sintering degrades the material.
40. A fuel cell comprising:
- means for providing fuel to an electrode having pores wherein the electrode comprises electrode material and a metal oxide-based passive support that has an asymmetric pore morphology with respect to at least one dimension of the passive support wherein the passive support does not conduct electrons or ions to any significant degree; and
- means for reacting the fuel with ions conducted through an electrolyte positioned adjacent to the electrode to thereby generate an electrical potential.
3226263 | December 1965 | Oswin |
5114803 | May 19, 1992 | Ishihara et al. |
5521020 | May 28, 1996 | Dhar |
5783325 | July 21, 1998 | Cabasso et al. |
6051330 | April 18, 2000 | Fasano et al. |
6183609 | February 6, 2001 | Kawasaki et al. |
6228521 | May 8, 2001 | Kim et al. |
6811912 | November 2, 2004 | Kurtz |
6824907 | November 30, 2004 | Sarkar et al. |
20030224232 | December 4, 2003 | Browall et al. |
Type: Grant
Filed: Apr 10, 2003
Date of Patent: Jul 4, 2006
Patent Publication Number: 20040202918
Assignee: Hewlett-Packard Development Company, L.P. (Houston, TX)
Inventors: Peter Mardilovich (Corvallis, OR), Gregory S Herman (Albany, OR), Christopher Beatty (Albany, OR), James O'Neil (Corvallis, OR), David Champion (Lebanon, OR)
Primary Examiner: Stephen J. Kalafut
Application Number: 10/412,035
International Classification: H01M 4/86 (20060101); H01M 4/88 (20060101); B05D 5/12 (20060101);