Method and composition for enhancing coverage and displacement of treatment fluids into subterranean formations

A method of injecting a treatment fluid into a portion of a subterranean formation, comprising providing a treatment fluid having a viscosity; determining the breakdown pressure of the portion of the subterranean formation; calculating the maximum sustainable flow rate for the treatment fluid; and, injecting the treatment fluid into the portion of the subterranean formation at a flow rate less than or equal to the maximum sustainable flow rate for the treatment fluid. A method of injecting a treatment fluid into a portion of a subterranean formation, comprising providing a treatment fluid having a viscosity; determining the breakdown pressure of the portion of the subterranean formation; calculating the maximum allowable treatment fluid viscosity; adjusting the viscosity of the treatment fluid to a viscosity less than or equal to the maximum allowable treatment fluid viscosity; and injecting the treatment fluid into the subterranean formation at the selected treatment fluid flow rate.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
BACKGROUND OF THE INVENTION

The present invention relates to chemical treatments for oil and gas wells. More particularly, the present invention relates to methods and compositions for enhancing the coverage and displacement of treatment fluids into subterranean formations.

Chemical treatments for oil and gas wells often involve sequential injections of one or more fluids, such as a preflush, chemical agent, spacer, and/or afterflush. Typically treatment fluids are injected into a subterranean formation at the matrix flow rate, i.e., the rate at which the treatment fluid enters laminar flow inside the formation. At this rate the treatment fluid enters the interstitial spaces of the formation at a flow rate low enough to avoid generating areas of high pressure within the formation that could cause the formation to fracture inadvertently. The success of these treatments often relies on the effective coverage and displacement of one fluid by another. Unfortunately, problems of uneven distribution or placement of treatment fluids are often encountered in well bores containing multiple layers with highly variable permeabilities.

Previously, acid stimulation treatments have applied Paccaloni's maximum pressure differential and injection rate (“MAPDIR”) method, which uses the injection rate as the key parameter to obtain a desired bottomhole pressure differential. However, Paccaloni's MAPDIR method and other methods involving high injection rates have not been widely adopted outside of acid stimulation treatments. This is due to the fact that many other treatment fluids, such as curable resins, are too viscous to be pumped into a formation at a flow rate sufficiently high enough to maximize the pressure differential without fear of inadvertently fracturing the formation. Furthermore, traditional solvents that could be used to lower the viscosity of the treatment fluids also tend to render the fluids less capable of adequately coating the formation, sometimes defeating the purpose of injecting the fluids into the formation.

SUMMARY OF THE INVENTION

The present invention relates to chemical treatments for oil and gas wells. More particularly, the present invention relates to methods and compositions for enhancing the coverage and displacement of treatment fluids into subterranean formations.

A method of injecting a treatment fluid into a portion of a subterranean formation, comprising providing a treatment fluid having a viscosity; determining the breakdown pressure of the portion of the subterranean formation; calculating the maximum sustainable flow rate for the treatment fluid; and, injecting the treatment fluid into the portion of the subterranean formation at a flow rate less than or equal to the maximum sustainable flow rate for the treatment fluid.

A method of injecting a treatment fluid into a portion of a subterranean formation, comprising providing a treatment fluid having a viscosity; determining the breakdown pressure of the portion of the subterranean formation; calculating the maximum allowable treatment fluid viscosity; adjusting the viscosity of the treatment fluid to a viscosity less than or equal to the maximum allowable treatment fluid viscosity; and injecting the treatment fluid into the subterranean formation at the selected treatment fluid flow rate.

The features and advantages of the present invention will be readily apparent to those skilled in the art upon a reading of the description of the preferred embodiments that follows.

DESCRIPTION OF PREFERRED EMBODIMENTS

The present invention relates to chemical treatments for oil and gas wells. More particularly, the present invention relates to methods and compositions for enhancing the coverage and displacement of treatment fluids into subterranean formations.

In accordance with the present invention, a treatment fluid may be injected into a subterranean formation at a combination of a flow rate and a viscosity selected to maximize down hole pressure and yet remain below the “breakdown pressure.” The term “breakdown pressure,” as used herein, refers to a pressure at which the treating pressure exceeds the strength of the rock and the formation fractures. By injecting the treatment fluid at such a maximum down hole pressure, the method of the present invention allows for the enhanced coverage and displacement of the treatment fluid into the formation, often without the need for a diverting agent. In the methods of the present invention, the flow rate is generally selected by calculating the maximum sustainable flow rate that will not result in the fracturing of the formation, given the chosen viscosity of the treatment fluid. This flow rate may be thought of as the maximum rate condition that can be achieved while staying below the fracture gradient. In particular embodiments, the viscosity of the treatment fluid may also be adjusted in addition to, or in place of, adjusting the flow rate, to maximize the down hole pressure.

The ability to inject treatment fluids into a subterranean formation at or near the breakdown pressure of the formation may offer numerous benefits. In particular embodiments of the present invention, maximizing the down hole pressure by controlling the flow rate and/or the viscosity of the treatment fluid may allow the coverage of the treatment fluid to be extended into the subterranean formation, despite the presence of portions of the subterranean formation to be treated having areas of varying permeabilities along the length of the well bore. By maximizing the well bore pressure down hole without fracturing the formation, the highest possible pressure difference is created between the reservoir and the well bore, helping to force the treatment fluid in to enter lower permeability regions of the formation that it might not have reached otherwise. Furthermore, in particular embodiments of the present invention, the coverage of a fluid in the formation and/or its displacement efficiency may be enhanced by adjusting the injection rate and/or viscosity of a later-introduced treatment fluid. Because each fluid in the treatment has its own viscosity, the injection rate of each fluid may be adjusted such that the maximum allowable injection pressure for each fluid is maintained while that fluid is being injected down hole without fracturing the formation. Thus, using tailored flow rates and tailored viscosities combined with MAPDIR pumping procedures, longer intervals of the well bore may be treated more effectively.

A variety of treatment fluids may be injected into a subterranean formation in accordance with teachings of the present invention. In some embodiments, the treatment fluid may comprise a curable resin. Other embodiments of the present invention may use a treatment fluid comprising a water controlling agent.

Resins suitable for use as treatment fluids in the present invention include all resins known in the art that are capable of forming a hardened, consolidated mass. Many such resins are commonly used in subterranean consolidation operations, and some suitable resins include two component epoxy based resins, novolak resins, polyepoxide resins, phenol-aldehyde resins, urea-aldehyde resins, urethane resins, phenolic resins, furan resins, furan/furfuryl alcohol resins, phenolic/latex resins, phenol formaldehyde resins, polyester resins and hybrids and copolymers thereof, polyurethane resins and hybrids and copolymers thereof, acrylate resins, and mixtures thereof. Some suitable resins, such as epoxy resins, may be cured with an internal catalyst or activator so that when pumped down hole, they may be cured using only time and temperature. Other suitable resins, such as furan resins generally require a time-delayed catalyst or an external catalyst to help activate the polymerization of the resins if the cure temperature is low (i.e., less than 250° F.), but will cure under the effect of time and temperature if the formation temperature is above about 250° F., preferably above about 300° F. It is within the ability of one skilled in the art, with the benefit of this disclosure, to select a suitable resin for use in embodiments of the present invention and to determine whether a catalyst is required to trigger curing.

Selection of a suitable resin may be affected by the temperature of the subterranean formation to which the fluid will be introduced. By way of example, for subterranean formations having a bottom hole static temperature (“BHST”) ranging from about 60° F. to about 250° F., two-component epoxy-based resins comprising a hardenable resin component and a hardening agent component containing specific hardening agents may be preferred. For subterranean formations having a BHST ranging from about 300° F. to about 600° F., a furan-based resin may be preferred. For subterranean formations having a BHST ranging from about 200° F. to about 400° F., either a phenolic-based resin or a one-component HT epoxy-based resin may be suitable. For subterranean formations having a BHST of at least about 175° F., a phenol/phenol formaldehyde/furfuryl alcohol resin may also be suitable.

