Burning Out Components To Form Pores Patents (Class 264/44)
  • Patent number: 10822278
    Abstract: Disclosed are a barium titanate foam ceramic/thermosetting resin composite material and a preparation method therefor. An organic additive is used as an auxiliary; deionized water is used as a solvent; nanometer barium titanate is used as a ceramic raw material; and all of same are mixed and ground so as to form a slurry with a certain solid content. A pre-treated polymer sponge is impregnated into the slurry for slurry coating treatment, and then redundant slurry is removed and the polymer sponge is dried so as to obtain a barium titanate foam ceramic blank, and same is then sintered so as to obtain a barium titanate foam ceramic. A resin, being in a molten state and thermosettable, submerges the pores of the barium titanate foam ceramic, and a barium titanate foam ceramic/thermosetting resin composite material is obtained after a thermosetting treatment.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: November 3, 2020
    Inventors: Guozheng Liang, Longhui Zheng, Aijuan Gu, Pengfei Zhang, Li Yuan
  • Patent number: 10549013
    Abstract: The invention relates to an implant material for filling bone defects, for bone regeneration, and for bone tissue engineering, to an implant comprising said material, and to methods for manufacturing such an implant. The hybrid implant material according to the invention comprises: a biodegradable polymer P soluble in at least one solvent S1 and insoluble in at least one solvent S, different from the solvent S1; and a bioactive glass made of SiO2 and CaO and optionally containing P2O5 and/or optionally doped with strontium, characterized in that said implant includes a layering of a porous part having more than 90% by number of pores whose largest dimension is greater than or equal to 100 ?m, and a dense part (2, 20, 200, 2000, 20000) having more than 80% by number of pores whose largest dimension is less than 50 ?m. The invention is useful in the field of bone regeneration, particularly in the field of bone tissue engineering.
    Type: Grant
    Filed: September 28, 2015
    Date of Patent: February 4, 2020
    Assignees: Universite Clermont Auvergne, Centre National de la Recherche Scientifique
    Inventors: Jonathan Claude Alexandre Lao, Edouard Daniel Albert Jallot, Xavier Dieudonne
  • Patent number: 10399909
    Abstract: A method of manufacturing an ordered cellular structure including a series of interconnected unit cells. Each unit cell includes at least one straight wall segment. The method includes irradiating a volume of photo-monomer in a reservoir with at least one light beam from at least one light source to form the ordered cellular structure. Irradiating the volume of photo-monomer includes directing the at least one light beam though a series of interconnected apertures defined in a photo-mask covering the reservoir.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: September 3, 2019
    Assignee: HRL Laboratories, LLC
    Inventors: Zak C. Eckel, Tobias A. Schaedler, Eric C. Clough
  • Patent number: 9985273
    Abstract: A preparation method of a three-dimensional nanosized porous metal oxide electrode material of lithium ion battery, which soaks a dried polymer colloidal crystal microsphere template in a metal salt solution as a precursor solution for a period of time, and obtains a precursor template complex after filtration and drying; heats the precursor template complex to a certain temperature at a low heating rate and keeps the temperature, and then obtains the three-dimensional nanosized porous metal oxide electrode material of lithium ion battery after cooling to room temperature. A metal oxide electrode material is manufactured, with the three-dimensional nanosized porous metal oxide electrode material thereby improving the ionic conductivity of the negative electrode material of lithium ion battery, and shortens the diffusion path of the lithium ions during an electrochemical reaction process, and improves the rate discharge performance of lithium ion battery greatly.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: May 29, 2018
    Inventors: Jiangming Sun, Tiepeng Zhao, Zhigang Xu, Yanbing Wang, Gang Wang, Ming Zhang, Shirong Xie
  • Patent number: 9789543
    Abstract: A method of pressure forming a brown part from metal and/or ceramic particle feedstocks includes: introducing into a mold cavity or extruder a first feedstock and one or more additional feedstocks or a green or brown state insert made from a feedstock, wherein the different feedstocks correspond to the different portions of the part; pressurizing the mold cavity or extruder to produce a preform having a plurality of portions corresponding to the first and one or more additional feedstocks, and debinding the preform. Micro voids and interstitial paths from the interior of the preform part to the exterior allow the escape of decomposing or subliming backbone component substantially without creating macro voids due to internal pressure. The large brown preform may then be sintered and subsequently thermomechanically processed to produce a net wrought microstructure and properties that are substantially free the interstitial spaces.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: October 17, 2017
    Assignee: Accellent Inc.
