Balanced interconnector
There is disclosed a balanced interconnector comprising first and second like connecting elements, each of the connecting elements comprising an elongate centre section and a pair of parallel IDCs opening in substantially opposite directions, the IDCs attached substantially at right angles to and at opposite ends of the elongate centre sections, each of the connecting elements lying in different parallel plains. The first and second connecting elements are arranged such that the elongate centre sections are opposite one another and the IDCs of the first connecting element are not opposite the IDCs of the second connecting element. In a particular embodiment the connecting elements of adjacent pairs of connecting elements are at right angles.
Latest Belden CDT (Canada) Inc. Patents:
- Crosstalk reducing conductor and contact configuration in a communication system
- Slide actuated field installable fiber optic connector
- CROSSTALK REDUCING CONDUCTOR AND CONTACT CONFIGURATION IN A COMMUNICATION SYSTEM
- Crosstalk reducing conductor and contact configuration in a communication system
- SLIDE ACTUATED FIELD INSTALLABLE FIBER OPTIC CONNECTOR
This application is a Divisional application of U.S. patent application Ser. No. 11/740,154, filed Apr. 25, 2007, now U.S. Pat. No. 7,422,467 which is itself a Continuation-In-Part (CIP) application of PCT Application No. PCT/CA2005/001753 filed on Nov. 17, 2005 designating the United States and published in English under PCT Article 21(2), which itself claims priority on U.S. Provisional Application No. 60/628,136 filed on Nov. 17, 2004 and Canadian Patent Application No. 2,487,760 also filed on Nov. 17, 2004.
This application also claims priority on U.S. Provisional Application No. 60/745,563 filed on Apr. 25, 2006 and Canadian Patent Application No. 2,544,929 also filed on Apr. 25, 2006.
All documents cited above are herein incorporated by reference.
BACKGROUNDIn data transmission networks, cross-connect connectors (such as BIX, 110, 210, etc.) are commonly used in telecommunication rooms to interconnect the ends of telecommunications cables, thereby facilitating network maintenance. For example, the prior art reveals cross connectors comprised of a series of isolated flat straight conductors each comprised of a pair of reversed Insulation Displacement Contact (IDC) connectors connected end to end for interconnecting a conductor of a first cable with the conductors of a second cable.
As known in the art, all conductors transmitting signals act as antennas and radiate the signal they are carrying into their general vicinity. Other receiving conductors will receive the radiated signals as crosstalk. Cross talk typically adversely affects signals being carried by the receiving conductor and must be dealt with if the strength of the received crosstalk exceeds certain predetermined minimum values. The strength of received cross talk is dependant on the capacitive coupling between the transmitting conductor and the receiving conductor which is influenced by a number of mechanical factors, such as conductor geometry and spacing between the conductors, as well the frequency of the signals being carried by the conductors, shielding of the conductors, etc. As signal frequency increases, the influence of even quite small values of capacitive coupling can give rise to significant cross talk having a deleterious effect on signal transmission.
Systems designed for the transmission of high frequency signals, such as the ubiquitous four twisted pair cables conforming to ANSI/EIA 568, take advantage of a variety of mechanisms to minimise the capacitive coupling between conductors both within and between cables. One problem with such systems is that, although coupling, and therefore crosstalk, is reduced within the cable runs, conductors within the cables must inevitably be terminated, for example at device or cross connector. These terminations introduce irregularities into the system where coupling, and therefore cross talk, is increased. With the introduction of Category 6 and Augmented Category 6 standards and the 10 GBase-T transmission protocol, the allowable levels for all kinds of internal and external crosstalk, including Near End Crosstalk (NEXT), Far End Crosstalk (FEXT) and Alien Crosstalk, have been lowered. As a result, the prior art connectors and interconnectors are generally no longer able to meet the allowable levels for cross talk.
Additionally, although long cable elements such as the twisted pairs of conductors achieve good crosstalk characteristics through appropriate twisting and spacing of the pairs of conductors, when viewed as a whole, the cable is subject to additional crosstalk at every irregularity. Such irregularities occur primarily at connectors or interconnectors and typically lead to an aggressive generation of crosstalk between neighbouring pairs of conductors which in turn degrades the high frequency bandwidth and limits data throughput over the conductors. As the transmission frequencies continue to increase, each additional irregularity at local level, although small, adds to a collective irregularity which may have a considerable impact on the transmission performance of the cable. In particular, unraveling the ends of the twisted pairs of conductors in order to introduce them into an IDC type connections introduces capacitive coupling between the twisted pairs.