Water controlling agents may also be suitable treatment fluids in the present invention. A variety of agents have been used to reduce the water permeability of subterranean formations, such as surfactants formed of one or more fatty acid imidazolyl compounds and water-resistant polymers. Water-resistant polymers, also known as relative permeability modifiers, act, inter alia, to adsorb onto the surfaces within the pores of a formation to reduce the formation's water permeability. A variety of water-resistant polymers are suitable for use as water controlling agents in the present invention. Examples of particularly suitable polymers include, but are not limited to, polyacrylamide, hydrolyzed polyacrylamide, xanthan, scleroglucan, polysaccharides, amphoteric polymers made from acrylamide, acrylic acid, diallyldimethylammonium chloride, vinyl sulfonate/vinyl amide/acrylamide terpolymers, vinyl sulfonate/acrylamide copolymers, acrylamide/acrylamido-methylpropanesulfonic acid copolymers, acrylamide/vinylpyrrolidone copolymers, sodium carboxymethyl cellulose, poly[dialkylaminoacrylate-co-acrylate-g-poly(ethyleneoxide)], acrylamide/octadecyldimethylammoniumethyl methacrylate bromide copolymer, dimethylaminoethyl methacrylate/vinyl pyrrolidone/hexadecyldimethylammoniummethyl methacrylate bromide terpolymer, acrylamide/2-acrylamido-2-methyl propane sulfonic acid/2-ethylhexyl methacrylate terpolymer, and combinations thereof. As used herein “-g-” in a formula means that the immediately following molecule in the formula is grafted to the preceding polymer molecule.

Regardless of the chosen treatment fluid, before it is injected into the subterranean formation, the breakdown pressure of the subterranean formation must first be determined. The breakdown pressure of the subterranean formation may be determined using a variety of techniques well-known in the art. Examples of such techniques include, but are not limited to, the analysis of Step Rate Injection Tests, Full Wave Sonic or Dipole Sonic logging tools for mechanical rock properties and stress, the analysis of borehole breakouts during drilling, and minifrac analysis. During treating the near well bore, it is preferable that the treating bottom hole pressure is maintained below that of the breakdown pressure because once the fractures are generated, the treatment fluids will tend to flow or leakoff into the fractures, defeating the purpose of treating the near well bore area. With the benefit of this disclosure, it should be within the ability of one skilled in the art to select an appropriate method of determining the reservoir stress or fracture gradient.

Having determined the breakdown pressure of the subterranean formation, particular embodiments of the present invention manipulate the flow rate of the treatment fluid to maintain a down hole pressure less than the breakdown pressure of the formation. This flow rate may be calculated by determining the maximum sustainable flow rate that will not result in the fracturing of the formation, given the breakdown pressure of the formation and the viscosity of the treatment fluid to be injected into the formation. Assuming pseudo-steady-state flow, the maximum non-fracturing injection flow rate, qi,max, is related to the breakdown pressure, pbd, by the following equation:

q i , max = ( p bd - p e ) kh 141.2 μ [ ln ( r b r w ) + s ]
where pe is the average reservoir pressure, k is the permeability of the formation, h is the net pay, μ is the viscosity of the fluid, rb is the radius of the formation cylinder in which the majority of the pressure drop takes place, rw is the well bore radius, and s is the skin factor for the well bore.

Additional information on the relationship between injection flow rates, fluid viscosities, and breakdown pressures may be found in MICHAEL J. ECONOMIDES, A. DANIEL HILL & CHRISTINE EHLIG-ECONOMIDES, PETROLEUM PRODUCTION SYSTEMS Ch. 14 (Prentice Hall Petroleum Engineering Series 1994) and G. PACCALONI, M. TAMBINI & M. GALOPPINO, KEY FACTORS FOR ENHANCED RESULTS OF MATRIX STIMULATION TREATMENTS, SPE 17154 (1988), the relevant disclosures of which are hereby incorporated by reference. In particular embodiments, the selected flow rate may be adjusted downwards from the maximum non-fracturing flow rate as an additional measure to further ensure the formation does not fracture inadvertently. In particular embodiments of the present invention, the selected flow rate may be in the range of from about 80% to about 90% of the maximum non-fracturing flow rate. Additionally, the flow rate is typically monitored in real time to ensure that the desired flow rate is being achieved, as well as to determine when a sufficient amount of the treatment chemical has been injected into the formation.

In addition to, or in place of, manipulating the flow rate of the treatment fluid, particular embodiments of the present invention may manipulate the viscosity of the treatment fluid to maximize the bottom hole pressure of the well bore. Such viscosity manipulation may be particularly useful in cases wherein the treatment fluid is curable resin. By lowering the viscosity of curable resin it may possible to inject the resin into the subterranean formation at a higher flow rate. In particular embodiments of the present invention, this reduction in the viscosity of the curable resin may be accomplished by adding a solvent or dispersant to the treatment fluid. Examples of suitable solvents include, but are not limited to, methanol, isopropanol, butanol, glycol ether solvents, and combinations thereof. Suitable glycol ether solvents include, but are not limited to, diethylene glycol methyl ether, dipropylene glycol methyl ether, 2-butoxy ethanol, ethers of a C2 to C6 dihydric alkanol containing at least one C1 to C6 alkyl group, mono ethers of dihydric alkanols, methoxypropanol, butoxyethanol, hexoxyethanol, and isomers thereof. Selection of an appropriate solvent is dependent on the resin composition chosen and is within the ability of one skilled in the art, with the benefit of this disclosure. Generally, the selected solvent is added to the treatment fluid until the treatment fluid has a lower, desired viscosity. In particular embodiments, the treatment fluid may have viscosity of about 5 to about 30 cP.

In addition to being used to introduce single fluids into a subterranean formation, particular embodiments of the present invention may also be used to introduce multiple fluids, in succession, into a subterranean formation. In accordance with the present invention, each fluid in the treatment may be injected in the formation at a flow rate tailored to viscosity of the individual fluid being injected, such that the down hole pressure is maximized for each fluid as it is injected. In addition to enhancing the coverage and displacement of the individual fluids at the time, such an injection technique may also enhance the coverage and/or displacement efficiency of the previously injected fluids, helping treat longer intervals of the well bore more effectively. Such tailoring of injection rate may be particularly useful in operations wherein placement of the treatment fluid is preceded by a preflush fluid and/or followed by the placement of an afterflush fluid.

Preflush fluids suitable for use in the methods of the present invention comprise an aqueous liquid, a surfactant, and an optional mutual solvent. The preflush solution, among other things, readies the formation to receive the integrated consolidation fluid and removes oils that may impede the integrated consolidation fluid from making contact with the formation particles. Suitable aqueous liquids that may be used to form the preflush fluid include, but are not limited to, fresh water, salt water, brine, combinations thereof, or any other aqueous liquid that does not adversely react with the other components used in accordance with this invention. When used, the mutual solvent should be soluble in both oil and water and be capable, among other things, of removing hydrocarbons deposited on particulates. Examples of suitable mutual solvents include, but are not limited to, glycol ethers. Some suitable glycol ethers include ethyleneglycolmonobutyl ether, diethylene glycol monomethyl ether, diethylene glycol dimethyl ether, dipropylene glycol methyl ether, and combinations thereof. Any surfactant compatible with the aqueous liquid and capable of aiding the hardenable resin in coating the surface of unconsolidated particles of the subterranean formation may be suitable for use in the present invention. Examples of surfactants suitable for use in the preflush fluids used in the methods of the present invention include, but are not limited to, ethoxylated nonyl phenol phosphate esters, one or more cationic surfactants, one or more nonionic surfactants, an alkyl phosphonate surfactant (e.g., a C12-C22 alkyl phosphonate surfactant), and mixtures thereof. Some suitable mixtures of one or more cationic and nonionic surfactants are described in U.S. Pat. No. 6,311,773 issued to Todd et al. on Nov. 6, 2001, the disclosure of which is incorporated herein by reference.

The afterflush fluids suitable for use in the methods of the present invention comprise an aqueous liquid or an inert gas. Where the afterflush fluid is an aqueous liquid, it may be fresh water, salt water, brine, or any other aqueous liquid that does not adversely react with the other components used in accordance with this invention. Where an aqueous afterflush fluid is used, a volume of about 1 to about 5 times the volume of the integrated consolidation fluid used is generally suitable for use in the methods of the present invention. Moreover, in some subterranean formations, particularly gas-producing subterranean formations, it may be advantageous to use afterflush fluids that are inert gases, such as nitrogen, rather than an aqueous solution. Such afterflush fluids may prevent adverse interactions between the afterflush fluid and the formation. The afterflush fluid acts, inter alia, to displace the curable resin from the well bore, to remove curable resin from the pore spaces inside the subterranean formation thereby restoring permeability, and to leave behind some resin at the contact points between formation sand particulates to form a permeable, consolidated formation.

In some embodiments, the afterflush fluid further comprises a surfactant. When used, any surfactant compatible with the aqueous liquid and capable of aiding the hardenable resin in coating the surface of unconsolidated particles of the subterranean formation may be suitable for use in the present invention. Examples of surfactants suitable for use in the afterflush fluids used in the methods of the present invention include, but are not limited to, ethoxylated nonyl phenol phosphate esters, one or more cationic surfactants, and one or more nonionic surfactants, and an alkyl phosphonate surfactant (e.g., a C12-C22 alkyl phosphonate surfactant). Mixtures of one or more cationic and nonionic surfactants are suitable and examples are described in U.S. Pat. No. 6,311,773 issued to Todd et al. on Nov. 6, 2001, the disclosure of which is incorporated herein by reference.