    Inventors: Mark W. Broadley, James Alan Sago, Hao Chen, Edward J. Schweitzer, John Eckert, Jeffrey M. Farina
  • Patent number: 9776176
    Abstract: The present invention is related to a catalyst supported for the selective oxidation of sulphur compounds of the tail gas from the Claus process or streams with an equivalent composition to elemental sulphur or sulphur dioxide (SO2). It is also the object of the present invention, a process for the preparation of a catalyst of this type, as well as the process of selective oxidation of sulphur compounds to elemental sulphur using the catalyst of the invention, as well as the process of catalytic incineration of the tail gas from the Claus process using the catalyst of the present invention.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: October 3, 2017
    Assignee: REPSOL, S.A.
    Inventors: Tomas M. Malango, María Dolores Zafra, Rafael Roldán
  • Patent number: 9701588
    Abstract: The present invention relates to a novel process for producing ceramic materials, in particular refractory materials having a reduced relative density. In particular, the invention relates to a process for producing light, refractory materials having non-contiguous pores based on shaped and unshaped materials. These materials can be used as working lining in high-temperature applications. The process is based on the production of spherical, closed and isolated pores in the microstructure of the material. The pores having a pore diameter which can be set in a targeted manner are generated by use of polymer particles, in particular polymethacrylates, in particular polymers or copolymers prepared by means of suspension polymerization, as pore formers which can be burnt out. The polymers or copolymers are present in the form of small spheres having a defined diameter.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: July 11, 2017
    Assignee: Evonik Roehm GmbH
    Inventors: Tadeusz Von Rymon Lipinski, Bruno Keller, Frank Beissmann, Peter Neugebauer, Ruth Kernke, Dirk Poppe
  • Patent number: 9601246
    Abstract: A hard magnetic material formed of material powders made of a R—Fe—N compound containing a light rare earth element as R, or material powders made of a Fe—N compound is used as material powders. There is formed a compact in which a density of the hard magnetic material powders differs between an outer face side portion and an inside portion of the compact such that a rate of progress of powder bonding due to microwave heating is higher in the inside portion of the compact than in the outer face side portion of the compact when an outer face of the compact is irradiated with microwaves. Then, the outer face of the compact is irradiated with the microwaves to cause the microwave heating, thereby bonding the hard magnetic material powders by oxide films which are formed on the hard magnetic material powders.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: March 21, 2017
    Inventors: Kazuhisa Sugiyama, Toshiyuki Baba
  • Patent number: 9579722
    Abstract: A method and apparatus for generating transpiration cooling using an oxidized porous HTA layer metallurgically bonded to a substrate having micro-channel architectures. The method and apparatus generates a porous HTA layer by spreading generally spherical HTA powder particles on a substrate, partially sintering under O2 vacuum until the porous HTA layer exhibits a porosity between 20% and 50% and a neck size ratio between 0.1 and 0.5, followed by a controlled oxidation generating an oxidation layer of alumina, chromia, or silica at a thickness of about 20 to about 500 nm. In particular embodiments, the oxidized porous HTA layer and the substrate comprise Ni as a majority element. In other embodiments, the oxidized porous HTA layer and the substrate further comprise Al, and in additional embodiments, the oxidized porous HTA layer and the substrate comprise ?-Ni+??-Ni3Al.
    Type: Grant
    Filed: January 14, 2015
    Date of Patent: February 28, 2017
    Assignee: U.S. Department of Energy
    Inventors: Mary Anne Alvin, Iver Anderson, Andy Heidlof, Emma White, Bruce McMordie
  • Patent number: 9517136
    Abstract: Ceramic orthopedic implants may have one or more dense inner layers and one or more porous outer layers. Methods for manufacturing the implants may include one or more stages during which the dense inner layer(s) are partially compressed. At least one porous outer layer may include coating particles that are present at a surface of one or more inner layer(s) while pressure is applied to attach the coating particles to the inner layer(s) and to further compress one or more of the inner layer(s). Various layers may be formed until an implant, or other device, is formed having the desired density gradient and/or other properties, as disclosed herein.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: December 13, 2016
    Inventors: James Sanchez, Paul Sheffield, James Ludlow, Ramaswamy Lakshminarayanan
  • Patent number: 9517939
    Abstract: A method of enhancing the connectivity of a colloidal template includes providing a lattice of microparticles, where the microparticles are in contact with adjacent microparticles at contact regions therebetween, and exposing the lattice to a solution comprising a solvent and a precursor material. The solvent is removed from the solution, and the precursor material moves to the contact regions. A ring is formed from the precursor material around each of the contact regions, thereby creating interconnects between adjacent microparticles and enhancing the connectivity of the lattice.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: December 13, 2016
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Paul V. Braun, Hui Gang Zhang
  • Patent number: 9457345
    Abstract: There is disclosed a silicon carbide porous material having a high thermal shock resistance. The silicon carbide porous material of the present invention includes silicon carbide particles, metal silicon and an oxide phase, and the silicon carbide particles are bonded to one another via at least one of the metal silicon and the oxide phase. Furthermore, the oxide phase includes a parent phase, and a dispersion phase dispersed in the parent phase and having a higher thermal expansion coefficient than the parent phase. Here, a lower limit value of a content ratio of the dispersion phase in the oxide phase is preferably 1 mass %, and upper limit value of the content ratio of the dispersion phase in the oxide phase is 40 mass %. Furthermore, it is preferable that the parent phase is cordierite and that the dispersion phase is mullite.