SUMMARY OF THE INVENTIONIn order to address the above and other drawbacks, there is provided a method of interconnecting first and second conductors of a first pair of conductors respectively with first and second conductors of a second pair of conductors and first and second conductors of a third pair of conductors respectively with first and second conductors of fourth second pair of conductors, the second conductor of the first pair of conductors coupled by a first parasitic capacitance to the first conductor of the third pair of conductors and the first conductor of the second pair of conductors coupled by a second parasitic capacitance to the second conductor of the fourth pair of conductors, wherein the first and second parasitic capacitances are substantially the same. The method comprises providing first and second interconnecting elements, providing a first capacitor having a capacitive value substantially the same as the parasitic capacitances, coupling the first and second elements with the first capacitor, interconnecting the first element between the first conductor of the first pair of conductors and the first conductor of the second pair of conductors and the second element between the first conductor of the third pair of conductors and the first conductor of the fourth pair of conductors, providing third and fourth interconnecting elements, providing a second capacitor having a capacitive value substantially the same as the parasitic capacitances, coupling the third and fourth elements with the second capacitor, interconnecting the third element between the second conductor of the first pair of conductors and the second conductor of the second pair of conductors and the fourth element between the second conductor of the third pair of conductors and the second conductor of the fourth pair of conductors.
Additionally, there is disclosed an interconnector for interconnecting first and second conductors of a first pair of conductors with first and second conductors of a second pair of conductors and first and second conductors of a third twisted pair of conductors with first and second conductors of a fourth twisted pair of conductors, the second conductor of the first pair of conductors coupled by a first parasitic capacitance to the first conductor of the third pair of conductors and the first conductor of the second pair of conductors coupled by a second parasitic capacitance to the second conductor of the fourth pair of conductors, wherein the first and second parasitic capacitances are substantially the same. The interconnector comprises first and second Tip elements, the first Tip element interconnected between the first conductor of the first pair of conductors and the first conductor of the second pair of conductors and the second Tip element interconnected between the first conductor of the third pair of conductors and the first conductor of the fourth pair of conductors, first and second Ring elements, the first Ring element interconnected between the second conductor of the first pair of conductors and the second conductor of the second pair of conductors and the second Ring element interconnected between the second conductor of the third pair of conductors and the second conductor of the fourth pair of conductors, and first and second capacitors between respectively the first and second Tip elements and the first and second Ring elements. Each of the capacitors is substantially equal to the first and second parasitic capacitances.
Referring now to
Referring now to
As known in the art, the IDCs as in 28, 30 are each comprised of a pair of opposed insulation displacing blades as in 34. Each connecting element 22 is illustratively stamped from a flat conducting material such as nickel plated steel, although in a particular embodiment the connecting element 22 could be formed in a number of ways, for example as an etched trace on a Printed Circuit Board (PCB) or the like.
Still referring to
As known in the art, the insulated conductors as in 40 are typically arranged into colour coded twisted pairs of conductors, and often referred to as Tip and Ring. In twisted pair wiring, the non-inverting wire of each pair is often referred to as the Ring and comprises an outer insulation having a solid colour, while the inverting wire is often referred to as the Tip and comprises a white outer insulation including a coloured stripe.
Note that although the first set of turrets 16 and the second set of turrets as in 20 in the above illustrative embodiment are each shown as being arranged in two (2) parallel rows of turrets, in a particular embodiment the first set of turrets 16 and the second set of turrets as in 20 could be arranged in a single row, alternatively also together with others, to form the inline cross connector as illustrated in
Referring now to
Referring now to
Referring now to
Referring back to
Still Referring to
The inherent capacitances CI1 and CI2 effectively cancel the differential mode signals that would otherwise be induced in the pair of conductors 404 and 405 by the pair of conductors 407 and 408 and vice versa.
This effect is illustrated in the capacitive network as shown in
Referring now to
Referring now to
Referring now to
As will now be apparent to a person of ordinary skill in the art, a differential signal travelling on conductors 404 and 405 will appear as equal and opposite signals on both conductors 407 and 408 which effectively cancel each other. Indeed, the positive phase of the differential signal carried on conductor 404 is coupled by CP4-7 and CP4-8 onto both conductors 407 and 408. Similarly, the negative phase of the differential signal carried on conductor 405 is coupled by CP5-8 and CP5-7 onto both conductors 407 and 408. As the parasitic capacitances are substantially equal and the lengths of the connecting elements as in 22 much less than the wavelength of the signal being transmitted (illustratively signals of 650 MHz having a wavelength of circa 0.46 meters), thereby resulting in only minimal shifts in phase, the differential signals coupled onto conductors 407 and 408 by the parasitic capacitances as cross talk will effectively cancel each other out.
Referring now to
Referring now to
Referring now to
Referring now to
A person of skill in the art will understand that the present invention could also be used together with shielded conductors and cables, for example with the provision of a shielding cover (not shown) on the cross connector 10 manufactured for example from a conductive material and interconnected with the shielding material surrounding the conductors/cables.