In some embodiments of the present invention a preflush fluid comprising a water controlling agent may be placed into a portion of a subterranean formation, followed by the placement of a resin treatment fluid, optionally followed by an afterflush fluid. In such embodiments, generally, at least one water controlling agent is included in the preflush fluid in an amount sufficient to reduce the production of water from the formation. In one embodiment, the water controlling agent is included in the preflush fluid in the range of from about 0.01% to about 10% by weight of the preflush fluid. In another embodiment, the water controlling agent is included in the preflush fluid in the range of from about 0.1% to about 1% by weight of the pre-flush fluid.

To facilitate a better understanding of the present invention, the following examples of preferred embodiments are given. In no way should the following examples be read to limit or define the scope of the invention.

EXAMPLES

A fluid placement simulation was performed to illustrate the effectiveness of the method provided therein. The simulation involved a well bore having three intervals, having permeabilities of 5,000 mD, 1,000 mD, and 500 mD, consecutively, and a reservoir pressure of 2,000 psi at a depth of 5,000 ft. For simulation purpose, an interval length of 10 ft is assumed for each interval. Using a treatment fluid with viscosity of 1 cP, the treatment fluid was injected into the well at 2, 4, 6, and 8 barrels per minute to determine the effect of injection rate on the penetration distance of the treatment fluid into the formation. It was found that most of the treatment fluid penetrates the 5,000-mD interval, and only a small amount of treatment fluid enters the lower permeability intervals. Even as the injection rate was increased to a higher rate, the penetration depth of treatment fluid into the 500 mD interval was increased just a little.

Depth of Penetration (inches) of 1-cP Fluid Permeability of Interval at 8 barrel/min Injection Rate 5,000 mD 10 1,000 mD 3   500 mD 1

As the viscosity of the fluid was increased to 7 cP, a dramatic improvement in the penetration of treatment fluid into all intervals was observed, especially at high injection rate. It was observed that the depth of penetration of treatment fluid into the low permeability intervals of 1,000 mD and 500 mD increased significantly. The increase in viscosity of treatment fluid provides resistance to penetration of the fluid into the high permeability interval, allowing the fluid to divert and penetrate into the lower-permeability intervals.

Depth of Penetration (inches) of 7-cP Fluid Permeability of Interval at 8 barrel/min Injection Rate 5,000 mD 14 1,000 mD 8   500 mD 7

Therefore, the present invention is well adapted to attain the ends and advantages mentioned as well as those that are inherent therein. While numerous changes may be made by those skilled in the art, such changes are encompassed within the spirit of this invention as defined by the appended claims.

Claims

1. A method of injecting a treatment fluid into a portion of a subterranean formation, comprising:

providing a treatment fluid having a viscosity;
determining the breakdown pressure of the portion of the subterranean formation;
calculating a maximum allowable treatment fluid viscosity;
adjusting the viscosity of the treatment fluid to a viscosity less than or equal to the maximum allowable treatment fluid viscosity; and
injecting the treatment fluid into the subterranean formation at the selected treatment fluid viscosity.

2. The method of claim 1 wherein the treatment fluid comprises a water controlling agent.

3. The method of claim 2 wherein the water controlling agent comprises a surfactant formed of one or more fatty acid imidazolyl compounds, a water-resistant polymer, or a combination thereof.

4. The method of claim 2 wherein the water controlling agent comprises a polyacrylamide, a hydrolyzed polyacrylamide, xanthan, scleroglucan, a polysaccharide, an amphoteric polymer made from acrylamide, acrylic acid, diallyldimethylammonium chloride, a vinyl sulfonate/vinyl amide/acrylamide terpolymer, a vinyl sulfonate/acrylamide copolymer, an acrylamide/acrylamido-methylpropanesulfonic acid copolymer, an acrylamide/vinylpyrrolidone copolymer, sodium carboxymethyl cellulose, a poly[dialkylaminoacrylate-co-acrylate-g-poly(ethyleneoxide)], an acrylamide/octadecyldimethylammoniumethyl methacrylate bromide copolymer, a dimethylaminoethyl methacrylate/vinyl pyrrolidone/hexadecyldimethylammoniummethyl methacrylate bromide terpolymer, an acrylamide/2-acrylamido-2-methyl propane sulfonic acid/2-ethylhexyl methacrylate terpolymer, or a combination thereof.

5. The method of claim 1 wherein the treatment fluid comprises a curable resin.

6. The method of claim 5 wherein the resin comprises a two component epoxy based resin, a novolak resin, a polyepoxide resin, a phenol-aldehyde resin, a urea-aldehyde resin, a urethane resin, a phenolic resin, a furan resin, a furan/furfuryl alcohol resin, a phenolic/latex resin, a phenol formaldehyde resin, a polyester resins, a hybrid polyester resin, a copolymer polyester resin, a polyurethane resin, a hybrid polyurethane resin, a copolymer polyurethane resin, an acrylate resin, or a combination thereof.

7. The method of claim 5 wherein the treatment fluid further comprises an internal catalyst or activator.

8. The method of claim 5 wherein the treatment fluid comprises a solvent.

9. The method of claim 8 wherein the solvent comprises water, a hydrocarbon, or an alcohol.

10. The method of claim 1 wherein the viscosity of the treatment fluid is from about 0.1 to about 30 cP.

11. The method of claim 1 wherein the treatment fluid viscosity is less than or equal to about 90% of the maximum allowable treatment fluid viscosity.

12. The method of claim 1 wherein the treatment fluid viscosity is less than or equal to about 80% of the maximum allowable treatment fluid viscosity.

13. The method of claim 1 wherein the portion of the subterranean formation comprises more than one areas having distinct permeabilities.

14. The method of claim 1 further comprising the steps of:

providing a preflush fluid having a viscosity;
calculating a maximum allowable preflush fluid viscosity;
adjusting the preflush fluid viscosity to a viscosity less than or equal to the maximum allowable preflush fluid viscosity; and, before the step of injecting the treatment fluid into the portion of the subterranean formation,
injecting the preflush fluid into the portion of the subterranean formation at the selected preflush fluid viscosity.

15. The method of claim 14 wherein the preflush fluid comprises an aqueous liquid and a surfactant.

16. The method of claim 15 wherein the aqueous liquid comprises fresh water, salt water, brine, or a combination thereof.

17. The method of claim 15 wherein the surfactant comprises an ethoxylated nonyl phenol phosphate ester, a cationic surfactant, a nonionic surfactant, an alkyl phosphonate surfactant, or a combination thereof.

18. The method of claim 15 wherein the preflush fluid further comprises a mutual solvent.

19. The method of claim 18 wherein the mutual solvent comprises a glycol ether.

20. The method of claim 14 further comprising the steps of:

providing an afterflush fluid having a viscosity;
calculating a maximum allowable afterflush fluid viscosity;
adjusting the afterflush fluid viscosity to a viscosity less than or equal to the maximum allowable afterflush fluid viscosity; and, after the step of injecting the treatment fluid into the portion of the subterranean formation,
injecting the afterflush fluid into the portion of the subterranean formation at the selected afterflush viscosity.

21. The method of claim 20 wherein the afterflush fluid comprises an aqueous liquid and a surfactant.

22. The method of claim 21 wherein the aqueous liquid comprises fresh water, salt water, brine, or a combination thereof.

23. The method of claim 21 wherein the surfactant comprises an ethoxylated nonyl phenol phosphate ester, a cationic surfactant, a nonionic surfactant, an alkyl phosphonate surfactant, or a combination thereof.

24. The method of claim 1 further comprising the steps of:

providing an afterflush fluid having a viscosity;
calculating a maximum allowable afterflush fluid viscosity;
adjusting the afterflush fluid viscosity to a viscosity less than or equal to the maximum allowable afterflush fluid viscosity; and, after the step of injecting the treatment fluid into the portion of the subterranean formation,
injecting the afterflush fluid into the portion of the subterranean formation at the selected afterflush viscosity.

25. The method of claim 24 wherein the afterflush fluid comprises an aqueous liquid and a surfactant.

26. The method of claim 25 wherein the aqueous liquid comprises fresh water, salt water, brine, or a combination thereof.

27. The method of claim 25 wherein the surfactant comprises an ethoxylated nonyl phenol phosphate ester, a cationic surfactant, a nonionic surfactant, an alkyl phosphonate surfactant, or a combination thereof.