    Type: Grant
    Filed: September 10, 2014
    Date of Patent: October 4, 2016
    Assignee: NGK Insulators, Ltd.
    Inventors: Takahiro Tomita, Kiyoshi Matsushima, Katsuhiro Inoue, Yoshimasa Kobayashi
  • Patent number: 9314745
    Abstract: Disclosed are a porous membrane having improved water permeability and elongation at break as well as high mechanical strength and impurity rejection rate and a method for manufacturing the same. The porous membrane of the present invention comprises a symmetric bead structure comprising a plurality of spherical crystallites. Each of the plurality of spherical crystallites comprises a plurality of sub-spherical crystallites.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: April 19, 2016
    Inventors: Jae Hee Ryu, Yong-Cheol Shin, Jae Hun Lee
  • Patent number: 9259727
    Abstract: A gas-reforming catalyst is modified to obtain stability in high temperature. The catalyst uses ?-Al2O3 as a carrier and is nano-porous. Hence, reaction surface is greatly broadened; and platinum contained inside does not become bigger after times of use. The catalyst does not deposit carbon and has long life. The stability of the catalyst can be still remained even at a temperature higher than 800° C.
    Type: Grant
    Filed: October 23, 2012
    Date of Patent: February 16, 2016
    Assignee: Institute of Nuclear Energy Research, Atomic Energy Council, Executive Yuan, R.O.C.
    Inventors: Ning-Yih Hsu, King-Tsai Jeng, Shean-Du Chiou, Su-Hsine Lin, Hwa-Yuan Tzeng, Wan-Min Huang, Yuan-Ming Chang, Ruey-Yi Lee
  • Patent number: 9242873
    Abstract: A quaternary oxide foam, comprises an open-cell foam containing (a) a dopant metal, (b) a dopant nonmetal, (c) titanium, and (d) oxygen. The foam has the advantages of a high surface area and a low back pressure during dynamic flow applications. The inactivation of Escherichia coli (E. coli) was demonstrated in a simple photoreactor.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: January 26, 2016
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Jian-Ku Shang, Pinggui Wu, Rong-Cai Xie
  • Patent number: 9233518
    Abstract: A hybrid porous structure may include a base template and an ionic polymer coating layer within the base template. The structural framework of the base template itself is non-porous. The base template fills the gaps among a plurality of imaginary spherical bodies stacked in three-dimensions as an imaginary stack. The ionic polymer coating layer is laminated on an inner surface of the base template inside the imaginary spherical bodies. The imaginary spherical bodies may have a pore in the center which is not occupied by the ionic polymer coating layer. The hybrid porous structure may include a plurality of necks, which are openings formed in a contact part where adjacent imaginary spherical bodies contact each other. The necks may be interconnected to the pores located in the center part of the imaginary spherical bodies.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: January 12, 2016
    Inventors: Hyo Kang, Pil Jin Yoo, Sung Soo Han, Young Hun Kim, Seon Ju Yeo
  • Patent number: 9089427
    Abstract: In one embodiment, the present invention may be a method of making a porous biocompatible metal article by combining a metal powder with a homogenizing aid to form metal granules, including blending the metal granules and an extractable particulate to form a composite, forming the composite into a green article, removing the extractable particulate from the green article to form a metal matrix and pore structure, and sintering the metal matrix and pore structure. Furthermore the present invention may include a second homogenizing aid combined with the extractable particulate. The present invention also includes shaping the metal matrix and pore structure with or without the use of a binder.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: July 28, 2015
    Assignee: Praxis Powder Technology, Inc.
    Inventor: Joseph A. Grohowski, Jr.