Although the present invention has been described hereinabove by way of an illustrative embodiment thereof, this embodiment can be modified at will without departing from the spirit and nature of the subject invention.
Claims
1. A method of interconnecting first and second conductors of a first pair of conductors respectively with first and second conductors of a second pair of conductors and first and second conductors of a third pair of conductors respectively with first and second conductors of fourth second pair of conductors, the second conductor of the first pair of conductors coupled by a first parasitic capacitance to the first conductor of the third pair of conductors and the first conductor of the second pair of conductors coupled by a second parasitic capacitance to the second conductor of the fourth pair of conductors, wherein the first and second parasitic capacitances are substantially the same, the method comprising:
- providing first and second interconnecting elements;
- providing a first capacitor having a capacitive value substantially the same as the parasitic capacitances;
- coupling said first and second elements with said first capacitor;
- interconnecting said first element between the first conductor of the first pair of conductors and the first conductor of the second pair of conductors and said second element between the first conductor of the third pair of conductors and the first conductor of the fourth pair of conductors;
- providing third and fourth interconnecting elements;
- providing a second capacitor having a capacitive value substantially the same as the parasitic capacitances;
- coupling said third and fourth elements with said second capacitor;
- interconnecting said third element between the second conductor of the first pair of conductors and the second conductor of the second pair of conductors and said fourth element between the second conductor of the third pair of conductors and the second conductor of the fourth pair of conductors.
2. The method of claim 1, wherein said first and second elements are Tip elements and wherein said third and fourth elements are Ring elements.
3. The method of claim 1, wherein said first capacitor providing act comprises positioning said first and second elements relative to one another such that an outer edge of said first element acts as a first electrode of said first capacitor, an outer edge of said second element acts as a second electrode of said first capacitor and air in between said first element outer edge and said second element outer edge acts as a dielectric of said first capacitor.
4. The method of claim 1, wherein said second capacitor providing act comprises positioning said third and fourth elements relative to one another such that an outer edge of said third element acts as a first electrode of said second capacitor, an outer edge of said fourth element acts as a second electrode of said second capacitor and air in between said third element outer edge and said fourth element outer edge acts as a dielectric of said second capacitor.
5. The method of claim 1, wherein the pairs of conductors are twisted pairs of conductors.
6. The method of claim 1, wherein each of the first conductors is a Tip conductor and each of the second conductors is a Ring conductor.
7. An interconnector for interconnecting first and second conductors of a first pair of conductors with first and second conductors of a second pair of conductors and first and second conductors of a third twisted pair of conductors with first and second conductors of a fourth twisted pair of conductors, the second conductor of the first pair of conductors coupled by a first parasitic capacitance to the first conductor of the third pair of conductors and the first conductor of the second pair of conductors coupled by a second parasitic capacitance to the second conductor of the fourth pair of conductors, wherein the first and second parasitic capacitances are substantially the same, the interconnector comprising:
- first and second Tip elements, said first Tip element interconnected between the first conductor of the first pair of conductors and the first conductor of the second pair of conductors and said second Tip element interconnected between the first conductor of the third pair of conductors and the first conductor of the fourth pair of conductors;
- first and second Ring elements, said first Ring element interconnected between the second conductor of the first pair of conductors and the second conductor of the second pair of conductors and said second Ring element interconnected between the second conductor of the third pair of conductors and the second conductor of the fourth pair of conductors; and
- first and second capacitors between respectively said first and second Tip elements and said first and second Ring elements;
- wherein each of said capacitors is substantially equal to the first and second parasitic capacitances.
8. The interconnector of claim 7, wherein each of said elements comprises a first terminal positioned towards a first end and a second terminal positioned towards a second end and further wherein each conductor of the first set of conductors is terminated at a respective one of said first terminals and each conductor of the second set of conductors is terminated at a respective one of said second terminals.
9. The interconnector of claim 8, wherein each pair of the first set of two pairs of conductors and the second set of two pairs of conductors is a twisted pair of conductors and further wherein each of said terminals comprises an IDC.
10. The interconnector of claim 8, wherein each of said terminals is elongate and further wherein each of said terminals is arranged along parallel non-collinear axes.
11. The interconnector of claim 10, wherein each of said elements comprises an elongate connecting portion between said terminals, said connecting portion arranged substantially at right angles to said terminals.
12. The interconnector of claim 7, wherein for each pair of elements, said Tip element is arranged opposite said Ring element as a reverse mirror image.