Referenced Cited
U.S. Patent Documents
2238671 April 1941 Woodhouse
2703316 March 1955 Schneider
2869642 January 1959 McKay et al.
3047067 July 1962 Williams et al.
3052298 September 1962 Malott
3070165 December 1962 Stratton
3123138 March 1964 Robichaux
3173484 March 1965 Huitt et al.
3176768 April 1965 Brandt et al.
3195635 July 1965 Fast
3199590 August 1965 Young
3272650 September 1966 MacVittie
3297086 January 1967 Spain
3302719 February 1967 Fischer
3308885 March 1967 Sandiford
3308886 March 1967 Evans
3316965 May 1967 Watanabe
3329204 July 1967 Brieger
3336980 August 1967 Rike
3364995 January 1968 Atkins et al.
3366178 January 1968 Malone et al.
3375872 April 1968 McLaughlin et al.
3378074 April 1968 Kiel
3404735 October 1968 Young et al.
3415320 December 1968 Young
3455390 July 1969 Gallus
3478824 November 1969 Hess et al.
3481403 December 1969 Gidley et al.
3489222 January 1970 Millhone et al.
3492147 January 1970 Young et al.
3525398 August 1970 Fisher
3565176 February 1971 Clifford
3592266 July 1971 Tinsley
3659651 May 1972 Graham
3681287 August 1972 Brown et al.
3708013 January 1973 Dismukes
3709298 January 1973 Pramann
3709641 January 1973 Sarem
3741308 June 1973 Veley
3754598 August 1973 Holloway, Jr.
3765804 October 1973 Brandon
3768564 October 1973 Knox et al.
3769070 October 1973 Schilt
3784585 January 1974 Schmitt et al.
3819525 June 1974 Hattenbrun
3828854 August 1974 Templeton et al.
3842911 October 1974 Know et al.
3850247 November 1974 Tinsley
3854533 December 1974 Gurley et al.
3857444 December 1974 Copeland
3861467 January 1975 Harnsberger
3863709 February 1975 Fitch
3868998 March 1975 Lybarger et al.
3888311 June 1975 Cooke, Jr.
3912692 October 1975 Casey et al.
3933205 January 20, 1976 Kiel
3948672 April 6, 1976 Harnsberger
3955993 May 11, 1976 Curtice
3960736 June 1, 1976 Free et al.
4000781 January 4, 1977 Knapp
4008763 February 22, 1977 Lowe et al.
4015995 April 5, 1977 Hess
4018285 April 19, 1977 Watkins et al.
4029148 June 14, 1977 Emery
4031958 June 28, 1977 Sandiford et al.
4042032 August 16, 1977 Anderson et al.
4060988 December 6, 1977 Arnold
4068718 January 17, 1978 Cooke, Jr. et al.
4070865 January 31, 1978 McLaughlin
4074760 February 21, 1978 Copeland et al.
4085801 April 25, 1978 Sifferman
4085802 April 25, 1978 Sifferman et al.
4089437 May 16, 1978 Chutter et al.
4127173 November 28, 1978 Watkins et al.
4169798 October 2, 1979 DeMartino
4172066 October 23, 1979 Zweigle et al.
4245702 January 20, 1981 Haafkens et al.
4247430 January 27, 1981 Constien
4259205 March 31, 1981 Murphey
4273187 June 16, 1981 Satter et al.
4291766 September 29, 1981 Davies et al.
4305463 December 15, 1981 Zakiewicz
4336842 June 29, 1982 Graham et al.
4352674 October 5, 1982 Fery
4353806 October 12, 1982 Canter et al.
4387769 June 14, 1983 Erbstoesser et al.
4392988 July 12, 1983 Dobson et al.
4399866 August 23, 1983 Dearth
4415805 November 15, 1983 Fertl et al.
4428427 January 31, 1984 Friedman
4439489 March 27, 1984 Johnson et al.
4441556 April 10, 1984 Powers et al.
4443347 April 17, 1984 Underdown et al.
4460052 July 17, 1984 Gockel
4470915 September 11, 1984 Conway
4493875 January 15, 1985 Beck et al.
4494605 January 22, 1985 Wiechel et al.
4498995 February 12, 1985 Gockel
4501328 February 26, 1985 Nichols
4526695 July 2, 1985 Erbstoesser et al.
4527627 July 9, 1985 Graham et al.
4541489 September 17, 1985 Wu
4546012 October 8, 1985 Brooks
4553596 November 19, 1985 Graham et al.
4564459 January 14, 1986 Underdown et al.
4572803 February 25, 1986 Yamazoe et al.
4585064 April 29, 1986 Graham et al.
4649998 March 17, 1987 Friedman
4664819 May 12, 1987 Glaze et al.
4665988 May 19, 1987 Murphey et al.
4669543 June 2, 1987 Young
4670501 June 2, 1987 Dymond et al.
4675140 June 23, 1987 Sparks et al.
4681165 July 21, 1987 Bannister
4683954 August 4, 1987 Walker et al.
4694905 September 22, 1987 Armbruster
4715967 December 29, 1987 Bellis
4716964 January 5, 1988 Erbstoesser et al.
4733729 March 29, 1988 Copeland
4739832 April 26, 1988 Jennings, Jr. et al.
4772646 September 20, 1988 Harms et al.
4777200 October 11, 1988 Dymond et al.
4785884 November 22, 1988 Armbruster
4787453 November 29, 1988 Hewgill et al.
4789105 December 6, 1988 Hosokawa et al.
4796701 January 10, 1989 Hudson et al.
4797262 January 10, 1989 Dewitz
4800960 January 31, 1989 Friedman et al.
4809783 March 7, 1989 Hollenbeck et al.
4817721 April 4, 1989 Pober
4829100 May 9, 1989 Murphey et al.
4838352 June 13, 1989 Oberste-Padtberg et al.
4842070 June 27, 1989 Sharp
4842072 June 27, 1989 Friedman et al.
4843118 June 27, 1989 Lai et al.
4848467 July 18, 1989 Cantu et al.
4848470 July 18, 1989 Korpics
4850430 July 25, 1989 Copeland et al.
4875525 October 24, 1989 Mana
4886354 December 12, 1989 Welch et al.
4888240 December 19, 1989 Graham et al.
4892147 January 9, 1990 Jennings, Jr. et al.
4895207 January 23, 1990 Friedman et al.
4898750 February 6, 1990 Friedman et al.
4903770 February 27, 1990 Friedman et al.
4921576 May 1, 1990 Hurd
4934456 June 19, 1990 Moradi-Araghi
4936385 June 26, 1990 Weaver et al.
4942186 July 17, 1990 Murphey et al.
4957165 September 18, 1990 Cantu et al.
4959432 September 25, 1990 Fan et al.
4961466 October 9, 1990 Himes et al.
4969522 November 13, 1990 Whitehurst et al.
4969523 November 13, 1990 Martin et al.
4984635 January 15, 1991 Cullick et al.
4986353 January 22, 1991 Clark et al.
4986354 January 22, 1991 Cantu et al.
4986355 January 22, 1991 Casad et al.
5030603 July 9, 1991 Rumpf et al.
5049743 September 17, 1991 Taylor, III et al.
5056597 October 15, 1991 Stowe, III et al.
5082056 January 21, 1992 Tackett, Jr.
5095987 March 17, 1992 Weaver et al.
5105886 April 21, 1992 Strubhar et al.
5107928 April 28, 1992 Hilterhaus
5128390 July 7, 1992 Murphey et al.
5135051 August 4, 1992 Fracteau et al.
5142023 August 25, 1992 Gruber et al.
5165438 November 24, 1992 Fracteau et al.
5173527 December 22, 1992 Calve
5178218 January 12, 1993 Dees
5182051 January 26, 1993 Bandy et al.
5199491 April 6, 1993 Kutts et al.
5199492 April 6, 1993 Surles et al.
5211234 May 18, 1993 Floyd
5216050 June 1, 1993 Sinclair
5218038 June 8, 1993 Johnson et al.
5232955 August 3, 1993 Caabai et al.
5232961 August 3, 1993 Murphey et al.
5238068 August 24, 1993 Fredickson
5244362 September 14, 1993 Conally et al.
5247059 September 21, 1993 Gruber et al.
5249627 October 5, 1993 Harms et al.
5249628 October 5, 1993 Surjaatmadja
5256729 October 26, 1993 Kutts et al.
5265678 November 30, 1993 Grundmann
5273115 December 28, 1993 Spafford
5278203 January 11, 1994 Harms
5285849 February 15, 1994 Surles et al.
5293939 March 15, 1994 Surles et al.
5295542 March 22, 1994 Cole et al.