  • Patent number: 9066998
    Abstract: A method of fabricating a bioactive porous tissue scaffold is herein provided. Bioactive materials having a composition of biologically active materials that define a group of surface reactive glass, glass-ceramic, and ceramic materials that most commonly include a range of silicate, borate, and phosphate-based glass systems. These materials typically exhibit a narrow working range that require heating methods that use pore former combustion to control thermal variations during processing.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: June 30, 2015
    Inventors: James Jenq Liu, Casey S. Lewis
  • Publication number: 20150145186
    Abstract: A ceramic foam filter and method of making the filter is described. The filter comprises: a sintered reaction product of: 35-75 wt % aluminosilicate; 10-30 wt % colloidal silica; 0-2 wt % bentonite; and 0-35 wt % fused silica; wherein the ceramic foam filter has less than 0.15 wt % alkali metals measured as the oxide and a flexural strength of at least 60 psi measured at 4 minutes at 1428° C.
    Type: Application
    Filed: July 25, 2013
    Publication date: May 28, 2015
    Inventor: Rudolph A. Olson, III
  • Patent number: 9000199
    Abstract: A porous ceramic matrix contains a plurality of ceramic particles adhered to each other, and a plurality of channels defined by surfaces of neighboring ceramic particles, the channels each having an average diameter of 0.5-2.5 ?m. Preferred ceramics also have a porosity of 25.0-40.0%, a Darcy's Permeability of 1.57-34.8×10?14 m2, and a mechanical strength of 25-64 MPa. Also disclosed is a method of preparing such a porous ceramic matrix, comprising providing a pellet containing ceramic particles that are coated with a monomer, a catalyst, and a binder; polymerizing the monomer in the solid state by heating, then carbonizing and sintering the pellet.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: April 7, 2015
    Assignee: National University of Singapore
    Inventors: Liang Hong, Xinwei Chen
  • Patent number: 8961840
    Abstract: Methods, processes, and systems for producing bulk ceramics from agglomerations of partially cured gelatinous polymer ceramic precursor resin droplets, without using sponge materials to form gas pathways in the polymer bodies. Ceramics can be formed in hours. Resin droplets can be produced with a sprayer where liquid polymer precursors, mixed with a curing agent, are sprayed forming droplets which are partially cured, collected, and compressed into shapes. Ceramic porosity can be varied, droplet particle sizes can be controlled by adjusting liquid and gas pressure, orifice size, during spraying. Partially cured droplets can be formed via an emulsion process and size controlled by emulsion liquid and surfactant selection parameters.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: February 24, 2015
    Assignee: Dynamic Material Systems, LLC
    Inventors: Arnold Hill, William Easter
  • Publication number: 20150035192
    Abstract: A method for forming a porous ceramic includes forming a mixture having at least one ceramic precursor and at least one pore-forming material and heating the mixture to oxidize the ceramic precursor and vaporize the pore-forming material.
    Type: Application
    Filed: August 1, 2013
    Publication date: February 5, 2015
    Inventor: Surojit Gupta
  • Publication number: 20150023828
    Abstract: The process comprises the steps of: mixing a load of oxide ceramic material particles (10) with a load of space holder particles (20), defined by graphite and/or amorphous carbon; compacting the mixture formed by ceramic material particles (10) and space holder particles (20), to form a compact body (E); and sintering said compact body (E), so that the ceramic material particles (10) form sintering contacts with each other, whereas the carbon of the space holder particles (20) is removed by the reaction with the oxygen in the sintering medium, to form open secondary pores (II), by eliminating the space holder particles (20). The metallurgic composition comprises the mixture of the ceramic material particles (10) with the space holder particles (20).
    Type: Application
    Filed: December 19, 2012
    Publication date: January 22, 2015
    Inventors: Roberto Binder, Aloisio Nelmo Klein, Arcanjo Lenzi, Cristiano Binder, Irene Cristina Magnabosco Mocellin, Mocellin, Rodrigo Pereira Becker, Paulo Henrique Mareze
  • Patent number: 8926874
    Abstract: The present invention relates to a porous manganese oxide-based lithium absorbent and a method for preparing the same. The method includes the steps of preparing a mixture by mixing a reactant for the synthesis of a lithium-manganese oxide precursor powder with an inorganic binder, molding the mixture, preparing a porous lithium-manganese oxide precursor molded body by heat-treating the molded mixture, and acid-treating the porous lithium-manganese oxide precursor molded body such that lithium ions of the porous lithium-manganese oxide precursor are exchanged with hydrogen ions, wherein pores are formed in the lithium-manganese oxide precursor molded body by gas generated in the heat treatment. The porous manganese oxide-based lithium adsorbent according to the present invention is easy to handle and has many more adsorption reaction sites compared to existing molded adsorbents, thus providing high lithium adsorption efficiency.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: January 6, 2015
    Assignee: Korea Institute of Geoscience and Mineral Resources (KIGAM)
    Inventors: Kang-Sup Chung, Tae Gong Ryu, Byoung Gyu Kim, Jung Ho Ryu
  • Publication number: 20140371050
    Abstract: In a process for manufacturing foamed material an expansion agent, a ceramic base material and water are blended together. The blend is heated and pressurized to homogenize and liquefy or plasticize it. The blend is then extruded through a die where, in the course of the extrusion, superheated water in the blend vaporizes to foam the blend. To make articles of manufacture, extrudate is cut to length, machined and fired, or is injection moulded while still malleable and then fired.