13. The interconnector of claim 7, wherein said first capacitive coupling is between said Ring element of said first pair of elements and said Tip element of said second pair of elements, said second capacitive coupling is between said Ring element of said second pair of elements and said Tip element of said first pair of elements, said third capacitive coupling is between said Tip element of said first pair of elements and said Tip element of said second pair of elements, and said fourth capacitive coupling is between said Ring element of said first pair of elements and said Ring element of said second pair of elements.
14. The interconnector of claim 7, wherein an outer edge of said first Tip element forms a first electrode of said first capacitor, an outer edge of said second Tip element forms a second electrode of said first capacitor and air in between said first Tip element outer edge and said second Tip element outer edge forms a dielectric of said first capacitor.
15. The interconnector of claim 7, wherein an outer edge of said first Ring element forms a first electrode of said second capacitor, an outer edge of said second Ring element forms a second electrode of said second capacitor and air in between said first Ring element outer edge and said second Ring element outer edge forms a dielectric of said second capacitor.
16. The interconnector of claim 8, wherein each of the first conductors is a Tip and each of the second conductors is a Ring.
17. The interconnector of claim 16, wherein each of said elements comprises an elongate connecting portion between said terminals, said connecting portion arranged substantially at right angles to said terminals, wherein a substantially flat end of said connecting portion of a first of said Tip elements facing a second of said Tip elements and a substantially flat end of said connecting portion of a said second Tip element facing said first Tip element are arranged opposite one another and in parallel and wherein a substantially flat end of said connecting portion of a first of said Ring elements facing a second of said Ring elements and a substantially flat end of said connecting portion of a said second Ring element facing said first Ring element are arranged opposite one another and in parallel.
4295703 | October 20, 1981 | Osborne |
5186647 | February 16, 1993 | Denkmann et al. |
5536182 | July 16, 1996 | Atoh et al. |
5967853 | October 19, 1999 | Hashim |
5997358 | December 7, 1999 | Adriaenssens et al. |
6045391 | April 4, 2000 | Jaag |
6116965 | September 12, 2000 | Arnett et al. |
6126476 | October 3, 2000 | Viklund et al. |
6150612 | November 21, 2000 | Grandy et al. |
6193526 | February 27, 2001 | Milner et al. |
6238231 | May 29, 2001 | Chapman et al. |
6270381 | August 7, 2001 | Adriaenssens et al. |
6280231 | August 28, 2001 | Nicholls |
6309240 | October 30, 2001 | Daoud |
6582247 | June 24, 2003 | Siemon |
6592395 | July 15, 2003 | Brown et al. |
6596944 | July 22, 2003 | Clark et al. |
6641411 | November 4, 2003 | Stoddard et al. |
6648670 | November 18, 2003 | Chen |
6794570 | September 21, 2004 | Chou |
7166000 | January 23, 2007 | Pharney |
7168993 | January 30, 2007 | Hashim |
7179115 | February 20, 2007 | Hashim |
7186148 | March 6, 2007 | Hashim |
7186149 | March 6, 2007 | Hashim |
7190594 | March 13, 2007 | Hashim et al. |
7201618 | April 10, 2007 | Ellis et al. |
7204722 | April 17, 2007 | Hashim et al. |
7223115 | May 29, 2007 | Hashim et al. |
7264516 | September 4, 2007 | Hashim et al. |
7314393 | January 1, 2008 | Hashim |
7320624 | January 22, 2008 | Hashim et al. |
7322847 | January 29, 2008 | Hashim et al. |
7326089 | February 5, 2008 | Hashim |
7503798 | March 17, 2009 | Hashim |
20050136729 | June 23, 2005 | Redfield et al. |
20050195584 | September 8, 2005 | AbuGhazaleh et al. |
20060154531 | July 13, 2006 | Kim et al. |
20060160428 | July 20, 2006 | Hashim |
20060292920 | December 28, 2006 | Hashim et al. |
1176330 | October 1984 | CA |
2486596 | May 2005 | CA |
0 899 827 | March 1999 | EP |
2 600 825 | July 2006 | FR |
11233205 | August 1999 | JP |
WO-98/13899 | April 1998 | WO |
WO-99/03172 | January 1999 | WO |
WO-02/15339 | February 2002 | WO |
WO-2005/117200 | December 2005 | WO |
WO-2006/132972 | December 2006 | WO |
Type: Grant
Filed: Aug 7, 2008
Date of Patent: Aug 4, 2009
Patent Publication Number: 20080293289
Assignee: Belden CDT (Canada) Inc. (Saint-Laurent)
Inventors: Virak Siev (Pointe-Claire), Antoine Pelletier (Ville Lasalle)
Primary Examiner: Khiem Nguyen
Attorney: Goudreau Gage Dubuc
Application Number: 12/187,671
International Classification: H01R 4/24 (20060101);