5320171 June 14, 1994 Laramay
5321062 June 14, 1994 Landrum et al.
5322123 June 21, 1994 Kohler et al.
5325923 July 5, 1994 Surjaatmadja et al.
5330005 July 19, 1994 Card et al.
5332037 July 26, 1994 Schmidt et al.
5335726 August 9, 1994 Rodrogues
5351754 October 4, 1994 Hardin et al.
5358051 October 25, 1994 Rodrigues
5359026 October 25, 1994 Gruber
5360068 November 1, 1994 Sprunt et al.
5361856 November 8, 1994 Surjaatmadja et al.
5363916 November 15, 1994 Himes et al.
5373901 December 20, 1994 Norman et al.
5377756 January 3, 1995 Northrop et al.
5377759 January 3, 1995 Surles
5381864 January 17, 1995 Nguyen et al.
5386874 February 7, 1995 Laramay et al.
5388648 February 14, 1995 Jordan, Jr.
5390741 February 21, 1995 Payton et al.
5393810 February 28, 1995 Harris et al.
5396957 March 14, 1995 Surjaatmadja et al.
5402846 April 4, 1995 Jennings, Jr. et al.
5403822 April 4, 1995 Mueller et al.
5420174 May 30, 1995 Dewprashad
5422183 June 6, 1995 Sinclair et al.
5423381 June 13, 1995 Surles et al.
5439055 August 8, 1995 Card et al.
5460226 October 24, 1995 Lawton et al.
5464060 November 7, 1995 Hale et al.
5475080 December 12, 1995 Gruber et al.
5484881 January 16, 1996 Gruber et al.
5492177 February 20, 1996 Yeh et al.
5492178 February 20, 1996 Nguyen et al.
5494103 February 27, 1996 Surjaatmadja et al.
5494178 February 27, 1996 Maharg
5497830 March 12, 1996 Boles et al.
5498280 March 12, 1996 Fistner et al.
5499678 March 19, 1996 Surjaatmadja et al.
5501275 March 26, 1996 Card et al.
5505787 April 9, 1996 Yamaguchi
5512071 April 30, 1996 Yam et al.
5520250 May 28, 1996 Harry et al.
5522460 June 4, 1996 Shu
5529123 June 25, 1996 Carpenter et al.
5531274 July 2, 1996 Bienvenu, Jr.
5536807 July 16, 1996 Gruber et al.
5545824 August 13, 1996 Stengel et al.
5547023 August 20, 1996 McDaniel et al.
5551513 September 3, 1996 Suries et al.
5551514 September 3, 1996 Nelson et al.
5582249 December 10, 1996 Caveny et al.
5582250 December 10, 1996 Constein
5588488 December 31, 1996 Vijn et al.
5591700 January 7, 1997 Harris et al.
5594095 January 14, 1997 Gruber et al.
5595245 January 21, 1997 Scott, III
5597784 January 28, 1997 Sinclair et al.
5604184 February 18, 1997 Ellis et al.
5604186 February 18, 1997 Hunt et al.
5609207 March 11, 1997 Dewprashad et al.
5620049 April 15, 1997 Gipson et al.
5639806 June 17, 1997 Johnson et al.
5663123 September 2, 1997 Goodhue, Jr. et al.
5670473 September 23, 1997 Scepanski
5692566 December 2, 1997 Surles
5697440 December 16, 1997 Weaver et al.
5697448 December 16, 1997 Johnson
5698322 December 16, 1997 Tsai et al.
5701956 December 30, 1997 Hardy et al.
5712314 January 27, 1998 Surles et al.
5732364 March 24, 1998 Kalb et al.
5738136 April 14, 1998 Rosenberg
5765642 June 16, 1998 Surjaatmadja
5775425 July 7, 1998 Weaver et al.
5782300 July 21, 1998 James et al.
5783822 July 21, 1998 Buchanan et al.
5787986 August 4, 1998 Weaver et al.
5791415 August 11, 1998 Nguyen et al.
5799734 September 1, 1998 Norman et al.
5806593 September 15, 1998 Suries
5830987 November 3, 1998 Smith
5833000 November 10, 1998 Weaver et al.
5833361 November 10, 1998 Funk
5836391 November 17, 1998 Jonasson et al.
5836392 November 17, 1998 Urlwin-Smith
5836393 November 17, 1998 Johnson
5837656 November 17, 1998 Sinclair et al.
5837785 November 17, 1998 Kinsho et al.
5839510 November 24, 1998 Weaver et al.
5840784 November 24, 1998 Funkhouser et al.
5849401 December 15, 1998 El-Afandi et al.
5849590 December 15, 1998 Anderson, II et al.
5853048 December 29, 1998 Weaver et al.
5864003 January 26, 1999 Qureshi et al.
5865936 February 2, 1999 Edelman et al.
5871049 February 16, 1999 Weaver et al.
5873413 February 23, 1999 Chatterji et al.
5875844 March 2, 1999 Chatterji et al.
5875845 March 2, 1999 Chatterji et al.
5875846 March 2, 1999 Chatterji et al.
5893383 April 13, 1999 Fracteau
5893416 April 13, 1999 Read
5901789 May 11, 1999 Donnelly et al.
5908073 June 1, 1999 Nguyen et al.
5911282 June 15, 1999 Onan et al.
5916933 June 29, 1999 Johnson et al.
5921317 July 13, 1999 Dewprashad et al.
5924488 July 20, 1999 Nguyen et al.
5929437 July 27, 1999 Elliott et al.
5944105 August 31, 1999 Nguyen
5944106 August 31, 1999 Dalrymple et al.
5945387 August 31, 1999 Chatterji et al.
5948734 September 7, 1999 Sinclair et al.
5957204 September 28, 1999 Chatterji et al.
5960784 October 5, 1999 Ryan
5960877 October 5, 1999 Funkhouser et al.
5960878 October 5, 1999 Nguyen et al.
5960880 October 5, 1999 Nguyen et al.
5964291 October 12, 1999 Bourne et al.
5969006 October 19, 1999 Onan et al.
5969823 October 19, 1999 Wurz et al.
5977283 November 2, 1999 Rossitto
5994785 November 30, 1999 Higuchi et al.
RE36466 December 28, 1999 Nelson et al.
6003600 December 21, 1999 Nguyen et al.
6004400 December 21, 1999 Bishop et al.
6006835 December 28, 1999 Onan et al.
6006836 December 28, 1999 Chatterji et al.
6012524 January 11, 2000 Chatterji et al.
6016870 January 25, 2000 Dewprashad et al.
6024170 February 15, 2000 McCabe et al.
6028113 February 22, 2000 Scepanski
6028534 February 22, 2000 Ciglenec et al.
6040398 March 21, 2000 Kinsho et al.
6047772 April 11, 2000 Weaver et al.
6059034 May 9, 2000 Rickards et al.
6059035 May 9, 2000 Chatterji et al.
6059036 May 9, 2000 Chatterji et al.
6063738 May 16, 2000 Chatterji et al.
6068055 May 30, 2000 Chatterji et al.
6069117 May 30, 2000 Onan et al.
6070667 June 6, 2000 Gano
6074739 June 13, 2000 Katagiri
6079492 June 27, 2000 Hoogteijling et al.
6098711 August 8, 2000 Chatterji et al.
6114410 September 5, 2000 Betzold
6123871 September 26, 2000 Carroll
6123965 September 26, 2000 Jacob et al.
6124246 September 26, 2000 Heathman et al.
6130286 October 10, 2000 Thomas et al.
6131661 October 17, 2000 Conner et al.
6135987 October 24, 2000 Tsai et al.
6140446 October 31, 2000 Fujiki et al.
6143698 November 7, 2000 Murphey et al.
6148911 November 21, 2000 Gipson et al.
6152234 November 28, 2000 Newhouse et al.
6162766 December 19, 2000 Muir et al.
6165947 December 26, 2000 Chang et al.
6169058 January 2, 2001 Le et al.
6172011 January 9, 2001 Card et al.
6172077 January 9, 2001 Curtis et al.
6176315 January 23, 2001 Reddy et al.
6177484 January 23, 2001 Surles
6184311 February 6, 2001 O'Keefe et al.
6186228 February 13, 2001 Wegener et al.
6187834 February 13, 2001 Thayer et al.
6187839 February 13, 2001 Eoff et al.
6189615 February 20, 2001 Sydansk
6192985 February 27, 2001 Hinkel et al.
6192986 February 27, 2001 Urlwin-Smith
6196317 March 6, 2001 Hardy
6202751 March 20, 2001 Chatterji et al.
6209643 April 3, 2001 Nguyen et al.
6209644 April 3, 2001 Brunet
6209646 April 3, 2001 Reddy et al.