    Type: Application
    Filed: June 18, 2014
    Publication date: December 18, 2014
    Inventors: Robin Crawford, John Douglas
  • Patent number: 8883055
    Abstract: The present invention relates to a luminescent ceramic converter comprising a sintered, monolithic ceramic material that converts a light of a first wavelength to a light of a second wavelength, the ceramic material having substantially spherically shaped pores. The present invention also relates to methods for the manufacture of the luminescent ceramic converter that comprises the ceramic material having substantially spherically shaped pores.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: November 11, 2014
    Assignee: OSRAM SYLVANIA Inc
    Inventors: John F. Kelso, Nathan Zink
  • Patent number: 8780524
    Abstract: A ceramic electronic component includes a ceramic sintered body and an electrode provided on a surface of the ceramic sintered body. The electrode contains Ag. The ceramic sintered body contain glass material made of borosilicate glass. The glass material has closed pores and open pores therein. The closed pores and the open pores have diameters decreasing as being located away from the surface of the ceramic sintered body. This ceramic electronic component can prevent delamination of the electrode from the ceramic sintered body during a process of firing a green sheet.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: July 15, 2014
    Assignee: Panasonic Corporation
    Inventor: Noritaka Yoshida
  • Publication number: 20140167304
    Abstract: There is disclosed a honeycomb structure onto which a large amount of catalyst can be carried while suppressing an increase in pressure drop. In a honeycomb structure comprising porous partition walls by which a plurality of cells that become through channels of a fluid are partitioned and in which a plurality of pores are formed. In each of the partition walls, pores having pore diameters larger than a thickness of the partition wall in a section thereof which is perpendicular to an extending direction of the cells are formed so as to occupy 4 to 11% of the total volume of the pores formed in the partition walls.
    Type: Application
    Filed: February 10, 2014
    Publication date: June 19, 2014
    Applicant: NGK Insulators, Ltd.
    Inventors: Koichi SENDO, Hiroyuki SUENOBU, Shogo HIROSE
  • Patent number: 8741031
    Abstract: A composite hollow ceramic fiber includes a porous hollow core supporting a thin, dense sheath. The non-gas-tight core comprises a first ceramic material and an interconnecting network of pores. The gas-tight sheath comprises a second ceramic material. The fiber is made by extruding core and sheath suspensions from a spinnerette. The core suspension includes particles of the first ceramic material, a polymeric binder, a solvent, and a pore former material insoluble in the solvent. The sheath suspension includes particles of the second ceramic material, a polymeric binder and a solvent. The nascent hollow fiber is coagulated in a coagulant bath to effect phase inversion of the polymeric binders. The resultant green fiber is sintered in a two step process. First, the binders and pore former material are burned off. Second, the sheath is densified and the second ceramic material is sintered without fully sintering the core.
    Type: Grant
    Filed: July 31, 2011
    Date of Patent: June 3, 2014
    Assignee: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Madhava R. Kosuri, Dean W. Kratzer
  • Publication number: 20140147664
    Abstract: A porous cellular body comprising primarily a porous sintered glass material is disclosed. The porous sintered glass material primarily includes a first phase and a second phase, the first phase primarily comprising amorphous fused silica and the second phase comprising amorphous fused silica and a sintering aid.
    Type: Application
    Filed: November 6, 2013
    Publication date: May 29, 2014
    Applicant: Corning Incorporated
    Inventors: Douglas Munroe Beall, Cameron Wayne Tanner
  • Patent number: 8728965
    Abstract: Provided is a method for producing a porous material, wherein porosity can be controlled to 50% or higher by means of a freezing method, pore size can be controlled to 10 ?m to 300 ?m, and pore diameter distribution is uniform. The method is a method for producing a porous material, comprising freezing a mixture of water and a raw material comprising at least any of a ceramic material, a resin, a metal, and precursors thereof from a specific portion of the mixture to use ice crystals produced at the time as a pore source and then heat-treating a dry material obtained by removing the ice from the frozen material, wherein the mixture of a raw material and water or the frozen material comprises an antifreeze protein.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: May 20, 2014
    Assignee: Nichirei Foods Inc.
    Inventors: Manabu Fukushima, Yuichi Yoshizawa, Norimitsu Murayama, Sakae Tsuda, Takeshi Koizumi, Toshifumi Inoue
  • Publication number: 20140070441
    Abstract: A porous ceramic honeycomb article comprising a honeycomb body formed from cordierite ceramic, wherein the honeycomb body has a porosity P %?55% and a cell channel density CD?150 cpsi. The porous channel walls have a wall thickness T, wherein (11+(300?CD)*0.03)?T?(8+(300?CD)*0.02), a median pore size?20 microns, and a pore size distribution with a d-factor of ?0.35. The honeycomb body has a specific pore volume of VP?0.22. The porous ceramic honeycomb article exhibits a coated pressure drop increase of ?8 kPa at a flow rate of 26.5 cubic feet per minute when coated with 100 g/L of a washcoat catalyst and loaded with 5 g/L of soot.
    Type: Application
    Filed: November 14, 2013
    Publication date: March 13, 2014
    Applicant: Corning Incorporated
    Inventors: Thorsten Rolf Boger, Weiguo Miao, Zhen Song, Jianguo Wang
  • Patent number: 8652368
    Abstract: A resorbable tissue scaffold fabricated from bioactive glass fiber forms a rigid three-dimensional porous matrix having a bioactive composition. Porosity in the form of interconnected pore space is provided by the space between the bioactive glass fiber in the porous matrix. Strength of the bioresorbable matrix is provided by bioactive glass that fuses and bonds the bioactive glass fiber into the rigid three-dimensional matrix. The resorbable tissue scaffold supports tissue in-growth to provide osteoconductivity as a resorbable tissue scaffold, used for the repair of damaged and/or diseased bone tissue.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: February 18, 2014
    Assignee: Bio2 Technologies, Inc.
    Inventor: James Jenq Liu
  • Publication number: 20140017592
    Abstract: This invention relates to a method for preparing an air electrode based on Pr2-xNiO4 with 0?x<2, comprising a step consisting in sintering a ceramic ink comprising Pr2-xNiO4 and a pore-forming agent at a temperature above 1000° C. and below or equal to 1150° C. This invention also relates to the air electrode thus obtained and its uses.
    Type: Application
    Filed: March 7, 2012
    Publication date: January 16, 2014
    Inventors: Thibaud Delahaye, Pankaj-Kumar Patro
  • Patent number: 8607992
    Abstract: A ceramic filter comprising: (a) from about 75% to about 95% by weight of diatomaceous earth; (b) from about 10% to about 20% by weight of a flux; and (c) from about 0.03% to about 0.4% by weight of a metallic compound; the percentages by weight being percentages by weight of the ceramic filter.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: December 17, 2013
    Assignee: Aqua-Nu Filtration
    Inventors: Patrick Farrelly, Sean McCormack, Robert Verkerk, David Maybin
  • Publication number: 20130298822
    Abstract: Provided are a silicon melt contact member which is markedly improved in liquid repellency to a silicon melt, which can retain the liquid repellency permanently, and which is suitable for production of crystalline silicon; and a process for efficient production of crystalline silicon, particularly, spherical crystalline silicon having high crystallinity, by use of the silicon melt contact member. A silicon melt contact member having a porous sintered body layer present on its surface, preferably the sintered body layer being present on a substrate of a ceramic material such as aluminum nitride, wherein the porous sintered body layer consists essentially of silicon nitride, has a thickness of 10 to 500 ?m, and has, dispersed therein, many pores preferably having an average equivalent circle diameter of 1 to 25 ?m at a pore-occupying area ratio of 30 to 80%, the pores connecting to each other to form communicating holes having a depth of 5 ?m or more.
    Type: Application
    Filed: January 26, 2012
    Publication date: November 14, 2013
    Inventors: Ryuichi Komatsu, Hironori Itoh, Masanobu Azuma
  • Patent number: 8580058
    Abstract: There is disclosed a reinforcement material for forming reinforced members. The reinforcement material includes a strengthening material which is preferably a fabric disposed at least partially between portions of matrix material.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: November 12, 2013
    Assignee: Zephyros, Inc.