6210471 April 3, 2001 Craig
6214773 April 10, 2001 Harris et al.
6231664 May 15, 2001 Chatterji et al.
6234251 May 22, 2001 Chatterji et al.
6238597 May 29, 2001 Yim et al.
6241019 June 5, 2001 Davidson et al.
6242390 June 5, 2001 Mitchell et al.
6244344 June 12, 2001 Chatterji et al.
6257335 July 10, 2001 Nguyen et al.
6260622 July 17, 2001 Blok et al.
6271181 August 7, 2001 Chatterji et al.
6274650 August 14, 2001 Cui
6279652 August 28, 2001 Chatterji et al.
6279656 August 28, 2001 Sinclair et al.
6283214 September 4, 2001 Guinot et al.
6302207 October 16, 2001 Nguyen et al.
6306998 October 23, 2001 Kimura et al.
6310008 October 30, 2001 Rietjens
6311773 November 6, 2001 Todd et al.
6315040 November 13, 2001 Donnelly
6321841 November 27, 2001 Eoff et al.
6323307 November 27, 2001 Bigg et al.
6326458 December 4, 2001 Gruber et al.
6328105 December 11, 2001 Betzold
6328106 December 11, 2001 Griffith et al.
6330916 December 18, 2001 Rickards et al.
6330917 December 18, 2001 Chatterji et al.
6342467 January 29, 2002 Chang et al.
6350309 February 26, 2002 Chatterji et al.
6357527 March 19, 2002 Norman et al.
6364018 April 2, 2002 Brannon et al.
6364945 April 2, 2002 Chatterji et al.
6367165 April 9, 2002 Huttlin
6367549 April 9, 2002 Chatterji et al.
6372678 April 16, 2002 Youngsman et al.
6376571 April 23, 2002 Chawla et al.
6387986 May 14, 2002 Moradi-Araghi et al.
6390195 May 21, 2002 Nguyen et al.
6394181 May 28, 2002 Schnatzmeyer et al.
6401817 June 11, 2002 Griffith et al.
6405796 June 18, 2002 Meyer et al.
6405797 June 18, 2002 Davidson et al.
6406789 June 18, 2002 McDaniel et al.
6408943 June 25, 2002 Schultz et al.
6415509 July 9, 2002 Echols et al.
6422183 July 23, 2002 Kato
6422314 July 23, 2002 Todd et al.
6439309 August 27, 2002 Matherly et al.
6439310 August 27, 2002 Scott, III et al.
6440255 August 27, 2002 Kohlhammer et al.
6446727 September 10, 2002 Zemlak et al.
6448206 September 10, 2002 Griffith et al.
6450260 September 17, 2002 James et al.
6454003 September 24, 2002 Chang et al.
6457518 October 1, 2002 Castano-Mears et al.
6458885 October 1, 2002 Stengel et al.
6478092 November 12, 2002 Voll et al.
6485947 November 26, 2002 Rajgarhia et al.
6488091 December 3, 2002 Weaver et al.
6488763 December 3, 2002 Brothers et al.
6494263 December 17, 2002 Todd
6503870 January 7, 2003 Griffith et al.
6508305 January 21, 2003 Brannon et al.
6510896 January 28, 2003 Bode et al.
6520255 February 18, 2003 Tolman et al.
6527051 March 4, 2003 Reddy et al.
6528157 March 4, 2003 Hussain et al.
6531427 March 11, 2003 Shuchart et al.
6534449 March 18, 2003 Gilmour et al.
6536939 March 25, 2003 Blue
6538576 March 25, 2003 Schultz et al.
6543545 April 8, 2003 Chatterji et al.
6550959 April 22, 2003 Huber et al.
6552333 April 22, 2003 Storm et al.
6554071 April 29, 2003 Reddy et al.
6555507 April 29, 2003 Chatterji et al.
6569814 May 27, 2003 Brady et al.
6582819 June 24, 2003 McDaniel et al.
6588926 July 8, 2003 Huber et al.
6588928 July 8, 2003 Huber et al.
6593402 July 15, 2003 Chatterji et al.
6599863 July 29, 2003 Palmer et al.
6608162 August 19, 2003 Chiu et al.
6609578 August 26, 2003 Patel et al.
6616320 September 9, 2003 Huber et al.
6620857 September 16, 2003 Valet
6626241 September 30, 2003 Nguyen
6632527 October 14, 2003 McDaniel et al.
6632778 October 14, 2003 Ayoub et al.
6632892 October 14, 2003 Rubinsztajn et al.
6642309 November 4, 2003 Komitsu et al.
6648501 November 18, 2003 Huber et al.
6659179 December 9, 2003 Nguyen
6664343 December 16, 2003 Narisawa et al.
6667279 December 23, 2003 Hessert et al.
6668926 December 30, 2003 Nguyen et al.
6669771 December 30, 2003 Tokiwa et al.
6677426 January 13, 2004 Noro et al.
6681856 January 27, 2004 Chatterji et al.
6686328 February 3, 2004 Binder
6705400 March 16, 2004 Nguyen et al.
6710019 March 23, 2004 Sawdon et al.
6713170 March 30, 2004 Kaneka et al.
6725926 April 27, 2004 Nguyen et al.
6725930 April 27, 2004 Boney et al.
6725931 April 27, 2004 Nguyen et al.
6729404 May 4, 2004 Nguyen et al.
6729405 May 4, 2004 DiLullo et al.
6732800 May 11, 2004 Acock et al.
6745159 June 1, 2004 Todd et al.
6749025 June 15, 2004 Brannon et al.
6763888 July 20, 2004 Harris et al.
6766858 July 27, 2004 Nguyen et al.
6776235 August 17, 2004 England
6776236 August 17, 2004 Nguyen
6832650 December 21, 2004 Nguyen et al.
6832655 December 21, 2004 Ravensbergen et al.
6837309 January 4, 2005 Boney et al.
6851474 February 8, 2005 Nguyen
6866099 March 15, 2005 Nguyen
6881709 April 19, 2005 Nelson et al.
6887834 May 3, 2005 Nguyen et al.
6962200 November 8, 2005 Nguyen et al.
6978836 December 27, 2005 Nguyen et al.
6997259 February 14, 2006 Nguyen
7013976 March 21, 2006 Nguyen et al.
7017665 March 28, 2006 Nguyen
7025134 April 11, 2006 Byrd et al.
7028774 April 18, 2006 Nguyen et al.
7032667 April 25, 2006 Nguyen et al.
7036589 May 2, 2006 Nguyen
7040403 May 9, 2006 Nguyen et al.
7059406 June 13, 2006 Nguyen
7063150 June 20, 2006 Slabaugh et al.
7066258 June 27, 2006 Justus et al.
7073581 July 11, 2006 Nguyen et al.
7080688 July 25, 2006 Todd et al.
7081439 July 25, 2006 Sullivan et al.
7104325 September 12, 2006 Nguyen et al.
7114560 October 3, 2006 Nguyen et al.
7114570 October 3, 2006 Nguyen et al.
7117942 October 10, 2006 Dalrymple et al.
7131491 November 7, 2006 Blauch et al.
7153575 December 26, 2006 Anderson et al.
7156194 January 2, 2007 Nguyen
7178596 February 20, 2007 Blauch et al.
7210528 May 1, 2007 Brannon et al.
7216711 May 15, 2007 Nguyen et al.
7306037 December 11, 2007 Nguyen et al.
20010016562 August 23, 2001 Muir et al.
20020036088 March 28, 2002 Todd
20020043370 April 18, 2002 Poe
20020048676 April 25, 2002 McDaniel et al.
20020070020 June 13, 2002 Nguyen
20020104217 August 8, 2002 Echols et al.
20020160920 October 31, 2002 Dawson et al.
20020169085 November 14, 2002 Miller et al.
20020189808 December 19, 2002 Nguyen et al.
20030006036 January 9, 2003 Malone et al.
20030013871 January 16, 2003 Mallon et al.
20030060374 March 27, 2003 Cooke, Jr.
20030106690 June 12, 2003 Boney et al.
20030114314 June 19, 2003 Ballard et al.
20030114317 June 19, 2003 Benton et al.
20030130133 July 10, 2003 Vollmer
20030131999 July 17, 2003 Nguyen et al.
20030148893 August 7, 2003 Lungofer et al.
20030186820 October 2, 2003 Thesing
20030188766 October 9, 2003 Banerjee et al.
20030188872 October 9, 2003 Nguyen et al.
20030196805 October 23, 2003 Boney et al.
20030205376 November 6, 2003 Ayoub et al.
20030230408 December 18, 2003 Acock et al.
20030230431 December 18, 2003 Reddy et al.
20030234103 December 25, 2003 Lee et al.
20040000402 January 1, 2004 Nguyen et al.
20040014607 January 22, 2004 Sinclair et al.