    Inventors: Michael J. Czaplicki, David Carlson
  • Patent number: 8569391
    Abstract: The invention provides mesostructured materials and methods of preparing mesostructured materials including metal-rich mesostructured nanoparticle-block copolymer hybrids, porous metal-nonmetal nanocomposite mesostructures, and ordered metal mesostructures with uniform pores. The nanoparticles can be metal, metal alloy, metal mixture, intermetallic, metal-carbon, metal-ceramic, semiconductor-carbon, semiconductor-ceramic, insulator-carbon or insulator-ceramic nanoparticles, or combinations thereof. A block copolymer/ligand-stabilized nanoparticle solution is cast, resulting in the formation of a metal-rich (or semiconductor-rich or insulator-rich) mesostructured nanoparticle-block copolymer hybrid. The hybrid is heated to an elevated temperature, resulting in the formation of an ordered porous nanocomposite mesostructure. A nonmetal component (e.g., carbon or ceramic) is then removed to produce an ordered mesostructure with ordered and large uniform pores.
    Type: Grant
    Filed: January 13, 2009
    Date of Patent: October 29, 2013
    Assignee: Cornell University
    Inventors: Scott Warren, Ulrich Wiesner, Francis J. DiSalvo, Jr.
  • Publication number: 20130276680
    Abstract: A hearth for a metallurgical furnace, in particular for a blast furnace, the hearth including a wall lining and a bottom lining of refractory material for containing a molten metal bath, the bottom lining including a lower region and an upper region that is arranged to cover the top of the lower region and that is built of ceramic elements, the ceramic elements of the upper region being made of microporous ceramic material including a granular phase made of a silico-aluminous high alumina content granular material and a binding phase for binding grains of said granular material, said microporous ceramic material having thus an maintaining permanently a thermal conductivity lower than 7 W/m.° K.
    Type: Application
    Filed: December 16, 2011
    Publication date: October 24, 2013
    Applicant: PAUL WURTH S.A.
    Inventors: Jacques Piret, Gilles Kass
  • Patent number: 8496871
    Abstract: A silica structure includes mesoporous silica spheres; and connection portions each of which includes metal oxide, and each of which connects the mesoporous silica spheres to each other.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: July 30, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Narihito Tatsuda, Kazuhisa Yano, Takashi Sasajima, Daisaku Sawada, Eiichi Kamiyama
  • Publication number: 20130183592
    Abstract: A porous carbonaceous composite material, a positive electrode and lithium air battery including the porous carbonaceous composite material, and a method of preparing the porous carbonaceous composite material. The porous carbonaceous composite material includes a carbon nanotube (CNT); and a modified carbonaceous material doped with a heterogeneous element, wherein the ratio of the number of surface oxygen atoms to the number of surface carbon atoms ranges upward from about 2 atom %.
    Type: Application
    Filed: September 7, 2012
    Publication date: July 18, 2013
    Inventors: Victor ROEV, Dong-min IM, Anass BENAYAD
  • Patent number: 8435327
    Abstract: A carbon dioxide permeable membrane is described. In some embodiments, the membrane includes a body having a first side and an opposite second side; a plurality of first regions formed from a molten carbonate having a temperature of about 400 degrees Celsius to about 1200 degrees Celsius, the plurality of first regions forming a portion of the body and the plurality of first regions extending from the first side of the body to the second side of the body; a plurality of second regions formed from an oxygen conductive solid oxide, the plurality of second regions combining with the plurality of first regions to form the body and the plurality of second regions extending from the first side of the body to the second side of the body; and the body is configured to allow carbon dioxide to pass from the first side to the second side.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: May 7, 2013
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Klaus S. Lackner, Alan C. West, Jennifer L. Wade
  • Publication number: 20130102805
    Abstract: A porous ceramic matrix contains a plurality of ceramic particles adhered to each other, and a plurality of channels defined by surfaces of neighbouring ceramic particles, the channels each having an average diameter of 0.5-2.5 ?m. Preferred ceramics also have a porosity of 25.0-40.0%, a Darcy's Permeability of 1.57-34.8×10?14 m2, and a mechanical strength of 25-64 MPa. Also disclosed is a method of preparing such a porous ceramic matrix, comprising providing a pellet containing ceramic particles that are coated with a monomer, a catalyst, and a binder; polymerising the monomer in the solid state by heating, then carbonizing and sintering the pellet.