20040014608 January 22, 2004 Nguyen et al.
20040040706 March 4, 2004 Hossaini et al.
20040040708 March 4, 2004 Stephenson et al.
20040040712 March 4, 2004 Ravi et al.
20040040713 March 4, 2004 Nguyen et al.
20040043906 March 4, 2004 Heath et al.
20040045712 March 11, 2004 Eoff et al.
20040048752 March 11, 2004 Nguyen et al.
20040055747 March 25, 2004 Lee
20040060702 April 1, 2004 Kotlar et al.
20040106525 June 3, 2004 Willbert et al.
20040138068 July 15, 2004 Rimmer et al.
20040149441 August 5, 2004 Nguyen et al.
20040152601 August 5, 2004 Still et al.
20040152602 August 5, 2004 Boles
20040177961 September 16, 2004 Nguyen et al.
20040194961 October 7, 2004 Nguyen et al.
20040206499 October 21, 2004 Nguyen et al.
20040211559 October 28, 2004 Nguyen et al.
20040211561 October 28, 2004 Nguyen et al.
20040221992 November 11, 2004 Nguyen et al.
20040231845 November 25, 2004 Cooke, Jr.
20040231847 November 25, 2004 Nguyen et al.
20040256097 December 23, 2004 Byrd et al.
20040256099 December 23, 2004 Nguyen et al.
20040261993 December 30, 2004 Nguyen
20040261995 December 30, 2004 Nguyen et al.
20040261997 December 30, 2004 Nguyen et al.
20040261999 December 30, 2004 Nguyen
20050000694 January 6, 2005 Dalrymple et al.
20050000731 January 6, 2005 Nguyen et al.
20050006093 January 13, 2005 Nguyen et al.
20050006095 January 13, 2005 Justus et al.
20050006096 January 13, 2005 Nguyen et al.
20050028976 February 10, 2005 Nguyen
20050028979 February 10, 2005 Brannon et al.
20050034862 February 17, 2005 Nguyen et al.
20050034865 February 17, 2005 Todd et al.
20050045326 March 3, 2005 Nguyen
20050045330 March 3, 2005 Nguyen et al.
20050045384 March 3, 2005 Nguyen
20050051331 March 10, 2005 Nguyen et al.
20050051332 March 10, 2005 Nguyen et al.
20050145385 July 7, 2005 Nguyen
20050173116 August 11, 2005 Nguyen et al.
20050194136 September 8, 2005 Nguyen et al.
20050194142 September 8, 2005 Nguyen
20050197258 September 8, 2005 Nguyen
20050263283 December 1, 2005 Nguyen
20050267001 December 1, 2005 Weaver et al.
20050269086 December 8, 2005 Nguyen et al.
20050269101 December 8, 2005 Stegent et al.
20050274510 December 15, 2005 Nguyen et al.
20050274517 December 15, 2005 Blauch et al.
20050277554 December 15, 2005 Blauch et al.
20050284632 December 29, 2005 Dalrymple et al.
20050284637 December 29, 2005 Stegent et al.
20060048943 March 9, 2006 Parker et al.
20060052251 March 9, 2006 Anderson et al.
Foreign Patent Documents
2063877 May 2003 CA
0313243 October 1988 EP
0528595 August 1992 EP
0506934 October 1992 EP
0510762 November 1992 EP
0643196 June 1994 EP
0834644 April 1998 EP
0853186 July 1998 EP
0864726 September 1998 EP
0879935 November 1998 EP
0933498 August 1999 EP
1001133 May 2000 EP
1132569 September 2001 EP
1326003 July 2003 EP
1362978 November 2003 EP
1394355 March 2004 EP
1396606 March 2004 EP
1398460 March 2004 EP
1403466 March 2004 EP
1464789 October 2004 EP
1607572 December 2005 EP
1107584 March 1968 GB
1264180 December 1969 GB
1292718 October 1972 GB
2298440 September 1996 GB
2382143 April 2001 GB
WO 93/15127 August 1993 WO
WO 94/07949 April 1994 WO
WO 94/08078 April 1994 WO
WO 94/08090 April 1994 WO
WO 95/09879 April 1995 WO
WO 97/11845 April 1997 WO
WO 99/27229 June 1999 WO
WO 01/81914 November 2001 WO
WO 01/87797 November 2001 WO
WO 02/12674 February 2002 WO
WO 03/027431 April 2003 WO
WO2004/009956 January 2004 WO
WO 2004/037946 May 2004 WO
WO 2004/038176 May 2004 WO
WO2004/083600 September 2004 WO
WO2005/021928 March 2005 WO
WO 2005/021928 March 2005 WO
Other references
  • Infoplease Dictionary Definition of the word calcuate, Random House Unabridged Dictionary, Copyright 1997, by Random House Inc., on Infoplease, pp. 1-2.
  • SPE 17154, “Key Factors for Enhanced Results of Matrrix Stimulation,” Paccaloni, et al., 1988.
  • SPE 20623, “Advances in Matrix Stimulation Technology,” Paccaloni, et al., 1993.
  • “Petroleum Productions Systems”, Economidies Hill and Ehling-Economidies, pp. 364-368.
  • U.S. Appl. No. 10/383,154, filed Mar. 6, 2003, Nguyen, et al.
  • U.S. Appl. No. 10/394,898, filed Mar. 21, 2003, Eoff et al.
  • U.S. Appl. No. 10/408,800, filed Apr. 7, 2003, Nguyen, et al.
  • U.S. Appl. No. 10/601,407, filed Jun. 23, 2003, Byrd et al.
  • U.S. Appl. No. 10/603,492, filed Jun. 25, 2003, Nguyen, et al.
  • U.S. Appl. No. 10/649,029, filed Aug. 27, 2003, Nguyen, et al.
  • U.S. Appl. No. 10/650,063, filed Aug. 26, 2003, Nguyen.
  • U.S. Appl. No. 10/650,064, filed Aug. 26, 2003, Nguyen, et al.
  • U.S. Appl. No. 10/650,065, filed Aug. 26, 2003, Nguyen.
  • U.S. Appl. No. 10/659,574, filed Sep. 10, 2003, Nguyen, et al.
  • U.S. Appl. No. 10/727,365, filed Dec. 4, 2003, Reddy, et al.
  • U.S. Appl. No. 10/751,593, filed Jan. 5, 2004, Nguyen.
  • U.S. Appl. No. 10/775,347, filed Feb. 10, 2004, Nguyen.
  • U.S. Appl. No. 10/791,944, filed Mar. 3, 2004, Nguyen.
  • U.S. Appl. No. 10/793,711, filed Mar. 5, 2004, Nguyen, et al.
  • U.S. Appl. No. 10/852,811, filed May 25, 2004, Nguyen.
  • U.S. Appl. No. 10/853,879, filed May 26, 2004, Nguyen et al.
  • U.S. Appl. No. 10/860,951, filed Jun. 4, 2004, Stegent, et al.
  • U.S. Appl. No. 10/861,829, filed Jun. 4, 2004, Stegent, et al.
  • U.S. Appl. No. 10/862,986, filed Jun. 8, 2004, Nguyen, et al.
  • U.S. Appl. No. 10/864,061, filed Jun. 9, 2004, Blauch, et al.
  • U.S. Appl. No. 10/864,618, filed Jun. 9, 2004, Blauch, et al.
  • U.S. Appl. No. 10/868,593, filed Jun. 15, 2004, Nguyen, et al.
  • U.S. Appl. No. 10/868,608, filed Jun. 15, 2004, Nguyen, et al.
  • U.S. Appl. No. 10/937,076, filed Sep. 9, 2004, Nguyen, et al.
  • U.S. Appl. No. 10/944,973, filed Sep. 20, 2004, Nguyen, et al.
  • U.S. Appl. No. 10/972,648, filed Oct. 25, 2004, Dusterhoft, et al.
  • U.S. Appl. No. 10/977,673, filed Oct. 29, 2004, Nguyen.
  • U.S. Appl. No. 11/009,277, filed Dec. 8, 2004, Welton, et al.
  • U.S. Appl. No. 11/011,394, filed Dec. 12, 2004, Nguyen, et al.
  • U.S. Appl. No. 11/035,833, filed Jan. 14, 2005, Nguyen.
  • U.S. Appl. No. 11/049,252, filed Feb. 2, 2005, Van Batenburg, et al.
  • U.S. Appl. No. 11/053,280, filed Feb. 8, 2005, Nguyen.
  • U.S. Appl. No. 11/056,635, filed Feb. 11, 2005, Dusterhoft, et al.
  • Halliburton, CoalStimSM Service, Helps Boost Cash Flow From CBM Assets, Stimulation, H03679 10/03, 2003, Halliburton Communications.
  • Halliburton, Conductivity Endurance Technology for High Permeability Reservoirs, Helps Prevent Intrusion of Formation Material Into the Proppant Pack for Improved Long-term Production, Stimulation, 2003, Halliburton Communications.