    Type: Application
    Filed: June 30, 2011
    Publication date: April 25, 2013
    Inventors: Liang Hong, Xinwei Chen
  • Patent number: 8404162
    Abstract: Composite materials and methods for making composites are provided. The method includes providing a nano-particulate-depletable material that includes a plurality of nano-particulates on or within a depletable material; positioning the nano-particulate-depletable material on or within a structural material; and depleting the depletable material such that the nano-particulates are selectively placed on or within the structural material. Depletion may include infusion of a resin into the structural material. The depletable material may be a polymeric foam, and the nano-particulates may be carbon nanotubes.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: March 26, 2013
    Assignee: Florida State University Research Foundation
    Inventors: Okenwa O. I. Okoli, Myungsoo Kim
  • Publication number: 20130048905
    Abstract: The production method of the present invention is a method for producing porous aluminum magnesium titanate by forming a mixture containing Al source powder, Mg source powder, Ti source powder and Si source powder as well as a pore-forming agent to obtain a molded body; presintering the obtained molded body; and then sintering the presintered molded body, wherein the content of the pore-forming agent to a total of 100 parts by mass for the Al source powder, Mg source powder, Ti source powder and Si source powder is 5 to 30 parts by mass, the melting point of the Si source powder is 600 to 1300° C., when the elemental composition ratio of Al, Mg, Ti and Si in the mixture is represented by compositional formula (1): Al2(1?x)MgxTi(1+x)O5+aAl2O3+bSiO2 ??(1), x satisfies 0.05?x?0.15, a satisfies 0?a?0.1 and b satisfies 0.05?b?0.15, and the presintered molded body is sintered at 1300 to 1560° C.
    Type: Application
    Filed: March 4, 2011
    Publication date: February 28, 2013
    Inventors: Tetsuro Tohma, Kentaro Iwasaki
  • Patent number: 8377836
    Abstract: The present disclosure relates to methods of making ceramic bodies using catalyzed pore formers and compositions for making the same.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: February 19, 2013
    Assignee: Corning Incorporated
    Inventors: Philippe J Barthe, Irene Mona Peterson, Andrew Paul Schermerhorn
  • Patent number: 8288452
    Abstract: A biomaterial comprising a ceramic material, the ceramic material having a plurality of connecting micropores of an average diameter of between 1 ?m and 10 ?m, substantially evenly distributed through the biomaterial. The ceramic particles are preferably partially fused to one or more adjacent ceramic particles to form a lattice defining micropores. Each particle preferably has an average diameter of 1 ?m and 10 ?m and may comprise a plurality of elongated macropores having an average diameter of between 150 ?m and 500 ?m. Further, the material may additionally contain midi-pores which are substantially spherical and have an average diameter of 5 ?m and 150 ?m.
    Type: Grant
    Filed: November 15, 2005
    Date of Patent: October 16, 2012
    Inventor: Wei J. Lo
  • Patent number: 8262957
    Abstract: The present invention is a method for producing a ceramic porous body with high porosity and continuous macropores, which comprises mixing a ceramic powder with an aqueous solution of a gelable water-soluble polymer to form a slurry, gelling for a while to fix the tissue structure, freezing it to produce ice crystals in the gel tissue and creating structures that become continuous pores, thawing the ice by controlled atmospheric substitution-type drying method with the resulting water being replaced without damaging the gel, and then sintering it to produce a ceramic porous body having various porosities, pore diameters and pore shapes, while conventionally cracks and contraction were likely to occur during drying when the solids concentration of the slurry is less than 20 vol %, with the method of the present invention it is possible to control these problems even at a solids concentration of 10 vol % or less, manufacture and provide a ceramic porous body with a porosity of 72% to 99% and a compression stren
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: September 11, 2012
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Manabu Fukushima, Masayuki Nakata, Yuichi Yoshizawa
  • Patent number: 8257624
    Abstract: A method for making a porous material, includes melt-blending two or more non-miscible polymers to obtain a co-continuous melt, solidifying the melt to obtain a solid mass consisting of two co-continuous polymer phases, and selectively extracting one of the co-continuous phases thereby creating within the solid mass an essentially continuous pore network having an internal surface. The method further includes replicating the internal surface of the pore network within the solid mass by coating the internal surface with successive layers of materials, and selectively extracting the solid mass without extracting the layers of materials, to thereby yield the product porous material, formed of the layers of materials. The material has a void fraction higher than about 75%, and mainly having essentially fully interconnected sheath-like non-spherical pores and essentially non-fibrous walls.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: September 4, 2012
    Inventors: Basil D. Favis, Pierre Sarazin, Xavier Roy
  • Patent number: 8227364
    Abstract: The present invention relates to a porous planting medium containing minerals and a method for preparing the same, and more particularly, to a porous planting medium prepared by using bentonite and/or zeolite and minerals for promoting plant growth as raw materials and a method for preparing the same. The porous planting medium containing minerals according to the present invention can provide places where plants can grow due to the pores therein and create the ideal environment for plant growth due to minerals used therein. Also, since it is installed in a building with plant seeds germinated therein, it can provide effects of interior decoration, wood bathing due to anion generation and a pleasant interior environment.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: July 24, 2012
    Inventor: Se-Lin Lee