  • Halliburton, Expedite® Service, A Step-Change Improvement Over Conventional Proppant Flowback Control Systems. Provides Up to Three Times the Conductivity of RCPs., Stimulation, HO3296 05/04, 2004, Halliburton Communications.
  • Halliburton Technical Flier—Multi Stage Frac Completion Methods, 2 pages.
  • Halliburton “CobraFracSM Service, Coiled Tubing Fracturing—Cost-Effective Method for Stimulating Untapped Reserves”, 2 pages, 2004.
  • Halliburton “CobraJetFracSM Service, Cost-Effective Technology That Can Help Reduce Cost per BOE Produced, Shorten Cycle time and Reduce Capex”, Halliburton Cobra Frac Advertisement, 2001.
  • Halliburton “SurgiFracSM Service, a Quick and cost-Effective Method to Help Boost Production From Openhole Horizonal Completions”, 2002.
  • Halliburton, SandWedge® NT Conductivity Enhancement System, Enhances Proppant Pack Conductivity and Helps Prevent Intrusion of Formation Material for Improved Long-Term Production, Stimulation, HO2289 05/04, 2004, Halliburton Communications.
  • Almond et al., Factors Affecting Proppant Flowback With Resin Coated Proppants, SPE 30096, pp. 171-186, May 1995.
  • Nguyen et al., A Novel Approach for Enhancing Proppant Consolidation: Laboratory Testing and Field Applications, SPE Paper No. 77748, 2002.
  • SPE 15547, Field Application of Lignosulfonate Gels to Reduce Channeling, South Swan Hills Miscible Unit, Alberta, Canada, by O.R. Wagner et al, 1986.
  • Owens et al., Waterflood Pressure Pulsing for Fractured Reservoirs SPE 1123, 1966.
  • Felsenthal et al., Pressure Pulsing—An Improved Method of Waterflooding Fractured Reservoirs SPE 1788, 1957.
  • Raza, “Water and Gas Cyclic Pulsing Method for Improved Oil Recovery”, SPE 3005, 1971.
  • Peng et al., “Pressure Pulsing Waterflooding in Dual Porosity Naturally Fractured Reservoirs” SPE 17587, 1988.
  • Dusseault et al, “Pressure Pulse Workovers in Heavy Oil”, SPE 79033, 2002.
  • Yang et al., “Experimental Study on Fracture Initiation by Pressure Pulse”, SPE 63035, 2000.
  • Nguyen et al., New Guidelines for Applying Curable Resin-Coated Proppants, SPE Paper No. 39582, 1997.
  • Kazakov et al., “Optimizing and Managing Coiled Tubing Frac Strings” SPE 60747, 2000.
  • Advances in Polymer Science, vol. 157, “Degradable Aliphatic Polyesters” edited by A.-C. Alberston, pp. 1-138, 2001.
  • Gorman, Plastic Electric: Lining up the Future of Conducting Polymers Science News, vol. 163, May 17, 2003.
  • Gidley et al., “Recent Advances in Hydraulic Fracturing,” Chapter 6, pp. 109-130, 1989.
  • Simmons et al., “Poly(phenyllactide): Synthesis, Characterization, and Hydrolytic Degradation, Biomacromolecules”, vol. 2, No. 2, pp. 658-663, 2001.
  • Yin et al., “Preparation and Characterization of Substituted Polylactides”, Americal Chemical Society, vol. 32, No. 23, pp. 7711-7718, 1999.
  • Yin et al., “Synthesis and Properties of Polymers Derived from Substituted Lactic Acids”, American Chemical Society, Ch.12, pp. 147-159, 2001.
  • Cantu et al., “Laboratory and Field Evaluation of a Combined Fluid-Loss Control Additive and Gel Breaker for Fracturing Fluids,” SPE 18211, 1990.
  • Love et al., “Selectively Placing Many Fractures in Openhole Horizontal Wells Improves Production”, SPE 50422, 1998.
  • McDaniel et al. “Evolving New Stimulation Process Proves Highly Effective in Level 1 Dual-Lateral Completion” SPE 78697, 2002.
  • Dechy-Cabaret et al., “Controlled Ring-Operated Polymerization of Lactide and Glycolide” American Chemical Society, Chemical Reviews, A-Z, AA-AD, 2004.
  • Funkhouser et al., “Synthetic Polymer Fracturing Fluid for High-Temperature Applications”, SPE 80236, 2003.
  • Chelating Agents, Encyclopedia of Chemical Technology, vol. 5 (764-795).
  • Vichaibun et al., “A New Assay for the Enzymatic Degradation of Polylactic Acid, Short Report”, ScienceAsia, vol. 29, pp. 297-300, 2003.
  • CDX Gas, CDX Solution, 2003, CDX, LLC, Available @ www.cdxgas.com/solution.html, printed pp. 1-2.
  • CDX Gas, “What is Coalbed Methane?” CDX, LLC. Available @ www.cdxgas.com/what.html, printed p. 1.
  • Halliburton brochure entitled “H2Zero™ Service Introducing The Next Generation of cost-Effective Conformance Control Solutions”, 2002.
  • Halliburton brochure entitled Injectrol® A Component, 1999.
  • Halliburton brochure entitled “Injectrol® G Sealant”, 1999.
  • Halliburton brochure entitled “Injectrol® IT Sealant”, 1999.
  • Halliburton brochure entitled “Injectrol® Service Treatment”, 1999.
  • Halliburton brochure entitled “Injectrol® U Sealant”, 1999.
  • Halliburton brochure entitled “Sanfix® A Resin”, 1999.
  • Halliburton brochure entitled “Pillar Frac Stimulation Technique” Fracturing Services Technical Data Sheet, 2 pages.
  • Foreign Counterpart and Written Opinion Application No. PCT/GB2005/003747, Sep. 29, 2005.
  • U.S. Appl. No. 12/080,647, filed Apr. 4, 2008, Dalrymple et al.
  • Office Action for Russian Patent Application No. 2007117153 dated Dec. 15, 2009.
  • “Santrol Bioballs”; http://www.fairmounminerals.com/.sub.—SANTROL/SANTROL%20Web%20Site/B.sum-. - TD htm. cited by other, Sep. 30, 2004.
  • International Search Report and Written Opinion for PCT/GB2004/002412, Sep. 16, 2004.
  • European Search Report for EP 03254267.2 dated Mar. 11, 2005.
  • International Preliminary Report on Patentability for PCT/GB2004/001497, dated Oct. 14, 2005.
  • International Preliminary Report on Patentability for PCT/GB2004/001842, dated Oct. 25, 2005.
  • International Preliminary Report on Patentability for PCT/GB2004/002674, dated Jan. 9, 2006.
  • International Preliminary Report on Patentability for PCT/GB2004/002968, dated Mar. 13, 2006.
  • International Preliminary Report on Patentability for PCT/GB2004/004242, dated Apr. 18, 2006.
  • International Preliminary Report on Patentability for PCT/GB2004/000689, dated Sep. 9, 2005.
  • International Preliminary Report on Patentability for for PCT/GB2004/002727, dated Jan. 3, 2006.
  • International Search Report for PCT/GB2004/002747, dated Mar. 11, 2005.
  • International Preliminary Report on Patentability for PCT/GB2004/002948, dated Mar. 6, 2006.
  • Nguyen, et al., Controlling Proppant Flowback in High-Temperature, High-Production Wells, SPE 82215, May 2003.
  • Dusterhoft, et al., Maximizing Effective Proppant Permeability Under High-Stress, High Gas-Rate Conditions, SPE 90398, Sep. 2004.
Patent History
Patent number: 7757768
Type: Grant
Filed: Oct 8, 2004
Date of Patent: Jul 20, 2010
Patent Publication Number: 20060076138
Assignee: Halliburton Energy Services, Inc. (Ducnan, OK)
Inventors: Ronald G. Dusterhoft (Katy, TX), Philip D. Nguyen (Duncan, OK)
Primary Examiner: William P Neuder
Assistant Examiner: Nicole A Coy
Attorney: Robert A. Kent
Application Number: 10/961,508